
Comparison of Hardware and Software Cache Coherence Schemest

Sarita V. Adve, Vikram S. Adve, Mark D. Hill, Mary K. Vernon

Computer Sciences Department

University of Wisconsin-Madison

Madison, WI 53706

ABSTRACT

We use mean value analysis models to compare

representative hardware and software cache coherence

schemes for a large-scale shared-memory system. Our

goal is to identify the workloads for which either of the
schemes is significantly better. Our methodology improves
upon previous analytical studies and complements previous
simulation studies by developing a common high-level
workload model that is used to derive separate sets of low-
level workload parameters for the two schemes. This
approach allows an equitable comparison of the two
schemes for a specific workload.

Our results show that software schemes are compar-
able (in terms of processor efficiency) to hardware schemes
for a wide class of programs. The only cases for which
software schemes perform significantly worse than
hardware schemes are when there is a greater than 15%
reduction in hit rate due to inaccurate prediction of memory
access conflicts, or when there are many writes in the pro-
gram that are not executed at runtime. For relatively well-
structured and deterministic programs, on the other hand,
software schemes perform significantly better than
hardware schemes.

Keywords: hardware cache coherence, software cache
coherence, mean value analysis, workload model

1. Introduction

In shared-memory systems that allow shared data to

be cached, some mechanism is required to keep the caches

coherent. Hardware snooping protocols [ArB86] are

impractical for large systems because they rely on a broad-

cast medium to maintain coherence. Hardware directory

protocols [ASH88] can be used with a large number of pro-

cessors, but they are complex to design and implement. An

alternative to hardware cache coherence is the use of

software techniques to keep caches coherent, as in Cedar

[KDL86] and RP3 [BMW85]. Software cache coherence

t ~~ work is ~UPPO~ed~ p~n by the National Science Fourrdaimr

(DCR-845 1405, MIPS-8957278 and CCR-890Z536), A.T.& T. Belf

Laboratories, Cray Research Foundation and Digitaf Equipment

Corporation, and by an IBM Graduate Fellowship.

Permission to copy without fee all or part of this material is granted
prowded that the copies are not made or distributed for direct commercial
advantage. the ACM copyright notice and the title of the pubhcation and

its date appear, and notice Is given that copying is by permission of the
Association for Computmg Machinery. To copy otherwme, or to republish,
requmes a fee and/or specific permission.

is attractive because the overhead of detecting stale data is
transferred from runtime to compile time, and the design
complexity is transferred from hardware to software. How-
ever, software schemes may perform poorly because
compile-time analysis may need to be conservative, leading
to unnecessary cache misses and main memory updates. In

this paper, we use approximate Mean Value Analysis

[VLZ88] to compare the performance of a representative

software scheme with a directory-based hardware scheme
on a large-scale shared-memory system.

In a previous study comparing the performance of
hardware and software coherence, Cheong and Veiden-
baum used a parallelizing compiler to implement three dif-
ferent software coherence schemes [Che90]. For selected

subroutines of seven programs, they show that the hit ratio
of their most sophisticated software scheme (version con-
trol) is comparable to the best possible hit ratio achievable
by any coherence scheme.

Min and Baer [MiB90b] simulated a timestamp-
based software scheme and a hardware directory scheme
using traces from three programs. They also report compar-
able hit ratios for the two schemes. However, they assume
perfect compile-time analysis of memory dependencies,
including correct prediction of all conditional branches,
which is optimistic for the software scheme.

Owicki and Agrtrwal [OWA89] used an analytical
model to compare a software scheme [CKM88] against the
Dragon hardware snooping protocol [ArB86] for bus-based
systems. They conclude that the software scheme generally
shows lower processor efficiencies than the hardware
scheme and is more sensitive to the amount of sharing in
the workload. The main drawback of their method is that
the principal parameters that determine the performance of
the two schemes are specified independently of each other,
and therefore for a given workload it is difficult to estimate
how the schemes would compare. Furthermore, they
assume the same miss ratio (0.4-2.4%) for private and
shared data accesses in the hardware scheme, which is an
optimistic assumption as shown in studies of sharing
behavior of parallel programs [EgK89, WeG89].

Our analysis improves on the work by Owicki and

Agarwal and complements the simulation studies by quan-

tifying coherence protocol performance as a function of

parameters that characterize parallel program behavior and

compile-time analysis. Our model permits an equitable

comparison of the software and hardware protocols for a

chosen workload because we derive the principal parame-
ters for each scheme from a common high-level workload

@ 1991 ACM 0-89791 -394-9/91/0005/0298 $1.50 298

http://crossmark.crossref.org/dialog/?doi=10.1145%2F115952.115982&domain=pdf&date_stamp=1991-04-01

model. Our workload model captures two important limi-
tations of compile-time analysis that may reduce the per-
formance of software schemes: 1) imperfect knowledge of

runtime behavior, such as whether a write under control of

a conditional branch will actually be executed, and 2)
imperfect knowledge of whether two data references actu-
ally refer to the same memory location. Including
compile-time and runtime parallel program characteristics
in a unified model appears to be essential for comparing
software and hardware cache coherence schemes.

From the high-level workload model, we derive two
sets of low-level parameters that are used as inputs to
queueing network models of the systems with hardware
and software coherence. We compare a software coher-
ence scheme similar to one proposed by Cytron et al.
[CKM88] to a hardware directory-based DiriB protocol
[ASH88] for large-scale systems. Our conclusions also
hold for the version control and timestamp schemes, as dis-
cussed in Sections 5 and 6. The goals of our study are to
characterize the workloads for which either the software or
the hardware scheme is superior, and to provide intuition
for why this is so.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss the important iksues that can result in
performance differences between hardware and software

schemes. In Section 3, we describe our common high-level
workload model. In Section 4, we first describe the system
architecture and cache coherence schemes studied in this
paper, and give a brief overview of the Mean Value
Analysis models for the systems. We then describe how the
low-level workload parameters are derived from the high-
level workload model. Section 5 presents the results of our
experiments. In Section 6, we discuss the overall results of
our study, and comment on some related issues. Section 7
concludes the paper.

