Check for
Updates

Dynamic File Allocation in Disk Arrays
Gerhard Weikum, Peter Zabback, and Peter Scheuermann*
ETH Zurich
Department of Computer Science
Information Systems — Databases
CH-8092 Zurich, Switzerland
E-mail: {weikum, zabback}@inf.ethz.ch, peters@epsilon.eecs.nwu.edu

Abstract

Large arrays of small disks are being considered as a
promising approach to high performance 1I/O architec-
tures. In this paper we deal with the problem of data
placement in such a disk array. The prevalent approach
is to decluster large files across a number of disks so
as to minimize the access time to a file and balance
the I/O load across the disks. The data placement prob-
lem entails determining the number of disks and the
set of disks across which a file is declustered. Unlike
previous work, this paper does not assume that all files
are allocated at the same time but rather considers dy-
namic file creations. This makes the placement prob-
lem considerably harder because each placement deci-
sion has to take into account the current allocation
state and the access frequencies of the disks and the
existing files. As a result, file creation may involve par-
tial reorganization on one or more disks. The paper
proposes heuristic algorithms for the placement of dy-
namically created files. The algorithms provide a good
compromise between maximizing I/O performance of
the disk array and minimizing the work invested in par-
tial reorganizations. The paper presents preliminary
performance results of various alternative algorithms
under a synthetic workload.

1 Introduction

To meet the requirements of high performance I/O ar-
chitectures, disk arrays [23] are being considered as
a promising approach. In a disk array, a large number
of small disks are used rather than relatively few large
disks, and a very high bandwidth interconnect is used
for the data transfer between disks and memory. Such
an architecture not only provides a higher I/O band-
width, but has also lower costs compared to large disks.
The high bandwidth is achieved because a disk array
has many arms so that more 1/0Os can be processed in
parallel. This I/O parallelism can be exploited in two
different ways:

1. A higher number of independent I/Os can be per-
formed in parallel. While this does not significantly
improve the response time of small I/QOs, it can im-
prove the I/O throughput drastically.

2. The response time of large 1/0s (i.e., I/Os that re-
quest many consecutive blocks) can be decreased by
orders of magnitude. Suppose, for example, an en-
tire relation is read into memory in order to compute
a join. If the requested relation is distributed over

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

© 1991 ACM 0-89791-425-2/91/0005/0406...$1.50

406

multiple disks, then all fragments of the relation can
be read in parallel. This sort of distribution is also
known as declustering or striping.
In this paper, we deal with software-controlled disk ar-
rays, also known as independent drive disk arrays [15],
disk farms, or simply multi~disk systems [18]. In this
type of disk array, multiple disks can cooperate on a
single data request while, at the same time, other re-
quests can be directed to a single disk. The file system
is responsible for the distribution of the data and the
disk load balancing. Thus, the placement of files can
be tailored to the application. We believe that file sys-
tems and database systems, which often have highly
skewed data access distributions, crucially need the
flexibility of software-controlled disk arrays for load
balancing.
1.1 The Data Placement Problem
Data placement within a disk array is a crucial issue
for both applications with mostly small I/Os and appli-
cations with large I/Os. For small I/Os, load balancing
is the critical issue. For large I/0s, minimizing the ac-
cess time and load balancing are equally important ob-
jectives. In order to exploit the advantages of a disk
array, we have to address the following issues.
¢ Type of declustering unit:
Declustering can be based on relations (i.e., sets of
records) or files. In the first case, a relation is parti-
tioned into fragments, e.g., based on key ranges, and
the fragments are allocated on different disks. In the
second case, a file is partitioned into runs of consecu-
tive blocks, and these runs are allocated on different
disks.
In this paper, we consider only the second case for
the following reason. In applications that deal with
complex objects such as office documents [38], it
may be desirable to decluster a single object that is
stored in a large set of blocks. This case can be dealt
with by handling the large complex object as a sepa-
rate file (not necessarily in the sense of a separate
OS file but rather as a separate set of blocks that con-
stitute a "storage cluster” [6],[13],[14],[17],[27]).
On the other hand, for relations that consist of many
small records, the mapping of records into the blocks
of the underlying files may be important to reflect
a sort order of records. This mapping can be defined
in an additional design step on top of file decluster-
ing. If a relation is stored physically sorted in the
blocks of the underlying file(s), then key-range quer-
*Permanent address: Department of Electrical Engineering
and Computer Science, Northwestern University, Evanston,
Illinois 60208-3118. This work was performed while the au-
thor was visiting ETH Zurich.


http://crossmark.crossref.org/dialog/?doi=10.1145%2F119995.115859&domain=pdf&date_stamp=1991-04-01

ies, for example, translate into byte-~range accesses
which can be parallelized by file declustering. Using
files as the declustering unit promises to deal with dif-
ferent sorts of objects in a uniform way, and it is po-
tentially useful for both database systems and OS file
systems.

Degree of declustering:

Determining the number of disks across which a rela-
tion or file is declustered is a critical performance is-
sue. Small files (e.g., smaller than a track) are ob-
viously better off if they are entirely allocated on one
disk, since this allows reading or writing the entire
file or any portion of it in a single set-oriented I/O
[35]. For large files, a high degree of declustering
increases the I/0 parallelism, but it also increases the
maximum seek time and maximum rotational delay
among the disks that serve a read or write request.
In addition, the CPU costs of processing a request
may increase with the degree of declustering as more
device driver work has to be performed. Of course,
these disadvantages do not apply to small I/Os that
read or write only a single block of the file. So the
optimal degree of declustering of a file depends on
both the size of the file and its access characteristics.
Load balancing:

When we have decided to decluster a relation or file
across w disks, and if w is smaller than the number
of disks in the disk array, we still have the problem
of selecting the w disks on which the relation or file
is actually placed. An intelligent selection is crucially
important for disk load balancing. This can be
achieved by taking into account statistics (or esti-
mates) of the access frequencies of disks and files.
In practice, disk load balancing is achieved by hand
tuning the data placement periodically [18]. Auto-
mating data placement would be an important step
toward self-tuning systems, saving an enormous
amount of system administrator work.

