Data Caching Tradeoffs in
Client-Server DBMS Architectures

by

Michael J. Carey
Michael J. Franklin
Miron Livny
Eugene J. Shekita

Computer Sciences Technical Report #994
January 1991

Data Caching Tradeoffs
in
Client-Server DBMS Architectures

Michael J. Carey
Michael J. Franklin
Miron Livny
Eugene J. Shekita

Computer Sciences Department
University of Wisconsin

This research was partially supported by the Defense Advanced Research Projects Agency under contracts N00014-88-K-
0303 and NAG-2-618 and by the National Science Foundation under grant IRT-8657323.

Data Caching Tradeoffs in Client-Server DBMS Architectures

Michael J. Carey, Michael J. Franklin,
Miron Livny, Eugene J. Shekita
Computer Sciences Department

University of Wisconsin

ABSTRACT

In this paper, we examine the performance tradeoffs that are raised by caching data in the
client workstations of a client-server DBMS. We begin by presenting a range of lock-based
cache consistency algorithms; these algorithms arise by viewing cache consistency as a variant
of the well-understood problem of replicated data management. We then use a detailed simula-
tion model to study the performance of these algorithms over a wide range of workloads and
system resource configurations. The results illustrate key performance tradeoffs related to
client-server cache consistency, and should be of use to designers of next-generation DBMS
prototypes and products.

1. INTRODUCTION

With networks of powerful workstations becoming commonplace in scientific, engineering, and even office
computing environments, client-server software architectures have become a common approach to providing access
to shared services and resources. Most commercial relational database management systems today are based on
client-server architectures, with SQL queries and their results serving as the basis for client-server interactions
[Ston90a]. In the past few years, a number of object-oriented DBMS (OODBMS) prototypes and products have
appeared, virtuaily all of which are based on client-server architectures. Compared to relational database systems,
these systems generally take a different approach when it comes to client-server interactions. In order to offload
processing to client workstations, it is common for client-server interactions in an OODBMS to take place at the
level of individual objects or pages of objects rather than queries [DeWi%0]. Prototypes based on object-level
interactions include Orion [Kim90] and O2 [Deux90], among others. Among the prototypes based on page-level (or
multi-page block) interactions are ObServer [Horn87] and the current version of the EXODUS storage manager
[Care89a, Zwil90]; the ObjectStore system from Object Design {ODI90] is an example of a commercial OODBMS

product based on page-level interactions.

In architectures where data pages or objects are the basis for client-server interactions, it is possible to cache

data in the local memories of client workstations for later reuse.! Such caching can reduce the need for client-

This research was partially supported by the Defense Advanced Research Projects Agency under contracts N00014-88-K-0303 and NAG-
2-618 and by the National Science Foundation under grant IRT-8657323.

! If the client workstations have local disks, it is also possible to cache data on secondary storage, as in the Andrew file system [Howa88].
Local disk caching is beyond the scope of this paper, however, and will not be discussed further.

server interaction, lessening the network traffic and message processing overhead for both the server and its clients.
It also enables client resources to be used by the DBMS, thus increasing both the aggregate memory and the aggre-
gate CPU power available for database-related processing. An increase in the aggregate memory of the DBMS can
reduce the 1/O load on the server, while an increase in the aggregate CPU power available to the DBMS can reduce
the load on the server CPU(s). Depending on the nature of the applications — including their balance of I/O and
CPU demands, their locality of access, and the proportional cost of their DBMS accesses relative to their overall
computational requirements — increasing the aggregate resources of the DBMS can result in significant perfor-
mance improvements. Of course, in applications where the response time is dominated by the time spent at the
client CPU, or where a large fraction of the DBMS is accessed relative to the size of the client buffer pool, the per-

formance benefits of caching would be negligible.

Despite its potential, caching is not a performance panacea. In order to incorporate caching, the DBMS must
include a protocol that ensures cache consistency. Such a protocol may be complex to implement, it may entail a
significant amount of processing overhead, and its impact on system performance may be workload-dependent.
Depending on how the protocol and the workload interact, the cache consistency protocol might actually increase
the load on the server and/or the client workstations due to its overhead, particularly when there are a large number
of client workstations. Another potential pitfall, which depends on the concurrency control scheme used by the pro-
tocol, is the late discovery of data conflicts. Thus, the potential consequences of adding caching to a client-server
DBMS range from a significant improvement in performance to a notable degradation in performance. An example

of a workload where caching can be highly beneficial is the Sun Engineering Database Benchmark [Catt90a].

In this paper, we examine the data caching performance tradeoffs discussed above. We begin by presenting a
range of lock-based cache consistency algorithms that result from recognizing that cache consistency is simply a
variant of the replicated data management problem studied by distributed DBMS researchers. For concreteness, we
focus our attention on systems where client-server interactions are page-based. This approach, also referred to as
the block server approach [Ston90b], was shown to perform well for CAD-style data access patterns in a recent per-
formance study [DeWi90]. Also, our work was motivated by a desire to understand performance tradeoffs in our
own page-based, client-server storage managers [Care89a, Shek90, Zwil90]. Given this set of cache consistency
algorithms, we then describe a detailed simulation model that was developed to study their performance over a wide

range of workloads and system resource configurations.

The performance of transaction-oriented cache consistency algorithms has been examined in several related
contexts. The only other client-server data caching study that we know of is a recent simulation study at HP
Laboratories [Wilk90]. Our work differs from their work in several ways. First, we employ a much more detailed
model of buffering, the importance of which will be clear from our results. Second, we study a broader range of
DBMS workloads. Our work is also related to studies of shared-disk architectures, including the work by Bhide
[Bhid88] and by a DBMS performance group at IBM Yorktown (reported in [Yu87, DanS0] and other related
papers). Again, our work differs from these efforts in several ways. First, shared-disk and client-server DBMS

architectures are qualitatively different. In a client-server DBMS, clients must interact with the server in any case,

so the server is a natural center of activity that is also available to assist in cache management. Also, shared-disk
DBMS configurations tend to involve relatively few machines. Second, we study a range of cache consistency algo-
rithms that goes beyond those found in the shared-disk literature, including algorithms that propagate changes to
other caches rather than invalidating other cached copies. The final example of closely related work is the recent
Harvard work on transaction-oriented distributed memory hierarchies [Bell90]. In contrast to our work, their work
assumes a decentralized, shared-nothing architecture and a communications network with hardware broadcast sup-
port, yielding a very different set of resource-related performance tradeoffs. In addition, it should be noted that our
work is also loosely related to studies of multiprocessor cache coherency algorithms (e.g., [Arch86]) and to work on
caching in distributed file systems (e.g., [Howa88, Nels88, Gray89]). We will return to the topic of related work
again once we have presented our performance results. To summarize, the main contributions of this paper include
viewing client-server cache consistency as a replica management problem, studying a range of algorithms that
naturally arise from this view, using a detailed simulation model to do so, and exploring a wide range of workloads

and system resource configurations.

The remainder of the paper is organized as follows: Section 2 describes our architectural assumptions and
presents the cache consistency algorithms that form the basis for our performance study. Section 3 describes our
simulation model. Section 4 describes our simulation experiments and results. Finally, Section 5 summarizes our

results and discusses our plans for future work on client-server DBMS architectures.

2. CACHE CONSISTENCY ALGORITHMS

In this section, we present the cache consistency algorithms that are the focus of this paper. Before doing so,
however, we review the page (or block) server approach to a client-server DBMS and explain how cache con-

sistency is related to replica management in a distributed DBMS.

2.1. Page Server Architecture

The general architecture of a caching client-server DBMS is depicted in Figure 1. The system consists of a
database server which is connected to N client workstations via a local area network. The system’s secondary
storage, which includes one or more disks on which the database is stored and a (mirrored) disk for the log, is con-
nected to the server. The software of the DBMS includes components that reside on both the server and the clients,
so applications running on client workstations can view the DBMS essentially as a locally available service. The
DBMS has buffer pool space available on both the server and on the client workstations, and it is free to manage
this space as it sees fit in order to optimize the overall performance of the DBMS. In the page server architecture,

pages (or multi-page blocks) are the unit of client-server data transfer and also serve as the unit of data caching.

Process-wise, we assume that each client application (CA) runs as a process (i.e., in an address space) that is
separate from the DBMS. We further assume that the DBMS itself consists of a multi-threaded database server
(DS) process and a collection of multi-threaded client database (CD) processes. It is also assumed that there are one

or more client application processes and exactly one database client process per client workstation. We will not

Workstation 1 Workstation N

'l ‘
i CcD CD '
i buffer pool buffer pool E
E | ‘ |
E Server E
i log disk DS ;
E buffer pool 2
i ;

Figure 1: Cache Architecture of a Client-Server DBMS

concern ourselves with the details of how the client application and database processes interact within a client
workstation; this is system-dependent, and may be handled through database library calls (based on local IPC or
shared memory) or through virtual memory assisted page-faulting (a la [Shek90]). All that matters here is that client
applications can somehow submit requests to the client database process in order to control (i.e., begin, commit, and
abort) transactions and to read and write objects in the database. In addition, the database client and server
processes can communicate both synchronously and asynchronously with respect to client application processes in
order to handle cache misses, updates, and cache consistency. Finally, since the database client processes are
separate from client application processes, their state outlives client transactions. Thus, they are free to cache data

both within and across transaction boundaries as long as system-wide cache consistency is maintained.