2. Performance Issues for Hardware and Software
Coherence

In this section we outline the important issues that
affect the performance of software and hardware cache
coherence schemes. There are two main performance

disadvantages of directory-based hardware schemes. First,
substantial invalidation or update traffic may be generated
on the interconnection network. Second, memory refer-
ences to blocks that have been modified by a processor but
not updated in main memory have to go through the direc-
tory to the cache that contains the block.

The performance of software schemes on the other
hand is limited by the need to use compile-time informa-
tion to predict run-time behavior. The limits of this infor-
mation may force software schemes to be conservative
when (1) predicting whether certain sequences of accesses
occur at runtime, (2) using multi-word cache lines, and (3)
caching synchronization variables.

To detect stale data accesses, the compiler has to

identify sequences where one processor reads or writes a

memory location, a different processor writes the location,

and the first processor again reads the location. In this
case, the compiler has to insert an invalidate before the last
reference. To identify when such a sequence can occur, the
compiler may need to predict some or all of tlhe following:

(a) whether two memory references are to the same loca-
tion, (b) whether two memory references are executed on
different processors, (c) whether a write under control of a
conditioml will actually be executed, and (d) when a write
will be executed in relation to a sequence of reads. If any
of these is not precisely known, the compiler has to conser-
vatively introduce invalidation operations, perhaps causing
unnecessary cache misses. Note that future advances in
compiler technology could permit (a) and (b) above to be
predicted accurately, while (c) and (d) involve runtime
behavior that cannot be known at compile-time. In our
analysis we explicitly model the problems of predicting
whether and when a write is executed, and treat them
separately from the first two sources of uncertainty in data
dependence analysis listed above, In this context, we call a
write that executes an actual write, whereas we say there is
a potential write in the program when the compiler for the
software coherence scheme has to insert an invalidate for
reasons other than inaccurate prediction of memory access
conflicts or processor allocation.

Another factor affecting the performance of
hardware and software schemes is cache line size. For
hardware schemes, it is an open question whether
multiple-word cache lines provide higher performance than
single-word lines for shared data. On the other hand, no
software scheme proposed so far can use multiple-word
lines to exploit spatial-locality for shared read-write data.
Our workload model includes parameters to account for
this factor.

Finally, all the software coherence schemes proposed
so far require synchronization variables be uncacheablc,
whereas many hardware schemes allows such variables to
be cached. In the future, the effects of this difference can
be mitigated by software techniques [MeSar] that make
lwks appear more like ordinary shared data, For this rea-
son, we do not model synchronization directl:y.

3. The High-Level Workload Model

Our high-level workload model partitions shared
data objects into classes very similar to those defined by
Weber and Gupta [WeG89]. We use five classes, namely,
passively-shared objects, mostly-read objects, frequently
read-written objects, migratory objects, and synchroniza-
tion objects. Passively-shared objects include read-only
data as well as the portions of shared read-write ~bjects
that are exclusively accessed by a single processor . The
latter type of data occurs, for instance, when different tasks
of a Single-Program Multiple Data (SPMDI) parallel pro-
gram work on independent portions of a shared array.

1. Note that this is a generalization of the read-only (classdefined
by Weber and Gupra.

299

Table 3.1. Parameters of the high-level workload model,

Parameter I Value Description
L 1 1 J

Parameters denoting the fractions of references to the various classes

fh 0.3 fraction of memory accesses that are data references

fpt 0.75 fraction of data references that are to private data

fPS, hW, fMR, fMIG 0-1.0 fraction of shared references that are to passively shared, frequently read-written,
mostty-rea~ and migratory dat~ respectively &+fRW+fJ#f~/~ = 1)

Parameters for mostly read data

f. I MR
~ ().1 fraction of aeeesses to mostly read data that are writes

lMR >1 runtirne average number of read accessesby a processor to a mostly-read data element
between consecutive compiler-inserted invalidations executed on that element by the
same processor.

‘MR >4 Mean number of processors that access a data element between consecutive (actual)
writes to that element.

Parameters for frequently read-written data

f. IRW 0.1-0.5 fraction of accesses to frequently read-written data that are writes

IRW pl average number of read accesses by a processor to a frequently read-written data element
between potentiat writes by other processors

‘RW 14 Mean number of processors that access a data element between consecutive (actual)
writes to that element.

Parameters for mhwatorv data

1MIG
>2 average number of accesses to a migratory data element by a single processor before an

access by another processor

Passively shared data generate no coherence traffic and

hence do not cause performance differences between
hardware and software coherence schemes.

We use the term actively shared to collectively
denote all classes of shared data that are not passively

shared. Table 3.1 summarizes the high-level workload

parameters. (The column of values gives the ranges used in

our experiments.) As discussed earlier, we do not model
synchronization objects separately, but expect them to
behave like ordinary shared data once contention-reducing
techniques have been applied [MeSar]. The parameters for
mostly-read, frequently read-written and migratory data are
further discussed below. These parameters are designed to
capture the sharing behavior of the particular data class, so
as to reflect the performance
Section 2.

3.1. Mostly-Read Data

Mostly-read objects are
infrequently, and may be read

considerations discussed in

those that are written very
more than once by multiple

processors before a write by some processor. An example
is the cost array in a VLSI routing program which is read
often by multiple processors, but written when an optimal
route for a wire is decided. Even though actual writes to an
object of this class are rare, there could be uncertainty in
whether and when writes do occur, possibly causing a large
number of unneeessay invalidations. We make the
assumption that a processor always reads a mostly-read
data element before writing it, so that a write always finds
the data in the cache.