Dynamic allocation and reorganization:

The data placement problem is already hard if one
assumes that all relations or files are allocated at the
same time. In practice, however, this is an unrealistic
assumption. File systems are highly dynamic, and
many database system applications require the dy-
namic creation (or deletion) of relations. Moreover,
during the evolution of an application, relations or
files may grow quite a bit. The resulting dynamic data
placement problem may in turn require partial reor-
ganizations on heavily utilized disks. Finally, long-
term changes of access frequencies may require glob-
al reorganizations on the entire disk array.

This paper addresses the dynamic data placement
problem for files. This entails determining the optimal
degree of declustering and selecting the set of disks
across which a file is declustered. Our main contribu-
tions are the following:

« Given an average request size (number of blocks) for
a file, and the throughput requirements {(number of
requests per second) for the disk array, we present
a method for deriving the file’s ”optimal” degree of

407

declustering such that the response time of requests
is minimized. This derivation is based on a simple
analytical model for response time and throughput
as functions of the degree of parallelism in serving
a request (see [9] for similar considerations).
Given a file’s degree of declustering, we propose al-
gorithms for selecting the disks across which the file
is declustered such that the overall load is balanced
across all disks. Because we deal with dynamic file
creations and expansions, we consider various sorts
of partial reorganizations. The developed algorithms
are based on heuristics, since even the static data
placement problem is known to be NP-complete [4].
For space limitations, we do not consider global reor-
ganizations in this paper.

Note that our approach to load balancing is indepen-
dent of how a file’s degree of declustering is deter-
mined, and what type of declustering unit is used.
Thus, our algorithms are also useful for declustering
based on relations, in a shared-nothing architecture
where the disk load balancing also affects the CPU load
balancing, or in disk arrays with workload assumptions
that differ from ours.

1.2 Related Work

Declustering (or ”"striping”) data across multiple disks
has originally been proposed in [16] and [25]. The per-
formance studies in [18] and [24] show a significant
improvement for different sorts of workloads and dif-
ferent sorts of multi-disk architectures. The impact of
the degree of declustering on I/0 throughput has been
studied in [3].The idea of disk arrays was first intro-
duced in [23]. Disk arrays have motivated the design
of novel file systems (e.g., [32]), and will presumably
influence the file systems of several computer vendors
([12],[20]). However, none of the proposed file sys-
tems seems to be flexible enough to cope well with con-
ventional on-line transaction processing as well as ac-
cesses to complex objects. The design of our own file
system FIVE has been influenced by some ideas intro-
duced in XPRS [32].

Declustering, for performance as well as availability
reasons, is employed in several database systems, in-
cluding commercial systems such as NonStopSQL [33]
and Teradata [34] as well as research prototypes such
as Gamma [7] and Bubba [2]. These systems use rela-
tion fragments as the declustering unit; the partitioning
schemes include round-robin, hash partitioning, key-
range partitioning, and a hybrid of the latter two
(181,[9]). Other database systems support similar parti-
tioning schemes but require the database administrator
to allocate space on different disks manually.

The data placement problem (i.e., determining across
how many disks and across which disks a relation or
file is declustered) has been addressed only in the Bub-
ba project [4]. The degree of declustering is chosen
based on an analytical model that estimates the per-
formance for a given degree of declustering. The disk
selection is based on the notion of heat, which is the
estimated access frequency of a relation. To achieve
good load balancing, disk-resident relations are placed



in descending heat order on the disks with the smallest
accumulated heat. Note that this heuristic algorithm as-
sumes that all relations are allocated at the same time
so that the allocation itself does not pose any problems.

None of the mentioned work considers the dynamic
creation of files or relations and the possibly necessary
reorganizations. Previous work on reorganization in
both file systems (e.g., [26]) and database systems
(e.g., [14],[21],[28]) has concentrated on the reorga-
nization of a single disk for the purpose of compaction
or improving the clustering of records and blocks.

The work presented here aims at automating the data
placement and reorganization decisions in a disk-ar-
ray-based file system. It is most closely related to the
data placement work in Bubba [4]. However, it ex-
tends this work in that we do not assume that all files
are allocated at the same time but rather allow dynamic
file creations and expansions.

1.3 Outline of the Paper

The rest of this paper is organized as follows. In Section
2, we give a short description of our prototype file sys-
tem called FIVE, which serves as the experimental
platform for our work. In Section 3, we discuss the per-
formance tradeoffs in dynamic data placement. In Sec-
tion 4, we develop heuristic data placement algorithms
for dynamically created files. In Section 5, we present
preliminary simulation results on dynamic file cre-
ations. Finally, we conclude with an outlook on future
work on data allocation and reorganization.

2 The File System: FIVE Concepts

We have developed an experimental file system called
FIVE that is supposed to exploit the potential advan-
tages of disk arrays. FIVE stands for File System with
Adaptive Enhancements. As one might guess, FIVE
is based on five concepts, namely blocks, runs, extents,
regions, and files.

The smallest unit of data that is managed by FIVE is
a block. A block is a contiguous fixed-length area on
one disk. It is the minimal transfer unit between disk
and memory. We require that the block size is the same
for all disks and all files. Note that this requirement
is not really restrictive because, by using set—oriented
I/0, multiple blocks can be transferred in one 1/O oper-
ation.

A physically contiguous collection of logically consecu-
tive blocks of a file is a run. A run consists of the largest
number of logically consecutive blocks that reside on
one disk. The run size is the ”striping granularity” in
the sense of ([3],[12]); a number of logically consecu-
tive runs that reside on different disks form a ”stripe”.

A physically contiguous collection of one or more runs
on one disk is called an extent. An extent is described
by its disk number, its start address, and its size in
blocks. A collection of extents located on different
disks is called a region. All extents of a region have
the same run size and the same number of runs per
extent. Thus, a region is described by the run size, the
extent size, the number of extents, and a list of the start

408

Figure 1: File organization in FIVE

addresses of the extents (i.e., disk number and address
of the first block).

Finally, a file is stored as a collection of regions. When
a file is created, its space is allocated in one region.
When a file grows during its lifetime, the file is expan-
ded by allocating additional regions. If the growth fac-
tor of a file can be estimated in advance, larger regions
can be allocated in order to avoid excessive expan-
sions.