Other recent work on client-server cache consistency [Wilk90] has approached the problem from first princi-
ples. In that work, two algorithms were developed and analyzed. One of the algorithms was developed by viewing
cached pages as snapshots of server pages and characterizing them according to their current state relative to the
server’s version; this is similar to approaches found in multiprocessor cache coherency algorithms [Arch86]. The
other algorithm is based on an analogy with notification ideas from the active database area. Both of these algo-
rithms required that certain conditions be checked and later rechecked in order to avoid potential race conditions
between transactions. Given the general system model described above, a cleaner approach can be arrived at by
recognizing that cached data are just like replicated data in a distributed DBMS, though they reside in main memory
rather than on disk. Thus, all of the well-known results on replica management theory and algorithms [Bern87] can

be applied to the client-server cache consistency problem.

Given this observation, we now present five candidate algorithms for maintaining client-server cache con-

sistency.? The first algorithm is a basic two-phase locking scheme, based on the primary copy approach to replica
management [Bern87], in which data is not cached between client transactions. The second algorithm extends the
first to allow for inter-transaction data caching. The other three algorithms are each based on an optimistic variant
of two-phase locking, studied in [Care89b], where updates to remote copies of replicated data are deferred until
end-of-transaction. One of the algorithms handles updates by invalidating all remotely cached copies, while another
handles updates by propagating new data values to the remote caches (as is done for replicated data in a distributed
DBMS); the final algorithm takes a dynamic approach, choosing between invalidation and propagation on a per-

page basis.

In all five algorithms, the client database process must request data from the database server if a cache miss
occurs, and data can be safely cached within the context of a single transaction; it should not be necessary for a
transaction to re-fetch the same data again unless its working set is large relative to the available client buffer space.
Also, in all algorithms, committing a transaction involves sending a commit message with copies of all updated
pages and their associated log records back to the server. This allows the server to handle future requests for the

modified data directly — even if the client workstation is turned off or crashes in the meantime.

2.2. Basic Two-Phase Locking (B2PL)

The first algorithm is a primary copy locking algorithm [Bern87] in which the client database process discards
cached data between transactions. Transactions set read locks on the data pages that they access, upgrading their
read locks to write locks if an item is to be updated. All first-time lock requests are sent to the server, which serves
as the primary copy site. Subsequent requests for locks on pages that the transaction has already locked do not
require any interaction with the server as long as the mode of the new request is same as that of the existing lock.
Read lock requests and page access requests are combined, and the server’s response is to return the requested page
after obtaining a read lock on the page for the requesting client transaction. All locks are held until the transaction
either commits or aborts. As usual, it is possible for deadlocks to arise, and these are handled through centralized
deadlock detection on the server when lock waits occur. Deadlock resolution involves aborting the transaction with
the most recent initial startup time among those involved in the deadlock. This algorithm is of interest because it is
a simple starting point, it is currently in use in the client-server EXODUS storage manager [Zwil90], and it was also

used as a baseline algorithm in [Wilk90].

2.3. Caching Two-Phase Locking (C2PL)

The second algorithm is a refinement of B2PL in which inter-transaction data caching is permitted. As in
B2PL, all locking and deadlock detection duties are the responsibility of the server. Thus, all first-time lock
requests require a round-trip message interchange between client and server database processes. Unlike B2PL,

however, the contents of the client buffer pool are retained across transactions. Despite this retention, C2PL

% Note that, for the remainder of this paper, we shall assume that pages form the unit of buffering and cache consistency. The algorithms
that will be described, however, easily extend to the case of multi-page blocks. We will also focus our attention strictly on the caching of data;
index pages must be handled via a separate mechanism in order to support the necessary level of concurrent activity.

guarantees that transactions always read valid data by having the server piggyback updated copies of pages, when
necessary, on reply messages to lock requests. In order for the server to know when an updated page must be sup-
plied, a lock request includes the locally known log sequence number (LSN) of the page if the page is cached at the
requesting client. The server compares this LSN with the page’s true LSN to determine if the cached copy is still
valid.

To facilitate the LSN check, the server maintains a table containing the LSNs of all pages that are currently
cached on one or more client workstations. It does so by recording the LSN when it provides a page to a client, and
clients inform the server when they no longer have a copy of a given page. For example, whenever a client selects a
clean cached page for replacement, it simply discards the page and then notifies the server as soon as it is con-
veniently possible to do so. This is accomplished by piggybacking a list of recently discarded pages on the next

message that it sends to the server.

2.4. Optimistic Two-Phase Locking (O2PL)

The next three algorithms, referred to collectively as the O2PL. family of cache consistency algorithms, are all
based on a read-one/write-all [Bern87] optimistic locking scheme studied in [Care89b] for distributed replica
management. These algorithms differ from C2PL in that, prior to transaction commit time, clients set read and write
locks locally without obtaining locks at the server. Moreover, a client cache miss causes the client to request the
page from the server, as usual, but a read lock is acquired and held on the server only long enough for the server to
obtain a stable copy of the page to send back to the client. The server keeps track of which client caches have
current copies of which pages. Note that optimistic locking schemes have also been proposed for shared-disk sys-

tems, for example, the semi-optimistic ‘“pass-the-buck’” locking scheme of [Yu87].

In the O2PL algorithms, client updates are performed locally, but they are are not permitted to migrate back to
the server’s buffer pool until the associated update transaction enters its commit phase. At that time, the client data-
base process associated with the update transaction sends a commit message to the server containing a copy of each
page that has been updated by the transaction; the server then acquires update-copy locks (similar to write locks) on
these pages on behalf of the update transaction. Once these locks have been acquired, the server sends a prepare-
to-commit message to all other client database processes that contain cached copies of any of the updated pages.

These client database processes request update-copy locks on the updated data on behalf of the committing transac-

tion.> Once all of the relevant update-copy locks have been obtained, variant-specific O2PL, actions are taken.

Update-copy locks are exclusive locks that enable certain deadlocks to be detected early. Being exclusive
locks, if another transaction holds a read lock on a page when an update-copy lock is requested for it, the commit-
ting update transaction will wait until the reader completes. A conflict between an update-copy lock and a write
lock indicates an impending distributed deadlock, and it can be resolved as such without further delay [Care89b].

Other deadlocks, including distributed deadlocks, are possible; they are dealt with by having the client and server

*If an update-copy lock request is made for a page that is no longer cached at a given client site, the site simply ignores this lock request.

database processes check for local deadlocks, and by having the server periodically check for distributed deadlocks
a la [Ston79].

2.4.1. Update Invalidation (O2PL.-I)

In the invalidation variant of O2PL, the variant-specific action is the invalidation of other cached copies of
updated pages. That is, a committing update transaction acquires update-copy locks on all copies (i.e., at the server
and at any clients) of the updated pages. At the server, these locks enable the committing transaction to safely
install its updates. On other clients, however, they enable it to safely invalidate cached copies of the page. Once all
updated pages have been invalidated, these other clients send a prepared-to-commit message back to the server,
release their update-copy locks, and then drop out of the commit protocol. The server can commit the update tran-
saction when all sites containing cached copies of the updated data have responded, at which point only the server

and the client that originated the update have copies of the updated data.

2.4.2. Update Propagation (O2PL.-P)

In the propagation variant of O2PL, the variant-specific action is the propagation of updates to other cached
copies of updated pages. Thus, the O2PL-P algorithm keeps all clients informed of any changes made to the data
resident in their local caches. As in O2PL-I, a committing update transaction acquires update-copy locks on all
copies of pages to be updated. In this case, however, these locks are used to enable the committing transaction to
safely install its updates on every machine that holds a copy of the updated data. Since updates must be installed on
the server and all clients atomically, O2PL-P employs a two-phase commit protocol rather than the one-phase com-
mit that suffices for O2PL-1. Also, the prepare-to-commit messages that the server sends to clients in this case must

include copies of the relevant updates; these updates are installed during the second phase of the commit protocol to

avoid overwriting valid cached pages before the outcome of the update transaction is certain.*

2.4.3. A Dynamic Algorithm (O2PL-D)

The O2PL-I and O2PL-P algorithms were motivated by different workloads. As we will show in Section 4,
each algorithm provides significant performance benefits under the right conditions. The dynamic variant of O2PL
attempts to invalidate cached copies of data when invalidation is appropriate and to propagate changes when doing
so seems more beneficial. This dynamic algorithm, O2PL-D, propagates updates like O2PL-P unless it detects that
it is doing so too frequently. In O2PL-D, an update to a page will lead to an invalidation of the page instead of a
change propagation if a caching client notices that (i) it has already propagated a change to this page, and (ii) the
page has not been re-referenced by the client since that time. Clients that do no propagation in response 10 a
prepare-to-commit message from the server can drop out of the commit protocol at the end of the first phase, as in
O2PL-I.

