
Recursive modules for programming

Keiko Nakata
Kyoto University Research Institute for Mathematical Sciences

Jacques Garrigue
Graduate School of Mathematics, Nagoya University

Abstract

The ML module system is useful for building large-scale programs. The
programmer can factor programs into nested and parameterized modules, and
can control abstraction with signatures. Yet ML prohibits recursion between
modules. As a result of this constraint, the programmer may have to con-
solidate conceptually separate components into a single module, intruding on
modular programming. Introducing recursive modules is a natural way out of
this predicament. Existing proposals, however, vary in expressiveness and ver-
bosity. In this paper, we propose a type system for recursive modules, which
can infer their signatures. Opaque signatures can also be given explicitly, to
provide type abstraction either inside or outside the recursion. The type sys-
tem is provably decidable, and is sound for a call-by-value semantics. We also
gives a solution to the expression problem, in support of our design choices.

1

1 Introduction

When building a large software system, it is useful to decompose the system into
smaller parts and to reuse them in different contexts. Module systems play an im-
portant role in facilitating such factoring of programs. Many modern programming
languages provide some forms of module systems.

The family of ML programming languages, which includes SML[19] and Objec-
tive Caml [16], provides a powerful module system [17, 15]. Nested structures of
modules allow hierarchical decomposition of programs. Functors can be used to ex-
press advanced forms of parameterization, which ease code reuse. Abstraction can
be controlled by signatures with transparent, opaque or translucent types [10, 13].

In spite of this flexibility, the ML module language prohibits recursion between
modules. This is a major disadvantage of ML, when compared to object-oriented
languages, like Java. These languages have supported recursive definitions across
class boundaries from the beginning, and this feature is heavily used in practice.

We, ML programmers, enjoy strong type safety. Yet, due to the lack of recursive
modules, we may have to consolidate conceptually separate components into a single
module, intruding on modular programming [24]. If we had both recursive modules
and this flexible module language, we could enjoy a strongly type safe programming
language with an equally strong expressive power.

Recently, much work has been devoted to investigating extensions with recursion
of the ML module system. Two important issues involved are type checking and
initialization. Crary, Harper and Puri [3], Russo [24], and Dreyer [5] have given type
theoretic accounts for recursive modules. Boudol [1], Hirschowitz and Leroy [12],
and Dreyer [4] have investigated type systems which guarantee well-formedness of
recursive modules, ensuring that initialization of recursive modules will not attempt
to access not-yet-evaluated values.

It seems that ML programmers are very close to use recursive modules in everyday
programming. Indeed, some real ML family languages support recursive modules [16,
23], in which we can use them for practical programs, or, at least, get a flavor of them.

In this paper, we first review two examples. In the first one, two recursive modules
Tree and Forest respect each other’s privacy: we seal them with opaque signatures
individually. Thus type abstraction is enforced inside the recursion. In the second,
Tree and Forest are intimate: they know each other’s exact implementations, and
we seal them with an opaque signature as a whole. Thus type abstraction is enforced
outside the recursion.

Both privacy and intimacy will be important for practical uses of recursive mod-
ules. Existing proposals, however, vary in their way to handle them. We may be

2

denied privacy. We may have to write two different signatures for the same module;
one of the signatures is solely for assisting the type checker and does not affect the
resulting signature of the module.

Our goal is to develop a type system for recursive modules, which is practical and
useful from the programmer’s perspective; we want to use them easily in everyday
programming, possibly combining with other constructs of the core and the module
languages.

With this goal in mind, we propose a type system for recursive modules, in which
modules can have privacy or intimacy depending on the situation they are in. The
type system does not require additional signature annotations. Thus the programmer
can either omit writing signatures or give signatures explicitly to control abstraction.
Moreover, he can rely on type inference during development; all previous proposals
by others do not support type inference for recursive modules.

In the paper, we also present an advanced example of recursive modules, by giving
a concise and type safe solution to the expression problem [27]. In the example, we
use recursive modules, applicative functors [14] and private row types [9] together.
The example confirms that by combining recursive modules with other language
constructions we can indeed enjoy a highly expressive power in a type safe and
modular way.

Our contributions are summarized as follows.

• We examine two typical uses of recursive modules by giving concrete examples.
These examples are useful for understanding basic uses of recursive modules.

• We propose a new type system for recursive modules with first-order applicative
functors. The type system supports type inference for recursive modules, and
is decidable and sound for a call-by-value semantics.

All examples we present in this paper are type checked in this type system,
without requiring additional signature annotations.

• We give a type safe and concise solution to the expression problem, in order
to demonstrate that recursive modules give us the highly expressive power in
a modular way when combined with other language constructions.

The rest of the paper is organized as follows. In the next section, we review two
examples of recursive modules and present the main features of our calculus, Traviata,
used for our formal development. Section 3 gives the concrete syntax of Traviata.
Section 4 and 5 explain the type system and present a soundness result. In Section 6,

3

we give a solution to the expression problem. In Section 7, we examine the double
vision problem [6]. Section 10 examines related work and Section 11 concludes.

4

module TreeForest = struct (TF)

module Tree = (struct

datatype t = Leaf of int | Node of int * TF.Forest.t

val max = λx.case x of Leaf i ⇒ i

| Node (i, f) ⇒ let j = TF.Forest.max f in if i > j then i else j

end : sig type t val max : t → int end)

module Forest = (struct

type t = TF.Tree.t list

val max = λx.case x of [] ⇒ 0

| hd :: tl ⇒ let i = TF.Tree.max hd in let j = max tl in

if i > j then i else j

end : sig type t val max : t → int end)

end

Figure 1: Modules for trees and forest

2 Examples

In this section, we review two examples to illustrate two possible uses of recursive
modules and to informally present Traviata1.

The first example appears in Figure 1. The top-level module TreeForest contains
two modules Tree and Forest: Tree represents a module for trees whose leaves and
nodes are labeled with integers; Forest represents a module for unordered sets of
those integer trees.

The modules Tree and Forest refer to each other in a mutually recursive way.
Their type components Tree.t and Forest.t refer to each other, as do their value
components Tree.max and Forest.max. These functions calculate the maximum
integers a tree and a forest contain, respectively.

To enable forward references, we extend structures and signatures with implicitly
typed declarations of self variables. Components of structures and signatures can
refer to each other recursively using the self variables. For instance, TreeForest

declares a self variable named TF, which is used inside Tree and Forest to refer to
each other recursively. We keep the usual ML scoping rules for backward references.
Thus Tree.max can refer to the Leaf and Node constructors without going through a
self variable. Tree might also be used without prefix inside Forest, but the explicit
notation seems clearer.

1In examples, we shall allow ourselves to use some usual core language constructions, such as let
and if expressions and list constructors, even though they are not part of the formal development
given in Section 3.

5

This first example illustrates a possible use of recursive modules, where they
respect each other’s privacy. They are sealed with opaque signatures individually,
enforcing type abstraction inside the recursion.

The second example appears in Figure 2. Now TreeForest is a functor, parame-
terized by the type of labels of trees. We assume that an applicative functor MakeSet
is given in a library for making sets of comparable elements.

The modules Tree and Forest define the same recursive types as the first example,
except that the argument types of the constructors Leaf and Node are parameter-
ized. The module abbreviation module F = TF.Forest inside Tree allows us to use
an abbreviation F for TF.Forest inside Tree. Similarly, the type s in Tree is an
abbreviation which expands into TF.Forest.t.

In this second example, Tree and Forest are intimate: the functions Tree.split
and Forest.sweep know the underlying implementations of the types Forest.t and
Tree.t of the others, thus can construct and deconstruct values of those types. Given
a tree, split cuts off the root node of the tree and returns the resulting forest. sweep
gathers the leaves from a given forest.

Since the two modules are intimate, we do not seal Tree and Forest individually
here. Instead, we seal them as a whole with an opaque signature. The signature
only exposes functions split, sweep, and incr, which augments a given forest only
if a given tree contains original labels that are not contained in the forest, but hides
functions Tree.labels and Forest.labels, which are utility functions for incr.
The signature also enforces type abstraction by hiding implementations of the types
Tree.t and Forest.t, thus it protects privacy of the two modules from the outside.

The two examples we have seen so far illustrate two possible uses of recursive
modules. They may have privacy, enforcing type abstraction inside the recursion.
They may have intimacy, enforcing type abstraction outside the recursion. We think
both uses are natural and would become common in practice.

Comparison with existing type systems The two examples presented are type
checked in our type system without requiring additional annotations. Below, we
examine the ways existing type systems handle these examples.

To avoid presenting too much annotations, we remove the module abbreviation
module F = TF.Forest from Tree in Figure 2. Yet, although we can dispense with
abbreviations by replacing them with their definitions altogether, they are useful in
practice [21].

In Russo’s system [24] there is no obvious way to type check the first example,
keeping type abstraction between Tree and Forest. A suggested solution, which is

6

found in his paper, is to annotate the self variable TF of TreeForest with a recursive
signature 2 3 [24]:

sig (Z : sig module Tree : sig type t end

module Forest : sig type t = Tree.t list end

end)

module Tree : sig

datatype t = Leaf of int | Node of int * Z.Forest.t end

module Forest : sig type t = Tree.t list val max : t → int end

end

This annotation for TF, however, would break type abstraction between Tree and
Forest, exposing underlying implementations of types Tree.t and Forest.t to each
other.

In Dreyer’s system [5], the sealing signatures for Tree and Forest must be given
in advance. That is, the programmer has to write both signatures before defining
either of the two modules, as opposed to Figure 1, where the signatures are written
in a module-wise way.

O’Caml [16] type checks Figure 1 without modifications.

Next, we examine the second example. As we claimed, our type system type
checks it without requiring additional annotations.

In Russo’s system, the programmer must annotate TF with a recursive signature:
sig (Z : sig module Tree : sig type t end

module Forest : sig type t = Tree.t list end

end)

module Tree : sig

datatype t = Leaf of X.t | Node of X.t * Z.Forest.t end

module Forest : sig

type t = Tree.t list val labels : t → MakeSet(X).t end

end

Note that this signature is solely for assisting the type checker. We have already given
in Figure 2 the eventual signatures that Tree and Forest should have; these signa-
tures do not reveal the underlying implementations of types Tree.t and Forest.t

or the function Forest.labels.
To type check Figure 2 in Dreyer’s system and O’Caml, the programmer must

write fully manifesting signatures of Tree and Forest in advance, where the signa-
tures declare every component of the modules. The type checker first type checks the

2This recursive signature does not exactly follow his syntax, e.g. we have to use the keyword
structure instead of module in his system.

