
A Literature Survey of the Quality Economics of
Defect-Detection Techniques

Stefan Wagner
Institut für Informatik

Technische Universität München
Boltzmannstr. 3, D-85748 Garching b. München, Germany

wagnerst@in.tum.de

ABSTRACT
Over the last decades, a considerable amount of empiri-
cal knowledge about the efficiency of defect-detection tech-
niques has been accumulated. Also a few surveys have sum-
marised those studies with different focuses, usually for a
specific type of technique. This work reviews the results of
empirical studies and associates them with a model of soft-
ware quality economics. This allows a better comparison of
the different techniques and supports the application of the
model in practice as several parameters can be approximated
with typical average values. The main contributions are the
provision of average values of several interesting quantities
w.r.t. defect detection and the identification of areas that
need further research because of the limited knowledge avail-
able.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics; D.2.5 [Software
Engineering]: Testing and Debugging

General Terms
Economics, Verification, Reliability

Keywords
Software quality economics, quality cost, cost/benefit, defect-
detection techniques, literature survey

1. INTRODUCTION
The economics of software quality assurance (SQA) are

a highly relevant topic in practice. Many estimates assign
about half of the total development costs of software to SQA
of which defect-detection techniques, i.e., analytical SQA,
constitute the major part. Moreover, an understanding of
the economics is essential for project management to an-
swer the question how much quality assurance is enough.
For example, Rai, Song, and Troutt [19] state that a better

c©ACM. This is the author’s version of the work. It is posted
here for your personal use. Not for redistribution. The defini-
tive Version of Record was published in Proceedings of the 2006
ACM/IEEE International Symposium on Empirical Software Engineering,
http://dx.doi.org/10.1145/1159733.1159763.

understanding of the costs and benefits should be useful to
decision-makers.

However, the relationships regarding those costs and ben-
efits are often complicated and the data is difficult to obtain.
Ntafos discusses in [18] that cost is a central factor but “it is
hard to measure, data are not easy to obtain, and little has
been done to deal with it”. Nevertheless, there is a consider-
able amount of empirical studies regarding defect-detection
techniques. The effectiveness and efficiency of testing and
inspections has been investigated intensively over the last
decades. Yet, we are not aware of a literature survey that
summarises this empirical knowledge with respect to an eco-
nomics model.

1.1 Problem
The main practical problem is how we can optimally use

defect-detection techniques to improve the quality of soft-
ware. Hence, the two main issues are (1) in which order and
(2) with what effort the techniques should be used. This pa-
per concentrates on the subproblem that the collection of all
relevant data for a well-founded answer to these questions is
not always possible.

1.2 Contribution
We review and summarise the empirical studies on various

aspects of defect-detection techniques and software defects
in general. The results of those studies are assigned to the
different input factors of an economics model of analytical
SQA. In particular, mean and median values of the input
factors are derived to allow an easier application of the model
in practice when not all factors are collectable. Furthermore,
the found distributions can be used in further analyses of the
model. Finally, the review reveals several areas that need
further empirical research.

2. SOFTWARE QUALITY ECONOMICS
In this section, we introduce the general concept of quality

costs for software. Based on that, we describe an analytical,
stochastic model of the costs and benefits – the economics
– of analytical SQA and finally possibilities of its practical
application.

2.1 Software Quality Costs
Quality costs are the costs associated with preventing,

finding, and correcting defective work. Based on experience
from the manufacturing area quality cost models have been
developed explicitly for software. These costs are divided
into conformance and nonconformance costs. The former

ar
X

iv
:1

61
2.

04
59

0v
1

 [
cs

.S
E

]
 1

4
D

ec
 2

01
6

comprises all costs that need to be spent to build the soft-
ware in a way that it conforms to its quality requirements.
This can be further broken down to prevention and appraisal
costs. Prevention costs are for example developer training,
tool costs, or quality audits, i. e. costs for means to prevent
the injection of faults. The appraisal costs are caused by the
usage of various types of tests and reviews.

The nonconformance costs come into play when the soft-
ware does not conform to the quality requirements. These
costs are divided into internal failure costs and external fail-
ure costs. The former contains costs caused by failures that
occur during development, the latter describes costs that
result from failures at the client. A graphical overview is
given in Fig. 1. Because of the distinction between preven-
tion, appraisal, and failure costs this is often called PAF
model.

cost of quality

appraisal costsprevention costs external failure

nonconformanceconformance

internal failure

executionsetup fault removal effect

Figure 1: Overview over the costs related to quality

We add further detail to the PAF model by introduc-
ing the main types of concrete costs that are important for
defect-detection techniques. Note that there are more types
that could be included, for example, maintenance costs. How-
ever, we concentrate on a more reliability-oriented view. The
appraisal costs are detailed to the setup and execution costs.
The former constituting all initial costs for buying test tools,
configuring the test environment, and so on. The latter
means all the costs that are connected to actual test exe-
cutions or review meetings, mainly personnel costs.

On the nonconformance side, we have fault removal costs
that can be attributed to the internal failure costs as well as
the external failure costs. The reason is that the removal of
a detected defect always results in costs no matter whether
it caused an internal or external failure.

External failures also cause effect costs. These are all
further costs with the failure apart from the removal costs.
For example, compensation costs could be part of the effect
costs, if the failure caused some kind of damage at the cus-
tomer site. We might also include further costs such as loss
of sales because of bad reputation in the effect costs but do
not consider it explicitly because it is out of scope of this
paper.

2.2 An Analytical Model
We give a short overview of an analytical model of defect-

detection techniques and refer to [23] for details. The model
relates the discussed cost factors and other technical factors
with the aim to analyse the economics of defect-detection
techniques. In particular, it can be used to plan the quality
assurance in a development project. Later we use the model
as a basis for reviewing the empirical literature and hence
describe only briefly the assumptions and equations.