* Note: The installation of these updates has no affect on the position of the updated pages in the clients’ LRU chains.

2.5. Performance Tradeoffs

We have presented five algorithms for client-server cache consistency, all based (in one way or another) on
viewing cached pages as replicated data. While Section 4 will present results from a quantitative study of the trade-
offs between the various algorithms, it is worthwhile to consider some of their qualitative differences. B2PL is the
simplest approach, and will serve as a baseline against which to evaluate the other approaches. C2PL., which
extends B2PL to support caching across transaction boundaries, extends the aggregate memory of the DBMS 1o
include the buffer space on the client workstations. In contrast to B2PL and C2P1., which require the server to han-
dle all lock requests, the O2PL algorithms extend C2PL by taking a more optimistic approach. The O2PL algo-
rithms allow client transactions to execute entirely locally between cache misses, communicating with the server
and with other client workstations only at commit time (to handle updated pages); this implies that transactions that
manage to run without cache misses can execute with no server interactions until they reach their commit point.
Among the O2PL algorithms, O2PL-I invalidates other cached copies of updated pages at this point, whereas
O2PL-P propagates changes to these copies. O2PL-D is a simple dynamic algorithm that attempts to combine the
best features of these two static O2PL, variants. Finally, compared with B2PL and C2PL, all three O2PL variants

allow additional concurrency since they detect data conflicts later; of course, this can lead to more aborts.

3. MODELING A CLIENT-SERVER DBMS

In order to study client-server caching, we have constructed a detailed simulation model of a client-server
DBMS. The structure of our simulation model is based on the system architecture that was shown earlier in Figure
1. In this section, we describe how the model captures the database, workload, and various physical resources of a
client-server DBMS. Certain aspects of the system, such as consistency control and buffer management, are
modeled in their full detail; other aspects, such as the database and the workload, are modeled more abstractly. The

model has been implemented using the DeNet simulation language [Livn88].

Parameter Meaning

DatabaseSize Size of database in pages

PageSize Size of a page

NumClients Number of client workstations

ThinkTime Mean think time between client transactions
TransactionSize | Mean number of pages accessed per transaction
PerPagelnst Mean number of instructions per page on read (doubled on write)
HotBounds Lower and upper page bounds of hot range
ColdBounds Lower and upper page bounds of cold range
HotAccessProb | Probability of accessing a page in the hot range
HotWriteProb Probability of writing to a page in the hot range
ColdWriteProb | Probability of writing to a page in the cold range

Table 1: Database and Workload Parameters

3.1. Database and Workload Models

Table 1 presents the parameters used to model the database and its workload. Since the cache consistency
algorithms of interest here are page-oriented, the database and client transaction behavior are modeled at the page
level. The database is modeled as a collection of DatabaseSize pages of PageSize bytes each. The system workload
is generated by a collection of NumClients client workstations. For simplicity, each client workstation in the model
is assumed to submit only one transaction at a time. Each workstation has its own set of values for the remaining

workload parameters, which have been designed to allow a wide range of workloads to be modeled.

Each client workstation generates a stream of transactions, with adjacent transactions being separated by an
exponential think time with a mean of ThinkTime. A client transaction reads between 0.5-TransactionSize and
1.5-TransactionSize distinct pages from the database. It spends an average of PerPagelnst CPU instructions pro-
cessing each page that it reads, and this amount is doubled for pages that it writes; the actual per-page CPU require-
ment is drawn from an exponential distribution. To allow locality to be modeled, each client workstation has hot
and cold regions of the database that are associated with it. HotBounds and ColdBounds specify the (possibly over-
lapping) ranges of pages in the client’s hot and cold regions, respectively. When randomly generating page refer-
ences for a new transaction, a page is drawn uniformly from among those in the client’s hot region with probability
HotAccessProb; otherwise the page is drawn from its cold region. HotWriteProb and ColdWriteProb specify the

region-specific probabilities of writing a page that has been read.

3.2. Client-Server Execution Model

The simulator works by having each client workstation use the parameters just described to submit a sequence
of client transactions. A transaction makes requests to begin and end its execution and to read and write pages of
the database. The basic structures of the client and server components of the simulation model are indicated in Fig-
ures 2-3. The client component includes a Source, which generates the workload in the manner described in the
previous section; a Client Manager, which executes transaction reference strings generated by the Source in accor-
dance with the chosen cache consistency protocol; a CC Manager, which is in charge of concurrency control (i.e.,
locking); a Buffer Manager, which is responsible for managing the client buffer pool; and a Resource Manager,
which models the other physical resources of the client workstation. The server component is organized similarly,
except that its workload arrives via the network rather than from a local transaction Source. One portion of both the

Client and Server Managers encapsulates the details of the cache consistency algorithms of interest.

Client transactions execute on the workstations that submit them. Details of their execution depend on the
cache consistency algorithm in use, as covered in the architectural model and algorithm descriptions of Section 2.
When a transaction references a page, the Client Manager must lock the page appropriately and check the local
buffer pool for a cached copy of the page; if no such copy exists, algorithm-dependent steps are taken in reaction to
the buffer miss. Both locking and buffer management are simulated in detail based on referenced page numbers.
Once a local copy of the page exists, the transaction processes the page and decides whether or not to update it. In

the event of an update, further processing is followed by algorithm-dependent update-handling actions. At commitl

Source
« Create Transaction

CC Manager Client Manager Buffer Manager

- Access Request + Commit/Abort |/ + Read/Write Page

» Commit/Abort + Execute Transaction » Replace Page
AN Resource Manager

," Network ‘___
\ Manager |
\ ;
AN e’ CPU

Figure 2: Client Component of Simulation Model

CC Manager Server Manager Buffer Manager
+ Access Request + Commit/Abort + Read/Write Page
+ Commit/Abort » Copy Registry + Replace Page

ST Resource Manager

. N

"' Network
\ Manager
CPU Disks e

Figure 3: Server Component of Simulation Model

time, the Client Manager sends a commit request together with any updates to the server, which then takes the
appropriate algorithm-dependent commit actions; an exception is that, in the O2PL algorithms, read-only transac-
tions can commit without any commit-time server interaction. In the event of a transaction abort, which can occur
due to a deadlock, the Client Manager arranges the abort, asks the Buffer Manager to purge any updated pages, and
then resubmits the same transaction. Activity at the server is controlled by the Server Manager component of the

simulator, which acts in response to the requests sent to it by the Client Managers.

In addition to the transaction-induced processing costs mentioned in Table 1, the simulation model includes

the system-related costs given in Table 2. One such cost is the overhead to send or receive a message, which is

Parameter Meaning

FixedMsglnst Fixed number of instructions per message
PerByteMsglnst Number of additional instructions per message byte
ControlMsgSize Size in bytes of a control message

Locklnst Number of instructions per lock/unlock pair
RegisterCopylnst | Number of instructions to register/unregister a page copy
Deadlockinterval | Global deadlock detection interval

Table 2: Various System Overhead Parameters

-10 -

modeled as FixedMsglnst instructions per message plus PerByteMsglnst instructions per message byte. The size of
a control message (e.g., a lock request or a commit protocol packet) is given by the parameter ControlMsgSize;
messages that contain one or more data pages are sized based on Table 1’s PageSize parameter. Other overheads
include Locklnst, the cost involved in a lock/unlock pair on the client or server, and RegisterCopylnst, the cost to
register and unregister (i.e., to track the existence of) a new cached page copy on the server or to look up the copies
(if any) of a given page. The parameter Deadlockinterval indicates the frequency with which the server performs
global deadlock detection in the O2PL algorithms, at which time it exchanges messages with all of the client works-

tations in order to obtain copies of their waits-for graphs.

3.3. Physical Resource Models

Table 3 lists the model parameters that specify the physical resources of the client workstations, the server,
and the local area communications network. Included are the client and server MIPS ratings (ClientCPU and Ser-
verCPU) and their respective buffer pool sizes (ClientBufSize and ServerBufSize). The service discipline of the
client and server CPUs is first-come, first-served (FIFO) for message processing and processor-sharing for all other
services; message processing preempts other CPU activity. The client and server buffer pools are both managed
via an LRU replacement policy, and the server only writes dirty pages back to disk once they are actually selected
for replacement. No preference is given to dirty pages. Note that, on clients, dirty pages exist only during the
course of a transaction. Dirty pages are held on the client until commit time, at which point they are copied back to

the server; once the transaction commits, the updated pages are marked as clean on the client.

Turning to the physical I/O model, the parameter ServerDisk specifies the number of database disks attached
to the server, and each is modeled as having an access time that is uniformly distributed over the range from Min-
DiskTime to MaxDiskTime. The disk used to service a given request is chosen at random from among the server
disks, so the model assumes that the database is uniformly partitioned across all of the disks. The service discipline
for the disks is modeled as being FIFO.