3We note that by permuting the definition order of Tree and Forest the amount of required
annotations can be reduced to some extent in this case. However permutation does not always work.

7

two modules assisted by these manifest signatures. Once this succeeds, type abstrac-
tion is enforced using the sealing signature given in Figure 2. Thus the programmer
has to write annotations yet more verbose than in Russo’s system.

We believe that both privacy and intimacy are important for practical uses of
recursive modules. Existing type systems, however, do not handle them equally.
These type systems may deny privacy. They may require additional annotations that
are used only for helping the type checker, but do not affect resulting signatures of
modules. Even if we assume that these annotations provide some useful information,
our experience with type inference in ML is that one often writes a module without
its signature, and then eventually writes a signature by editing the result of type
inference. This technique has not been available with recursive modules in these
type systems.

8

module TreeForest =

functor (X : sig type t val compare : t → t → int end) →
(struct (TF)

module S = MakeSet(X)

module Tree = struct

module F = TF.Forest

type s = F.t

datatype t = Leaf of X.t | Node of X.t * s

val split = λx.case x of Leaf i ⇒ [Leaf i]

| Node (i, f) ⇒ (Leaf i) :: f

val labels = λx.case x of Leaf i ⇒ TF.S.singlton i

| Node (i, f) ⇒ TF.S.add i (F.labels f)

end

module Forest = struct

module T = TF.Tree

type t = T.t list

val sweep = λx.case x of [] ⇒ []

| (T.Leaf y) :: tl ⇒ [(T.Leaf y)]

| (T.Node y) :: tl ⇒ (sweep tl)

val labels = λx.case x of [] ⇒ TF.S.empty

| hd :: tl ⇒ TF.S.union (T.labels hd) (labels tl)

val incr = λf. λt. let l1 = labels f and l2 = T.labels t in

if TF.S.diff l1 l2 = TF.S.empty then f else (t :: f)

end

end:sig (Z)

module Tree : sig type t val split : t → Z.Forest.t end

module Forest : sig

type t val sweep : t → t val incr : Z.Tree.t → t → t end

end)

Figure 2: Intimate modules for trees and forests

9

3 Syntax

Figure 3 gives the module language of Traviata, which is based on Leroy’s applicative
functor calculus [14]. We use M as a metavariable for module names, X for module
variables and Z for self variables. For simplicity, we distinguish them syntactically,
however the context could tell them apart without this distinction. We also use t for
type names and l for (core) value names.

For the purpose of both defining type equality and designing a decidable type
system, we label module expressions, signatures and module variable signatures with
integers. For instance, a module expression E is a module expression description
Ed labeled with an integer i, where Ed is either a structure, a functor, a sealing, a
module identifier or a module variable 4 One can think of the integer label i of Ei

d

as the location of Ed in the source program. For the interest of brevity, we may
omit integer labels when they are not used. For the interest of clarity, we may write
additional parentheses, for instance (functor(X : sig type t end2) → X3)1. We use
metavariables i, j, k for integers.

As explained in the previous section, we extend structures and signatures with
implicitly typed declarations of self variables to support recursive references. In
the construct struct (Z) D1 . . . Dn end, the self variable Z is bound in D1 . . . Dn.
Similarly, in the construct sig (Z) B1 . . . Bn end, the self variable Z is bound in
B1 . . . Bn.

For simplicity, we provide different syntax for signatures and module variable
signatures; the latter are used to specify signatures of functor arguments and do
not declare self variables. In a practical system, we can unify their syntax for the
programmer’s benefit.

The construct which enables recursive references is recursive identifiers. A recur-
sive identifier is constructed from a self variable and the dot notation “.M”, which
represents access to the sub-modules M of a structure. A recursive identifier may
begin from any bound self variable, and may refer to a module at any level of nest-
ing within the recursive structure, regardless of component ordering. For instance,
through the self variable of the top-level structure, one can refer to any module named
in that structure except for those hidden within sealed sub-structures. It is important
that recursive identifiers can only contain bound self variables, and that self variables
of sealed modules are unbound outside them. Otherwise type abstraction could be
broken.

4Note that Traviata does not have two different notions of opaque signatures and transparent
ones.

10

Module expression

E ::= Ei
d

Module expression descriptions

Ed ::= struct (Z) D1 . . . Dn end structure
| functor (X : A) → E functor
| (E : S) sealing
| mid module identifier
| X module variable

Definitions

D ::= module M = E module def.
| datatype t = c of τ datatype def.
| type t = τ type abbreviation

| val l = e value def.
Signature

S ::= Si
d

Signature descriptions

Sd ::= sig (Z) B1 . . . Bn end structure type
| functor(X : A) → S functor type

Module variable signature
A ::= Ai

d

Module variable signature description

Ad ::= sig B1 . . . Bn end

Specifications

B ::= module M : S module spec.
| datatype t = c of τ datatype spec.
| type t = τ manifest type spec.
| type t abstract type spec.
| val l : τ value spec.

Recursive identifiers

rid ::= Z | rid .M

Module identifiers

mid ::= rid | mid(mid) | mid(X)

Extended module identifiers

ext mid ::= Z | ext mid .M
| ext mid(ext mid) | ext mid(X)

Module paths

p, q, r ::= ext mid | X

Program

P ::= struct (Z) D1 . . . Dn endi

Figure 3: The module language of Traviata

11

Core types τ ::= 1 | τ1 → τ2 | τ1 ∗ τ2 | p.t
Core expr. e ::= x | () | (λx.e : τ) | (e1, e2) | πi(e) | e1(e2)

| rid .c e | X.c e | case e of ms | rid .l | X.l
Matching ms ::= rid .c x ⇒ e | X.c x ⇒ e

Figure 4: The core language of Traviata

For the sake of simplicity, functor applications only contain module identifiers
and module variables.

To support applicative functors [14], we define a slightly extended class of iden-
tifiers, named module paths in Figure 3, which can liberally include functor applica-
tions. Core types defined in Figure 4 may use module paths. Applicative functors
give us more flexibility in expressing type sharing constraint between recursive mod-
ules. In Section 6, we give a practical example which uses recursive modules and
applicative functors together in support of our design choices. It will be useful to
note that Z ⊆ rid ⊆ mid ⊆ ext mid ⊆ p holds.

A program is a top-level structure which contains a bunch of recursive modules.
In this paper, we only consider recursive modules, but not ordinary ones.

To obtain a decidable type system, we impose a first-order structure restriction
that requires functors 1) not to take functors as argument, 2) or to access sub-
modules of arguments. The first condition means that our functors are first-order,
and the second implies that the programmer has to pass sub-modules as independent
parameters for functors instead of passing a module which contains all of them. One
might have noticed that the syntax of module expression descriptions excludes those
of the forms X.M and X(mid). This is consistent with the restriction.

Figure 4 gives the our core language of Traviata. We use x as a metavariable for
program variables (variables, for short), and c for value constructor names.

The core language describes a simple functional language extended with value
paths X.l and rid .l, and type paths p.t. Value paths X.l and rid .l refer to the value
components l in the structures referred to by X and rid, respectively. A type path
p.t refers to the type component t in the structure that p refers to.

We may say paths to mean module, type and value paths as a whole.
An unusual convention is that a module variable is bound inside its own signature.

For instance,

functor(X : sig type t val l : X.t end) → X

is a legal expression, which should be understood as

functor(X : sig type t val l : t end) → X

12

This convention is convenient when proving type soundness, as the syntax of paths
is kept uniform, that is, every path is prefixed by either a self variable or a module
variable. In Section 6, we give examples where this this convention is useful.

We write MVars(p) to denote the set of module variables contained in the module
path p. We also write MVars(τ), MVars(e) and the likes with obvious meanings.

In the formalization, 1) function definitions are explicitly type annotated; 2) every
structure and signature type but module variable signature declares a self variable;
3) a path is always prefixed by a self variable or a module variable. Our examples do
not stick to these rules. Instead, we have assumed that there is an elaboration phase,
prior to type checking, that adds type annotations for functions by running a type
inference algorithm on the core language. The original program may still require
some type annotations, to avoid running into the polymorphic recursion problem. In
Section 9, we discuss the details of this inference algorithm. The elaboration phase
also infers omitted self variables, to complete implicit backward references.

We assume that the following five conventions: 1) a program does not contain
free module variables or free self variables; 2) all binding occurrences of module or
self variables use distinct names; 3) any sequence of module definitions, type abbre-
viations, datatype definitions, value definitions, module specifications, manifest and
opaque type specifications, datatype specifications and value specifications does not
contain duplicate definitions or specifications for the same name; 4) all occurrences
of module expressions, signatures and module variable signatures in a program are
labeled with distinct integers; 5) module variable signatures do not contain module
specifications.

13

Lazy signature

T ::= T i
d

Lazy signature descriptions

Td ::= sig (Z) C1 . . . Cn end lazy structure type
| functor(X : A) → T lazy functor type
| (T1 : T2) lazy sealing type
| p

Lazy specifications

C ::= module M : T
| val l : τ
| type t = τ
| type t
| datatype t = c of τ

Lazy program type

U ::= sig (Z) C1 . . . Cn endi

Figure 5: Lazy module types

4 Reconstruction

The type system is composed of two parts, namely a type reconstruction part and
a type-correctness check part. Concretely, we type check a program P in two steps:
1) reconstruct a lazy program type of P ; at this point, we do not require the recon-
structed type to be correct; 2) check type-correctness of P by type checking P in the
intuitive way, using the result of the reconstruction in a type environment; once this
second step is completed, we are certain both that P is type-correct and that the
reconstruction was correct.

In this section we describe the reconstruction part; the next section explains the
type-correctness check part.

The rest of this section is organized as follows. In Section 4.1, we define lazy
program types, which are output of the reconstruction algorithm. In Section 4.2,
we define look-up judgment for using programs and lazy program types as lookup
tables. In Section 4.3, we introduce “resolution algorithms“, the key for enabling the
reconstruction. Finally, in Section 4.5, we present an algorithm for reconstructing
lazy program types from programs.