2.2.1 General
We first describe an ideal model of quality economics in

the sense that we do not consider the practical use of the
model but want to mirror the actual relationships as faith-
fully as possible. We later simplify it for practical usages.
The model is stochastic in the sense that it is based on ex-
pected values as basis for decision making.

We divide the model in three main components:

• Direct costs dA

• Future costs oA

• Revenues / saved costs rA

The direct costs are characterised by containing only costs
that can be directly measured during the application of the
technique. The future costs and revenues are both concerned
with the (potential) costs in the field but can be distin-
guished because the future costs contain the costs that are
really incurred whereas the revenues are comprised of saved
costs.

We adapt the general notion of the difficulty of an applica-
tion of technique A to find a specific fault i from [15] denoted
by θA(i) as a basic quantity for our model. In essence, it is
the probability that A does not detect i. In the original
definition this is independent of time or effort but describes
a “single application”. We extend this using the length of
the technique application tA. With length we do not mean
calendar time but effort measured in staff-days, for example,
that was spent for this technique application. Hence, the re-
fined difficulty function is defined as θA(i, tA) denoting the
difficulty of A detecting i when applied with effort tA.

Using this additional dimension we can also analyse dif-
ferent functional forms of the difficulty functions depending
on the spent effort. This is similar to the informal curves
shown by Boehm [3] describing the effectiveness of different
defect-detection techniques depending on the spent costs.
Actually, the equations given for the model above already
contain that extended difficulty functions but they are not
further elaborated. In [23] we considered several possible
forms of the difficulty functions such as exponential or lin-
ear.

We also assume that in the difficulty functions the concept
of defect classes is handled. A defect class is a group of de-
fects based on the document type it is contained in. Hence,
we have for each defect also its document class c, e.g., re-
quirements defects or code defects. This has especially an
effect considering that some techniques cannot be applied
to all types of documents, e.g., functional testing cannot re-
veal a defect in a design document directly. It may however
detect its successor in code.

This leads us to the further aspect that the defects oc-
curring during development are not independent. There are
various dependencies that could be considered but most im-
portantly there is dependency in terms of propagation. De-
fects from earlier phases propagate to later phases and over
process steps. We actually do not consider the phases to
be the important factor here but the document types. In
every development process there are different types of doc-
uments, or artifacts, that are created. Usually, those are
requirements documents, design documents, code, and test
specifications. Then one defect in one of these documents
can lead to none, one, or more defects in later derived doc-
uments.

2.2.2 Components
We give an equation for each of the three components with

respect to single defect-detection techniques first and later
for a combination of techniques. Note that the main basis
of the model are expected values, i.e., we combine cost data
with probabilities.

The direct costs are those costs that can be directly mea-
sured from the application of a defect-detection technique.
They are dependent on the length t of the application.

From this we can derive the following definition for the
direct costs dA:

dA = uA + eA(t) +
∑
i

(1 − θA(i, t))vA(i), (1)

where uA are the setup costs, eA(t) the execution costs, and
vA(i) the fault removal costs specific to that technique.

If some defects are not found, these will result in costs in
the future denoted by oA. We divide these costs into the two
parts fault removal costs in the field vF (i) and failure effect
costs fF (i). The latter contain all support and compensation
costs as well as annoyed customers as far as possible.

oA =
∑
i

πiθA(i, t)(vF (i) + fF (i)), (2)

where πi = P (fault i is activated by randomly selected in-
put and is detected and fixed) [15]. Hence, it describes the
probability that the defect leads to a failure in the field.

It is necessary to consider not only costs with defect-de-
tection techniques but also revenues. These revenues are
essentially saved future costs. With each fault that we find
in-house we avoid higher costs in the future. Therefore, we
have the same cost categories but look at the faults that we
find instead of the ones we are not able to detect. We denote
the revenues with rA.

rA =
∑
i

πi(1 − θA(i, t))(vF (i) + fF (i)) (3)

Because the revenues are saved future costs this equation
looks similar to Eq. 2. The difference is only that we con-
sider the faults that have not been found and hence use the
probability of the negated difficulty, i.e., 1 − θA(i, t).

Typically, more than one technique is used to find defects.
The intuition behind that is that they find (partly) differ-
ent defects. These dependencies are often ignored when the
efficiency of defect-detection techniques is analysed. Nev-
ertheless, they have a huge influence on the economics and
efficiency. In our model this is expressed using the different
difficulty functions for specific faults and techniques.

For the direct costs it means that we sum over all different
applications of defect-detection techniques. We define that
X is the ordered set of the applied defect-detection tech-
niques. In each application we use Eq. 1 with the extension
that we not only take the probability that the technique
finds the fault into account but also that the ones before
have not detected it. Here also the defect propagation needs
to be considered, i.e., that not only the defect itself has not
been detected but also its predecessors Ri.

For the sake of readability we introduce the abbreviation
Θ(x,Ri) for the probability that a fault and its predecessors
have not been found by previous – before x – applications

of defect-detection techniques.

Θ(x,Ri) =
∏
y<x

[
θy(i, ty)

∏
j∈Ri

θy(j, ty)

]
, (4)

hence, for each technique y that is applied before x we mul-
tiply the difficulty for the fault i and all its predecessors as
described in the set Ri. The combined direct costs dX of
a sequence of defect-detection technique applications X is
then defined as follows:

dX =
∑
x∈X

[
ux + ex(tx)+

∑
i

(
(1 − θx(i, tx))Θ(x,Ri)

)
vx(i)

]
(5)

The equation for the revenues rX of several technique ap-
plications X uses again a sum over all technique applica-
tions. In this case we look at the faults that occur, that are
detected by a technique and neither itself nor its predeces-
sors have been detected by the earlier applied techniques.

rX =
∑
x∈X

∑
i

[(
πi(1 − θx(i, tx))Θ(x,Ri)

)(
vF (i) + fF (i)

)]
(6)