Finally, a very simple network model is used in the simulator’s Network Manager component; the network is
modeled as a FIFO server with a service rate of NetworkBandwidth. A simple model is sufficient because our

experiments assume a local area network, where the actual time on the wire for messages tends to be negligible and

Parameter Meaning

ClientCPU Instruction rate of client CPU
ServerCPU Instruction rate of server CPU
ClientBufSize Per-client buffer size
ServerBufSize Server buffer size
ServerDisks Number of disks at server
MinDiskTime Minimum disk access time
MaxDiskTime Maximum disk access time
NetworkBandwidth | Network bandwidth

Table 3: Resource-Related Parameters

-11-

the main cost issue is the CPU time for sending and receiving messages. This cost assumption has been found to

provide reasonably accurate performance results despite its simplicity [Lazo86].

4. EXPERIMENTS AND RESULTS

In this section, we present performance results for the various client-server cache consistency algorithms and
discuss their associated tradeoffs. We describe the experiments that were performed and the results that were

obtained following a discussion of the performance metrics and the parameter settings that were used.

4.1. Metrics and Parameter Settings

The primary performance metric employed in this study is the throughput (i.e., transaction completion rate) of

the system.”

A number of additional metrics are also used to aid in the analysis of the experimental resuits, includ-
ing the average transaction response time, the client and server buffer hit ratios, client and server resource utiliza-
tions, the average number of messages required at the server to execute a transaction, and several others. The
counts that are presented on a "per commit” basis are computed by dividing the total count for the metric by the
number of transaction commits over the duration of a simulation run. To ensure the statistical validity of our results,
we verified that the 90% confidence intervals for transaction response times (computed using batch means [Sarg76])
were sufficiently tight. The size of these confidence intervals was within a few percent of the mean in almost all
cases, which is more than sufficient for our purposes. Throughout the paper we discuss only performance differ-

ences that were found to be statistically significant.

Tables 4-5 present the database and workload parameter settings used in the experiments reported here. Table
4 contains default settings that are common across all of the experiments (except where otherwise noted). The data-
base size is 1,250 pages, with a page size of 4 kilobytes. The number of client workstations is varied from 1 to 25 in
order to study how the various cache consistency algorithms scale, and the think time at the workstations is zero.

The default per-page CPU processing time is 30,000 instructions.

Table 5 describes the range of workloads considered in this study. These workloads and their motivations
will be described as their corresponding experiments are presented. Note that these workloads were designed to

allow the exploration of the performance tradeoffs for client-server cache consistency algorithms; it is not the intent

Parameter Setting

DatabaseSize | 1,250 pages (5 megabytes)
PageSize 4,096 bytes

NumClients 1 to 25 client workstations
ThinkTime 0 seconds

PerPagelnst 30,000 instructions

Table 4: Database and Workload Parameter Settings

% Since we are using a closed queuing model, the inverse relationship between throughput and response time makes either a sufficient per-
formance metric.

-12 -

Parameter HOTCOLD PRIVATE FEED UNIFORM | SHAREDHOT
TransactionSize 20 pages 16 pages 5 pages 20 pages 20 pages
HotBounds p to p+49, ptop+24, 1t050 — 1t0 50
p=50(n-1)+1 | p=25(n-1)+1
ColdBounds rest of DB 626 to 1,250 rest of DB whole DB rest of DB
HotAccessProb 0.8 0.5 0.8 —_ 0.8
ColdAccessProb 0.2 0.5 0.2 1.0 0.2
HotWriteProb 0.2 0.2 1.0/0.0 — 0.2
ColdWriteProb 0.2 0.0 0.0/0.0 0.2 0.2

Table 5: Workload Parameter Values for Client n

of this study to predict absolute performance for any particular system or application. Moreover, none of these
workloads was derived from a real OODBMS application, as such applications are difficult to come by. We used a
relatively small database in conjunction with these workloads in order to make simulations involving fractionally
large buffer pools and transactions feasible in terms of simulation time; moreover, our intent is not to model the
entire database, but rather to capture that portion which is of relatively current interest to the client workstations.
Note that the most important factor here is the ratio of the transaction and client-server buffer pool sizes to the data-

base size, not the absolute database size itself.

Table 6 shows the settings used in our experiments for the system overhead parameters, and Table 7 presents
our resource-related parameter settings. In setting the various instructions counts and other parameters, we
attempted to choose values that are reasonable approximations to what might be expected of systems today or in the
near future. As indicated, the experiments that we will present were run with 5 MIPS client workstations and a 10
MIPS server. We also ran experiments with 15 MIPS clients and a 50 MIPS server; the absolute performance
results were different, but the basic lessons were the same, so we do not present those results here. In addition, we
conducted experiments with a range of client and server buffer pool sizes in order to understand how these impor-
tant system parameters influence caching-related performance. Space will only permit the presentation of a

representative subset of our full set of results.

Finally, before presenting the results for the various workloads, it will be helpful to briefly review our perfor-
mance expectations. In most of our experiments, we will show how the various cache consistency algorithms per-

form as a function of the number of client workstations. Each client workstation adds both additional work (i.e.,

Parameter Setting

FixedMsglnst 10,000 instructions

PerByteMsglnst 5,000 instructions per 4 kilobyte page
ControlMsgSize 256 bytes

Locklnst 300 instructions

RegisterCopyInst | 300 instructions

Deadlockinterval | 1 second

Table 6: System Overhead Parameter Settings

-13-

Parameter Setting

ClieniCPU 5 (or 15) MIPS

ServerCPU 10 (or 50) MIPS

ClientBufSize 5%, 10%, 25%, or 50% of database size
ServerBufSize 10%, 25% or 50% of database size
ServerDisks 2 disks

MinDiskTime 10 millisecond

MaxDiskTime 30 milliseconds

NetworkBandwidth | 32 megabits per second

Table 7: Resource-Related Parameter Settings

another transaction stream) and additional resources (i.e., another CPU and more memory) to the system. Ideally,
then, we would like to see the system throughput increase linearly as the number of clients increases, with the aver-
age transaction response time remaining constant. In practice, of course, there are several possible impediments to
linear system scaleup. These include (i) the formation of a bottleneck at the server CPU or disks, (ii) the formation
of a data contention bottleneck, or (iii) an increase in the overall pathlength of transactions. Item (iii) can occur if
the effect of adding a client is that additional messages or more disk accesses are required of all transactions; in this
case, it is possible for thrashing to be observed, i.e., increasing the number of clients results in a decrease in overall

system throughput.

4.2, Experiment 1: HOTCOLD Workload

The first performance results that we will examine are those for the HOTCOLD workload. In this workload,
as indicated in Table 5, each client has its own 50-page hot region of the database to which 80% of its accesses are
directed; the remaining accesses go elsewhere in the database. Client transactions each read an average of 20
pages, updating pages with a probability of 20%. Thus, this workload represents a situation where client transac-
tions favor disjoint regions of the database, but where some read/write overlap exists in the data accessed by dif-
ferent clients (since the hot range of each client overlaps the cold range of all other clients). This situation is of
interest because some OODBMS developers expect skewed client access distributions to be common in OODBMS
applications [Catt90b, Wein90].

4.2.1. HOTCOLD Workload, Small Client Buffer Pool

Figure 4 shows the overall system throughput as a function of the number of clients for the HOTCOLD work-
load with a relatively large server buffer (ServerBufSize =50% of the database size) and small client buffers
(ClientBufSize = 5% of the database size). Figure 5 shows the corresponding average transaction response time
results. As shown, the three optimistic 2PL (O2PL) algorithms perform the best here, followed by caching 2PL
(C2PL), with the basic 2PL scheme (B2PL) performing the worst among the algorithms studied. Initially, all three
O2PL algorithms perform alike, as do the pair of server-locking algorithms (C2PL and B2PL). All provide near-
linear scaleup in the range from 1 to 5 clients, as shown by their near-linear throughput increases and fairly flat

response time curves in this range. Note that throughput also increases more rapidly for the O2PL. algorithms, as the

.14 -

- ST R RO M

D n e

- e P

O e e 2 B

204

16 1

ot
[
1

=
X

5 10 15
Clients
Figure 4: Throughput (Transaction/sec)

20

(HOTCOLD, Buffers: 50% server, 5% client)

25

1.0
0.99 4+ 4---+.
-
0.8 - >
J) . clients
07 mat---8, \ oo
0.6 .
‘E!\ server ey
0.5" ~t§~r§2.§;;;::-~a _______ ‘@
0.4 T
] OWLI
0.3 1 A O22LD
O owL-P
0.2 -
X C2PL
0.14 + B2PL
5 10 15 20 25
Clients

Figure 6: Client and Server Buffer Hit Rates

(HOTCOLD, Buffers: 50% server, 5% client)

-15-

o wnRoT ®n ol

© B o=

wwe o6 P Ko~

- o

~=8Ho0on0O

4.0

T

5 10 15

25

20
Clients
Figuare 5: Response Time (sec)
(HOTCOLD, Buffers: 50% server, 5% client)
14 A
{1 O2PL-1 *‘, -
121 A OPL.D .
O O2L-P /'/
10 1 X C2PL
+ B2PL
8 E
6 r
41 total I,,'«","
AE--- &
2 reads
5 10 15 20 25
Clients

Figure 7: Disk Reads and Total I/O per Commit

(HOTCOLD, Buffers: 50% server, 5% client)

initial slope of the throughput curves is determined by the algorithms’ 1-client throughput values (i.e., adding

another client adds this much additional throughput when scaleup is linear).