In the rest of the paper, we assume that self variables Z are annotated with
module variable environments θ, written Zθ. A module variable environment is a
substitution of module paths for module variables. Correspondingly, we assume that

14

Top-levels O ::= P | U
Module descriptions K, J ::= E | S | A | T

:= ::= = | :
ss ::= struct | sig

Figure 6: Notation

each occurrence of a self variable in a program P is implicitly annotated with an
identity substitution id. That is, we regard Z as an abbreviation for Z id . We use θ
as a metavariable for module variable environments.

4.1 Lazy module types

Figure 5 gives the syntax for lazy module types, which we use as signatures of modules
during type checking. The syntax for lazy signature descriptions extends that for
signature descriptions with the sealing construction (T1 : T2) and module paths.
We use the sealing construction (T1 : T2) to check type-correctness of the sealing
construction (E : S) of module expression descriptions ((31) in Figure 18). We use
module paths to instantiate signatures lazily ((61) in Figure 21). In the construct
sig (Z) C1 . . . Cn end, the self variable Z is bound in C1 . . . Cn. A lazy program type
is a top-level lazy structure type labeled with an integer. Note that lazy signatures
include signatures.

We use the notation convention in Figure 6. In particular, we use O as a metavari-
able for top-levels, which are either programs or lazy program types, and K for module
descriptions, which are either module expression descriptions, signature descriptions,
module variable signature descriptions or lazy signature descriptions.

4.2 Look-up

Next, we define a look-up judgment for finding module descriptions and their integer
labels from a top-level. During the reconstruction we use the judgment against pro-
grams; during the type-correctness check, we use the judgment against lazy program
types.

We assume that, for a top-level O, there is a global mapping ρO which sends i) a
self variable Z to the structure or the (lazy) structure type to which Z is ascribed in
O, and ii) a module variable X to the module variable signature specified for X in O.
We say that in the construct struct (Z) D1 . . . Dn endi the self variable Z is ascribed
to struct (Z) D1 . . . Dn endi. Similarly, in the constructs sig (Z) B1 . . . Bn endi

15

O ` Zθ 7→ (θ, ρO(Z))
(0)

O ` X 7→ (id , ρO(X))
(1)

O ` p 7→ (θ, ss . . . module M := Kj . . . endi) K 6= (Kk1
1 : Kk2

2)

O ` p.M 7→ (θ,Kj)
(2)

O ` p 7→ (θ, ss . . . module M := Kj . . . endi) K = (Kk1
1 : Kk2

2)

O ` p.M 7→ (θ,Kk2
2)

(3)

O ` p1 7→ (θ, (functor(X : Aj) → Kk)i) K 6= (Kk1
1 : Kk2

2)

O ` p1(p2) 7→ (θ[X 7→ p2], K
k)

(4)

O ` p1 7→ (θ, (functor(X : Aj) → Kk)i) K = (Kk1
1 : Kk2

2)

O ` p1(p2) 7→ (θ[X 7→ p2], K
k2
2)

(5)

Figure 7: Look-up

and sig (Z ′) C1 . . . Cm endj, Z and Z ′ are ascribed to sig (Z) B1 . . . Bn endi and
sig (Z ′) C1 . . . Cm endj, respectively. The use of ρO makes the presentation concise 5.

We present inference rules for the look-up judgment in Figure 7. The judgment
O ` p 7→ (θ,K i) means that the module path p refers to the module description K
labeled with the integer i in the top-level O, where each module variable X is bound
to θ(X).

Let us examine each rule. For self variables and module variables, the judgment
consults the global mapping ρO. Next two rules (3) and (4) handle module paths of
the form p.M . A module path p.M refers to the sub-module M in the module that p
refers to. Hence p must refer to either a structure or a (lazy) structure type. The rules
(3) and (4) distinguish whether M is bound to a sealing construction (Kj1

1 : Kj2
2)j

or not; when it is, then p.M resolves to the sealing part Kj2
2 . Thus, the judgment

prevents peeking inside of sealed modules from the outside of them. The last two
rules (5) and (6) handle module paths of the form p1(p2). When p1 refers to either
a functor or a (lazy) functor type, then p1(p2) resolves to the body of the functor,
where the module variable environment is augmented with the new binding [X 7→ p2].
Again the rules (5) and (6) distinguish whether the body is a sealing construction or
not.

5We could avoid this assumption of a global mapping by annotating each self variable with the
source program location of the structure or structure type to which the self variable is ascribed.
Since the source program can be regarded as a finite tree, we can represent every node of the tree
by a finite representation (i.e., we need not use file names or line numbers.)

16

struct (Z)

module M1 = (functor(X : sig type t end3) →
struct module M11 = struct end5 end4)2

module M2 = struct type t = int end6

module M3 = Z.M1(Z.M2)
7

end1

Figure 8: A program P1

The look-up judgment does not hold for arbitrary module paths. For instance,
consider Figure 8. We have P1 ` Z.M1(Z.M2).M11 7→ ([X 7→ Z.M2], struct end5). But,
the judgment does not hold for the module path Z.M3.M11.

Recall that we have assumed the absence of free module variables. This means
that when O ` p 7→ (θ, qi), then MVars(q) ⊆ dom(θ). For a module variable
environment θ, dom(θ) denotes the domain of θ.

4.3 Resolution algorithms

Our type system differs from others in that it can resolve path references. Concretely,
we developed a terminating procedure for determining the component that a path
refers to, where the path may contain forward references. The motivation of this
procedure was to define a decidable judgment for type equality. In a language with
recursive modules and applicative functors, there is the potential that a program
contains pathologically cyclic type abbreviations which may cause type equality check
to diverge. We later noticed that a similar procedure enables type inference for
recursive modules. Note that we cannot use the well-typedness of the source program
when resolving path references, since we already need type equality to ensure this
well-typedness.

We implement the procedure for path resolution as three algorithms, namely,
a module path expansion algorithm PathExp, a type expansion algorithm TypExp
and a core type reconstruction algorithm CtyInf. These algorithms use termination
criteria based on ground term rewriting and recursive path ordering; the criteria do
not rely on the well-typedness of the source program, and still allow flexible handling
of module and type abbreviations.

In this paper, we do not explain these resolution algorithms in detail. There is
another paper [20], which is devoted to their explanations.

17

Located types We define a canonical form of types, called located types. The type
system checks equality between two arbitrary types by reducing them into located
types using TypExp.

A located type is a type composed of simple located types and 1 using → and ∗.
Intuitively, a simple located type is an abstract type which is obtained by expanding
all type and module abbreviations.

We first define located forms, a canonical form of module paths. A module path
p is in located form if and only if p does not contain a module path which resolves
to a module abbreviation.

Definition 1 A module path p is in located form with respect to a top-level O if and
only if the following two conditions hold.

• O ` p 7→ (θ,Ki) where K is not a module path.

• For all q in args(p), q is in located form.

For a module path p, args(p) denotes the set of module paths that p contains as
functor arguments, or:

args(Zθ) =
∪

X∈dom(θ){θ(X)}
args(p.M) = args(p) args(p1(p2)) = args(p1) ∪ {p2}

A simple located type is an abstract type whose prefix is a located form.

Definition 2 A simple located type with respect to a top-level O is a type path p.t
where p is in located form with respect to O and either O ` p 7→ (θ, ss . . . datatype t =
c of τ . . . endi) or O ` p 7→ (θ, ss . . . type t . . . endi) holds.

Now located types are defined below.

Definition 3 A located type with respect to a top-level O is a type τ where each type
τ ′ in typaths(τ) is a simple located type with respect to O.

For a type τ , typaths(τ) denotes the set of type paths that τ contains. Precisely,

typaths(τ) =


typaths(τ1) ∪ typaths(τ2) when τ = τ1 → τ2

or τ = τ1 ∗ τ2

{p.t} when τ = p.t
∅ when τ = 1

18

O, Σ ` X ;g X O, Σ ` Zθ ;g Zθ

O, Σ ` p ;g p′

O ` p′.M 7→ (θ,K i) K 6∈ mid

O, Σ ` p.M ;g p′.M

O, Σ ` p ;g p′ O ` p′.M 7→ (θ, qi)
q 6= X O, Σ] i ` q ;g r

O, Σ ` p.M ;g θ(r)

O, Σ ` p1 ;g p′1 O, Σ ` p2 ;g p′2 O ` p′1(p
′
2) 7→ (θ,K i) K 6∈ mid

O, Σ ` p1(p2) ;g p′1(p
′
2)

O, Σ ` p1 ;g p′1 O, Σ ` p2 ;g p′2
O ` p′1(p

′
2) 7→ (θ, qi) q 6= X O, Σ] i ` q ;g r

O, Σ ` p1(p2) ;g θ(r)

Figure 9: Ground-normalization with respcet to O

ηO(Zθ) = Zθ′

where dom(θ) = dom(θ′),
and, for all X ∈ dom(θ), θ′(X) = ηO(θ(X))
ηO(X) = X
ηO(p.M) = ζO(ηO(p).M)
ηO(p1(p2)) = ζO(ηO(p1)(ηO(p2)))

ζO(p) =

{
θ(X) when O ` p 7→ (θ,X i)
p otherwise

Figure 10: Variable normalization with respect to O

19

4.3.1 Module path expansion

We define the module path expansion algorithm PathExp by composing ground nor-
malization and variable normalization, which are defined below.

We define the ground normalization in Figure 9. The judgment O, Σ ` p ;g q
means that the ground normalization expands p into q where Σ is locked, with respect
to the top-level O. We use Σ as a metavariable for sets of integers. The notation Σ]i
means Σ∪{i} whenever i 6∈ Σ. Note that derivations of the ground normalization are
deterministic. In particular, it is an error state when there are no applicable rules.

We define the variable normalization with respect to a top-level O using functions
ηO and ζO, found in Figure 10.

Then we define PathExp such that it takes as argument a top-level O and a module
path p, then either returns a module path q when O, ∅ ` p ;g p′ and ηO(p′) = q hold
or else raises an error when this cannot be done.

Definition 4 A module path p (resp. a type τ and an expression e) has located
variables if and only if all the self variables contained in p (resp. τ and e) are in
located form.

Since Z id is in located form, all module paths, types and expressions appearing
in the source program have located variables.

Proposition 1 ([20]) For any top-level O and module path p having located vari-
ables, if PathExp(O, p) = q, then q is in located form with respect to O.

4.3.2 Type expansion

We define the type expansion algorithm in Figure 11. The judgment O, Ω ` τ1 ↓ τ2

means that the algorithm expands the type τ1 into the type τ2 where Ω is locked,with
respect to the top-level O. We use Ω as a metavariable for pairs (i, t) of an integer i
and a type name t.