The parameters f~ IM, lMR, and n~R describe
accesses to mostly-read data, and are defined in Table 3.1.

The feasible values of these three parameters are con-
Strtirted in the following way. Define ratioJ.fR to be the
average number of compiler-inserted invalidates that a pro-
cessor executes on a mostly-read data element in the inter-
val between any two consecutive actual writes to the data
element, averaged over the intervals when the processor
does execute such invalidates. From the definition,
ratioM~ 21. Since a processor reads a data element lMR

times between compiler-inserted invalidates,
Z~Rxratio~Rxn~R is approximately the total number of
reads on a data element between two actual writes to the
element.2 But the latter is exactly the overall ratio of reads
to writes at rurttime, (l–fW IMR) /fW ,~R. Therefore,

l–fW IMR
ratio~R = >1.

f. IMR x ‘MR x lMR
(3.1)

This relationship is significant for two reasons. First,
it relates the compile-time and runtime behavior of the pro-
gram, and therefore the performance of the software and
hardware coherence schemes for the given program.
Second, it constrains the feasible parameter space to be
explored in comparing the two schemes.

2. The expression is approximate because the processors that

perform the actual writes must be treated somewhat differently in

the exact expression for the number of reads between a pair of actual

writes.

300

Table 4.1. Architectural and System Parameters.

Parameter Value Description

Architectural Parameters

N 256 number of processors in the system

D.., D=Uh., DM~ 1.0,1 .0,4.0 no contention delay at switch (per packet), cache and memory respectively

Li 2,8,10,2 number of packets in a message of type i, i~ {addr, data, addr +data, invalidate]
1

System Parameters

‘ins 0.005 fraction of references to instructions that miss

Jn%Vt&ps 0.01 fraction of references to private and passively-shared data that miss

lochw, 10C.W 1.0

1

reduction in miss rates to actively shared data due to spatial locality in the hardware and
software scheme respcxtively

Com 0.1-1.0 reduction in hh rates to actively shared data due to conservative prediction of memory ac-
cess conflicts and processor allocation.

3,2. Frequently Read-Written Data

Frequently read-written objects are typically those
that show high contention, such as a counter that keeps
track of how many processors are waiting on a global task
queue. Such data objects are written frequently, and also
read by multiple processors between writes. Weber and
Gupta show that this type of data can degrade system per-
formance because they cause multiple invalidates relatively
frequently. Writes to this type of data may also be exe-
cuted conditionally, but a relatively high fraction of these
writes would be executed compared to the mostly-read
data. As for mostly-read data, we assume that a processor
always reads a frequently read-written data element before
writing it.

f~ [RW, ZRW and %?W are defined in the same fashion
as the corresponding parameters for mostly-read data
(Table 3.1). By definition, the fraction of writes to this
class, fw IRW, is expected to be larger than fw l~R. Also, nRW
is expected to be small. Similar to ratioMR, we can define
ratioRw and estimate it as

l–fw IRW > ~
ratioRw =

fwlRW ‘~RW x lRw - “

(3.2)

3.3. Migratory Data

Migratory data objects are accessed by only a single
processor at any given time. Data protected by locks often
exhibit this type of behavior, where the processor that is
currently in the critical section associated with the lock
may read or write the data multiple times before relinquish-
ing the lock and permitting another processor to access the
data. Migratoty data resides in at most two caches at any
time. Again, we assume that a processor always reads a
migratory data element before writing it. For migratory
data, 1~1~ is the average number of accesses to a migratory
data element by a single processor before an access by
artother processor.

4. Analysis of the Coherence Schemes

The high-level workload model described in the pre-
vious section is used to derive low-level parameters that are
inputs to MVA models of the systems being compared.
Before describing how the low-level parameters are
derived, we state our assumptions about the coherence pro-
tocols and the hardware organization, and give a brief over-
view of the Mean Value Analysis models.

4.1. System Assumptions and Mean Value Analysis

We assume a system consisting of a collection of
processing nodes interconnected by separate request and
reply networks, each with the geometry of the omega net-
work, with 2x2 switches. We do not believe that the
specific choice of network topology should significantly
influence the qualitative conclusions of the study. Each
node consists of a processor and associated cache, and a
part of global shared memory. Messages are pipelined
through the network stages. We assume that buffers are
associated with the output links of a switch and have
unlimited capacity, and that a buffer can simultaneously
accept messages from both incoming links. The parameters
describing the architecture are given in Table 4.1.

For hardware coherence, we assume a simple
directory-based DiriB protocol similar to the ones
describd by Agarwal et al. [ASH88]. A cache miss for a
line in global shared state is satisfied by main memory,
while a miss to a line in modified state is forwarded from

main memory to the cache that owns the latest copy of the

line, and this copy is returned directly to the requesting

processor. On a write request to a line in shared state,
invalidates are either sent from main memory to some aver-
age number of processors or are broadcast to all nodes in
the system, consistent with a Diril? scheme. The requesting
processor~is not required to block for the invalidates to
compIete.

As we will see, one situation where sclftware coher-
ence does better than DiriB is when a location is read and

3. This implies that the system is not sequentially consistent.

301

Table 4.2. Low-1evel workload parameters.

Parameter j Description
I

Parameters for software cache coherence

=

fraction of references that are read or write

fraction of references that are posts or m-

Parameters for hardware cache coherence

p,lsh,~,lmd fraction of references that are read misses
to lines in shared or modified state respec-
tively

pwlsh,pwlmi fraction of references that are write misses
to lines in shared or modified state respec-
tively

Pind.i.v. probability that invalidations are sent indi-
vidually (not broadcast)

nin. average number of processors to which in-
validations are sent, when they are sent in-

dividually.

then written by a processor. This is because software can
use one invalidate whereas DiriB may need to take action
on both the read and the write. This performance difference
can be reduced if hardware supports a Read-For-

Ownership (RFO) operation [KEW85]. RFO is a read
operation that procures the requested line in modified state
in the processor cache to avoid a directory access on a sub-
sequent write. Since the use of RFO could significantly
change the performance of Dirill relative to software
coherence, we model DiriB without and with RFO.