The superior performance of the O2PL algorithms in the 1-5 client range is due to the considerable message
savings that they offer. In this range, the O2PL algorithms require 18-19 messages to be processed per transaction
on the server (counting both message sends and receives), on the average, as opposed to 52 messages per transaction
for the server-locking algorithms. Under this workload, each client has its own 50-page hot range, covering 4% of
the database, while client buffers are sized at 5% of the database. Thus, in the O2PL, algorithms, most requests for
hot pages can be satisfied without server interaction, whereas C2PL and B2PL have to request locks from the server
for every new page accessed by a transaction. Indeed, we can see from Figure 6 (which gives the client and server
hit rates) that 65% of the O2PL. read requests can be processed without a server message since the O2PL algorithms
send messages to the server only on cache misses (and at commit time for update transactions). The fact that this
savings in messages is indeed the cause of the superior performance of the O2PL algorithms is confirmed by Figure
7, which shows that both the number of disk reads and and the total number of disk I/Os (including writes) per tran-

saction are the same for all five algorithms in the 1-5 client range.

Looking out beyond 5 clients in Figures 4-5, we see that the O2PL algorithms retain their performance advan-
tage, but that all of the algorithms lose their linear scaleup behavior. The throughput of each algorithm improves in
a sublinear fashion in the 5-10 client range, and then throughput actually decreases for awhile before starting to
level off again at 25 clients. This behavior is explained by Figures 6-7 and by the server CPU and disk utilizations.
Since each client has a 4% hot range, but also accesses pages outside of this range, the server buffer pool size being
50% of the database causes the server hit rate to suffer at 10 clients and beyond; the server is no longer able to

retain all of the clients’ hot range pages in order to handle hot range cache misses without disk 1/0. This is evident

in the server hit rates of Figure 6 and the disk I/Os of Figure 7.5 Eventually, the server hit rate decreases to 50% or
slightly less, where 50% is what would be expected for a uniform (instead of skewed) reference stream. Moreover,
once the server becomes 1/0O-bound, which occurs in the 10-15 client range, the increased server I/O pathlength for

transactions (caused by this hit rate dropoff) is sufficient to induce the thrashing that is evident in Figure 4.

Focusing on the individual algorithms, we see that B2PL suffers the most from the dropoff in server hits as
clients are added. As indicated in Figure 7, B2PL’s dependence on server buffering leads to a significant I/O
increase when the server can no longer retain the hot pages for all clients. C2PL does not suffer in this manner
since it retains client buffer contents across transactions, giving it a client hit rate comparable to the O2PL algo-
rithms. The slight performance advantage of C2PL prior to this region is due to the fact that its messages tend to be
shorter than those of B2PL, as not all C2PL lock grant messages carry data pages. The O2PL algorithms thrash due
to I/O activity beyond 10 clients, as discussed above, but they still perform the best since caching pays off and these

algorithms have a significantly smaller CPU pathlength due to their message savings. O2PL-I, the invalidate-based

6 Aside from B2PL, which does not cache data between transactions, all of the algorithms have a client buffer hit rate of about 65% or so
despite their 80% hot range access frequency. The difference of 15% indicates the level of hot page misses due to the small client buffer size.

- 16 -

variant of O2PL, performs a bit better in Figures 4-5 due to a slightly higher buffer hit rate at the server (Figure 6)
and a small I/O savings that results (Figure 7).

As compared to C2PL, the I/O savings provided by O2PL-1 is due to the fact that O2PL.-I provides a slightly
larger effective client buffer pool — in C2PL, outdated pages are retained in remote client buffers, whereas they are

invalidated immediately in O2PL-1. These outdated pages take up space in C2PL’s LRU stack instead of becoming
immediately reusable as they do in O2PL-1.” As compared to the other O2PL algorithms, O2PL-I’s better server hit

rate is due to the fact that hot page misses on the client are likely to lead to hot page misses on the server for O2PL-
P and O2PL-D, as such hot pages have not been accessed very recently. In O2PL-I, however, a client’s hot page
misses are more likely to lead to hits in the server buffer pool, as cold page updates that invalidate its hot pages will

likely lead to their being re-referenced rather quickly by the client where they are hot.

4.2.2. HOTCOLD Workload, Larger Client Buffer Pool

Figure 8 shows the overall throughput results for the HOTCOLD workload when the client buffer size is
increased to 25% of the database. Comparing these results with Figure 4, it can be seen that the additional aggre-
gate memory is strictly beneficial for all algorithms except B2PL. and O2PL-P. Since B2PL does not retain its
buffer contents between transactions, it performs exactly as before.® O2PL-P, the propagate-based member of the
O2PL algorithm family, benefits from the increased memory for awhile, but as the system becomes large its perfor-
mance actually suffers; moreover, it is outperformed significantly by the other two O2PL. algorithms. Shape-wise,

the curves in Figure 8 are roughly similar to those of Figure 4, and they can be similarly explained.

As noted above, the B2PL. algorithm performs here just as it did with the 5% client buffer size. As before, it
becomes I/O-bound due to the I/O activity caused by the inability of the server buffer pool to retain the hot regions
of all clients beyond 10 clients or so. This is evident from Figure 9, which shows how the B2PL, server hit rate
declines at this point. In contrast, the C2PL algorithm clearly benefits from the added memory here. The reason is
shown in Figure 9 — its client hit rate is significantly higher in this case since all of a client’s hot region (4% of the
database) fits in its buffer pool with room (21% of the database) to spare for some cold pages as well. In fact, C2PL

turns out to be strictly CPU-bound at the server in this case due to frequent lock request messages.

Turning to the O2PL algorithms, O2PL-I performs the best, followed closely by O2PL-D. Both thrash some-
what at high loads for reasons similar to those in the 5% client buffer case. Specifically, this thrashing is caused by
an increase in the average number of disk I/Os per transaction, as before. In this case, however, the additional I/Os
turn out to be due to writes: When the server becomes unable to retain the hot pages for all clients in memory, it has

to replace some of them, and when they are dirty, it must write them back to disk; since they are retained in the

? We instrumented the client buffer pool code to keep track of the average number of outdated pages in C2PL and the average free page
count for both algorithms. The results showed that, in this experiment, C2PL.'s effective buffer size is about 5% smaller due to the presence of

outdated pages in the 25-client case. We then ran an experiment in which C2PL’s buffer size was increased by this amount, and its resulting 1/O
aclivity indeed matched that of O2PL-L.

® Recall that our workload model capiures the first-time page references of transactions, not their page re-reference behavior, as caching
within the scope of a single transaction is obviously beneficial and will aid all algorithms identically.

-17-

25 5

20-
T
h
r
o 154
u
g
h
P 104
u
t O O2PL1
A O2PLD
51 O 0wLP
X C2PL
+ B2PL
5 10 15 20 25
Clients

Figure 8: Throughput (Transaction/sec)
(HOTCOLD, Buffers: 50% server, 25% client)

141
O O02PLI
12 4 A O2PLD
U O 0wLP
P 10 X CapL
d + B2PL
a
t gl
e
r
s 07
i
t
e 41
S
2..
X H ¥ ¥
10 15 20 25
Clients

Figure 10: Avg. Number of Updaters per Trans
(HOTCOLD, Buffers: 50% server, 25% client)

.18 -

- e T o on =

[N

R -1 IR AR]

1.0 1

0.9 4---bo._

clients

0 02pLd
0.3 1
A O2PLD
0.2 - O owLP
X CcwL
0.1 + B2PL
5 10 15 20 25

Clients
Figure 9: Client and Server Buffer Hit Rates

(HOTCOLD, Buffers: 50% server, 25% client)

40 1
32 -
24
16 4
O o2pL ‘
A O2PL-D \"\
81 o OwLP
X C2PL
+ B2PL
5 10 15 20 25
Clients