Then we define TypExp such that it takes as argument a top-level O and a type
τ , then either returns a type τ ′ when O, ∅ ` τ ↓ τ ′ holds or else raises an error when
no rule applies, i.e. it cannot prove that the input type does not contain cyclic or
dangling references.

Proposition 2 ([20]) For any top-level O and type τ having located variables,
TypExp(O, τ) either returns a located type with respect to O or else raises an error.

20

O, Ω ` 1 ↓ 1

O, Ω ` τ1 ↓ τ ′
1 O, Ω ` τ2 ↓ τ ′

2

O, Ω ` τ1 → τ2 ↓ τ ′
1 → τ ′

2

O, Ω ` τ1 ↓ τ ′
1 O, Ω ` τ2 ↓ τ ′

2

O, Ω ` τ1 ∗ τ2 ↓ τ ′
1 ∗ τ ′

2

PathExp(O, p) = p′ O ` p′ 7→ (θ, ss . . . type t . . . endi)

O, Ω ` p.t ↓ p′.t

PathExp(O, p) = p′ O ` p′ 7→ (θ, ss . . . datatype t = c of τ . . . endi)

O, Ω ` p.t ↓ p′.t

PathExp(O, p) = p′ O ` p′ 7→ (θ, ss . . . type t = τ1 . . . endi)
−−−−−−−O, Ω] (i, t) ` τ1 ↓ τ2 O, Ω ` θ(τ2) ↓ τ−−−−−−

O, Ω ` p.t ↓ τ

Figure 11: Type expansion with respect to O

P, Ψ, Γ ` x . Γ(x) P, Ψ, Γ ` () . 1

P, Ψ, Γ ` e1 . τ1 P, Ψ, Γ ` e2 . τ2

P, Ψ, Γ ` (e1, e2) . τ1 ∗ τ2

P, Ψ, Γ ` e . τ1 ∗ τ2

P, Ψ, Γ ` πi(e) . τi

P, Ψ, Γ ` e1 . τ ′ → τ

P, Ψ, Γ ` e1(e2) . τ

TypExp(P, τ ′) = τ

P, Ψ, Γ ` (λx.e : τ ′) . τ

PathExp(P, p) = p′ γ(O, p′, c) = (t, τ1)

P, Ψ, Γ ` p.c e . p′.t

PathExp(P, p) = p′ γ(O, p′, c) = (t, τ1) P, Ψ, Γ, x : τ1 ` e2 . τ

P, Ψ, Γ ` case e1 of p.c x ⇒ e2 . τ

PathExp(P, p) = p′ P ` p′ 7→ (θ, struct . . . val l = e . . . endi)
−−−−P, Ψ] (i, l), ∅ ` e . τ1 TypExp(P, θ(τ1)) = τ−−−−

P, Ψ, Γ ` p.l . τ

PathExp(P, p) = p′

P ` p′ 7→ (θ, sig . . . val l : τ ′ . . . endi) TypExp(P, θ(τ ′)) = τ

P, Ψ, Γ ` p.l . τ

Figure 12: Core type reconstruction with respect to P

21

γ(O, p, c) = (t, τ) when
O ` p 7→ (θ, ss . . . datatype t = c of τ ′ . . . endi) and TypExp(O, θ(τ ′)) = τ

Figure 13: Datatype look-up with respect to O

4.4 Core type reconstruction

We define the core type reconstruction algorithm in Figure 12. The judgment
P, Ψ, Γ ` e . τ means that the algorithm reconstructs the type τ for the expres-
sion e where Ψ is locked, with respect to the program P . We use Ψ as a metavariable
for pairs (i, l) of an integer i and a value name l.

Then we define CtyInf such that it takes as argument a program P and a core
expression e, then either returns a type τ when P, ∅, ∅ ` e . τ holds or else raises an
error when this cannot be done.

Proposition 3 ([20]) For any program P and core expression e having located vari-
ables, CtyInf (P, e) either returns a located type with respect to P or else raises an
error.

For a program P and a core expression e, CtyInf (P, e) returns a located type
that e would have when e is type-correct, but it does not check that e is indeed
type-correct. For instance, for an expression e1(e2), CtyInf only reconstructs a type
of e1, which must be of the form τ1 → τ2, then returns the result type τ2; it does
not check that e2 has a type which is equivalent to τ1. In Section 5, we explain the
type-correctness check part of the type system. Type-correctness of e1(e2) is ensured
in that part.

4.5 Lazy program type reconstruction algorithm

Figure 14 presents inference rules for the lazy program type reconstruction algorithm
with respect to a program P . The algorithm uses CtyInf (see (10)), hence it does not
ensure type-correctness of the program P . It either returns a lazy program type that
P would have when P is type-correct, or else raises an error when it cannot prove
that P does not contain cyclic or dangling references. Note that it does not check
type-correctness of functor applications (see (16)).

Then we define ReconstP such that it takes a program P as argument, then either
returns U when P ` P . U holds or else raises an error when this cannot be done.

22

Definitions and Specifications

P ` E . T
P ` module M = E . module M : T

(6) P ` S . T
P ` module M : S . module M : T

(7)

TypExp(P, τ) = τ ′

P ` datatype t = c of τ . datatype t = c of τ ′ (8)
TypExp(P, τ) = τ ′

P ` type t = τ . type t = τ ′ (9)

CtyInf (P, e) = τ

P ` val l = e . val l : τ
(10)

TypExp(P, τ) = τ ′

P ` val l : τ . val l : τ ′ (11)

Module expression

P ` Ed . Td

P ` Ei
d . T i

d

(12)

Module expression descriptions

P ` D1 . C1 . . . P ` Dn . Cn

P ` struct (Z) D1 . . . Dn end . sig (Z) C1 . . . Cn end
(13)

P ` A . A′ P ` E . T
P ` functor(X : A) → E . functor(X : A′) → T

(14)

P ` E . T1 P ` S . T2

P ` (E : S) . (T1 : T2)
(15)

P ` p . p
(16)

Signature

P ` Sd . Td

P ` Si
d . T i

d

(17)

Signature descriptions

P ` B1 . C1 . . . P ` Bn . Cn

P ` sig (Z) B1 . . . Bn end . sig (Z) C1 . . . Cn end
(18)

P ` A . A′ P ` S . T
P ` functor(X : A) → S . functor(X : A′) → T

(19)

Module variable signature

P ` Ad1 . Ad2

P ` Ai1
d1 . Ai2

d2

(20)

Module variable signature description

P ` B1 . B′
1 . . . P ` Bn . B′

n

P ` sig B1 . . . Bn end . sig B′
1 . . . B′

n end
(21)

Figure 14: Lazy signature reconstruction with respect to P

23

Proposition 4 For any program P , ReconstP(P) either returns a lazy program type
or raises an error.

Usually, we write UP to denote the lazy program type such that ReconstP(P) =
UP holds.

24

U ` TypExp(U, τ1) ≡τ TypExp(U, τ2)

U ` τ1 ≡ τ2
(22)

Figure 15: Type equivalence with respect to U

5 Type system

One of the main difficulties in type checking recursive modules is how to reason about
forward references. Usually, a type checker consults a type environment for the nec-
essary type information about paths. When paths only contain backward references,
it is sufficient to accumulate in the type environment signatures of previously type
checked modules. When modules are defined recursively, however, paths may contain
forward references. Then the type checker may attempt to ask the type environment
for a signature of a module which is not yet type checked.

To circumvent difficulties arising from forward references, other type systems rely
on signature annotations. As we examined in Section 2, this requirement compels
the programmer to write two different signatures for the same module to enforce
type abstraction outside the recursion. Moreover, the programmer cannot rely on
type inference during development due to it. This is unfortunate since a lot of useful
inference algorithms have been and will be developed to support smooth development
of programs.

We have a reconstruction algorithm, hence we do not need the assistance of sig-
nature annotations. That is, we use the result of reconstruction as type environment
instead of using programmer-supplied annotations.

There are three tasks to be completed in this type-correctness check part: 1) to
check type-correctness of core expressions. (Recall that CtyInf does not ensure type-
correctness of expressions that it reconstructs types for.); 2) to check well-formedness
of module paths, that is, to check that functor applications contained in the paths
are type-correct and that references of the paths are not cyclic or dangling; 3) to
check that, for every sealing construction (E : S), the module expression E inhabits
the signature S.

5.1 Type equality

We define a type equivalence judgment in Figure 15, with auxiliaries in Figure 16
and 17. The judgment τ1 ` τ2 ≡ means that two types τ1 and τ2 are equivalent with
respect to the lazy program type U . We check equivalence between two arbitrary
types by reducing them into located types.

25

U ` 1 ≡τ 1
(23)

U ` τ1 ≡τ τ ′
1 U ` τ2 ≡τ τ ′

2

U ` τ1 → τ2 ≡τ τ ′
1 → τ ′

2

(24)

U ` τ1 ≡τ τ ′
1 U ` τ2 ≡τ τ ′

2

U ` τ1 ∗ τ2 ≡τ τ ′
1 ∗ τ ′

2

(25)
U ` p1 ≡p p2

U ` p1.t ≡τ p2.t
(26)

Figure 16: Equivalence on located types with respect to U

U ` p1 7→ (θ1, T
i1
d1) U ` p2 7→ (θ2, T

i2
d2) i1 = i2

−−−∀X ∈ dom(θ1), U ` θ1(X) ≡p θ2(X)−−−
U ` p1 ≡p p2

(27)

Figure 17: Equivalence on located forms with respect to U

Figure 16 defines equivalence on located types. The first three rules are straight-
forward. The last rule judges whether two abstract types are equivalent. Two types
p1.t and p2.t are equivalent if and only their prefixes p1 and p2 are equivalent module
paths. (Note that since p1.t is a located type, p1 is in located form.)

Figure 17 defines a judgment for equivalence on module paths in located form.
Two located forms p1 and p2 are equivalent if and only if they refer to module
descriptions at the same location (i.e., labeled with the same integer) and their
functor arguments are equivalent. Take a look at the look-up judgment (Figure 7)
again. The module variable environment θ1 collects all module paths contained in p1

as functor arguments.

5.2 Typing rules

In Figure 18 and 19, we present typing rules for the type-correctness check, with
auxiliaries in Figure 20, 21 and 22.