For software coherence, we model a scheme similar
to the one proposed by Cytron et al. [CKM88]. The com-
piler inserts an invalidate instruction before each potential
access to stale data, causing the data to be retrieved from
main memory. Also, if a write to a shared location is fol-
lowed by a read by a different processor, the compiler
inserts a post operation that explicitly writes the line back

to main memory. We assume that the processor is blocked
for one cycle for each invalidate and post instruction, i.e.
we assume that the processor does not have to block for the
post to complete. This is consistent with not requiring a
processor to block for invalidates in the hardware scheme.
Read and write misses are identical in behavior as far as the
network and main memory are concerned.

We use similar approximate Mean Value Analysis
models of the system for both coherence schemes. The
shared hardware resources in the system, i.e., the memories
and the interconnection network links, are represented as
queueing centers in a closed queueing network. The task
executing on each processor (representing a single custo-
mer) is assumed to be in “steady state,” executing locally
for a geometrically distributed number of cycles between
operations on the global memory. We assume that a global
memory operation is equally likely to be directed to each of
the nodes in the system, including the node where the
request originates. The probabilities of various global
memory operations per cycle comprise the low-level work-

load parameters and are defined in Table 4.2. These param-
eters are derived from the high-level workload model as
explained in Section 4.2.

The MVA models used to calculate system perfor-
mance tie similar to models developed by others for the
analysis of different types of processor-memory intercon-
nects [VLZ88, WiE90]. The detailed equations of the
model are given in [AAH9 1]. These models can be solved
very quickly and have been shown to have high accuracy
for studying similar design issues.

The performance metric we use is processor
efi$ciency, defined as the average fraction of time each pro-
cessor spends executing locally out of its cache. This
measure includes the effects of hit rate and network
interference in each of the schemes.

4.2. Deriving the Low-Level Workload Parameters

The low-level parameters for each coherence scheme
are derived from the high-level workload model by calcu-
lating the probability that a reference of each class causes
each type of global memory operation. The system param-
eters listed in Table 4.1 are used in this derivation.

For the shared-data classes, the global memory
access probabilities are calculated assuming a one-word
cache line size, and assuming accurate analysis of memory
access conflicts. Then, to account for the reduction in miss
rates due to spatial locality, these global memory operation
probabilities are reduced by the factor lochW or 10CW. Also,

for the software scheme, the hit ratio of actively shared

data is reduced by the factor cons to account for inaccurate

prediction of memory access conflicts. The approach used

in calculating the contributions of each shared class is

described here, and the detailed equations for all the low-
Ievel parameters are given in Appendix A.

Mostly-Read Data. This type of data is read multiple
times (/&fR times on the average) by a processor between
compiler-inserted invalidates. The first read in each such
sequence will be a miss for the software scheme, since it is
preceded by an invalidate. Therefore, one in every lMR

reads to mostly-read data causes a miss in the software pro-
tocol. In the hardware protocol each write causes one read
miss for each of nJfR processors, on the average. The pro-
bability of a read miss is therefore nJ,fRx fW l~R. Of these
read misses, 1 / n&fJ/ see the data in modified state (contri-
buting top, ,Wd), while (n~R–l) / n~R see the data in state

shared (contributing top, i,h).

Writes to mostly-read data do not cause misses with
the software protocol, because we assume that they follow
a read access. However, each write causes a post opera-
tion. In the hardware protocol, all writes to mostly-read
data contribute to pW ISA. Furthermore, we assume that n~R
is large enough that broadcast is required for invalidations.
This is consistent with Weber and Gupta’s findings, which
showed that writes to mostly-read data caused an average
of 3 to 4 invalidates even for 16 processor systems
WeG89].

302

Frequently Read-Written Data. The contribution of
this class to the probability of read and write misses is cal-
culatedin the same manner as formostly-read data (when
RFO is not included). Since this class has a relatively high

fraction of actual writes, the assumption that each write

finds the data in shared state will be somewhat pessimistic
for the hardware scheme because two consecutive writes
could be executed by the same processor, with no interven-
ing reads by other processors. This assumption is also
somewhat pessimistic for the software scheme, since not all
writes would cause a post operation.

Because fewer processors are expected to read
between writes for this class (n~w is low), we assume that
all writes to data in shared state cause individual invali-
dates to be sent from main memory. Therefore, the contri-
bution to pi~inv. is the same as to pW I=h. An average of
nRJ$/-l invalidates are required for each such write.

When RFO is included, every read sees the data in
modified state, writes do not miss, and no invalidations are
required.

Migratory Data. For migratory data, the first access
in a sequence of lMIG accesses is always a read by assump-
tion. We assume that this type of data is written at least
once for each sequence of accesses by a processor. Hence
there is a read miss once per lMIG accesses for both proto-
cols. Therefore, for the hardware protocol, the first read by
a processor in a sequence always finds the data in modified
state. Writes in the software protocol do not miss since they
always follow a read. In the hardware protmol without
RFO, the first write of the sequence finds the data in shared
state, causing a miss and causing an individual invalidate to
be sent to exactly one processor. This miss and the invali-
date are avoided, however, when RFO is included.