Figure 11: Throughput (Transaction/sec)
(PRIVATE, Buffers: 50% server, 25% client)

corresponding client buffer pool, removing them at the server does not significantly impact the number of disk
reads. O2PL-P performs significantly worse here due to the fact that it will repeatedly propagate a hot page’s
updates to all clients that recently read it as a cold page (and therefore still have a copy in their buffer pool). This is
evident in Figure 10, which shows the average number of remote clients that the server must contact in order to
commit a transaction. For large system configurations, this leads O2PL.-P to become CPU-bound, and it thrashes
due to the increased server CPU pathlength caused by its propagation messages. This effect was not observed in the
previous case because, with a small client buffer, LRU replacement kept the number of cached cold pages to a
minimum. Since O2PL-I invalidates such counterproductive, remotely-cached copies of hot pages, this is less of a
problem for O2PL-I (see Figure 10), and thus it manages to remain I/O-bound. O2PL-D propagates updates once to
remote copies before recognizing that propagating changes to them is counterproductive, leading it to perform
slightly worse than O2PL-I but much better than O2PL.-P,

There is one additional interesting effect to be noted here, though it has little to do with the relative perfor-
mance of the various cache consistency schemes. In Figure 9, the initial server hit rate for each of the schemes is
initially lower than one might expect; with the server buffer size being 50% of the database size, the observant
reader may have wondered why the hit rate is significantly lower in the 1-5 client range. This is because the client
and server buffer contents are highly correlated in this range. For example, in the 1-client case, when the client
misses on a cold region page, it has only a 25% chance of finding the page in the server buffer pool — because one
half of the server’s buffer pool is essentially a mirror-image of the client’s own buffer pool. This effect disappears

once the number of clients becomes sufficient to randomize the server buffer contents.
4.3. Experiment 2: PRIVATE Workload

The next results that we will discuss are those for the PRIVATE workload. In this workload (see Table 5),
each client has a 25-page hot region of the database to which 50% of its accesses are directed; the other 50% of its
accesses are directed to a 625-page read-only portion of the database. Thus, there is no read/write sharing of data in
this workload. This workload is intended to represent situations such as large, CAD-based engineering projects in
which each engineer might work on disjoint portions of an overall design while read-sharing a standard library of

components [Wein90]; it can also be viewed as a more extreme version of the previous workload.

Figure 11 presents the overall throughput results for this workload with ServerBufSize = 50% and ClientBuf-
Size =25%, as in the experiment just discussed. The general shapes of the curves are very similar to those of Figure
8 since the nature of the workloads is similar. B2PL and C2PL perform very much like in Figure 8, for virtually
identical reasons. B2PL is again I/O-bound due to server buffer misses, while C2PL is CPU-bound due to its lock
request messages. With this workload, all three O2PL algorithms perform identically; this is because it is never the
case that an updated page is present in a remote buffer pool, so their different approaches to cache consistency
maintenance are never exercised. The explanation for the shape of their curves is the same as for O2PL-I in Figure
8 of the preceding experiment. The main thing to notice here is that all three O2PL algorithms offer significant per-
formance improvements over C2PL and B2PL. Caching is very beneficial for this workload, allowing the O2PL

algorithms to execute transactions with many fewer messages, so O2PL’s performance is server I/O-limited. In

-19 .-

fact, the average transaction required about 40 messages to be processed (i.e., sent or received) by the server for

C2PL and B2PL, versus about 12 messages for the O2PL algorithms, independent of the system size.

4.4. Experiment 3: FEED Workload

We now turn our attention to a very different workload, an "information feed” workload where client #1 pro-
duces data that all other clients consume. This is intended to approximate an environment like stock trading, where
a database of stock prices might be maintained by an information feed and then accessed heavily by other worksta-
tions. As indicated in the workload description of Table 5, 80% of client #1’s accesses, including all of its updates,
are directed to database pages 1-50; 80% of the accesses of the other clients, which are read-only, go to this region

as well.

Figure 12 presents the throughput results for this workload, again for ServerBufSize = 50% and ClientBuf-
Size = 25%. The throughput results for the writer (client #1) and readers (remaining clients) are separated in order
to provide a clear picture of the impact of this heterogeneous workload. As shown in the figure, the O2PL. algo-
rithms outperform the two server-locking algorithms. Among the O2PL algorithms, O2PL-P provides the best per-
formance, O2PL-D is next, and O2PL-I performs quite a bit worse than these two. Since the pages in the hot region
of this workload are updated by client #1, which provides the information feed, and are used heavily by all of the
other clients, these results are not surprising; propagation is clearly the right approach for such a workload, as
expected. For all algorithms, the addition of clients (readers) leads to an increase in the overall reader throughput,
as each one adds a new transaction stream. Adding clients also leads to a decrease in the writer throughput, as each
new client is a source of additional server loading (and data contention) for transferring information from client #1

to the other clients.

The results of this experiment are explained by Figure 13, which shows the average number of messages per
transaction processed by the server (averaged over both the writer and readers together). Due to the message inten-
sity of the two server-locking algorithms, these algorithms become CPU-bound at the server with 10-15 clients (i.e.,
1 writer and 9-14 readers). They are therefore unable to provide additional reader throughput beyond this point.
O2PL-I suffers from a similar, but much less extreme, fate; each update by client #1 leads (o the invalidation, and
subsequent re-access at the server, of the updated data. O2PL-P performs the best, and actually achieves a high /0
utilization because it requires few enough messages that the server CPU does not become a botileneck in the 1-25
client range. 2PL-D performs almost as well, but does enough invalidation to cause some loss of performance. At
this point, it should be noted that, though 2PL-D has generally performed a bit worse than the better of the two static
O2PL algorithms for each of the workloads examined here, it has also tended to perform quite a bit better than the

lesser O2PL algorithm in cases involving significant performance differences.

4.5. Experiment 4: UNIFORM Workload

Up to now, we have explored varions workloads for which it is intuitive that some form of caching should be

beneficial. In this experiment, we turn our attention to the UNIFORM workload of Table 5. In this workload, each

220 -

= -

- ST TR s o=

= o

=2t -~ Ty]

Lo —Te

2104 .0

O oLl AL
e A.—"
i 02PL-D . .
180 A o
O O02PLP ,A”
X C2PL A
1501 4+ B2PL o JRLe
llo/,l - .—‘E"
’ -’
120 - ,’/,’A ,/E

5 10 5 20 25
Clients
Figure 12: Throughput (Transaction/sec)

(FEED, Buffers: 50% server, 25% client)
8 -

+ X O b O

B2PL

10 15 20 25
Clients

Figure 14: Throughput (Transaction/sec)
(UNIFORM, Buffers: 50% server, 5% client)

5

noe € = 0 =

oT

-

~~3 300

- 2 e o I

[~ I o

25 1

20 -

15 -

10

O2PL-1

02PL-D

O2PL-P

C2PL

0
A
o]
X
+

5 10 15 20 25
Clients

Figure 13: Messages Processed per Commit
(FEED, Buffers: 50% server, 25% client)

0.5 -

0.4 1

0.3

0.2

0.1

02PL-1

5 10 15 20 25
Clients

Figure 15: Aborts per Commit

(UNIFORM, Buffers: 50% server, 5% client)

client transaction reads an average of 20 pages, chosen uniformly from among all of the pages in the database,
updating an average of 20% of these pages. In this case, then, client workstations display no locality of access,

placing the utility of inter-transaction data caching in doubt.

4.5.1. UNIFORM Workload, Small Client Buffer Pool

Figure 14 presents the throughput results for the UNIFORM workload with ServerBufSize =50% and
ClientBufSize = 5%. All five of the cache consistency algorithms provide essentially the same level of performance
in this case due to the small client buffer size and the lack of locality. When we examined the relevant underlying
performance data, we found that all algorithms had the same level of server disk activity. We did observe server
CPU utilization differences due to messages; the O2PL algorithms sent more messages per transaction than the two
server-locking algorithms beyond the 10-client point. However, since the server disk utilization was approximately
90%, while the server CPU utilization was in the 40-60% range, these message differences had no impact on
throughput. In fact, it turns out that system performance is actually limited somewhat by data contention here; the
server disk is only 90% utilized when the throughput curves level off. The level of data contention can be seen in
Figure 15, which shows the number of aborts per commit. Aborts become quite common for the O2PL algorithms
as the number of clients becomes large. However, since all algorithms did the same amount of /O, it is clear that
the data needed by restarted transactions was always available in the client buffer (for data read) or the server buffer
(for updates, since updated client pages are discarded on abort). This was further borne out by the client hit rate,
which was seen to increase in proportion to the abort rate. As a result, restarts are essentially free, in terms of

throughput, because client and server cache hits involve only CPU usage (and CPU was not a bottleneck).

4.5.2. UNIFORM Workload, Larger Client Buffer Pool

Figure 16 presents the throughput results for the UNIFORM workload with ServerBufSize =50% and
ClientBufSize =25%. With this significantly larger client buffer size, performance differences now exist between
the various algorithms. O2PL-I performs the best, followed by C2PL and O2PL-D (which have essentially the same
performance), with O2PL-P and then B2PL providing the worst overall throughput. As usual, the performance of
B2PL is unchanged from the small client buffer results, whereas each of the other algorithms benefits to some extent
from the additional client buffer space (except for O2PL-P at 25 clients). The results in Figure 16 are due to a com-
bination of factors that can be understood by examining the buffer hit rates (Figure 17), the number of I/Os per tran-
saction (Figure 18), the server resource utilizations (Figure 19), and the data contention level (which is essentially

the same here as with 5% client buffers, i.e., see Figure 15).