The net effect of this file organization is that runs are
placed on w different disks in a round-robin fashion,
with those runs that end up on the same disk being clus-
tered together in one extent. The example in Figure 1
illustrates the five introduced concepts. The figure
shows the physical allocation of two files and their log-
ical block numbering. Each of the two files consists of
one region. The grey region consists of three extents,
each of which consists of two runs that are vertically
stacked in the figure. The run size of this region is 2
blocks. The black region of the other file consists of
two extents, each of which consists of one run of 3
blocks.

The number of extents of a region is called the width
of the region. The number of blocks of a run is called
the depth of the region. The number of runs of an ex-
tent is called the height of the region. Thus, width times
depth times height yields the total number of blocks
of the region. In the example of Figure 1, the grey re-
gion has width 3, depth 2 and height 2; the black region
has width 2, depth 3, and height 1.

Logical block numbers are translated into disk block
addresses through the region table of a file., We assume
that all region tables of frequently used files fit into
main memory so that I/Os for region table look-ups
are negligible. Note that the separation of logical block
numbers and disk block addresses is a prerequisite for
all sorts of reorganizations such as relocating extents
or combining multiple regions.

In addition to the region tables and a free space bit
map for each disk, FIVE keeps the following free space
information for each disk d;:

*» freelist(d;): a list containing the addresses of free
areas of disk d;. The list is kept in decreasing size
order (i.e., largest free area first).

» free(d;): the total number of free blocks on disk d;.
This is not necessarily contiguous space. free(d;) is
the sum of the sizes of all areas in freelist(d;).

* maxfree(d;): the largest contiguous area on disk d;.
maxfree(d;) corresponds to the first entry of freel-
ist(d;).



The workload of the system is reflected in a metric
called heat [4], where the heat of an object is the ac-
cess frequency of the object over some period of time
(e.g., one day or week). Only accesses that result in
disk I/O are counted so as to factor out the effect of
caching. The following heat statistics are (continuously
or periodically) collected while the system is running.

* H(e): the heat of an extent ¢, i.e., the sum of the
access frequencies of the extent’s blocks.

* H(d;): the heat of a disk d;, i.e., the accumulated
heat of the extents of the disk.

In addition to heat, the temperature of an object is

another useful metric, where temperature is defined as

follows [4]:

H(x)

size(x)
This metric reflects both the access frequency and
the size of an object. Thus, for a large object to have
the same temperature as a small object, the large ob-
ject must be accessed more frequently.

Our file system FIVE maintains the following two

sorted lists that are used in the data placement algo-

rithms:

* T = : the temperature of an extent, or file x.

* heatlist: a global list of the disks in increasing heat
order (H(d;) < H(dy) < H(d3) < ... < H(dn)).
This list is also used to calculate the average disk heat
avg_heat.

* templist(d;): for each disk d;, a list containing the ad-
dresses of allocated extents on d; in decreasing tem-
perature order.

3 Performance Tradeoffs

The following performance goals have guided the de-
velopment of our dynamic data placement algorithms.

Minimal access time to consecutive portions of a file,
i.e., minimizing the response time for read and write
requests.

Balanced disk load,

i.e., distributing the load across the disks as uniform-
ly as possible. This is an important goal for both I/O
throughput and file access response time because it
minimizes queueing delays. Note that disk load bal-
ancing is a crucial issue for both shared-nothing sys-
tems {31], where the disk load balance directly af-
fects the CPU load balancing, and shared-memory
systems, where disk load balancing and CPU load
balancing are orthogonal issues.

Minimal costs of partial reorganizations,

i.e., minimizing the extra disk load caused by reorga-
nization steps that result from certain placement deci-
sions. Such placement decisions are in turn a conse-
quence of the other two performance goals. For ex-
ample, if an extent is placed on a particular disk for
load balancing reasons and this disk does not have
enough contiguous space, then a partial reorganiza-
tion is necessary to reclaim sufficient free space.
Note that we do not aim at tuning the data placement
for maximum throughput, i.e., maximizing the
throughput at which the disk array saturates, because
this would be at the expense of response time. In prac-

409

AR Z 7
fu ’ Ji2 '
(. /o J
v 9 v
[ ]
o ,' . '
+ mlmma} ! f2111122 ' - 1r}creased access
access lime . =/ ¢ time
- increased s W resion + improved load
load imbalance balance

Figure 2: Incompatible performance goals

tice, disks are often underutilized (e.g., with 50 % utili-
zation) on purpose to guarantee acceptable response
time (see, e.g., [11],{29]). Throughput requirements
are taken into account by limiting the number of disks
that serve a single read/write request so that the re-
quired request rate can be satisfied (see Section 4.1).

The above three performance goals may be incompat-
ible in some situations, as illustrated in the example
shown in Figure 2. The example shows a file f that con-
sists of one region with two extents f;; and f72. Suppose
that the file is expanded by allocating a new region with
two extents fp; and f37, and suppose that reading the
entire file is the dominating operation. Typically, the
file access time would become minimal if the new ex-
tents were placed on disks d3 and dy4, which do not yet
hold any extents of file f. However, this would even
increase the load imbalance between the two cooler
disks and the two hotter disks. On the other hand, plac-
ing the two new extents on disks d; and d sacrifices
the goal of optimal file access performance. A similar
tradeoff exists between the first two performance goals,
on the one hand, and the goal of minimal reorganiza-
tion costs, on the other hand. The algorithms in Sec-
tions 4 aim at providing a good compromise with re-
spect to our three performance goals.

4 Algorithms for File Creation

In this section, we present algorithms for the dynamic
data placement problem that is posed by the creation
of new files. The algorithms decide 1) across how many
disks a file will be declustered (degree of declustering),
and 2) on which disks the file will be placed (disk selec-
tion for load balancing). Subsection 4.1 deals with de-
termining the degree of declustering. Subsections 4.2
and 4.3 deal with the disk selection problem, i.e., load
balancing. For the sake of modularity, we first present
two elementary building blocks for partial reorganiza-
tions in Subsection 4.2. These building blocks are used
in the description of the disk-selection algorithms that
are presented in Subsection 4.3. The performance
tradeoffs of alternative algorithms are briefly discussed
in Subsection 4.4.