5. Results

We have used our models to perform experiments
comparing the hardware and software coherence schemes.
The constraints on the high-level workload model parame-
ters discussed in section 3 (equations 3.1 and 3.2) allow us
to explore the feasible workload parameter space com-
pletely. The ranges of workload parameter values that we
consider reflect the characteristics of the shared data
classes, and are given in Table 3.1. The system parameters
(except cons) are held fixed throughout our experiments,
and the values are given in Table 4.1. The values of f&fa

and fp,r were chosen to reflect the findings of previous
work characterizing parallel applications.
[EgK88, 0wA89]. Except for lockW and 10CW, we believe
that varying the other parameters will not affect the conclu-
sions of our study. The value of 1 for lochW and 10CWcould
be pessimistic for the respective schemes since they
assume that spatial locality is not exploited. We will com-
ment on these assumptions at the end of the section. Unless
otherwise indicated, the ext)eriments for hardware do not
assume RFO.

In Sections 5.1 through
each class of actively-shared

5.3, we study the effect of
data in isolation, assuming

100

l–
— — War:?

90

d - fwIMR (rafiOMR)

‘;-OO
F&ction”of Sh&ed T;affic that is MR

(a) ~~~=1, n~R=4

100
1

——Hardware

90 — Software

.r-’----
fwI A4R (,ratiOM/i)

% 80

i
=9== EEQ-Q-*uo. (105 6.22)

E 70 ---”0.01 (.09)
f ‘%.
f 60

: 50
<< t 0.025 (1 .22)

: 40’

: 30’

Y 20”

10’

&OO 0.20 0.40 0.60 0.80 1.00
Fraction of Shared Traffic that is MR

(b) /JfR=8, nJ.fR=4

Figure 5.1. Efficiency vs fMR with varying f~ lMR.

cons = 1. In Section 5.4, we study the effect of smaller
values of cons. Since the different data classes are
independent of each other, their effects in isolation can be
combined to draw conclusions about the overall perfor-
mance of the software and hardware schemes. We discuss
the overall performance results in Section 6.

5.1. The Mostly-Read Class

In figures 5. l(a) and (b), we pIot the efficiency of the
hardware and software coherence schemes as the fraction
of shared data references that are to mostly-read data ~~R)
is varied from O to 1, while all other shared data is pas-
sively shared. The hardware scheme is sensitive to fv IMR,

the fraction of writes to mostly-read data at runtime, and
n&fR, the mean number of processors that access a mostly-
read data element between consecutive writes to the ele-
ment. nM~ is held constant at 4 in both graphs, but the
results are similar if fw I~R is held constant and n&ff/ is
varied. The software scheme is sensitive to lMR, the mean

number of reads by a processor between compiler-inserted

invalidates. Figure 5.1(a) shows the results for /J,fR= 1, the

303

Figure

~

Is/w better

0.6

‘j &j ‘(Equal)
1

~.O . O.? 0.4 0.6 0.8 ~
Fraction o Shared Traffic that is R

(a) lMR=l, 7Z~~=4.

2 1.0 (Equal)
VW @ter

h.O 0.2 0.4 0.6 0.8 1.0
Fraction of Shared Traffic that is MR

(b) 1~~=8, nM#l.

5.2. Contours of constant
Efficiency(software)

Efficiency(hardware)”

most pessimistic case for the software scheme. 5.1 (b)
shows the results for l~R=8, where the software scheme has
become competitive with the hardware scheme.

In figure 5.l(a) we observe that as ~WlJ,fJ/ increases,
the efficiency of the hardware scheme decreases, while the
effect on the software scheme is insignificant. Increasing

f. IMR while holding nMR and /MR constant decreases
ratioMR, as shown in the figure, In effect, the number of
potentiaJ writes in the program (and thus software perfor-
mance) is held constant, while the fraction of these writes
that are executed increases. An increased number of writes
that are executed adversely affects the hardware perfor-

mance in three ways: (1) each write that is executed is an

additional miss, (2) the write results in broadcast invalida-

tions causing higher network traffic, and (3) the first read
by another processor after the write operation finds the line
dirty and has to make an extra hop across the network to
fetch the line.

Figure 5.l(b) shows that the software scheme
improves significantly for l~R=8 as compared with /~R= 1,

10’

9

8’

r 7’

; 6’

:5’

4’

; 3’

2
1 I

~.O 0.2 0.4 0.6 0.8 1.

iqual)
r

o

Fraction of Shared Traffic that is RW

Figure 5.3. Contours of constant
Efficiency(software)

Efficiency (hiwdware)”
/Rw = 1, nRw =2.

while the hardware scheme is independent of lMR. Note
here that the values fw l~R = 0.1 and fw IMR = 0.O.5are not
feasible for Figure 5, l(b) for n~~ = 4 and lMR = 8, since
they cause ratio&fR to be less than 1. This restricts the
region over which software would be superior to hardware.

We next identify the regions in the parameter space
over which one of the schemes performs better, For IMR =
1 and 8 in figures 5.2(a) and (b) respectively, we plot the
contours of constant ratio of software to hardware
efficiency over a range of values of ratioMR, with the frac-
tion of shared data references that are to mostly-read data
varying from O to 1. In these experiments, ratioMR is

varied by fixing nJfR=4 and varying ~WIMR. Similar results
are obtained when fw I~R is fixed and nMR is varied.

For low values of /~R, we observe that the hardware
scheme is significantly better (more than 20% better) than
the software scheme if more than 2090 of the shared data is
mostly-read and rati~~R is greater than 3. In this case, the
hardware scheme is superior to the software scheme for
most of the feasible parameter space. Software coherence
is more than 10% better than hardware only for very low
rati~MR. However, for /MR> 8, the software scheme
becomes competitive with hardware over most of the feasi-
ble parameter space.

5.2. The Frequently Read-Written Class

The parameters related to the frequently read-written
class of data, lRW, nfiw and fW, ~W, are similar to those for

mostly-read data, but their values vary over different

ranges, thus distinguishing the class.

The contour plots shown in Figure 5.3 give quantita-
tive estimates of the relative performance of software and
hardware coherence over the parameter space. As in figure
5,2, we use ratioRw to reflect the relationship between the
behavior of the two schemes. Again, we vary ratioRw by
holding nRw = 2 and /Rw = 1 constant and varying ~WIRw.