The total future costs are simply the costs of each fault
with the probability that it occurs and all techniques failed
in detecting it and its predecessors. In this case, the ab-
breviation Θ(x,Ri) for accounting of the effects of previous
technique applications cannot be directly used because the
outermost sum is over all the faults and hence the probability
that a previous technique detected the fault is not relevant.
The abbreviation Θ′(x,Ri) that describes only the product
of the difficulties of detecting the predecessors of i is hinted
in the following equation for the future cost oX of several
technique applications X.

oX =
∑
i

[
πi

∏
x∈X

θx(i, tx)
∏
y<x

∏
j∈Ri

θy(j, ty)

︸ ︷︷ ︸
Θ′(x,Ri)

(vF (i) + fF (i))

]

(7)

2.2.3 ROI
One interesting metric based on these values is the return

on investment (ROI) of the defect-detection techniques. The
ROI – also called rate of return – is commonly defined as
the gain divided by the used capital. Boehm et al. [4] use
the equation (Benefits−Costs)/Costs. To calculate the total
ROI with our model we have to use Eqns. 5, 7, and 6.

ROI =
rX − dX − oX
dX + oX

(8)

This metric can be used for two purposes: (1) an up-front
evaluation of the quality assurance plan as the expected ROI
of performing it and (2) a single post-evaluation of the qual-
ity assurance of a project. In the second case we can sub-
stitute the initial estimates with actually measured values.
However, not all of the factors can be directly measured.
Hence, also the post evaluation metric can be seen as an
estimated ROI.

2.3 Practical Model
The ideal model can be used for theoretical analyses but is

too detailed for a practical application. Hence, a simplified

version of this model is available that can be used to plan
the quality assurance of a development project using histor-
ical project data. Details can be found in [23]. We only
describe the additional assumptions and simplifications in
the following.

For the simplification of the model, we use the following
additional assumptions:

• Faults can be categorised in useful defect types.

• Defect types have specific distributions regarding their
detection difficulty, removal costs, and failure proba-
bility.

• The linear functional form of the difficulty approxi-
mates all other functional forms sufficiently.

We define τi to be the defect type of fault i. It is deter-
mined using the defect type distribution of older projects.
In this way we do not have to look at individual faults but
analyse and measure defect types for which the determina-
tion of the quantities is significantly easier.

In the practical model we assumed that the defects can be
grouped in“useful”classes or defect types. For reformulating
the equation it was sufficient to consider the affiliation of a
defect to a type but for using the model in practice we need
to further elaborate on the nature of defect types and how
to measure them.

We also lose the concept of defect propagation as it was
shown not to have a high priority in the analyses above but
it introduces significant complexity to the model. Hence,
the practical model can be simplified notably.

3. EMPIRICAL KNOWLEDGE
We review and summarise the empirical knowledge avail-

able for the quality economics of defect-detection techniques
introducing the approach in general and then describing the
relevant studies and results for each of the model factors for
different types of techniques and defects in general. We can
only give summaries here and refer to [22] for details.

3.1 General
The field of quality assurance and defect-detection tech-

niques in particular has been subject to a number of empiri-
cal studies over the last decades. These studies were used to
assess specific techniques or to validate certain laws and the-
ories about defect-detection. Our focus lies on the economic
relationships in the following.

3.1.1 Approach
This survey aims at reviewing and summarising the exist-

ing empirical work that can be used to approximate the in-
put parameters of the economics model proposed in Sec. 2.2.
For this we take all officially published sources into account,
i.e. books, journal articles, and papers in workshop and con-
ference proceedings. In total we reviewed 68 papers mainly
following references from existing surveys and complement-
ing those with newer publications. However, note that we
only included studies with data relevant for the economics
model. In particular, studies only with a comparison of tech-
niques without detailed data for each were not taken into
account.

In the literature review in the following sections, we struc-
ture the available work in three parts for dynamic testing,

review and inspection, and static analysis tools. We give a
short characterisation for each category and describe briefly
the available results for each relevant model input factor.
We prefer to use and cite detailed results of single applica-
tions of techniques but also take mean values into account if
necessary. We also summarise the combination of the results
in terms of the lowest, highest, mean, and median value for
each input factor.

We deliberately refrain from assigning weights to the vari-
ous values we combine although some of them are from single
experiments while others represent average values. The rea-
son is that we often lack knowledge on the sample size used
and either we would estimate it or ignore the whole study
result. An estimate of the sample size would introduce addi-
tional blurring into the data and omitting data considering
the limited amount of data available is not advisable. Hence,
we assume each data set of having equal weight.

3.1.2 Difficulty
The difficulty function θ is hard to determine because it

is complex to analyse the difficulty of finding each potential
fault with different defect-detection techniques. Hence, we
need to use the available empirical studies to get reasonable
estimates. Firstly, we can use the numerous results for the
effectiveness of different test techniques. The effectiveness
is the ratio of found defects to total defects and hence in
some sense the counterpart to the difficulty function. In the
paper of Littlewood et al. [15], where the idea of the difficulty
function originated, effectiveness is actually defined as

1 − Ep∗(θA(i)), (9)

where Ep∗ denotes a mean obtained with respect to the
probability distribution p∗, i.e. the probability distribution
of the presence of faults.

As a first, simple approximation we then define the fol-
lowing for the difficulty functions.

θA = 1 − effectiveness (10)

The problem is that this is really a coarse-grained approx-
imation that does not reflect the diversity of defect detection
of different techniques. Hence, we also need to analyse stud-
ies that use different defect types in the sense of the practical
model from Sec. 2.3.

3.2 Dynamic Testing
The first category of defect-detection techniques we look

at is also the most important one in terms of practical usage.
Dynamic testing is a technique that executes software with
the aim to find failures.

3.2.1 Classification
There are various possibilities to classify different test

techniques. One can identify at least two dimensions to
structure the techniques. (1) The granularity of the test ob-
ject and (2) the test case derivation technique. Fig. 2 shows
these two dimensions and contains some concrete examples
and how they can be placed according to these dimensions.