The difference between C2PL and B2PL indicates the performance increase due to the availability of client
buffers; due to the uniform access pattern, and the fact that the server hit rate is already 50% (once the correlation
effect discussed earlier is damped out), the additional client buffer space does not improve performance as dramati-
cally here as in Experiments 1-3. Comparing C2PL with O2PL-I, which is the best performer, O2PL-I provides a
modest performance improvement due to an effect that was also encountered in the HOTCOLD workload —

O2PL-1 provides a larger effective client buffer pool than C2PL due to the fact that invalidated pages are

222

T
h
r
0
u
g
h
P
u]
t
A
o]
X C2PL
+ B2PL
5 10 15 20 25

Clients
Figure 16: Throughput (Transaction/sec)
(UNIFORM, Buffers: 50% server, 25% client)

p 144
i SRR B N R +
i @@x
5 “\\\ total
k 12 h \E: f ~~~~~ x ——————— D v
A
¢
c
e
S
S
P 6
e
' O 02pLi
C Y A OPL-D
° O O22LP
m 2] X CL
m
i 4+ B2PL
t i i ' T 1
5019 15 20 25

Clients
Figure 18: Disk Reads and Total I/O per Commit
(UNIFORM, Buffers: 50% server, 25% client)

- s e B

O

M o <™ oW

W e =

1.0 1
0 O2PL-I
0.9 1
A OPLD
0.8 - O O?PLP
X C2PL
0.7 A -
61 server
~~~~~~~~ B--oii:
0.5' e +_'m::;fg::::.Eg;EEﬁ%EEEEQ _______ g
B
0.4 - o”’/
-
0.3 1
’ clients
0.2 1 T
0.1 A
# Clients

Figure 17: Client and Server Buffer Hit Rates
(UNIFORM, Buffers: 50% server, 25% client)

1.0

0.9 1

0.8 -

0.7 -

0.6

0.5 1

0.4 -

031 [0 0Ll

| A OL-D

0.2 1 O OowL-P
X c2prL

0.1 /
+ B2PL

5 10 15 20 25

# Clients
Figure 19: Server Resource Utilizations
(UNIFORM, Buffers: 50% server, 25% client)



immediately freed, rather than taking up buffer pool space as they do in of C2PL. This is evident in Figure 17,
though some of the difference there is due to restart-induced buffer hits, and in Figure 18, where O2PL-I is seen to
require fewer 1/Os per transaction than C2PL. The other two O2PL algorithms are unable to benefit similarly from
the lack of outdated pages because of their high CPU overheads. As is evident in Figure 19, they utilize the server
CPU much more heavily than O2PL.-I, propagating updates (repeatedly) to other clients instead of simply invalidat-
ing the updated pages. Moreover, propagation is simply not beneficial here.” O2PL-P suffers slightly more due to
wasted propagations because O2PL-D only propagates once to a page before invalidating it. Finally, all of the cach-
ing algorithms can be seen to thrash somewhat in Figure 16; this is due largely to data contention (i.e., transaction

restarts).

To explore the impact of updates (and associated data contention) here, Figure 20 shows how throughput is
affected as the write probability for transactions is varied in the 10-client case. As the write probability goes to
zero, performance converges for all of the algorithms except B2PL. This is because all of the other algorithms
benefit from caching, and their effective buffer pool size and propagation-related differences disappear in the
absence of updates. Conversely, when the write probability becomes very large, the optimistic locking approach of

the O2PL algorithms causes their performance to suffer; we will see more of this effect in the next experiment.

4.6. Experiment 5: SHAREDHOT Workload

In this experiment, we examined the performance of the various cache consistency algorithms for the
SHAREDHOT workload, a workload that generates an extremely high level of data contention. As indicated in
Table 5, the ransactions in this workload have characteristics similar to those in the HOTCOLD workload, reading
an average of 20 pages, updating an average of 20% of them, and directing 80% of their accesses to a 50-page hot
region of the database. In this case, however, all clients have the same hot region. It is not expected that OODBMS

workloads will involve this level of data contention, but we include one such experiment for completeness.

Figure 21 shows the throughput results for this workload in the case where ServerBufSize =50% and
ClientBufSize = 10%. Due to the high level of data contention here, the two server-locking algorithms actually out-
perform the three O2PL algorithms by a very significant margin. An examination of the server resource utilizations
revealed that that the system is highly "data-bound" with this workload, with server disk utilizations of only 10%
and server CPU utilizations in the 10-60% range (depending on the algorithm). Here, the optimism of the O2PL
approach, with its more permissive handling of conflict detection and its corresponding tendency to resolve
conflicting data accesses later, more than counteracts the benefits of caching. Moreover, as shown by the small
difference between C2PL (which performs the best with two or more clients) and B2PL, caching does not improve
performance much in this case anyway; this is because the server buffer pool is able to be very effective, retaining

50% of the database (including the hot region, which is common to all clients).

® We instramented our simulator 1o keep track of the fraction of all propagated pages that are actually used by the client subsequent to the
propagation, i.e., before the page is replaced or overwrilien by another propagation. Our measurements indicate that, here, only 10-15% of the
pages propagated by O2PL-P actually proved useful in this sense.

-24-



- ET e RS T

0.1 02 03 04 05 0.6 0.7 08 09 1.0
Write Probability
Figure 20: Throughput (TPS) vs. Write Prob.

(UNIFORM, 10 Clients, Buffers: 50% srv, 25% cli)

25+

201
T
h
r

0 15+
u
g
h

p 10
u
t

5 .

50 100 150 200 250 300 350 400 450 500
K Instructions/page

Figure 22: Throughput (TPS) vs. PerPagelnst
(HOTCOLD, 10 Clients, Buffers: 50% srv, 25% cli)

- TR s O

5 10 15 20 25
# Clients

Figure 21: Throughput (Transactions/sec)
(SHAREDHOT, Buffers: 50% server, 10% client)

81

37 02PL-1

- BN O I o]

O2PL-D

O2PL-P

C2PL

+ X O b O

B2PL

50 100 150 200 250 300 350 400 450 500
K Instructions/page

Figure 23: Throughput (TPS) vs. PerPagelnst
(UNIFORM, 25 Clients, Buffers: 50% srv, 25% cli)



4.7. Experiment 6: Impact of Application Pathlength

An important aspect of the workload that we have not yet varied is the amount of client CPU processing
involved in transaction execution. Up to now, the application pathlength has been fixed at a PerPagelnst setting of
30,000 instructions. Figure 22 shows how the performance results for the HOTCOLD workload of Experiment 1
vary as a function of this parameter in the 10-client case for the larger client buffer size sefting (i.e., with ServerBuf-
Size =50% and ClientBufSize =25%). As shown, the algorithm differences that were observed earlier decrease as
the application pathlength increases, eventually reaching a point where there is simply no difference between the
algorithms. This is to be expected — it is obvious that once the per-page client CPU time becomes totally dom-
inant, and cache-related overheads are reduced to noise, the choice of a caching policy will have no impact on

overall performance.

Figure 23 shows how the UNIFORM workload results vary with the application pathlength in the case where
ServerBufSize = 50% and ClientBufSize = 25% in the 25-client case. In contrast to what we saw above, significant
performance differences remain for the UNIFORM workload even when the per-page client CPU pathlength is
500,000 instructions. The throughputs of the three O2PL algorithms converge, and likewise for the two server-
locking algorithms, but the O2PL, algorithms perform significantly better here. This is strictly a concurrency control
effect, and is also to be expected. As seen in Experiment 4, there is a significant amount of data contention in the
UNIFORM workload. Moreover, when the client portion of the CPU pathlength becomes dominant, the system
moves into an "infinite resource" region of operation — that is, the critical resource for transactions is the client
CPU, a resource that transactions do not share. It is well-known that optimistic concurrency control algorithms out-
perform traditional locking algorithms in the presence of data contention when resources are plentiful [Fran85,

Agra87], and this is precisely the difference between the algorithms here.

4.8. Comparison With Related Work

As described in the introduction, the studies most closely related to this one are shared-disk performance stu-
dies [Bhid88, Yu87, Dan90], the client-server data caching study that was described in [Wilk90], and the
transaction-oriented distributed memory hierarchy work of [Bell90]. As explained earlier, client-server DBMS
architectures tend to be larger than shared-disk DBMS configurations, and the existence of a central server changes
the nature of the performance problem somewhat (e.g., consider the various client-server buffer interactions, and
server CPU limitations, that have been important here). Also, we have not encountered propagation-based algo-