304

l;-OO
F;action”of Sh&ed T&ic &at is RW

(a) Without RFO.

; 60

: 50’

i 40’

: 30”

; 20’

10(

8.~oo
Fraction of Shared Traffic that is RW

(b) With RFO.

Figure 5.4. The Effect of RFO with Frequently
Read-Written Data

As for mostly-read data, the resuhs are similar if nR~ is
varied instead of ~WlR~. We observe that the hardware
scheme is more than 20% better than the software scheme
for ratioRw23 and ~~w>().s. However, we expect that in
many programs, less than 20% of shared data references
would be to this class ~~w<0.2) since it leads to low pro-
cessor efficiencies for any coherence scheme. Within this
range of values, the software scheme is within 2090 of
hardware coherence in performance. For higher values of
/RW, the region for which software is comparable to
hardware increases.

Since the RFO optimization may improve the perfor-
mance of the hardware scheme for frequently read-written
data, we examine how the relative performance of the two
schemes changes with this optimization. The efficiencies
for the cases without and with RFO are shown in Figures
5.4(a) and (b) respectively. Surprisingly, the RFO optimi-
zation degrades the perform ante of the hardware scheme,
removing its advantage over the software scheme in
regions where it dominates without RFO, for the entire

parameter range that we explored. The reason for this
counterintuitive result is as follows. Without RFO, only
the reads that follow an actuaf write incur a miss, requiring
a global memory access, and only the first of these requires
three traversals of the network. With RFO, every read
incurs a miss for l~w = 1 (here we assume that a data ele-
ment is read by some other processor between successive
writes by any processor), and requires three traversals of
the network since the line is always held in modified state.
When even a small fraction of the potential writes are not
executed, the loss in efficiency due to the extra misses is
not compensated for by the lack of misses when the writes
occur, as shown in the plots for rati~RW= 1.16 VWlJ/w =
0.3).

8 —— Without RFO
— — With RFO

~.O 0.2 0.4 0.6 0.8 1.0
Fraction of Shared Traffic that is MIG

Figure 5.5. Contours of constant
Efficiency(software)

Efficiency (hardware)”

Another point of interest is that, with RFO, the
hardware and software schemes both have the same miss
ratios for IRW=l, but the software scheme has a lower cost
per miss. In general, relative miss ratios do not completely
reflect the difference between hardware and software
schemes because of differences in network traffic and miss
latencies.

5.3. The Migratory Class

The only parameter for migratory data is lMIG, the
average length of a sequence of accesses by a single pro-
cessor. Figure 5.5 shows the contour plots for the relative
efficiency of the software and hardware schemes with
varying amounts of migratory data and lMIG. The hardware
schemes with RFO (solid lines) and without RFO (dashed
lines) are shown. All other shared data is assumed to be
passively shared. We observe that the hardware scheme
consistently performs worse than the software scheme.
This is essentially due to the deterministic behavior of this

class of data. Without RFO, the difference is more than
2070 for a large range of operation. The RFO optimization
brings hardware to within 209’o of the software scheme
over the entire parameter space, but does not make the
hardware scheme outperform the software scheme, This is

305

1.41

1.2’

1.0’

‘ffiw o”’Efficiency (w o ~

0.4’

0.21

o.oL__—__
0.0 0.2 0.4 0.6 0.8 1.0

MR Fraction of Shared Traffic

Figure 5.6. The effect of Conservative Analysis of
Memory Conflicts,

l~lG =4, 1~~ =8, ratioMR =2, nMR =4.

because, even though the use of RFO avoids the miss on
the write for hardware, the read miss requires an extra hop
to retrieve the data. Hence, the software scheme is always
better than the hardware scheme for migratory data.

5.4. The Effect of Conservative Analysis of Memory
Conflicts

The above experiments assume that conflicting
memory accesses can be accurately identified at compile
time. To analyze the effect of this assumption, we studied
the effect of reducing hit rates to actively-shared data in the
software scheme due to conservative analysis of conflicting
accesses (cons < 1). Since the main difference between the
hardware and software schemes occurs for mostly-read and
migratory data accesses, we assume only these two classes
of actively shared data in our experiments. Figure 5.6 plots
the ratio of the efficiency of the software scheme to that of
the hardware scheme with &+ ranging from O to 1, and

fMw = 1- fMR,withseparate curves fOr different values of
cons. The parameter settings used were those for which
software had comparable performance to hardware coher-
ence for cons = 1. We find that with up to about 10%
reduction in hits due to conservative analysis (cons20.9),

the software scheme stays within 10% of hardware. For
more than 15?70 reduction in hit rate, the software scheme
becomes more than 20% worse than the hardwme scheme.

6. Summary zmd Discussion of the Results

Our experiments show that if memory access

conflicts can be detected accurately at compile time

(cons 2 0.9), the software scheme is competitive with the

hardware scheme for most cases. The most important case
for which hardware coherence significantly outperforms
software coherence is for the mostly-read class of data.

With a high fraction of this class of data, if less than half of
the potential writes detected at compile-time are executed,

the hardware scheme can be more than 30% better than the
software scheme. The hardware scheme is also

significantly better with high fractions of frequently read-
written data, when rafioRw is high. However, we do not
expect parallel programs to contain such high proportions
of this class of data. Otherwise, the software scheme per-
forms within 10% of the hardware scheme for most cases.
For migratory data, the software scheme consistently out-
performs the hardware scheme by a significant amount.
The RFO optimization for the hardware can substantially
reduce this difference, but does not make the hardware
scheme perform better than the software scheme.