The types of test case derivation can be divided on the top
level into (1) functional and (2) structural test techniques.
The first only uses the specification to design tests, whereas
the latter relies on the source code and the specification. In
functional testing generally techniques such as equivalence

systemintegrationunit/module

structural

functional

Granularity

Type

control−flow

data−flow

mutation

equivalence partitioning

boundary value analysis

stress

model−based

Figure 2: The two basic dimensions of test tech-
niques

partitioning and boundary value analysis are used. Struc-
tural testing is often divided into control-flow and data-flow
techniques. For the control-flow coverage metrics such as
statement coverage or condition coverage are in use. The
data-flow metrics measure the number and types of uses of
variables.

On the granularity dimension we normally see the phases
unit, module or component test, integration test, and sys-
tem test. In unit tests only basic components of the system
are tested using stubs to simulate the environment. During
integration tests the components are combined and their in-
teraction is analysed. Finally, in system testing the whole
system is tested, often with some similarity to the later op-
erational profile. This also corresponds to the development
phases. Hence, the granularity dimension can also be seen
as phase dimension.

3.2.2 Setup and Execution Costs
We look at the setup and execution costs in more detail

in the following. For both cost types the empirical data is
limited. However, this is not a great problem because this
data can be easily collected in a software company during
projects.

The setup costs are mainly the staff-hours needed for un-
derstanding the specification in general and setting up the
test environment. For this we can use data from [12]. There
the typical setup effort is given in relation to the size of the
software measured in function points (fp). Unit tests need
0.50 h/fp, function tests 0.75 h/fp, system test 1.00 h/fp,
and field tests 0.50 h/fp. We have no data for typical costs
of tools and hardware but this can usually be found in ac-
counting departments when using the economics model in
practice.

In the case of execution costs its even easier than for setup
costs as apart from the personnel costs all other costs can be
neglected. One could include costs such as energy consump-
tion but they are extremely small compared to the costs for
the testers. Hence, we can reduce this to the typical, average
costs for the staff. However, we also have average values per
function point from [12]. There the average effort for unit
tests is 0.25 h/fp, for function tests, system tests, and field
tests 0.50 h/fp.

3.2.3 Difficulty
As discussed in Sec. 3.1.2, there are nearly no studies that

present direct results for the difficulty function of defect-de-
tection techniques. Hence, we analyse the effectiveness and
efficiency results first. Those are dependent on the test case
derivation technique used.

In the following we summarise a series of studies that have
been published regarding the effectiveness of testing in gen-
eral and specific testing techniques.

A summary of the found effectiveness of functional and
structural test techniques can be found in Tab. 1. We can
observe that the mean and median values are all quite close
which suggests that there are no strong outliers. However,
the range in general is rather large, especially when consid-
ering all test techniques. When comparing functional and
structural testing, there is no significant difference visible.

Table 1: Summary of the effectiveness of test tech-
niques (in percentages)

Type Lowest Mean Median Highest
Functional 33 53.26 48.85 88
Structural 17 54.78 56.85 89
All 7.2 49.85 47 89

The effectiveness gives a good first approximation of θ.
The efficiency measures the number of detected defects per
effort unit (staff-hours, for example). It cannot be used di-
rectly in the economics model but is also summarised as it
is an important metric itself.

The found efficiencies of functional and structural test
techniques are summarised in Tab. 2. We assume that one
staff-hour consists of 60 staff-minutes. The results show that
the data is quite homogenous because the means and medi-
ans are all equal or nearly equal and the ranges are rather
small. Especially for functional testing it is only slightly
above 1 defect/hour difference between the lowest and the
highest value.

Table 2: Summary of the efficiency of test techniques
(in defects per staff-hour)

Type Lowest Mean Median Highest
Functional 1.22 1.72 1.71 2.47
Structural 0.22 1.5 2.07 2.2
All 0.04 1.26 1.5 2.47

The first approximation of the difficulty functions is given
in Tab. 3. We used the results of the effectiveness summary
above. Hence, the observations are accordingly.

Table 3: First approximation of the difficulty func-
tions for testing

Type Lowest Mean Median Highest
Functional 12 46.74 51.15 67
Structural 11 45.22 43.15 83
All 11 50.15 53 92.8

Finally, for a real application to our economics model we
need to differentiate between different fault types. Basili and
Selby analysed the effectiveness of functional and structural
testing regarding different defect types in [2]. Tab. 4 shows
the derived difficulties using the first approximation.

Table 4: Difficulties of functional and structural
testing for detecting different defect types

Functional Structural Overall
Testing Testing

Initial. 25.0 53.8 38.5
Control 33.3 51.2 47.2
Data 71.7 73.2 74.7
Computat. 35.8 41.2 75.4
Interface 69.3 75.4 66.9
Cosmetic 91.7 92.3 89.2

It is obvious that there are differences of the two tech-
niques for some defect types, in particular initialisation and
control defects. As we are only aware of this single study it
is difficult to generalise the results.

3.2.4 Removal Costs
The removal costs are dependent on the second dimension

of testing (cf. Sec. 3.2.1): the phase in which it is used. This
is in general a very common observation in defect removal
that it is significantly more expensive to fix defects in later
phases than in earlier ones. Specific for testing, in compar-
ison with static techniques, is that defect removal not only
involves the act of changing the code but before that of lo-
calising the fault in the code. This is simply a result of the
fact that testing always observes failures for which the caus-
ing fault is not necessarily obvious. We cite the results of
several studies regarding those costs in the following.

Some statistics of the data above on the removal costs are
summarised in Tab. 5. We assume a staff-day to consist of
6 staff-hours and combined the functional and system test
phases into the one phase “system test”. The removal costs
(or efforts) of the three phases can be given with reasonable
results. A combination of all values for a general averages
does not make sense as we get a huge range and a large dif-
ference between mean and median. This suggests a real dif-
ference in the removal costs over the different phases which
is expected from standard software engineering literature.