4.1 A Method for Determining the Degree of De-

clustering

When a new file is created, a single region of size §
is allocated. We assume that § is provided by the client
of the file system, based on an estimate of the expected



file growth. The width w, depth d, and height 4 of the
allocated region are determined as follows, aiming at
a minimum access time to the (new) file while satisfying
the throughput requirements of the entire disk array.

* Let R be the estimated average request size of the
file, i.e., the number of consecutive blocks that are
read or written in a single request. Let P be the de-
gree of parallelism in serving such a request, i.e., the
number of disks across which the requested blocks
are declustered. We developed a formula (disregard-
ing queueing effects) for the (single-user) response
time of the request as a differentiable function A(P)

of P [37]. Solving the equation % =0 yields the

optimum degree of parallelism Pgp,. With less paral-
lelism, the potential for reducing the transfer time of
the request is not fully exploited; with a higher degree
of parallelism, the additional gain in transfer time is
outweighed by the additional increase of the maxi-
mum seek and rotational latency of the involved
disks.

¢ [37] also contains a formula, along the lines of [12],
for the disk array’s maximum throughput 7 as a func-
tion of the overall average request size R and the av-
erage degree of parallelism P. Given a required
throughput 79, we can solve the inequation 7 > 79,
yielding the maximum average degree of parallelism
Prax as a function of 70 and R.

* Now, our heuristic approach to minimizing response
time while observing the throughput requirements is
to view Py, as an upper limit for Pype. Thus, for
a file with request size R, we choose the following ef-
fective degree of parallelism:

Py = min ( Py Ppgy N)

where N is the number of disks in the disk array.

* To achieve a degree of parallelism P, for a request
size R, we have to decluster all consecutive portions
of size R over Peff different disks, so that Peff runs
can be accessed in parallel. This is achieved by
choosing an appropriate depth d for the region that
is to be allocated, according to the formula

~T2)

Of course, for larger requests to the same file, the
degree of parallelism should be higher. This is
achieved by choosing the degree of declustering of
the entire file as large as possible. Also, a degree of
declustering that is higher than the degree of parallel-
ism of a single request allows parallelism between
multiple independent requests to the same file. This
consideration yields the following formula for the re-

gion width:
w = min (N, [%-I )

Finally, we obtain the height of the region according
to the formula:

- [+l

N wxdl|’

410

Note that the above result affects only the degree of
declustering of a file. The disk selection algorithms that
are described below do not depend on how the values
for w, d and A are determined. For example, if we
wanted to maximize the saturated disk throughput rath-
er than minimize file access response time, the optimal
value of w would probably be smaller, but our disk se-
lection algorithms would still be appropriate for load
balancing.

Note that the allocated region of size wXdXh may be

larger than the requested size S. Such an overallocation

is unavoidable if one wants to have all runs and all ex-
tents of a region to have the same size. While this prop-
erty keeps the region table small and makes the ad-
dressing of blocks efficient, it has the disadvantage that
the internal fragmentation of a file (i.e., I - file size

/ allocated space) can be relatively high. Throughout

this paper, however, we consider disk space as an amp-

le resource.

4.2 Building Blocks for Partial Reorganizations

When a dynamic data placement algorithm decides to

allocate an extent of a file or region on a particular

disk, a partial reorganization may have to be performed
on this disk for one of the following two reasons:

A) There is not enough contiguous space available to
satisfy the allocation request.

B) The allocation of the new extent would cause the
disk to become too hot (because the extent belongs
to a hot file) and may thus adversely affect the load
balance in the disk array.

Case A) is addressed by performing a partial disk com-

paction, and case B) is addressed by performing a reor-

ganization step that we call ”disk cooling”. These two
building blocks are described in the following two sub-
sections.

4.2.1 Partial Disk Compaction

A partial disk compaction is necessary when a disk 4,
has enough free space for a new extent e but does not
have enough contiguous space (i.e., the condition max-
free(d;) < size(e) < free(d;) holds). In performing the
compaction, the amount of data that is moved should
be minimized. Since this is essentially a knapsack prob-
lem, we employ a relatively simple heuristic algorithm.
In a first step, two addresses low and high are deter-
mined such that the total size of the free areas between
low and high is greater than or equal to size(e) and the
total size of the existing extents between low and high
is minimized. In the second step all extents between
low and high are shifted in order to reclaim a sufficient
contiguous free area.

4.2.2 Disk Cooling

When a disk becomes too hot so that it causes signifi-
cant load imbalance in the disk array, the heat of the
disk can be reduced by moving some of its data to a
cooler disk. It is reasonable to move only entire extents
so as not to interfere with the goal of minimizing the
file access time. For the same reason, an extent is usu-
ally not moved to a disk that already holds an extent
of the same region (because this would effectively
change the width of the region). if a file consists of mul-



tiple regions, one could even exclude disks that already
hold an extent of the same file.

Determining the best migration candidates for disk
cooling is essentially a knapsack problem, since we
want to minimize the amount of data that is to be
moved while ensuring that the disk heat will be reduced
by a specified amount. A heuristic criterion for select-
ing the extent(s) to be moved is the temperature T(e)
of an extent e. In contrast to the heat metric, the tem-
perature reflects both the benefit and the cost of the
reorganization, where the benefit is the achieved de-
crease of the disk’s heat and the cost is proportional
to the size of the moved extent(s). A disk cooling algo-
rithm that implements these heuristics is given in {37].
The algorithm keeps cooling the disk (i.e., moves ex-
tents to cooler disks) until the heat of the disk drops
below a given threshold. The algorithm terminates pre-
maturely if the movement of an extent would cause a
cooler disk to become hotter than the disk that is to
be cooled.