The chief significance of these results is in showing
the effect of various types of sharing behavior on relative
hardware and software performance. For data that consists
of conditional writes that are performed infrequently at
IUnt.ime (high VdUW Of ratioJ/w and rati~MR), the SOftWare
scheme performs poorly compared to the hardware scheme.
This suggests that if data with many conditional writes
occurs frequently in parallel programs, some mechanism to
handle these writes is essential for a software scheme to be
a viable option. None of the software schemes proposed so
far incorporate such a mechanism. Since the result of con-
ditional branches cannot be predicted at compile time,
some hardware support appears necessary so that the com-
piler can optimistically predict branch outcomes, while the
hardware takes responsibility for ensuring correctness
when a prediction is wrong.

Although we have specifically modeled the scheme
described by Cytron et al., we believe our results apply
equally to the Fast Selective Invalidation scheme [ChV88]
and to the timestarnp based [MiB90a] and version control
schemes [Che90]. The Fast Selective Invalidation scheme
has been shown to be very similar to the Cytron et al.
scheme in terms of compile time analysis and exploiting
temporal locality. The timestamp-based and version control
schemes have been shown to perform better than the
scheme by Cytron et al., but our assumption of cons= 1 for
the Cytron scheme makes it comparable to these more
efficient schemes. Furthermore, neither of these schemes
can effectively handle potential writes, and hence suffer as
much from such conservative compile time predictions as

the Cytron scheme.

Finally, all our results have assumed
Zochv = /ocW = 1, i.e., neither scheme exploits spatial local-
ity for actively-shared data. It is not known if software

coherence schemes can effectively use multiple word
blocks. It is also not known if multiple word blocks are
desirable with hardware coherence schemes in large mul-
tiprocessors. If hardware schemes are shown to exploit
significantly more spatial locality than the software
schemes, our results no longer hold.

7. Conclusions

We have used analytical MVA models to compare
the performrmce of software and hardware coherence
schemes for a wide class of programs. Previous studies

306

have yielded seemingly conflicting results about whether
software schemes can perform comparably to hardware
schemes. The conflict arises because the different studies
make varying assumptions about the behavior of parallel
programs.

We have characterized the workloads for which each
of the two approaches is superior. There are two principal
obstacles to such a study: (1) the sharing behavior of paral-
lel programs is not well understood, and (2) for a specific
workload, the relative performance of hardware and
software schemes depends on the amount of runtime infor-
mation that can be predicted at compile time. Our
approach has been to use a high level workload model in
which (1) shared data is classified into independent classes,
each of which can be characterized by very few (l-3)
parameters and studied in isolation, and (2) the relationship
between the compile time and runtime characteristics is
captured in a manner that can be related to the high level
program, independent of the specific coherence scheme.
The high level workload model is used to generate the
workload parameters of the MVA model for each of the
schemes, thereby allowing an equitable comparison of the
schemes.

Quantitative data and intuitive explanations of the
results were given in Section 5. The main conclusions of
our study (assuming the software and hardware schemes
exploit spatial locality equally) are as follows:

● Software schemes perform significantly less well (i.e.,
have at least 20% lower processor efficiency) than
hardware schemes only ifi (1) cons< 0.85, i.e., the hit
ratio to actively -sh~ed data is reduced by more than
1590 because of conservative estimates of when two
memory accesses conflict, or (2) less than half the
potential writes are executed, on the average.

● Software schemes are comparable to hardware
schemes (within 107o in terms of processor efficiency)
if cons 20.9 and if more than half the potential writes
in the program are executed.

● Software schemes are more efficient than hardware
schemes, up to 2070 better in some cases, if cons 2
0.95 and if most of the potential writes are executed.

Several important programs may fall under the
category for which software coherence is significantly less
efficient than hardware coherence. For example, detecting
memory conflicts at compile-time for programs that make
heavy use of pointers, such as operating systems and Lisp
programs, could be difficult, i.e. cons would be low. On
the other hand, for well structured deterministic programs,
our results show that software schemes are comparable and
in some cases better than hardware schemes. Many
scientific programs fall under this class. Our study
motivates the need for more work on characterizing paral-
lel program workloads, and the relationship between com-
pile time and rtmtime parameters of parallel programs.
Once such a characterization has been made, our model

and its results can be used more effectively,

References

[AAH91]

[ASH88]

[ArB86]

[BMW85]

[ChV88]

[Che90]

[CKM88]

[EgK88]

[EgK89]

KEW85]

KDL86]

MeSar]

MiB90a]

[MiB90b]

S. V. ADVE, V. S. ADVE, M. D. HtLL and M. K.
VERNON, Comparison of Hardware and Software
Cache Coherence Schemes, Computer Sciences
Technical Report #l 012, University of Wisconsin-
Madison, March 1991.

A. AGARWAL R. SIMONI, M. HOROWTZ and J.
HENNESSY,An Evacuation of Directory Schemes for
Cache Coherence, Proc. 15th Annual Intl. Symp. on
Computer Architecture, Honolulu, Hawaii, June
1988,280-289.

J. ARCHIBALD and J. BAER, Cache Coherence
Protocols: Evaluation Using a Multiprocessor
Simulation Model, ACM Trans. on Computer Systems
4,4 (November 1986), 273-298.

W. C. BRANTLEY,K. P. MCAULIFFE and J. WEISS,
RP3 Process-Memory Element, Intl. Conf. on
Parallel Processing, August 1985,772-781.

J. CHEONG and A. V. VEIDENBAUM, A Cache
Coherence Scheme With Fast Selective l[nvalidation,
Proc. of the 15th Annual Intl. Symp. on Computer
Architecture 16,2 (June 1988), 299-307.

H. CHEONG, Compiler-Directed Cache Coherence
Strategies for Lwge-Scale Shared-Memory
Multiprocessor Systems, Ph.D. Thesis, Dept. of
Electrical Engineering, University of Illinois,
Urbana-Champaign, 1990.