Table 5: Summary of the removal costs of test tech-
niques (in staff-hours per defect)

Type Lowest Mean Median Highest
Unit 1.5 3.46 2.5 6
Integration 3.06 5.42 4.55 9.5
System 2.82 8.37 6.2 20
All 0.2 8 4.95 52

3.3 Review and Inspection
The second category of defect-detection techniques un-

der consideration are reviews and inspections, i.e. document
reading with the aim to improve them.

3.3.1 Classification
We use the term inspection here in a broad sense for all

kinds of document reading with the aim of defect-detection.
In most cases review is used interchangeably. We can then

identify differences mainly in the technical dimension, e.g.,
in the process of the inspections, for example whether ex-
plicit preparation is required. Other differences lie in the
used reading techniques, e.g. checklists, in the required roles,
or in the products that are inspected.

A prominent example is the formal or Fagan inspection
that has a well-defined process with a separate preparation
and meeting and defined roles. Another often used technique
is the walkthrough. In this technique the moderator guides
through the code but no preparation is required.

3.3.2 Setup and Execution Costs
The first question is whether reviews and inspections do

have setup costs. We considered those costs to be fixed
and independent of the time that the defect-detection tech-
nique is applied. In inspections we typically have a prepara-
tion and a meeting phase but both can be varied in length
to detect more defects. Hence, they cannot be part of the
setup costs. However, we have also an effort for the plan-
ning and the kick-off that is rather fixed. We consider those
as the setup costs of inspections. One could also include
costs for printing the documents but these costs can be ne-
glected. Grady and van Slack describe in [9] the experience
of Hewlett-Packard with inspections. They give typical time
effort for the different inspection phases, for planning 2 staff-
hours and for the kick-off 0.5 staff-hours.

The execution costs are for inspections and reviews only
the personnel costs as long as there is no supporting software
used. Hence, the execution costs are dependent on the factor
t in our model. Nevertheless, there are some typical values
for the execution costs of inspections.

We can derive some LOC-based statistics We assume for
the sake of simplicity that all used varieties of the LOC
metric are approximately equal. The results are summarised
in Tab. 6. The mean and median values are all close. Only in
code inspection meetings, there is a difference which can be
explained by the small sample size. Note also that there is
a significant difference between code and design inspections
as the latter needs on average only half the execution costs.
This might be explained by the fact that design documents
are generally more abstract than code and hence easier to
comprehend.

Table 6: Summary of the execution costs of inspec-
tion techniques (in staff-hours per KLOC)

Design Lowest Mean Median Highest
Preparation 3.6 4.68 4.68 5.76
Meeting 3.6 4.07 4.07 4.54
All 7.2 8.75 8.75 10.3
Code Lowest Mean Median Highest
Preparation 4.91 6.49 6.67 7.9
Meeting 3.32 7.02 4.4 13.33
All 6.67 13.2 11.15 22

Moreover, note that many authors give guidelines for the
optimal inspection rate, i.e. how fast the inspectors read the
documents. This seems to have an significant impact on the
efficiency of the inspection. For example, in [8] the optimal
bandwidth of the inspection rate is 1 ± 0.8 pages per hour
where one page contains 300 words. As other authors give

similar figures, we can summarise this easily with saying
that the optimal inspection rate lies about one page per
hour. However, the effect of deviation from this optimum
is not well understood. This, however, would increase the
precision of models such as the one presented in Sec. 2.2.

3.3.3 Difficulty
Similar to the test techniques we start with analysing the

effectiveness of inspections and reviews that is later used in
the approximation of the difficulty.

We also summarise these results using the lowest, highest,
mean, and median value in Tab. 7. We observe a quite stable
mean value that is close to the median with about 30%.
However, the range of values is huge. This suggests that an
inspection is dependent on other factors to be effective.

Table 7: Summary of the effectiveness of inspection
techniques (in percentage)

Lowest Mean Median Highest
8.5 34.14 30 92.7

The efficiency relates the effectiveness with the spent ef-
fort. Again, this is not directly usable in the analytical
model but nevertheless can give further insights into the
relationships of factors.

The statistics for the efficiency of reviews and inspec-
tions can be found in Tab. 8. We do not distinguish dif-
ferent processes and reading techniques here because then
we would not have enough information on these in most
studies. The mean and median are close, therefore the data
set is reasonable. We also observe a large range from 0.16
to 6 defects/staff-hour.

Table 8: Summary of the efficiency of inspection
techniques (in defects per staff-hour)

Lowest Mean Median Highest
0.16 1.87 1.18 6

Using the first, simple approximation, we can derive statis-
tics for the difficulty of inspections in reviews in Tab. 9.

Table 9: Average difficulty of inspections (in per-
centages)

Lowest Mean Median Highest
7.3 65.86 70 91.5

Analogous to the test techniques, we only have one study
about effectiveness and defect types [2]. The derived diffi-
culty functions are given in Tab. 10. Also for inspections
large differences between the defect types are visible but a
single study does not guarantee generalisability.

3.3.4 Removal Costs
The summary of the the removal costs can be found in

Tab. 11. For the design reviews a strong difference between

Table 10: Difficulty of inspections to find different
defect types

Initial. 35.4
Control 57.2
Data 79.3
Computat. 29.1
Interface 53.3
Cosmetic 83.3

the mean and median can be observed. However, in this
case this is not because of outliers in the data but because
of the small sample size of only four data points.

Table 11: Summary of the removal costs of inspec-
tions (in staff-hours per defect)

Phase Lowest Mean Median Highest
Requirements 0.05 1.06 1.1 2
Design 0.07 2.31 0.83 6.3
Coding 0.17 2.71 1.95 6.3
All 0.05 1.91 1.2 7.5

3.4 Static Analysis Tools
The third and final category is tool-based analysis of soft-

ware code to automatise the detection of certain types of
defects.