The judgment U ` E : T means that the module expression E of lazy signature
T is type-correct with respect to the lazy program type U . The judgment e, Γ ` τ :
means that the core expression e of type τ is type-correct under the type environment
Γ with respect to U . A type environment assigns a located type to a variable. Other
judgments are read similarly.

The typing rules in Figure 18 are mostly straightforward. Here we only explain
the rule for sealing.

The rule (31) checks that the sealing construction (E : S) is type-correct. In
particular, the third premise is for ensuring that the module expression E inhabits
the signature S; it checks that the lazy signature T1 of E1 is a subtype of Subst(T1, S).

26

Module expression

U ` Ed : Td

U ` Ei
d : T i

d

(28)

Module expression descriptions

U ` D1 : C1 . . . U ` Dn : Cn

U ` struct (Z) D1 . . . Dn end : sig (Z) C1 . . . Cn end
(29)

U ` A : A′ U ` E : T
U ` functor(X : A) → E : functor(X : A′) → T

(30)

U ` E : T1 U ` S : T2 T1 ` Subst(T1, S) <

U ` (E : S) : (T1 : T2)
(31)

U ` p wf

U ` p : p
(32)

Definitions and Specifications

U ` E : T
U ` module M = E : module M : T

(33)
e, ∅ ` τ :

U ` val l = e : val l : τ
(34)

U ` τ ¦ TypExp(U, τ) = τ ′

U ` datatype t = c of τ : datatype t = c of τ ′ (35)

U ` τ ¦ TypExp(U, τ) = τ ′

U ` type t = τ : type t = τ ′ (36) U ` S : T
U ` module M : S : module M : T

(37)

U ` type t : type t
(38)

U ` τ ¦ TypExp(U, τ) = τ ′

U ` val l : τ : val l : τ ′ (39)

Signature

U ` Sd : Td

U ` Si
d : T i

d

(40)

Signature descriptions

U ` B1 : C1 . . . U ` Bn : Cn

U ` sig (Z) B1 . . . Bn end : sig (Z) C1 . . . Cn end
(41)

U ` A : A′ U ` S : T
U ` functor(X : A) → S : functor(X : A′) → T

(42)

Module variable signature

U ` Ad1 : Ad2

U ` Ai
d1 : Ai

d2

(43)

Module variable signature description

U ` B1 : B′
1 . . . U ` Bn : B′

n

U ` sig B1 . . . Bn end : sig B′
1 . . . B′

n end
(44)

Figure 18: Typing rules for the module language with respect to U

27

Core types

U ` 1 ¦ (45)
U ` τ1 ¦ U ` τ2 ¦

U ` τ1 → τ2 ¦ (46)
U ` τ1 ¦ U ` τ2 ¦

U ` τ1 ∗ τ2 ¦ (47)

U ` p wf TypExp(U, p.t) = τ

U ` p.t ¦ (48)

Core expressions

U, Γ ` () : 1
(49)

x ∈ dom(Γ)

U, Γ ` x : Γ(x)
(50)

U, Γ ` e1 : τ1 U, Γ ` e2 : τ2

U, Γ ` (e1, e2) : τ1 ∗ τ2
(51)

U, Γ ` e : τ1 ∗ τ2

U, Γ ` πi(e) : τ1
(52)

U ` τ ¦ TypExp(U, τ) = τ1 → τ2 U, Γ, x : τ1 ` e : τ3 U ` τ2 ≡ τ3

U, Γ ` (λx.e : τ) : τ1 → τ2
(53)

U, Γ ` e1 : τ1 → τ2 U, Γ ` e2 : τ3 U ` τ1 ≡ τ3

U, Γ ` e1 (e2) : τ2
(54)

U ` p wf PathExp(U, p) = p′ γ(U, p′, c) = (t, τ1) U, Γ ` e : τ2 U ` τ1 ≡ τ2

U, Γ ` p.c e : p′.t
(55)

U, Γ ` e1 : τ1 U ` p wf PathExp(U, p) = p′

γ(UP , p′, c) = (t, τ2) U ` τ1 ≡ p′.t U, Γ, x : τ2 ` e2 : τ

U, Γ ` case e1 of p.c x ⇒ e2 : τ
(56)

U ` p wf PathExp(U, p) = p′

U ` p′ 7→ (θ, sig . . . val l : τ ′ . . . endi) TypExp(U, θ(τ ′)) = τ

U, Γ ` p.l : τ
(57)

Figure 19: Typing rules for the core language with respect to U

28

Subst(T i
d, S

j
d) = subst1 (Td, Sd)

j

subst1 (p, sig (Z) B1 . . . Bn end)
= (sig (Z) subst2 (p, [Z 7→ p]B1) . . . subst2 (p, [Z 7→ p]Bn) end)

subst1 (p, functor(X : A) → Si
d)

= functor(X : A) → subst1 (p(X), Sd)
i

subst1 (sig (Z) C1 . . . Cn end, sig (Z ′) B1 . . . Bm end)
= sig (Z ′)

subst3 (Cσ(1), [Z
′ 7→ Z]B1) . . . subst3 (Cσ(m), [Z

′ 7→ Z]Bm) end

subst1 (sig . . . end, functor(X : A) → S) = raise Error

subst1 (functor(X : A) → T i
d, functor(X

′ : A′) → Sj
d)

= functor(X ′ : A′) → subst1 ([X 7→ X ′]Td, Sd)
j

subst1 (functor(X : A) → T, sig . . . end) = raise Error

subst1 ((T : T i
d), Sd) = subst1 (Td, Sd)

subst2 (p, module M : Si
d) = module M : subst1 (p.M, Sd)

i

subst2 (p,B) = B where B is not a module specification

subst3 (module M : T i
d, module M : Sj

d) = module M : subst1 (Td, Sd)
j

subst3 (C,B) = B where B is not a module specification

Figure 20: Substitution

29

U ` Td < Sd

U ` T i
d < Sj

d

(58)
U ` Td < Ad

U ` T i
d < Aj

d

(59)

U ` Td < Sd

U ` (T : T i
d) < Sd

(60)

PathExp(U, p) = p′ U ` p′ 7→ (θ, T i
d) U ` θ(Td) < Sd

U ` p < Sd
(61)

σ : {1, . . . ,m} 7→ {1, . . . , n} ∀i ∈ {1, . . . ,m}, U ` Cσ(i) < Bi

U ` sig (Z) C1 . . . Cn end < sig (Z ′) B1 . . . Bm end
(62)

U ` A′ < A U ` [X 7→ X ′]T < S

U ` functor(X : A) → T < functor(X ′ : A′) → S
(63)

σ : {1, . . . ,m} 7→ {1, . . . , n} ∀i ∈ {1, . . . ,m}, U ` Cσ(i) < Bi

U ` sig C1 . . . Cn end < sig B1 . . . Bm end
(64)

U ` type t < type t
(65)

U ` type t = τ < type t
(66)

U ` datatype t = c of τ < type t
(67)

U ` τ1 ≡ τ2

U ` type t = τ1 < type t = τ2
(68)

U ` τ1 ≡ τ2

U ` val l : τ1 < val l : τ2
(69)

U ` τ1 ≡ τ2

U ` datatype t = c of τ1 < datatype t = c of τ2
(70)

U ` T < S
U ` module M : T < module M : S

(71)

Figure 21: Subtyping with respect to U

U ` X wf
(72)

−−
U ` Z id wf

(73)
U ` p wf PathExp(U, p.M) = q

U ` p.M wf
(74)

U ` p1 wf U ` p2 wf
PathExp(U, p1) = p′1 PathExp(U, p2) = p′2 PathExp(U, p1(p2)) = q

U ` p′1 7→ (θ, (functor (X : Aj
d) → T)i) p′2 ` θ[X 7→ p′2](Ad) <

U ` p1(p2) wf
(75)

Figure 22: Well-formed module paths with respect to U

30

The subtyping relation, to be given below, follows that of Leroy’s applicative
functor calculus. In particular, for two manifest type specifications type t : τ1 and
type t : τ2 to be in subtyping relations, τ1 and τ2 must be equivalent. To check type
equivalence, the type system expand types using TypExp; here is the reason that we
define the function Subst, which is found in Figure 20.

The function Subst performs explicit substitution for self variables declared inside
sealing signatures. For instance, consider Figure 2. The reconstruction algorithm
infers that the function split in Forest has a type TF.Tree.t → TF.Tree.t list

(For clarity, we add omitted self variables.). The sealing signature specifies that
split has a type Z.Tree.t → Z.Forest.t. Both the reconstructed type and the
specified type are located types, but they are not equivalent according to the type
equivalence judgment. In fact, for Forest to inhabit the sealing signature, the recon-
structed type TF.Tree.t → TF.Tree.t list should be equivalent to TF.Tree.t

→TF.Forest.t, which is the type obtained by substituting TF for Z in the specified
type Z.Tree.t → Z.Forest.t. Indeed, this is satisfied since the type TF.Forest.t

expands into TF.Tree.t list.
One may think that it would be more natural to identify signatures related by α-

renaming rather than to perform explicit substitution. Yet implicit renaming makes
it complex to use the type expansion algorithm, which is developed separately from
the typing rules.

In Figure 21, we define subtyping relations between a lazy signature and a signa-
ture (58), between a lazy signature and a module variable signature (59), between a
lazy signature description and a signature description ((60) to (63)), between a lazy
signature description and a module variable description ((64)) and between a lazy
specification and a specification ((65) to (71)). The rules are mostly intuitive. The
reader should only look at the rule (61). A lazy signature description can be a module
path p. To check that p is a subtype of a signature description Sd, we instantiate
the lazy signature of the module that p refers to; we use the module path expansion
algorithm PathExp to resolve p’s reference. For the decidability of the subtyping
relations, it is important that only lazy signature descriptions can be module paths,
but ordinary signature descriptions cannot.

The judgment U ` p wf, defined in Figure 22, checks that the module path p is
well-formed. For instance, the rule (32) in Figure 18 uses this judgment for checking
type-correctness of module paths. The judgment ensures that the module path p does
not contain cyclic or dangling references and that functor applications contained in
p are type-correct.

Definition 5 A program P is well-typed if and only if ReconstP(P) = U and U `

31

P : U holds.

Proposition 5 For any program P , it is decidable whether P is well-typed or not.