4.3 Disk Selection Algorithms

In this subsection, we present alternative algorithms for
selecting the disks across which a newly created file is
placed. The alternatives reflect different priorities of
the performance goals described in Section 3. In deter-
mining the set of disks across which the file is declus-
tered, our algorithms are driven by information about
the heat of disks (i.e., the heatlist) and the allocation

Input:  region width w

extent size e = d*h (depth d, height &)

result_set := {}; escalation_flag := false
start_label:
for each class C of allocation states (in preference order)
do
for each eligible C disk 4; in heatlist do
if d; not in result_set or escalation flag is set
then
it H{d;) > avg_heat + tolerance
and there exists a cooler disk 4, that is
not yet in result_sef
then perform disk cooling algorithm
fi
case (allocation state of d;)
CS: allocate extent
ES: execute partial disk compaction
(di, e) and allocate extent
NES: perform space reclamation algorithm
on d; and allocate extent
esac

result_set := result_set U {d;}
if enough extents allocated then exit fi
fi
od
od
if not enough extents allocated then
set escalation flag (i.e., drop the constraint that the
allocated extents reside on different disks)
goto start_label
fi
optional
step

Figure 3: Generic disk selection algorithm

411

states of disks as described below. The alternatives use
both sorts of information, but with different priorities.

A straightforward approach to selecting w disks is to
pick the w coolest disks by looking up the first w entries
of the heatlist. This approach, which is adopted from
the data placement algorithm of Bubba [4], seems to
be a good heuristic for load balancing. However, in a
disk array with dynamic file creations, the disk selec-
tion also has to take into account the current allocation
states of the disks, where the allocation state of a disk
d; with regard to a new allocation request of size e is
one of the following states:

» CS: contiguous space available, i.e., ¢ <maxfree(d;)
+ ES: enough space available, i.e., maxfree(d;) <e <
Jree(d;)

* NES: not enough space available, i.e., ¢ > free(d;)
Obviously, disks with allocation state CS are preferable
over ES disks which in turn are preferable over NES
disks. Picking an ES disk for an extent allocation re-
quires a partial disk compaction. Picking an NES disk
for an extent allocation requires moving some data to
a different disk so as to reclaim sufficient free space.
Such a space reclamation can be accomplished by an
algorithm similar to the disk cooling algorithm. Like
the disk cooling algorithm, one or more extents have
to be moved to one or more cooler disks that do not
yet hold an extent of the region or file to which the
moved extent belongs. This rule prevents negative ef-
fects on load balancing and file access performance.
Unlike the disk cooling algorithm, the criterion for se-
lecting the extents that are moved is size (e.g., best-fit)
rather than temperature. Also, the termination condi-
tion is based on the amount of space that is to be re-
claimed rather than the decrease of the disk heat.

Given the additional information about disk allocation
states, we obtain various disk selection algorithms by
grouping the three possible allocation states (or a subset
of them) into classes of equally preferable states and
defining a preference order between the classes. Then,
a generic disk selection procedure, which is shown in
Figure 3, runs as follows. The heatlist is processed in
multiple rounds. For each class of states, in preference
order, we make a pass over the heatlist and select all
eligible disks that are in this class. The allocation states
within the same class do not affect whether a disk is
selected or not, but they may require different reorga-
nization steps on the selected disk. Note that each
round may change the allocation state of some disks.
The disk selection procedure terminates when it has
selected the required number of disks. If, due to unusu-
al space allocation conditions, not enough disks could
be selected after all rounds, then we drop the constraint
that the extents of a region must reside on different
disks and retry the whole procedure.

The above considerations lead to a family of alternative
algorithms, one for each possible grouping of allocation
states and preference ordering between the resulting
classes. The reasonable alternatives are shown in
Figure 4. Of the seven possible alternatives, the follow-
ing three are considered as viable options:



» Alternative 1 — Heat Balancing (HB): The first w en-
tries of the heatlist are selected, regardless of their
allocation states.

Alternative 5 - Space-restricted Heat Balancing
(SHB): NES disks are selected only if there are not
enough CS or ES disks. This may be reasonable since
the space reclamation on an NES disk involves addi-
tional disks, whereas a partial disk compaction on an
ES disk is a purely local operation.

Alternative 7 — Cost Minimization (CM): The heatlist
is processed in three rounds, aiming at minimal reor-
ganization costs.
: {CS, ES, NES}

All disks are selected according
to the heatlist.

NES disks are not selected.

ES or NES disks are not selected.
CS disks are selected in the first
round ES disks may be selected

in the second round; NES disks
are not selected.

CS or ES disks are selected in the
first round; NES disks are se-
lected in the second round.

{CS, ES}
{Cs}
{CS} < {ES}

{CS, ES} < {NES}

CS disks are selected in the first
round; ES or NES disks are se-
lected in the second round.

{CS} < {ES, NES}

{CS} < {ES} < {NES} | CS disks are selected in the first
round; ES disks are selected in
the second round; NES disks are

selected in the third round.

Figure 4: Possible allocation state classes and
preference orders

In some alternatives, a relatively hot CS disk may be
selected whereas a cool ES or NES disk will eventually
be not selected. Moreover, allocating the new extent
on the hot disk will possibly make it even hotter. In
order to avoid large load imbalances that may result
from this behavior, we propose the following disk cool-
ing technique. If the heat of the selected disk exceeds
the average disk heat in the disk array and if there ex-
ists at least one cooler disk that has not yet been se-
lected for the allocation of the new file, then we invoke
the disk cooling algorithm to reduce the heat of the se-
lected disk. That is, one or more extents are removed
from the disk and are reallocated on one or more cool-
er disks (see Section 4.2.2). Of course, this cooling step
is reasonable not only for CS disks, but should be
applied also to ES disks if they satisfy the above stated
conditions. After this step, the new extent is allocated
on the selected disk. Note that it is important to per-
form the disk cooling algorithm before allocating the

new extent, because this can save a partial disk com-
paction if the cooling step turns an ES disk into a CS
disk.