3.4.1 Classification
The term static analysis tools denotes a huge field of soft-

ware tools that are able to find (potential) defects in soft-
ware code without executing it. Those analysis tools use
various techniques to identify critical code pieces. The most
common one is to define typical bug patterns that are de-
rived from experience and published common pitfalls in a
certain programming language. Furthermore, coding guide-
lines and standards can be checked to allow a better read-
ability. Also, more sophisticated analysis techniques based
on the dataflow and controlflow are used. Finally, additional
annotations in the code are introduced by some tools [7] to
allow an extended static checking and a combination with
model checking.

The results of such a tool are, however, not always real
defects but can be seen as a warning that a piece of code
is critical in some way. Hence, the analysis with respect
to true and false positives is essential in the usage of bug
finding tools.

There are only few studies about static analysis tools and
hence we can only present limited empirical knowledge.

3.4.2 Setup and Execution Costs
There are no studies with data about the setup and ex-

ecution costs of using static analysis tools. Still, we try to
analyse those costs and their influence in the context of such
tools.

The setup costs are typically quite small consisting only
of (possible) tool costs — although there are several freely
available tools — and effort for the installation of the tools

to have it ready for analysis.
The execution costs are small in the first step because

we only need to select the source files to be checked and run
the automatic analysis. For tools that rely on additional an-
notations the execution costs are considerably higher. The
second step, to distinguish between true and false positives,
is much more labour intensive than the first step. This re-
quires possibly to read the code and analyse the interrela-
tionships in the code which essentially constitutes a reviews
of the code. Hence, the ratio of false positives is an im-
portant measure for the efficiency and execution costs of a
tool.

In [25] we found that the average ratio of false positives
over three tools for Java was 66% ranging from 31% up to
96%. In [11] a static analysis tools for C code is discussed.
The authors state that sophisticated analysis of, for exam-
ple, pointers leads to far less false positives than simple syn-
tactical checks.

3.4.3 Difficulty
Static analysis techniques are evaluated in [10]. Inter-

face consistency rules and anomaly analysis revealed 2 and 4
faults of 28, respectively. We also analysed the effectiveness
of three Java bug finding tools in [25]. After eliminating
the false positives, the tools were able to find 81% of the
known defects over several projects. However, the defects
had mainly a low severity. For the severest defects the ef-
fectiveness reduced to 22%, for the second severest defects
even to 20%. For lower severities the effectiveness lies be-
tween 70% – 88%.

3.5 Defects
In this section we look at the quantities that are inde-

pendent from a specific defect-detection technique and can
be associated to defects. We are interested in typical defect
type distributions, removal costs in the field, failure sever-
ities for the calculation of possible effect costs, and failure
probabilities of faults.

3.5.1 Defect Introduction
The general probability that a specific possible fault is in-

troduced into a specific program cannot be determined in
general without replicated experiments. However, we can
give some information when considering defect types. We
can determine the defect type distribution for certain appli-
cation types. Yet, there is only little data published. Sul-
livan and Chillarege described the defect type distribution
of the database systems DB2 and IMS in [21]. Most of the
defects were in assignment checking, data structures, and
algorithm. Interface and timing defects constitute only a
small share of the total number of defects.

Lutz and Mikulski used for defects in NASA software a
slightly different classification of defects in [16] but they also
have algorithms and assignments as types with a lot of occur-
rences. The most often defect type, however, is procedures
meaning missing procedures or wrong call of procedures.

In [20] types and severities of software defects are de-
scribed. We can observe that logical and data access defects
account for most of the serious defects. Furthermore, most
of the defects were defects in the specification.

As a summary, we can formulate that the defect types are
strongly domain- and problem-specific and general conclu-
sions are hard to make.

3.5.2 Removal Costs
In this section we analyse only the removal costs of defects

in the field as during development we consider the removal
costs to be dependent on the used defect-detection tech-
nique.

For the removal costs we have enough data to give reason-
ably some statistics in Tab. 12. Note that in this summary
the mean and median are extremely different. The mean is
more than twice the median. This indicates that there are
outliers in the data set that distort the mean value. Hence,
we look at a box plot of the data in Fig. 3.

Table 12: Summary of the removal costs of field de-
fects (in staff-hours per defect)

Lowest Mean Median Highest
3.9 57.42 27.6 250

 0 50 100 150 200 250

**o

Figure 3: Box plot of the removal costs of field de-
fects in staff-hours per defect

The box plot in Fig. 3 shows two strong outliers that we
can eliminate to get a more reasonable mean value. With
the reduced data set we get a mean value of 27.24 staff-hours
per defect and a median of 27 staff-hours per defect. Hence,
we have a more balanced data set with a mean value that
can be further used.

3.5.3 Effect Costs
The effect costs are probably the most difficult ones to

obtain. One reason is that these are highly domain-specific.
Another is that companies often do not publish such data as
it could influence their reputation negatively. There is also
one more inherent problem. It is often just not possible to
to assign such costs to a single software fault. The highly
complex configurations and the combination with hardware
and possibly mechanics of software make such an assignment
extremely difficult.

Yet, we cite two studies that published distribution of
severity levels of defects. We consider the severity as the
best available substitute of effect costs because more severe
defects are probably more costly in that sense. However,
this leaves us still with the need of a mapping of severity
levels with typical effect costs.

Jones [12] states that the typical severity levels (1: System
or program inoperable, 2: Major functions disabled or incor-
rect, 3: Minor functions disabled or incorrect, 4: Superficial
error) have the following distribution:

1. 10% or 3%

2. 40% or 15%

3. 30% or 60%

4. 20% or 22%

In [6] is reported that six error types accounted for nearly
80% of the highest severity defects. Nine error types ac-
counted for about 80% of the defects exposed by recovery
procedures or exception handlers. They used ODC for clas-
sification.