32

module type E =

sig type exp val eval : exp → int val simp : exp → exp end

module PF = functor(X : E with type exp = private [> PF(X).exp]) →
struct

type exp = [‘Num of int | ‘Plus of X.exp * X.exp]

val eval : exp → int = λx.case x of ‘Num n ⇒ n

| ‘Plus (e1, e2) ⇒ X.eval e1 + X.eval e2

val simp : exp → X.exp = λx.case x of ‘Num n ⇒ ‘Num n

|‘Plus(e1, e2) ⇒ case (X.simp e1, X.simp e2) of

(‘Num m, ‘Num n) ⇒ ‘Num(m+n)

| e12 ⇒ ‘Plus e12

end

module Plus = (PF(Plus) : E with type exp = PF(Plus).exp)

Figure 23: A first language

6 The expression problem

In this section, we present an advanced example of recursive modules, by giving a
solution to the expression problem [27].

The expression problem, originally coined by Phil Wadler, dates back to Cook,
who first discussed this problem [2]. It is one of the most fundamental problems one
faces during the development of extensible software. Here, we paraphrase a typical
example of this problem in the following way: suppose that we have a small expression
language, composed of a recursively defined datatype and processors which operate
on this datatype; then we want to extend the expression language in two dimensions,
that is, to extend the datatype with new constructors and to add new processors that
operate on both existing and new constructors. That a programming language can
solve this problem in a type safe and concise way has been regarded as a measure of
the expressive power of the language. Many researchers have addressed themselves
to this problem, using different programming languages [22, 28, 26].

Our aim here is not to draw a conclusion that our solution is better than other
solutions. It is not easy to compare the quality of different solutions, without deep
understandings of each implementation language that is used to express each solution.
Instead, we aim to give a useful example of recursive modules, in order to show that
by combining recursive modules with other constructs of the core and the module
languages we can obtain more expressive power in a modular way.

33

The example we use here extends the one in [9]. It is a variation on the expression
problem, where we only insist on the addition of new constructors. Adding new
processors is easy in this setting.

We shall assume that we have extended Traviata with polymorphic variants [7],
private row types [9] and some usual module language constructions. Adding poly-
morphic variants and private row types is straightforward. We add typing rules for
them to our language. Allowing structures to contain module type definitions may
not be easy, but having module type definitions in the top-level is easy.

To reduce notational burden, we omit, here and elsewhere, preceding self variables
even for forward references when no ambiguity seems to arise. We also omit the top-
level struct and end.

We define our first expression language in Figure 23, using the functor PF. The
type exp defined in the body of PF indicates that the first language supports expres-
sions composed of integer constants and addition. The function eval is for evaluating
the expressions into integers. The function simp is for simplifying the expressions,
by reducing the ‘Plus constructor into the ‘Num constructor when possible.

To keep the first language extensible, we leave PF open recursion; the polymorphic
variant type exp and functions eval and simp recur through PF’s parameter X.

The intuition of the example is that PF takes as argument an expression language
which is built by extending the addition language that PF defines. This is exactly
what the signature of X expresses; here is the key of the example. The type specifi-
cation type t = private [> PF(X).exp] specifies an abstract type into which the
type PF(X).exp can be coerced, or, informally, an abstract type which is a super-
type of PF(X).exp. The type PF(X).exp refers to the type exp defined inside PF’s
body. Hence X’s signature specifies that PF can only be applied to a module whose
defining expression language supports both integers and addition. This recursive use
of PF(X).exp to constrain PF’s argument is the main difference with the solution in
[9]. By avoiding the need to define types outside of the functor, it allows for a more
concise and scalable solution. Observe that if it were not for all of applicative func-
tors, private row types and flexible path references, we could not write X’s signature
in this way.

The use of polymorphic variants, which are structural types unlike usual nominal
datatypes, is important also for defining the function simp. The function simp has
the type exp → X.exp. Since the type X.exp structurally contains the type exp, as
specified in the X’s signature, all of ‘Num n, ‘Num(m+n) and ‘Plus e12, which are
the results of the case branches, are citizens of the type X.exp.

The module Plus instantiates the addition language, by closing PF’s open re-

34

module MF = functor(X : E with type exp = private [> MF(X).exp]) →
struct

module Plus = PF(X)

type exp = [Plus.exp | ‘Mult of X.exp * X.exp]

val eval : exp → int = λx.case x of

#Plus.exp as e ⇒ Plus.eval e

|‘Mult(e1, e2) ⇒ X.eval e1 * X.eval e2

val simp : exp → X.exp = λx.case x of

#Plus.exp as e ⇒ Plus.simp e

|‘Mult(e1, e2) ⇒ case (X.simp e1, X.simp e2) of

(‘Num m, ‘Num n) ⇒ ‘Num(m*n)

| e12 ⇒ ‘Mult e12

end

module Mult = (MF(Mult) : E with type exp = MF(Mult).exp)

Figure 24: A second language

cursion. Observe that both the type and the value level open recursion are closed
simultaneously, that is, by taking the fix-point of PF, the forwardings X.exp, X.eval
and X.simp are connected to exp, simp and eval themselves, thus yielding self con-
tained recursive type exp and recursive functions eval and simp.

Now we can perform addition on the first language. For instance,
val e1 = Plus.eval (‘Plus(‘Num 3, ‘Num 4))

Next, we define our second expression language using the functor MF in Figure 24.
The second language supports expressions composed of multiplication and addition
on integer constants.

We use the exactly same idiom as the first language to define this second language.
In particular, the type MF(X).exp appearing in X’s signature refers to the type exp

defined in the body of MF.
Note that we instantiate the first addition language inside MF, and use it in func-

tions eval and simp to delegate known cases by variant dispatch. Thus we avoid
duplication of program codes.

The module Mult instantiates the second language, by closing MF’s open recursion.
Now we can do arithmetic on the second language. For instance,

val e2 = Mult.eval (‘Plus(‘Mult(‘Num 3, ‘Num 4), ‘Num 5))

Finally, we demonstrate in Figure 25 that it is easy to compose independent

35

module NF =

functor(X: E with type exp = private [> NF(X).exp]) →
struct

type exp = [‘Num of int | ‘Minus of X.exp * X.exp]

val eval : exp →int = λx.case x of ‘Num n ⇒n

| ‘Minus(e1, e2) ⇒(X.eval e1) - (X.eval e2)

val simp : exp →X.exp = λx.case x of ‘Num n ⇒‘Num n

| ‘Minus(e1, e2) ⇒case (X.simp e1, X.simp e2) of

(‘Num m, ‘Num n) ⇒‘Num(m-n)

| e12 ⇒‘Minus e12

end

module GF =

functor(X:E with type exp = private [> GF(X).exp]) →
struct

module Plus = PF(X)

module Minus = NF(X)

type exp = [Plus.exp | Minus.exp]

val eval : exp →int = λx.case x of

#Plus.exp as e ⇒ Plus.eval e

| #Minus.exp as e ⇒ Minus.eval e

val simp : exp →X.exp = λx.case x of

#Plus.exp as e ⇒ Plus.simp e

| #Minus.exp as e ⇒ Minus.simp e

end

Figure 25: To merge independantly developed extensions

36

extensions into a single expression language.

Having seen examples here and in Section 2, we confirm that recursive modules
are useful in several situations. Moreover, when combined with other language con-
structions, they give us the highly expressive power in a modular way. We believe
that recursive modules are a promising candidate for supporting robust extensible
software.

37

module TreeForest = struct (TF)

module Tree = (struct

datatype t = Leaf of int | Node of int * TF.Forest.t

val max = ...

val mk tree = λx.let i = TF.Forest.max x in Node(i, x)

end : sig type t val max : t → int val mk tree : TF.Forest.t → t end)

module Forest = (struct

type t = TF.Tree.t list

val max = ...

val combine = λx.λy.TF.Tree.mk tree [x;y]

end : sig

type t val max : t → int val combine : TF.Tree.t → TF.Tree.t → TF.Tree.t

end)

end

Figure 26: An expample for the double vision problem

7 The double vision problem

Here we examine the double vision problem [6], a typing difficulty involved in recur-
sive modules, in the context of Traviata. Detailed examinations of this problem are
found in [6, 3].

7.1 The situation we have to handle

When a module is sealed with a signature, the type system distinguishes the mod-
ule defined inside the signature and the module which inhabits the signature. For
instance, consider Figure 1. Inside Forest, the type t and the type TF.Forest.t

are not equivalent; the former is an internal type, which refers to Forest’s type t

inside the sealing, but the latter is an external type, which refers to Forest’s type t

outside.
This design choice of type equivalence keeps the type equivalence judgment simple.

Yet, it might be occasionally inconvenient, for instance, when the programmer wants
to build a value of an external type inside sealing.

To see a concrete situation, consider Figure 26. This is the same program as in
Figure 1, but here Tree and Forest contain new functions mk tree and combine,
respectively; the former is for building a tree from a given forest and the latter for
building a tree from given two trees.

Our type system cannot type check the defining expression of combine. For the

38

expression [x;y] inside the body of combine, the core type reconstruction algorithm
infers that the expression has a type TF.Tree.t list; the function TF.Tree.mk tree

takes an argument of type TF.Forest.t, which is specified in Tree’s sealing signature.
According to our type equivalence judgment, however, the types TF.Forest.t and
TF.Tree.t list are not equivalent, since TF.Forest.t is an abstract type thus is
not equivalent to any other types than itself.

This kind of situation typically occurs when the programmer attempts to cycli-
cally import, inside a sealed module, a value that is exported by the same module
as a value of an abstract type. Note that such reimportation is only possible with
recursive modules, but not with ordinary modules.

7.2 Type coercion

Currently we provide a core language construction, called type coercion, that allows
the programmer to coerce types of expressions from internal types to external types
and vice versa, in an explicit way. The type coercion construction is of the form
(e : τ ::> τ ′), which informally reads as “to coerce the type τ of the expression e into
τ ′”. For instance, the programmer can define a type-correct combine as

val combine =

λx.λy.TF.Tree.mk tree ([x;y] : t ::> TF.Forest.t)

(Observe that the internal type t of Forest is only visible inside Forest.)
In the rest of this section, we formalize type coercion.
Note that the programmer can avoid this situation by providing the follow-

ing module Ty inside Forest, instead of providing the type definition type t =

TF.Tree.t list as in Figure 26.

module Ty = (struct

type t = TF.Tree.t list val inj = λx.x val prj = λx.x
end : sig

type t val inj : TF.Tree.t list → t val prj : t → TF.Tree.t list

end)

The programmer needs to use the functions inj and prj as needed when defining
functions Forest.max and Forest.combine. By hiding inj and prj from Tree, but
only exporting the abstract type Ty.t, he can produce the same effect as in Figure 26
without type errors.