rithms in the shared-disk literature. Despite these differences, our results on the good performance of O2PL.-I as
compared with server-locking agree qualitatively with related findings for shared-disk algorithms, such as the suc-
cess of a semi-optimistic locking scheme in [Yu87]. As for the related client-server caching study in [Wilk90], our
study employed a much more detailed buffering model and also covered a wider range of workloads and parameter
settings than the work reported there; the importance of both differences should be clear from the results. How-
ever, again there is agreement to be found at a qualitative level. For example, [Wilk90] also found that the perfor-

mance of a propagation-based cache consistency algorithm, roughly similar to our O2PL-P algorithm, performed

-26-



badly when propagated data was infrequently referenced. We have gone further in this regard, proposing and inves-
tigating the O2PL-D algorithm as a solution to the performance sensitivity of the propagation approach. Lastly, in
comparison to the work of [Bell90], where consistency control algorithms based on both invalidation and (periodic)
propagation were also considered, we have observed a very different set of resource-related performance tradeoffs

due to major architectural differences between the systems studied.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have examined the performance tradeoffs associated with caching data on client worksta-
tions in a client-server DBMS architecture. We began by presenting five lock-based cache consistency algorithms
that arose by viewing the cache consistency problem as a variant of the problem of replicated data management in a
distributed DBMS. Two of the algorithms that were presented always set locks at the server, while the other three
are more optimistic in their approach to locking. Among the latter group, one uses invalidation to maintain con-
sistency in the face of updates, another bases its approach on propagation of updated values, and the third algorithm
is a dynamic scheme that attempts to combine both approaches. We used a detailed simulation model to study the

performance of these algorithms over a wide range of workloads and system configurations.

The results of our performance study indicate that caching can improve performance significantly for some
workloads, although we also studied workloads where the performance improvement due to caching was marginal
or even nonexistent. We found that the invalidation-based optimistic algorithm (O2PL-I) performed quite well for
many workloads, while its propagation-based counterpart (O2PL-P) performed better in a workload designed to
capture an “information feed" application. O2PL-P was also found to be rather workload-sensitive, however, and
had problems when scaled to large system configurations with some of the workloads that were investigated. The
dynamic algorithm (O2PL-D) managed to track the performance of the better O2PL algorithm for each workload
studied, performing close to (but never quite as well as) the better of the static O2PL algorithms. Lastly, the caching
server-locking algorithm (C2PL) was generally outperformed by the better of the O2PL algorithms, except in the
case of a workload that had an extremely high level of data contention. In addition to these algorithm-oriented
results, our study has indicated the importance of using a detailed model of buffering when investigating client-

server cache consistency tradeoffs.

We plan to continue this work in several ways. First, we would like to find a more satisfactory dynamic algo-
rithm than O2PL-D, one that can more closely match or even exceed the performance of the better static O2PL algo-
rithm over a wide range of workloads. Second, we plan to validate our simulation model against the EXODUS
storage manager once its recovery implementation is complete (so that transactions can be aborted and restaried), at
least for the C2PL and B2PL algorithms. Finally, we plan to turn our attention to other interesting and related
issues, including data caching on client disks and the evaluation of alternative approaches to client-server crash

recovery,

227 .



ACKNOWLEDGEMENTS

The authors would like to thank David DeWitt for many lively discussions regarding workload modeling and
other aspects of this work. We would also like to thank Rick Cattell of Sun Microsystems and Dan Weinreb of
Object Design for their input regarding OODB workloads.

REFERENCES

(Agra87]  Agrawal, R., Carey, M., and Livny, M., "Concurrency Control Performance Modeling: Alternatives
and Implications," ACM Trans. on Database Sys. 12,4, Dec. 1987.

[Arch86]  Archibald, J., and Baer, J.-L., "Cache Coherence Protocols: Evaluation Using a Multiprocessor Simula-
tion Model," ACM Trans. on Comp. Sys. 4,4, Nov. 1986.

[Bell90]  Bellew, M., Hsu, M., and Tam, V.-O., "Update Propagation in Distributed Memory Hierarchy," Proc.
6th Int’l. Conf. on Data Eng., Los Angeles, CA, Feb. 1990,

[Bern87]  Bemstein, P., Hadgzilacos, V., and Goodman, N., Concurrency Control and Recovery in Database Sys-
tems, Addison-Wesley, 1987.

[Bhid88]  Bhide, A., and Stonebraker, M., "An Analysis of Three Transaction Processing Architectures,” Proc.
14th VLDB Conf., Los Angeles, CA, Aug. 1988.

[(Care84]  Carey, M., and Stonebraker, M., "The Performance of Concurrency Control Algorithms for Database
Management Systems," Proc. 10th VLDB Conf., Singapore, Aug. 1934.

[Care89a] Carey, M., et al, "Storage Management for Objects in EXODUS," in Object-Oriented Concepts, Daia-
bases, and Applications, W. Kim and F. Lochovsky, eds., Addison-Wesley, 1989,

[Care89b] Carey, M., and Livny, M., "Conflict Detection Tradeoffs for Replicated Data,” submitted to ACM
Trans. on Database Sys.. (Available as Comp. Sci. Tech. Report No. 826, University of Wisconsin,
March 1989.)

[Catt90a]  Cattell, R., and Skeen, J., Engineering Database Benchmark, Tech. Rep., Database Eng. Group, Sun
Microsystems, April 1990.

[Caud0b]  Cattell, R., personal communication, Nov, 1990,

[Dan90] Dan, A., Dias, D., and Yu, P., "The Effect of Skewed Data Access on Buffer Hits and Data Contention
in a Data Sharing Environment," Proc. 16th VLDB Conf., Brisbane, Australia, Aug. 1990,

[Deux90] Deux, O., et al, "The Story of 02," IEEE Trans. on Knowledge and Data Eng. 2, 1, March 1990.

[DeWid0] DeWitt, D., et al,"A Study of Three Alternative Workstation-Server Architectures for Object-Oriented
Database Systems," Proc. 16th VLDB Conf., Brisbane, Australia, Aug. 1990.

[Fran85]  Franaszek, P., and Robinson, J., "Limitations of Concurrency in Transaction Processing," ACM Trans.
on Database Sys. 10, 1, March 1985.

[Gray89]  Gray, C., and Cheriton, D., "Leases: An Efficient Fault-Tolerant Mechanism for Distributed File Cache
Consistency," in Proc. 12th ACM Symp. on Op. Sys. Prin., Litchfield Park, AZ, Dec. 1989.

[Horn87] M. Hornick and S. Zdonik, "A Shared, Segmented Memory System for an Object-Oriented Database,"
ACM Trans. Office Info. Sys. 5, 1, Jan. 1987.

(Howa88] Howard, J., er al, "Scale and Performance in a Distributed File System," ACM Trans. on Comp. Sys. 6,
1, Feb. 1988.

[Kim90]  Kim, W., et al, "The Architecture of the ORION Next-Generation Database System," IEEE Trans. on
Knowledge and Data Eng. 2, 1, March 1990,

(Lazo86] Lazowska, E., et al, "File Access Performance of Diskless Workstations," ACM Trans. on C omp. Sys. 4,
3, Aug. 1986.

[Livn88]  Livny, M., DeNet User's Guide, Version 1.0, Comp. Sci. Dept., Univ. of Wisconsin, Madison, 1988.

[Nels88]  Nelson, M., Welch, B., and Ousterhout, J., "Caching in the Sprite Network File System," ACM Trans.
on Comp. Sys. 6, 1, Feb. 1988.

[ODI90]  Object Design, Inc., ObjectStore Technical Overview, Aug. 1990.

(Sarg76]  Sargent, R., "Statistical Analysis of Simulation Output Data,” Proc. 4th Annual Symp. on the Simula-
tion of Computer Systems, August 1976.

[Shek90]  Shekita, E., and Zwilling, M., "Cricket: A Mapped Persistent Object Store," Proc. 4th Int'|. Workshop
on Pers. Obj. Sys., Martha’s Vineyard, MA, Sept. 1990,

[Ston79]  Stonebraker, M., "Concurrency Control and Consistency of Multiple Copies of Data in Distributed

INGRES," IEEE Trans. on Softw. Eng. SE-5, 3, May 1979.

.28 -



[Ston90a]

[Ston90b]
[Wein90]
[Wilk90]

[Yu87]

[Zwilo0]

Stonebraker, M., er al, "Third-Generation Data Base System Manifesto," SIGMOD Record 19, 3, Sept.
1990.

Stonebraker, M., "Architecture of Future Database Systems, Data Eng. 13, 4, Dec. 1990.
Weinreb, D., personal communication, Nov. 1990.

Wilkinson, W., and Neimat, M.-A., "Maintaining Consistency of Client Cached Data," Proc. 16th
VLDB Conf., Brisbane, Australia, Aug. 1990.

Yu, P., et al, "Analysis of Affinity Based Routing in Multi-System Data Sharing, Perf. Evaluation 7, 2,
June 1987,

Zwilling, M., Using the EXODUS Storage Manager V2.0 (alpha), EXODUS Project Document, Dec.
1990.

-29.