3.5.4 Failure Probability
The failure probability of a fault is also one of the most dif-

ficult parts to determine in the economics model. Although
there is the whole research field of software reliability engi-
neering, there are only few studies that show representative
distribution of such probabilities. The often cited paper
from Adams [1] is one of the few exceptions. He mainly
shows that the failure probabilities of the faults have an un-
derlying geometric progression. This observation was also
made in NASA studies reported in [17].

This relationship can also be supported by data from
Siemens when used in a reliability model [24]. The geometric
progression fitted reasonably on all analysed projects.

4. DISCUSSION
Some of the summaries allow a comparison over differ-

ent techniques. Most interestingly, the difficulty of finding
defects is different between tests and inspections with in-
spections having more difficulties. Tests tend on average
to a difficulty of 0.45 whereas inspections have about 0.65.
The static analysis tools are hard to compare because of the
limited data but seem to be better in total but much worse
considering severe defects.

The removal costs form a perfect series over the various
techniques. As expected, the requirements reviews only need
about 1 staff-hour of removal effort which rises over the other
reviews to the unit tests with about 3.5 staff-hours. Over the
testing phases we have again an increase to the system test
with about 8 staff-hours. The field defects are then more
than three times as expensive with 27 staff-hours. Hence,
we can support the typical assumption that it gets more and
more expensive to remove a defect over the development life-
cycle.

We are aware that this survey can be criticised in many
ways. One problem is clearly the combination of data from
various sources without taking into account all the addi-
tional information. However, the aim of this survey is not
to analyse specific techniques in detail and statistically test
hypotheses but to determine some average values, some rules
of thumb as approximations for the usage in an economics
model. Furthermore, for many studies we do not have enough
information for more sophisticated analyses.

Jones gives in [12] a rule of thumb: companies that have
testing departments staffed by trained specialists will av-
erage about 10 to 15 percent higher in cumulative testing
efficiency than companies which attempt testing by using
their ordinary programming staff. Normal unit testing by
programmers is seldom more than 25 percent efficient and
most other forms of testing are usually less than 30 percent

efficient when carried out by untrained generalists. A se-
ries of well-planned tests by a professionally staffed testing
group can exceed 35 percent per stage, and 80 percent in
overall cumulative testing efficiency. Hence, the staff expe-
rience can be seen as one of the influential factors on the
variations in our results.

5. RELATED WORK
The complete analytical model as described in this paper

was published in [23].
The available related work to the economics model can

generally classified in two categories: (1) theoretical models
of the effectiveness and efficiency of either test techniques
or inspections and (2) economic-oriented, abstract models
for quality assurance in general. The first type of models is
able to incorporate interesting technical details but are typi-
cally restricted to a specific type of techniques and often eco-
nomical considerations are not taken into account. The sec-
ond type of models typically comes from more management-
oriented researchers that consider economic constraints and
are able to analyse different types of defect-detection but
often deal with the technical details in a very abstract way.
Because of the limited space we do not cite those studies but
refer to [23] for details.

There are also already some literature surveys on defect-
detection techniques. Juristo et al. summarise in [13] the
main experiments regarding testing techniques of the last 25
years. Their main focus is to classify the techniques and ex-
periments and compare the techniques but not to collect and
compare actual figures. In [5] several sources from the liter-
ature for inspection efficiency were used to build efficiency
benchmarks. Laitenberger published a survey on inspection
technologies in [14]. He also included data on effectiveness
and effort but without relating it to a model.

6. CONCLUSIONS
We summarise the main results and contribution of the

paper in the following and give directions for further re-
search.

6.1 Summary
We reviewed and summarised the relevant empirical stud-

ies on defect-detection techniques that can be used to de-
termine the input factors of an economics model of software
quality assurance. The results of the studies were structured
with respect to the technique they pertained and the corre-
sponding input factor of the model. The difficulty function
is the most complex factor to determine. We introduced two
methods to obtain approximation of the factors for the three
groups of techniques.

We observed that test techniques tend to be more effi-
cient in defect detection having lesser difficulties but to have
larger removal costs. A further analysis in the model might
reveal which factor is more important. Furthermore, the re-
moval costs increase also strongly considering different types
of tests or reviews, i.e., during unit tests fault removal is con-
siderably cheaper than during system tests. This suggests
that unit-testing is very cost-efficient.

6.2 Further Research
We discussed an optimal inspection rate, i.e., the optimal

effort per LOC regarding the efficiency of the inspection,

and noted that it is not well understood how a deviation
from this optimal rate has effects on other factors in defect
detection. Hence, further studies and experiments on this
would be needed to refine the economics model and improve
the analysis and prediction of the optimal quality assurance.

The difficulty of detecting different defect types with dif-
ferent detection techniques should be investigated more thor-
oughly. The empirical knowledge is extremely limited there
although this would allow an improved combination of di-
verse techniques.

The effect costs are a difficult part of the failure costs.
They are a highly delicate issue for most companies. Nev-
ertheless, empirical knowledge is also important there to be
able to estimate the influence on the total quality costs.

The collected empirical knowledge on the input factors
can be used to refine the sensitivity analysis of the model
that was done in [23]. A sensitivity analysis can be used to
identify the most important input factors and their contri-
bution to the variation in the output. The mean value and
knowledge on the distribution (if available) can be used to
generate more accurate input data to the analysis.

We will also extend the economics models by a size metric
for better predictions because several factors, such as the
execution costs, are dependent on the size of software.

7. REFERENCES
[1] E. N. Adams. Optimizing Preventive Service of

Software Products. IBM Journal of Research and
Development, 28(1):2–14, 1984.

[2] V. R. Basili and R. W. Selby. Comparing the
Effectiveness of Software Testing Strategies. IEEE
Transactions on Software Engineering,
SE-13(12):1278–1296, 1987.