4.4 Discussion of Alternatives

In this subsection, we discuss some performance impli-
cations of the presented file creation algorithms, using
the following example for illustration. Suppose we want
to allocate a new file of size S=16 blocks on a disk array
containing 12 disks with track size 10 blocks. The aver-
age request size to this file is R=10 blocks. Further sup-
pose that our analytical model for the optimal degree
of parallelism for such a request yields Py = 5 and
Prax = 10 (assuming disk parameters from [19], an
overall average request size R=10, and a required
throughput of 7950 requests per second). From this
the method described in Section 4.1 derives depth
d=[10/57=2, width w=[16/27=8 as the file’s degree of
declustering, and height A=[16/167]=1. That is, a region
is allocated consisting of 8 extents each of which con-
sists of one run of 2 contiguous blocks. Now suppose
that the heatlist and the current allocation states with
regard to a request of size 2 are as shown in Figure 5.
Assume that the avg_heat of the disks is between H (dg)
and H(d7). Our three main alternatives for the disk se-
lection would produce the following results:

HB: selects the disks {d;, d, d3, d4, ds, ds, d7, dg},
which causes partial disk compactions on d;, dy, dy,
ds, and dy, and space reclamations on d; and dg,
and, optionally, disk cooling on dg.

SHB: selects disks {dj, dg, d4, ds, ds, d7, dg, djo},
which causes partial disk compactions on dy, dp, d4,
ds, and d7, and, optionally, disk cooling on dg, djg.
CM: selects disks {dgs, do, djp, dj1, d;j2, d;, da, dy4}
(in this order), which causes partial disk compactions
on dj, dz, and d4, and may invoke the disk cooling
algorithm on do, djg, djz, dj>.

This example clearly shows the main difference in the
performance of the three alternatives. Alternative HB
stresses the load balancing goal and is therefore likely
to perform more reorganization work. Alternatives
SHB and CM, on the other hand, try to avoid partial
reorganizations as long as possible and rather sacrifice
the load balancing goal.

S Preliminary Performance Measurements
5.1 Description of the Experiment

We have started investigating the performance of the
proposed algorithms. Our testbed consists of the im-
plemented FIVE file system, a load generator, and a
simulated I/0 system that is based on the C~based, pro-
cess—oriented simulation language CSIM [30]. The

allocation state CS

allocation state ES

allocation state NES

Figure 5: An example of the heatlist

412



simulated disk array consists of 12 (unsynchronized)
disks with the parameters shown in Figure 6.

Block Size 4096 Bytes
Track Size 10 Blocks
Tracks per Cylinder 4
Cylinders per Disk 624
Average Rotational Latency 8.3 ms
Average Seek Time 16 ms
Transfer Rate 2.5 MB/s
Cylinder Switch Time 5.0 ms
Head Switch Time 2.5 ms

Figure 6: Parameters of the simulated disks
In a first experiment, which is described here, we con-
centrated on dynamic file creations in a synthetic com-
plex-object scenario. The test database consists of ap-
proximately 2500 complex objects each of which corre-
sponds to one file. The file size is exponentially distrib-
uted with an average of 400 KBytes (i.e., 100 blocks
of 4KB each). The simulated workload consists of file

creations (5% of all operations), file deletions (2.5%),

reads (60%), and writes (32.5%). We assume that a

complex object is always accessed entirely; that is, the

read/write request size is the file sizel. Files are se-
lected for access according to a 90-10 Zipf-like distri-
bution. That is, 90% of all read/write requests access
only 10% of all files. We approximated this skewed ac-
cess distribution by applying a linear transformation to

a normal distribution. The average request size is R =

150 blocks. Note that there is a correlation between

the heat and the size of a file, as larger files cause more

data transfer work.Thus, since the load generation is
driven by the skewed heat distribution of files, the aver-
age request size is larger than the average file size.

The degree of declustering of a file is determined ac-

cording to the method of Section 4.1. We assume that

the required throughput is 70 = 32 requests per second.

From this we derive a maximum degree of declustering

of 3, using the formula for P,y that is given in [37].

We have compared the following strategies for dynamic

file allocations:

* Vanilla (V): this allocates file extents so as to balance
the space utilization of the disks. The V strategy
serves as an example of a strategy that disregards load
balancing.

* Cool Vanilla (C~V): this may additionally invoke the
disk cooling algorithm of Section 4.2. At each create
operation, the heat imbalance of the disks is
checked; and if the heat of a disk is higher than 1.1
of the average disk heat in the disk array, then the
disk cooling algorithm is invoked.

1. Even though this is a debatable assumption, we have
obtained interesting insights into the bebavior of our algo-
rithms. In addition, we are not aware of any published anal-
ysis of real-life complex-object accesses, which could serve
as a counterpart of, for example, the Berkeley trace data
analysis of Unix file accesses [22].

413

o Simple Heat Balancing (HB): as described in Section
4.3.
* Cool Heat Balancing (C-HB): like HB with the possi-
bility of disk cooling invocations.
e Simple Cost Minimization (CM): as described in Sec-
tion 4.3.
e Cool Cost Minimization (C-CM): like CM with the
possibility of disk cooling invocations.
We generated test databases by running the operation
mix of our synthetic workload, starting with an empty
database and terminating at a total space utilization of
75%. Such a database was generated for each of the
above six strategies, thus constructing six different da-
tabases. In addition, we constructed a seventh database
from one of the generated ones by statically reallocat-
ing all files in descending heat order, that is, by apply-
ing the static data placement algorithm of [4]. The
seven test databases are referred to as V-DB, C-V-
DB, HB-DB, C-HB-DB, CM-DB, C-CM-DB, and
OPT-DB. In the actual measurements, our synthetic
workload was run against each of these databases at
varying arrival rates of requests. Each run consists of
10000 file-system operations.

5.2 Performance Results

Figure 7 shows the standard deviation of the disk heat
distribution of the generated test databases. The under-
lying heat metric is the sum of the number of accesses
to the blocks of a disk. A low standard deviation across
the disks in the disk array is an indicator for good load
balance. The real touchstone for load balancing, how-
ever, is the standard deviation of the disk utilizations
during the actual measurements. These additional fig-
ures, at an arrival rate of 30 requests per second, are
also shown in Figure 7.

According to the utilization figures of Figure 7, one
would expect that the HB and CM strategies clearly
outperform the vanilla strategy, with CM being slightly
better than HB. We performed measurements by ap-
plying each strategy to the test database that was
created by the strategy, referred to as x-DB, and by
applying all strategies to the V-DB and the OPT-DB.
The measured response time of read and write opera-
tions are shown in Figure 8. The main observations
from this experiment are summarized in the following.