R. CrrRoN, S. KARLOVSKY and K. P. MCAULImE,
Automatic Management of Rogrammable Caches,
Proc. 1988 Intl, Conf. on Parallel Processing,
University Park PA, August 1988, II-229-238.

S. J. EGGERSand R. H. KATZ A Characterization of
Sharing in Parallel Programs and its Application to
Coherency Protocol Evaluation, Proc. 15th Annual
Intl. Conf. on Computer Architecture, Honolulu, HA,
May 1988.

S. J. EGGERSand R. H. KATZ, The Effect of Sharing
on the Cache and Bus Performance of Parallel
Programs, Proc. 3rd Intl. Con$ on ,4rchitcctural
Support for Programming Languages and Operating
Systems, Boston, April 1989.

R. H. KATL S. J. EGGERS,D. A. WOOD, C. L.
PERKtNSand R. G. SHELDON,Implementing a Cache
Consistency Protocol, Proc. 12th Annual Intl. Symp.
on Computer Architecture, Boston, June 1985, 276-
283.

D. J. KUCK, E. S. DAVIDSON,D. H. LAWIUE and A. H.
SAMEH, ParatIel Supercomputing Tociay and the
Cedar Approach, Science 231(28 February 1986),

J. M. MELLOR-CRUMMEY and M. L. SCOTT,
Algorithms for Scalable Synchronization on Sharcd-
Memory Multiprocessors, ACM Transactions on

Computer Systems, to appear.

S. L. MtN and J. BAER, Design and Analysis of a
Scalable Cache Coherence Scheme Based on Clocks
and Timestarnps, Submitted for Publication, 1990.

S. L. MN and J. BAER, A Performance Comparison
of Directory-based and Timestamp-bssed Cache
Coherence Schemes, Proc. Intl. Con& on Parallel
Processing, 1990,1305-1311.

307

[OWA89]

[VLZ88]

[WeG89]

[WiE90]

S. Owma and A. AGARWAL Evaluating the
Performance of Software Cache Coherency, Proc.
3rd Intl. ConJ on Architectural Support for
Programming Languages and Operating Systems,
Boston, April 1989.

M. K. VERNON, E. D. LAZOWSRAand J. ZAHORJAN,
An Accurate and Efficient Performance Analysis
Technique for Multiprocessor Snooping Cache-
Consistency Protowls, Proc. 15th Annual Intl. Symp.
on Computer Architecture, June 1988.

W. WEBER and A. G~A, Analysis of Cache
Invalidation Patterns in Multiprocessors, Proc. 3rd
Intl. Con& on Architectural Support for Programming
Languages and Operating Systems, April 1989.

D. L. WILLICK and D. L. EAGER, An Anatytic Model
of Multistage Interconnection Networks, Proc. ACM
SIGk%TRICS Conf. on Measurement and Modeling

of Computer Systems 18, 1 (May 1990), 192-202.

Appendix A

The method used to derive the low-level workload

parameters from the high-level workload model is
described here. For each low-level workload parameter, we
describe the contribution to that parameter by each high-
level actively-shared data class in a table. The entries in the
table, when weighted by the probabilitie~ of accessing
shared data of that particular class, give the total
contribution to that parameter by that class.

All private and passively-shared misses are included
in p, for the software scheme and in pr I$h for the hardware

scheme. Let T (param, c) denote the table entry in row
param and column c. Then the equations used to derive
the parameters for the software scheme are:

P, = (l–f&ta) ~ins + fdaf. wpf+fPs) ~wf&ps

[

f&J1-fpJ
+1–consx 1–

[Ocm
1

x ~ LTOJ,,C) ,
C. {RW,MRaMIG]

and for y e {w, inv,post},

[

f&ka(l-fpf)
pY=l-consx l–

10C,W
x Z X T(P.>c)

ce {RW.MR,.MIG} 1

Similarly, for the hardware scheme:

P, 1.Ij = (l–f~ra) ~iru + f~b ($pvl+fPS) ~pvt&ps

hzo-fp,)+
Iochw

x z fc T(prlsh>c) ,
. . {RW,MR,MIG}

and fory~{w Ish, r lmod,w ImodJ,

~, = hf. (l-&v,)

lochw
x Z f. T(P.,c)

., {RW,MR, MIG)

The table entries for the software scheme are given in
Table Al, while those for the hardware schemes without
and with RFO are given in Tables A2 and A3 respectively.

Table Al. Contribution of actively-shared
data classes to software model.

Pa

Param

Pr

P.

Pinv

PpOst

imeters of

Contrik
MR

1— wIMR

IMR

o

l–fw [MR

l~R

f. lMR

oftware MI
Ition of data

RW

1— wIRW
1RW

o

l–fw IRW

1RW

f. [RW

iel
:Iass

A41G

1

l&.[G

o

1
~

1

T---MIG

TabIe A2. Contribution of actively-shared data classes to
hardware model without RFO.

Pa

Param

Pr Ish

P.(*

Prl*

Pwlmcd

Pindinv.

niflv

~meters of Hardware Model (no RFO)

Contribution of data class

lvfR

(nMR–l)fw [MR

fw I hfR

f. I MR

o

0

0

RW

(n~wF_l)fw\,Qw

f. IRW

f. [RW

o

f. IRw

fwlRW(nRW-l)

Pind.inv.

MIG

o

1
1M[G

1
1MIG

o

1

[h,f,Gpw 1.h

1

lMIG Pind,inv.

Table A3. Contribution of activelv-shared data classes
to hardware model w;th RFO.

Parameters of Hardware Model (with RFO)

Param I Contribution of data class
D TV I fi,frr7A4R It Vv I lVUu

Pr I sh (n&fR-l)fw IMR o 0

PWISA fw 1MR o 0

f. /MR l–fw IRW
1

Prim’n’
lM~G

Pwlmod o 0 0

Pind.inv. o 0 0

ninv o 0 0

308