[3] B. Boehm. Software Engineering Economics. Prentice
Hall, 1981.

[4] B. Boehm, L. Huang, A. Jain, and R. Madachy. The
ROI of Software Dependability: The iDAVE Model.
IEEE Software, 21(3):54–61, 2004.

[5] L. Briand, K. E. Emam, O. Laitenberger, and
T. Fussbroich. Using Simulation to Build Inspection
Efficiency Benchmarks for Development Projects. In
Proc. 20th International Conference on Software
Engineering (ICSE ’98), pages 340–349. IEEE
Computer Society, 1998.

[6] J. Christmansson and P. Santhanam. Error Injection
Aimed at Fault Removal in Fault Tolerance
Mechanisms – Criteria for Error Selection using Field
Data on Software Faults. In Proc. Seventh
International Symposium on Software Reliability
Engineering (ISSRE ’96), pages 175–184. IEEE
Computer Society, 1996.

[7] C. Flanagan, K. R. M. Leino, M. Lillibridge,
G. Nelson, J. B. Saxe, and R. Stata. Extended Static
Checking for Java. In Proc. 2002 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 234–245. ACM Press, 2002.

[8] T. Gilb and D. Graham. Software Inspection.
Addison-Wesley, 1993.

[9] R. B. Grady and T. Van Slack. Key Lessons in
Achieving Widespread Inspection Use. IEEE Software,
11(4):46–57, 1994.

[10] W. E. Howden. Theoretical and Empirical Studies of

Program Testing. IEEE Transactions on Software
Engineering, SE-4(4):293–298, 1978.

[11] R. Johnson and D. Wagner. Finding User/Kernel
Pointer Bugs With Type Inference. In Proc. 13th
USENIX Security Symposium, pages 119–134, 2004.

[12] C. Jones. Applied Software Measurement: Assuring
Productivity and Quality. McGraw-Hill, 1991.

[13] N. Juristo, A. M. Moreno, and S. Vegas. Reviewing 25
Years of Testing Technique Experiments. Empirical
Software Engineering, 9:7–44, 2004.

[14] O. Laitenberger. A Survey of Software Inspection
Technologies. In Handbook on Software Engineering
and Knowledge Engineering, volume 2, pages 517–555.
World Scientific Publishing, 2002.

[15] B. Littlewood, P. T. Popov, L. Strigini, and
N. Shryane. Modeling the Effects of Combining
Diverse Software Fault Detection Techniques. IEEE
Transactions on Software Engineering,
26(12):1157–1167, 2000.

[16] R. R. Lutz and I. C. Mikulski. Empirical Analysis of
Safety-Critical Anomalies During Operations. IEEE
Transactions on Software Engineering, 30(3):172–180,
2004.

[17] P. M. Nagel, F. W. Scholz, and J. A. Skrivan. Software
Reliability: Additional Investigations into Modeling
with Replicated Experiments. NASA Contractor Rep.
172378, NASA Langley Res. Center, Jun. 1984.

[18] S. C. Ntafos. On Comparisons of Random, Partition,
and Proportional Partition Testing. IEEE
Transactions on Software Engineering,
27(10):949–960, 2001.

[19] A. Rai, H. Song, and M. Troutt. Software Quality
Assurance: An Analytical Survey and Research
Prioritization. Journal of Systems and Software,
40:67–83, 1998.

[20] R. J. Rubey. Quantitative Aspects of Software
Validation. In Proc. International Conference on
Reliable Software, pages 246–251. ACM Press, 1975.

[21] M. Sullivan and R. Chillarege. A Comparison of
Software Defects in Database Management Systems
and Operating Systems. In Proc. 22nd International
Symposium on Fault-Tolerant Computing (FTCS-22),
pages 475–484. IEEE Computer Society, 1992.

[22] S. Wagner. A Literature Survey of the Software
Quality Economics of Defect-Detection Techniques.
Technical Report TUM-I0614, Institut für Informatik,
Technische Universität München, 2006.

[23] S. Wagner. A Model and Sensitivity Analysis of the
Quality Economics of Defect-Detection Techniques. In
Proc. International Symposium on Software Testing
and Analysis (ISSTA ’06), pages 73–83. ACM Press,
2006.

[24] S. Wagner and H. Fischer. A Software Reliability
Model Based on a Geometric Sequence of Failure
Rates. In Proc. 11th International Conference on
Reliable Software Technologies (Ada-Europe ’06),
volume 4006 of LNCS, pages 143–154. Springer, 2006.

[25] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger.
Comparing Bug Finding Tools with Reviews and
Tests. In Proc. 17th International Conference on
Testing of Communicating Systems (TestCom’05),
volume 3502 of LNCS, pages 40–55. Springer, 2005.

	1 Introduction
	1.1 Problem
	1.2 Contribution

	2 Software Quality Economics
	2.1 Software Quality Costs
	2.2 An Analytical Model
	2.2.1 General
	2.2.2 Components
	2.2.3 ROI

	2.3 Practical Model

	3 Empirical Knowledge
	3.1 General
	3.1.1 Approach
	3.1.2 Difficulty

	3.2 Dynamic Testing
	3.2.1 Classification
	3.2.2 Setup and Execution Costs
	3.2.3 Difficulty
	3.2.4 Removal Costs

	3.3 Review and Inspection
	3.3.1 Classification
	3.3.2 Setup and Execution Costs
	3.3.3 Difficulty
	3.3.4 Removal Costs

	3.4 Static Analysis Tools
	3.4.1 Classification
	3.4.2 Setup and Execution Costs
	3.4.3 Difficulty

	3.5 Defects
	3.5.1 Defect Introduction
	3.5.2 Removal Costs
	3.5.3 Effect Costs
	3.5.4 Failure Probability

	4 Discussion
	5 Related Work
	6 Conclusions
	6.1 Summary
	6.2 Further Research

	7 References