* Disk cooling was never invoked in the strategies C—
HB and C-CM, since the load balancing of HB and
CM is already so good that the imbalance threshold
for disk cooling invocations was never exceeded dur-
ing the measurement phase. Thus, C-HB and C-CM
perform exactly like HB and CM, respectively.
Therefore, the curves for C-HB and C-CM are
omitted in Figure 8. For the vanilla strategy, disk
cooling had a beneficial effect; that is, strategy C-V
clearly outperformed the simple strategy V. For ex-
ample, at an arrival rate of 30 requests per second,
the response time of strategy V {on the V-DBR} was
1.66 times higher than that of strategy C-V {on the
C-V-DB). On the OPT-DB, V and C-V performed
identically; so the C~V curve is omitted in Figure 8
for this case.



after the database generation phase

V-DB C~-V-DB HB-DB C-HB-DB CM-DB C-CM-DB OPT-DB

standard deviation 55372 64947 4143 14123 3790 15698 1
during the measurement phase

V on C~V on HB on C-HB on CM on C-CM on CM on

V-DB C-V-DB HB-DB C-HB-DB CM-DB C-CM-DB OPT-DB
min. utilization 0.80 0.87 0.81 0.81 0.88 0.88 0.88
max. utilization 0.99 0.99 0.97 0.97 0.96 0.96 0.93
avg. utilization 0.91 0.93 0.89 0.89 0.92 0.92 0.90
standard deviation 0.06 0.04 0.04 0.04 0.03 0.03 0.01

Figure 7: Heat distribution and load balance for different strategies

* The vanilla strategies V and C-V both perform well
at low arrival rates, as the load imbalance does not
yet cause queueing effects. With increasing arrival
rate, requests may become queued at a disk. Then,
load imbalance causes a dramatic increase of re-
sponse time because the hottest disk becomes a
bottleneck. For example, at an arrival rate of 31 re-
quests per second, the response time of V is almost
twice as high as that of the best strategy CM. This
observation clearly demonstrates the need for a load
balancing strategy.

At low arrival rates, the HB and CM strategies per-
form partial disk compactions, without achieving any
benefits since request queueing is not yet a problem.
This explains why these strategies perform worse than
the V strategy which benefits from its space balancing
in this case. At higher arrival rates, the reorganiza-
tions pay off, for they were actually necessary to im-
prove load balancing and hence decrease the average
queue length of the disks.

Partial disk compaction turned out to be pretty ex-
pensive, as it moved up to 4400 blocks. The HB algo-
rithm was far too aggressive, which resulted in exces-
sive invocations of partial disk compactions and high
response time, especially on the badly balanced V-
DB.

On the HB-DB and OPT-DB, the problem is that
the HB strategy tends to be overly sensitive in that
it prefers an ES disk over a slightly hotter CS disk.
This situation arises fairly frequently because the disk
load is already relatively well balanced so that a few

additional requests may already change the order of
disks in the heatlist. Obviously, the HB algorithm
needs to be augmented by incorporating a heat differ-
ence threshold such that approximately equally hot
disks are considered as equally preferable.

» The strategy CM performs best at high arrival rates,
as it achieves reasonably good load balance and
avoids reorganizations as long as possible.

6 Conclusion

In this paper, we have developed algorithms for the dy-
namic data placement problem in disk arrays. These
algorithms can be used for allocating newly created files
and for file expansions [37] with the goals of optimal
file access time and disk load balancing at acceptably
low reorganization costs. Our algorithms are useful for
dealing with both advanced DBMS applications such
as office document management where a large complex
object corresponds to a file, and conventional relations
of small records where file declustering can be ex-
ploited by an appropriate mapping of records into
blocks (i.e., to reflect a sort order). The simulation re-
sults for complex—object accesses are a first step toward
gaining quantitative insight into the performance of our
algorithms. We are planning on a series of performance
experiments under different sorts of workloads.

The partial reorganizations of our algorithms are in-
tended to maintain good file access performance and
good disk load balancing over fairly long periods of
time. In the long term, the performance may neverthe-
less deteriorate, for example, because of changing file

6 40 3
35 / OPT-DB I
a5 2.5 ll
2, 30| V-DB |
Q 4 25 2
£
=3 20 1.5
(] 5 /i
] 1
g 2 /] 1
o /7 10 7 /
o o — = ;
0 0 = 0
20212223242526272829303132 20212223242526272829303132 2021222324 25262728 29 30 31 32
arrival rate [requests/sec] arrival rate [requests/sec] arrival rate [requests/sec]
—————— V LT T T ¥ 3 C—V HB —— — CM

Figure 8: Response time of file creations and read/write requests

414



access frequencies. Therefore, a global reorganization
of the entire disk array will probably be necessary once
in a while. We are investigating, when and how such
a global reorganization should be performed.

An aspect that we have disregarded so far is reliability.
With the increasing number of disks in a disk array,
the mean time to failure (MTTF) decreases dramatical-
ly. Several solutions to this problem have been pro-
posed, either based on error-correcting codes such as
parity blocks [10],[23], or based on replicated data
[1],[5]. We plan to investigate to what extent our dy-
namic data placement algorithms need to be extended
if the disk array contains replicated data. We expect
that hardware—based schemes such as parity striping on
a per sector basis fit well with our approach in that they
do neither introduce major complications to the disk
selection algorithms nor any degradation of load bal-
ancing.

We believe that disk arrays will play an important role
in future database system architectures. On the other
hand, it is likely that data placement in large disk arrays
will not be (easily) manageable for most system admin-
istrators. Our long-term goal is a high performance da-
tabase system that automatically adapts itself to the
workload and does therefore not require a human sys-
tem administrator for performance tuning [36]. Devel-
oping algorithms that automate data allocation and re-
organization in disk arrays is a crucially important
(sub-)problem. We believe that this paper is a promis-
ing approach toward solving this problem.