Locating paths First, we introduce locating paths. Intuitively, a locating path is
an absolute module path which refers to a module relative to the top-level, whereas

39

O ` ε 7→l (id , O)
(76)

O ` lc 7→l (θ, ss . . . module M := Kj′ . . . endj) K 6= (Kk1
1 : Kk2

2)

O ` [lc.M, 0] 7→l (θ,Kj′)
(77)

O ` lc 7→ (θ, (functor(X : Aj2) → Kj3)j1) K 6= (Kk1
1 : Kk2

2)

O ` [lc(p), 0] 7→l (θ[X 7→ p], Kj3)
(78)

O ` lc 7→l (θ, ss . . . module M := Kj′ . . . endj) K ≡ (. . . (K
ki+1

i+1 : Kki
i) . . . Kk0

0)

O ` [lc.M, i] 7→l (θ,Kki
i)

(79)

O ` lc 7→l (θ, (functor(X : Aj1) → Kj2)j0) K ≡ (. . . (K
ki+1

i+1 : Kki
i) . . . Kk0

0)

O ` [lc(p), i] 7→l (θ[X 7→ p], Kki
i)

(80)

O ` lc 7→l (θ, ss . . . module M := Kj′ . . . endj) i ≥ 1

K ≡ (. . . (Kki
i : K

ki−1

i−1) . . . Kk0
0) Ki 6= (J j1

1 : J j2
2)

O ` [lc.M, i] 7→l (θ,Kki
i)

(81)

O ` lc 7→l (θ, (functor(X : Aj1) → Kj2)j0) i ≥ 1

K ≡ (. . . (Kki
i : K

ki−1

i−1) . . . Kk0
0) Ki 6= (J j1

1 : J j2
2)

O ` [lc(p), i] 7→l (θ[X 7→ p], Kki
i)

(82)

Figure 27: Locating path look-up with respect to O

a module path refers a module relative to the structure or (lazy) structure type to
which the path’s preceding self variable is ascribed.

The syntax for locating paths is:

lc ::= ε | [lc.M, i] | [lc(p), i]

Let us examine each construct. The construct ε represents the top-level. When lc
refers to a structure or (lazy) structure type containing a module binding module M :=
Kj, then [lc.M, i] resolves to the module expression or (lazy) signature obtained from
K by erasing K’s sealing signatures i times. Similarly, when lc refers to a functor
(functor(X : A) → Kj2)j1 , then [lc(p), i] resolves to the module expression obtained
from K by erasing K’s sealing signatures i times. In the constructs [lc.M, i] and
[lc(p), j], we call the integers i and j locating integers.

In Figure 27, we define locating path look-up judgment. The judgment O ` lc 7→l

(θ,Ki) informally means that the locating path lc refers to the module description
K labeled with the integer i in the top-level O, where each module variable X bound
to θ(X).

40

struct (Z(id ,ε))

module M =

((struct (Z
(id ,[ε.M,2])
1) type t = int end

: sig (Z
(id ,[ε.M,1])
2) type t end)

: sig (Z
(id ,[ε.M,0])
3) end)

module F = (functor (X:sig type t val t : X.t end) →
struct (Z

(id ,[ε.F(X),0])
4) module N = struct (Z

(id ,[[ε.F(X),0].N,0])
5) end end)

end

Figure 28: An example for annotations on self variables

γ(Z(θ,lc)) = lc γ(p.M) = [γ(p).M, 0] γ(p1(p2)) = [γ(p1)(p2), 0]

Figure 29: Turning module paths into locating paths

We make the assumption that each occurrence of a self variable Z in a program P
is annotated with a locating path lc in addition to an identity substitution, written
Z(id ,lc), such that P ` lc 7→l (id , ρP (Z)) holds. In a practical system, we provide an
elaboration phase for complementing these annotations. For an explanatory purpose,
we give an example of a program which reflects our assumptions on self variables in
Figure 28.

For a module variable environment θ, we define θ(lc) as follows:

θ(ε) = ε θ([lc.M, i]) = [θ(lc).M, i] θ([lc(p), i]) = [θ(lc)(θ(p)), i]

We also define a function γ for turning extended module identifiers (i.e., module
paths other than module variables) into locating paths in Figure 29. We may say that
γ(p) is the locating path of p. Note that if O ` p 7→ (θ,K i) then O ` γ(p) 7→l (θ,K i)
and vice versa.

Coercible judgments Here, we define coercible judgments for judging whether
two types are coercible.

Definition 6 A module path p is in structure form with respect to a top-level O if
and only if O ` p 7→ (θ, ss . . . endi) and, for all X in dom(θ), θ(X) is in structure
form with respect to O.

We define coercible judgments on types and locating paths in Figure 30 and 31,
respectively. The judgment U ` τ ::> τ ′ means that the types τ and τ ′ are coercible
with respect to the lazy program type U ; the judgment U ` lc ::>l lc ′ reads similarly.

41

U ` 1 ::> 1
U ` τ11 ::> τ21 U ` τ12 ::> τ22

U ` τ11 ∗ τ12 ::> τ21 ∗ τ22

U ` τ11 ::> τ21 U ` τ12 ::> τ22

U ` τ11 → τ12 ::> τ21 → τ22

p1 and p2 are in structure form with respect to U U ` γ(p1) ::>l γ(p2)

U ` p1.t ::> p2.t

Figure 30: Convertible relation on types with respect to U

U ` ε ::>l ε U ` X ::>l X

U ` lc1 ::>l lc2

U ` [lc1.M, i1] ::>l [lc2.M, i2]

U ` lc1 ::>l lc2 U ` γ(p1) ::>l γ(p2)

U ` [lc1(p1), i1] ::>l [lc2(p2), i2]

Figure 31: Convertible relation on locations with respect to U

For the expression (e : τ ::> τ ′) to be type-correct, two types τ and τ ′ must be
coercible.

The rules in Figure 30 are mostly straightforward. The last rule says that for
two type paths p1.t and p2.t to be coercible they must be in structure form and
their locating paths must be coercible. Figure 31 defines the coercible judgment on
locating paths. Two locating paths are convertible if and only if they differ only in
locating integers.

For instance, consider Figure 1. Assume that the self variable TF of TreeForest
is annotated with (id , ε), and that the module Tree declares a self variable named T,
whose annotation would be (id , [ε.Tree, 1]). Then the locating path of TF(id ,ε).Tree is
[ε.Tree, 0] and that of T(id ,[ε.Tree,1]) is [ε.Tree, 1]. The two locating paths are coercible,
hence so are the types TF(id ,ε).Tree.t and T(id ,[ε.Tree,1]).t.

Typing rule In Figure 32, we give a typing rule for type coercion. Observe that
when checking coercibility between the types τ1 and τ2, the type system does not
expand them.

For conciseness, we usually do not write locating path annotations of self variables.

U ` τ1 ¦ U ` τ2 ¦ U, Γ ` e : τ U ` τ1 ≡ τ
−−−U ` τ1 ::> τ2 TypExp(U, τ2) = τ ′

2−−−
U, Γ ` (e : τ1 ::> τ2) : τ ′

2

(83)

Figure 32: Typing rule for the type coercion with respect to U

42

P ` p ;n p′

P ` p.M ;n p′.M

P ` p ;n p′

P ` p(q) ;n p′(q)

P ` q ;n q′

P ` p(q) ;n p(q′)

P ` p 7→d (θ, qi)

P ` p ;n θ(q)

Figure 33: Normalization of module paths with respect to P

8 Soundness

In this section, we present a call-by-value operational semantics and prove a soundness
result.

First we define the normalization of module paths in Figure 33. The judgment
P ` p ;n q means that p reduces into q in one step, with respect to the program P .
The normalization traces module abbreviations in the intuitive way, and is defined
for module paths containing no module variables.

During normalization and reductions to be defined below, we use implementation
look-up judgment instead of the look-up judgment (Figure 7), to look up concrete
modules from a program. The judgment is defined in Figure 34, with an auxiliary in
Figure 35.

Values v and evaluation contexts E are:

v ::= () | (v1, v2) | p.c v | (λx.e : τ)
E ::= {} | (E, e) | (v, E) | πi(E) | E (e) | v (E) | p.c E

| case E of ms | (E : τ1 : τ2)

where p does not contain module variables.
Then a small step reduction is either:

p.l
mp→p′.l when P ` p ;n p′ πi(v1, v2)

prj→ vi (v : τ1 : τ2)
convt→ v

(λx.e : τ) v
fun→ [x 7→ v]e case p.c v of q.c x ⇒ e

case→ [x 7→ v]e

p.l
vpth→ θ(e) when P ` p 7→d (θ, struct . . . val l = e . . . endi)

or an inner reduction obtained by induction:
e1 → e2 E 6= {}
E{e1} → E{e2}

Again, these reductions are defined with respect to a program P .

When deconstructing a value through the case expression case p.c v of q.c x, we
do not explicitly check that p and q are equivalent. The type system already ensures
that p and q expand into equivalent module paths.

43

P ` Zθ 7→d (θ, ρP (Z))

P ` p 7→d (θ, struct . . . module M = E . . . endi)

P ` p.M 7→d (θ, erase(E))

P ` p1 7→d (θ, (functor(X : A) → E)i)

P ` p1(p2) 7→d (θ[X 7→ p2], erase(E))

Figure 34: Implementation look-up

erase((E : S)i) = erase(E) erase(E) = E otherwise

Figure 35: Sealing erasure

We assume that the top-level structure of every program P contains a value com-
ponent named main. The evaluation of P begins by reducing the defining expression
of main.

Proposition 6 (Soundness) Let a program P be well-typed. Then the evaluation
of P either returns a value or else gives rise to an infinite reduction sequence.

8.1 Proof of the soundness

Our proof of Proposition 6 proceeds in the following three steps.

1. We define a type system TraviataY, which uses the intuitive expansion algo-
rithms for expanding module paths and types. We prove that when a program
P is type-correct in Traviata, then it is type-correct in TraviataY.

2. We define a type system TraviataX, whose type equivalence relation is defined
by the weak bisimulation relation on a labeled transition system on types. We
establish a soundness result for TraviataX, by proving progress and subject
reduction properties.