References

{1] Bitton, D. and Gray, J., Disk Shadowing, I4th VLDB
Conf., 1988
[2] Boral, H., etal, Prototyping Bubba, A Highly Parallel Da-~
tabase System, IEEE Trans. on Knowledge and Data En-
gineering, Vol. 2, No. 1, 1990
Chen, P.M. and Patterson, D. A., Maximizing Perform-
ance in a Striped Disk Array, Proceedings of the 17th Int.
Symposium on Computer Architecture, 1990
Copeland, G., etal, Data Placement in Bubba, ACM SIG~
MOD Conf., 1988
Copeland, G. and Keller, T., A Comparison of High~
Availability Media Recovery Techniques, ACM SIGMOD
Conf., 1989
Carey, M.J., et al, Storage Management for Objects in
EXODUS, in: Kim, W., Lochovsky, F.H., (ed.) Object-
Oriented Concepts, Databases, and Applications, Addi-
son-Wesley, 1989
DeWitt, D.J., et al, The Gamma Database Machine Proj-
ect, JEEFE Trans. on Knowledge and Data Engineering,
Vol. 2, No. 1, 1990
Ghandeharizadeh, S. and DeWitt, D. J., A Multiuser Per-
formance Analysis of Alternative Declustering Strategies,
Proc. of the 6nd Int. Conf. on Data Engineering, 1990
Ghandeharizadeh, S. and DeWitt, D. J., Hybrid-Range
Partitioning Strategy: A New Declustering Strategy for
Multiprocessor Database Machines, VLDB Conf., 1990
Gibson, G.A., et al, Failure Correction Techniques for
Large Disk Arrays, Proceedings of the 3rd Int. Conf. on
Architectural Support for Programming Languages and
Operating Systems, 1989
Gifford, D. and Spector, A., The TWA Reservation Sys-
tem, CACM, Vol.27 No.7, 1984
J. Gray, B. Horst and M. Walker, Parity Striping of Disc
Arrays: Low-Cost Reliable Storage with Acceptable
Throughput, VLDB Conf., 1990

(3]

(11]

(12]

[13]

(14]

[24]

[25]
(26]

(27]

(28]

415

Hornick, M.F., Zdonik, S$.B., A Shared, Segmented
Memory System for an Object~Oriented Database, ACM
Trans. on Information Sysiems, Vol. §, No. 1, 1987
Hudson, S. E. and King, R., Cactis: A Self-Adaptive,
Concurrent Implementation of an Object~Oriented Data-
base Management System, ACM TODS, Vol. 14, No. 3,
1989

Katz, R.H., et al, A Project on High Performance [/O
Subsystems, Database Engineering, Vol. 11, No. 1,
1988, pp. 40-47

Kim, M.Y., Synchronized Disk Interleaving, /EEE Trans.
on Computers, Vol. C-35, No. 11, 1986

Lehman, T.J., Lindsay, B.G., The Starburst Long Field
Manager, VLDB Conf., 1989

M. Livny, S. Khoshafian, and H. Boral, Multi-Disk
Management Algorithms, ACM SIGMETRICS Conf.,
1987

M2344K Micro-Disk Drives CE Manual, Document No.
41FH6817E-01A, Fujitsu Ltd., 1987

Moad, J., Relief for Slow Storage Systems, Datamation,
Vol. 36, No. 17, 1990

E. Omiecinski and P. Scheuermann, A Parallel Algorithm
for Record Clustering, ACM TODS, Vol. 15, No. 4, 1990
Ousterhout, J.K., et al, A Trace-Driven Analysis of the
UNIX 4.2 BSD File System, Proc. ACM Symposium on
Operating System Principles, 1985

Patterson, D.A., Gibson, G., and Katz, R.H., A Case for
Redundant Arrays of Inexpensive Disks (RAID), ACM
SIGMOD Conf., 1988

Reddy, A.L. and Banerjee, P., An Evaluation of Multi~
ple-Disk 1/O Systems, IEEE Trans. on Computers, Vol.
38, No. 12, 1989

Salem, K. and Garcia~Molina, H., Disk Striping, Proc.
of the 2nd Int. Conf. on Data Engineering, 1986
Samadi, B., TUNEX: A Knowledge-Based System for
Performance Tuning of the UNIX Operating System, /[EEE
Trans. on Software Engineering, Vol. 15, No. 7, 1989
Schek, H.-J., et al, The DASDBS Project: Objectives,
Experiences, and Future Prospects, /EEE Trans. on
Knowledge and Data Engineering, Vol.2 No.1, 1990
Scheuermann, P., Park, Y., and Omiecinski, E., Heuris-
tic Reorganization of Clustered Files, Proc. of the Int.
Conf. on Foundations of Data Organization, 1989
Smith, A.J., Input/Output Optimization and Disk Archi-
tectures: A Survey, Performance and Evaluation, Vol. 1,
1981

Schwetman, H., CSIM Reference Manual (Revision 13),
MCC Technical Report ACA-ST-252-87, Rev. 13, MCC,
Avustin, 1989

Stonebraker, M., The Case for Shared Nothing, /EEE
Database Engineering, Vol. 9, No. 1, 1986
Stonebraker, M., et al, The Design of XPRS, VLDB
Conf., 1988

The Tandem Database Group, NonStopSQL: A Distrib-
uted, High-Performance, High-Availability Implementa~
tion of SQL, 2nd Int. Workshop on High Performance
Transaction systems, Springer, 1989

Teradata, DBC/1012 Database Computer System Manual
Release 2.0, Document No. C10-0001-02, Teradata
Corp., 1985

Weikum, G., Set-Oriented Disk Access to Large Complex
Objects, Proc. of the 5th Int. Conf. on Data Engineering,
1989

Weikum, G., Hasse, C., Moenkeberg, A., and Zabback,
P., The COMFORT Project: A Comfortable Way to Better
Performance, Technical Report, ETH Zurich, 1990
Weikum, G., Zabback, P., Scheuermann, P., Dynamic
File Allocation in Disk Arrays, Technical Report, ETH
Zurich, 1990

Zabback, P., Paul, H.-B., and Deppisch, U., Office
Documents on a Database Kernel - Filing, Retrieval, and
Archiving, Int. Conf. on Office Information Systems,
1990