3. We prove that if P is type-correct in TraviataY, then it is type-correct in
TraviataX.

The purpose of the use of locks Σ, Ω and Ψ during expansions (Figure 9 and 11)
and core type reconstruction(Figure 12) is for the decidability result. In the soundness
proof, we are interested in a derivation tree which proves well-typedness of P but
not in how we can construct the tree. Hence, in the proofs below, we use judgments

44

of the ground normalization, the type expansion and the core type reconstruction
that do not hold locks. For instance, we may say that “U ` p ;g q holds”, when
U, Σ ` p ;g q can be proven for some Σ by the inference rules that are completely
same as the rules in Figure 9 but do not have locks. (It is clear that whether or not
the inference rules use locks does not affect outputs of the ground normalization; the
ground normalization without locks may diverge and the ground normalization with
locks may raise more errors than without.)

In the rest of this section, we only consider programs that are well-typed in
Traviata, that is, programs P such that ReconstP(P) = UP and UP ` P : UP hold.
In particular, we do not explicitly include this premise when stating lemmas. Recall
that all core types appearing in UP are located types. This is important for proving
Lemma 2. We also assume that all module paths, types and core expressions have
located variables. Again, we do not include this premise when stating lemmas and
propositions.

8.1.1 The type system TraviataY

TraviataY does not have a lazy program type reconstruction algorithm; it checks that
P is type-correct with respect to a given UP . TraviataY differs from Traviata in that
it expands module paths and types in the intuitive way.

We define the module path expansion algorithm and the type expansion algorithm
that TraviataY uses in in Figure 36 and Figure 37, respectively. In Figure 39, we
present typing rules for TraviataY, with auxiliaries found in Figure 41, 42 and 43.
The typing rules are same as those for Traviata, except for the expansion algorithms.

Lemma 1 ([20]) If PathExp(UP , p) = q, then UP `Y p ; q.

Lemma 2 If UP ` τ ↓ τ ′, then UP `Y τ ↓ τ ′.

Proposition 7 Suppose ReconstP(P) = UP and UP ` P : UP , then UP `Y P : UP .

Proof. By Lemma 1 and 2. 2

In the rest of proofs, we assume that ReconstP(P) = UP and UP `Y P : UP hold.
In particular, we do not explicitly include this premise when stating lemmas.

For the purpose of proofs, we strengthen the inference rules of well-formedness of
module paths (Figure 42), by replacing the rule for self variables with the rule:

U `Y θ wf

U `Y Zθ wf

where U `Y θ wf is defined as follows.

45

Definition 7 A module variable environment θ is well-formed with respect to U in
TraviataY, written U `Y θ wf, if and only if, for all X ∈ dom(θ), U `Y θ(X) wf
and U `Y θ(X) < θ(ρU(X)).

Lemma 3 Let θ be in located form and O `Y p ; q, then O `Y θ(p) ; θ(q).

Lemma 4 Let θ1 and θ2 be module variable environments such that dom(θ1) =
dom(θ2) and for all X ∈ dom(θ) O `Y θ1(X) ; θ2(X). If O `Y p ; q, then
O `Y θ1(p) ; θ2(q).

Lemma 5 Suppose UP `Y θ wf and UP `Y p wf, then UP `Y θ(p) wf.

Lemma 6 Suppose UP `Y θ wf and UP `Y τ ¦, then UP `Y θ(τ) ¦.

Lemma 7 Suppose UP `Y θ wf and UP , Γ `Y e : τ . Then UP , Γ1 `Y θ(e) : τ ′

with UP `Y θ(τ) ≡ τ ′, where dom(Γ) = dom(Γ1) and, for all x in dom(Γ1), UP `Y

θ(Γ(x)) ≡ Γ1(x).

8.1.2 The type system TraviataX

Before presenting TraviataX, we build a lazy program type U]
P from UP by making all

abstract type specifications except for those appearing in module variable signatures
transparent. We define a function Trans in Figure 44, which builds U]

P from UP . We
let U]

P be Trans(UP). Note that bound self variables may escape their scope in U]
P .

TraviataX differs from TraviataY in that a type equivalence relation of TraviataX
is defined by the weak bisumilation relation on a labeled transition system on types.

We define labeled transition systems on module paths and types in Figure 46
and 47, respectively. Note that, in U]

P , abstract type specifications may only appear
in module variable signatures.

We write U ` τ
c⇒ τ ′ to mean U ` τ ⇒ c→ ⇒ τ ′, where ⇒ is the reflective

transitive closure of
τ
⇀. (We use juxtaposition to denote relation composition.)

Definition 8 ([18]) Let R be a binary relation on types. Then R is a weak simula-
tion with respect to a lazy program type U if, whenever τ1Rτ2,

1. if U ` τ1
τ
⇀ τ ′

1 then there exists τ ′
2 such that U ` τ2 ⇒ τ ′

2 and τ ′
1Rτ ′

2.

2. if U ` τ1
c

⇀ τ ′
1 then there exists τ ′

2 such that U ` τ2
c⇒ τ ′

2 and τ ′
1Rτ ′

2.

46

Definition 9 ([18]) A binary relation R on types is said to be a weak bisimulation
with respect to a lazy program type U if both R and its converse are weak simulations
with respect to U . We say that τ and τ ′ are weakly bisimilar with respect to U , written
U ` τ ≈ τ ′, if there exists a weak bisimulation R with respect to U such that τRτ ′.

Again, we usually write τ ≈ τ ′ to denote U]
P ` τ ≈ τ ′.

Lemma 8 ([18]) The relation ≈ is a weak bisimulation.

We present typing rules for TraviataX in Figure 49, with auxiliaries in Figure 50,
51 and 52.

Definition 10 A program P is type-correct with respect to U in TraviataX if and
only if U `X P : U holds.

For the purpose of proofs, we strengthen the inference rules of well-formedness of
module paths (Figure 51), by replacing the rule for self variables with the rule:

U `X θ wf

U `X Zθ wf

where U `X θ wf is defined as follows.

Definition 11 A module variable environment θ is well-formed with respect to a lazy
program type U in TraviataX, written U `X θ wf, if and only if, for all X ∈ dom(θ),
U `X θ(X) wf and U `X θ(X) < θ(ρU(X)).

Definition 12 For types τ and τ ′, we write U ` τ
τ∗
↔ τ ′ when (τ, τ ′) is an element

of the smallest transitive and symmetric relation containing {(τ, τ ′) | U ` τ
τ
⇀ τ ′}.

Lemma 9 If U]
P ` τ

c
⇀ τ1 and either U]

P ` τ
τ
⇀ τ ′ or U]

P ` τ ′ τ
⇀ τ , then U]

P ` τ ′ c⇒
τ2 and U]

P ` τ1
τ∗
↔ τ2.

Lemma 10 If U]
P ` τ0

τ
⇀ τ1 and U]

P ` τ0
c⇒ τ2, then U]

P ` τ1
c⇒ τ3 and U]

P ` τ2
τ∗
↔

τ3.

Lemma 11 If U]
P ` τ

τ∗
↔ τ ′ and U]

P ` τ
c

⇀ τ1, then U]
P ` τ ′ c⇒ τ2 and U]

P ` τ1
τ∗
↔ τ2.

The following lemma is important; it says that τ -transitions preserve bisimilarity.
In particular, using this lemma we prove Lemma 16.

47

Lemma 12 If U]
P ` τ

τ
⇀ τ ′, then U]

P ` τ ≈ τ ′.

Proof. Prove and use Lemmas 9 to 11. 2

Lemma 13 If UP `Y p ; p′, then U]
P ` p ⇒ p′.

Lemma 14 If UP `Y τ ↓ τ ′, then U]
P ` τ ≈ τ ′.

Lemma 15 If UP ` τ ≡τ τ ′, then U]
P ` τ ≈ τ ′.

The following lemma is important; it says that type equivalence in TraviataY
implies that in TraviataX.

Lemma 16 If UP `Y τ ≡ τ ′, then U]
P ` τ ≈ τ ′

Lemma 17 If UP `Y p wf and U]
P ` p

τ
⇀ p′, then UP `Y p′ wf.

Proof. Use Lemma 5. 2

Lemma 18 If UP `Y τ ¦ and UP ` τ
τ
⇀ τ ′, then UP `Y τ ′ ¦.

Proof. Use Lemma 6. 2

Lemma 19 If U]
P , Γ `X e : τ1 and U]

P , Γ `X e : τ2, then U]
P ` τ1 ≈ τ2

Lemma 20 Let a relation R on types be defined as:

R def
= {(θ(τ), θ(τ ′)) | UP `Y θ wf and U]

P ` τ ≈ τ ′}

If (τ, τ ′) ∈ R, then U]
P ` τ ≈ τ ′.

Lemma 21 If UP `Y p wf, then U]
P `X p wf.

Proof. Use Lemma 20. 2

Lemma 22 If UP `Y τ ¦, then U]
P `X τ ¦.

Proof. Use Lemma 21. 2

48

Lemma 23 Let U]
P `X θ wf and θ is in located form. Let a relation R on types be

defined as:

R def
= {(θ(τ), θ(τ ′)) | U]

P ` τ ≈ τ ′}

If (τ, τ ′) ∈ R, then U]
P ` τ ≈ τ ′.

Lemma 24 If U]
P `X θ wf and θ is in located form and U]

P `X p wf, then U]
P `X

θ(p) wf.

Lemma 25 Let U]
P `X p wf and U]

P `Y p ; q, then U]
P `X q wf.

Lemma 26 Let U]
P `X θ wf and U]

P `X p wf, then U]
P `X θ(p) wf.

Lemma 27 Let U]
P `X p wf and U]

P ` p
τ
⇀ p′, then U]

P `X p′ wf.

Lemma 28 Let a relation R on types be defined as:

R def
= {(θ(τ), θ(τ ′)) | U]

P `X θ wf and U]
P ` τ ≈ τ ′}

If (τ, τ ′) ∈ R, then U]
P ` τ ≈ τ ′.

Lemma 29 Let U]
P `X θ wf and U]

P , Γ `X e : τ , then U]
P , Γ1 `X θ(e) : θ(τ), where

dom(Γ) = dom(Γ1), and for all x ∈ dom(Γ) U]
P ` Γ1(x) ≈ θ(Γ(x)).

We build a mapping from self variables to module paths, using functions defined in
Figure 45. We let S be SelfMap(UP). Intuitively, S corrects substitutions of module
paths for self variables which are performed by TraviataY during type checking of P
for ensuring that sealing expressions (E : S) are type-correct.

For a type τ , we write τS to denote the set of types obtained from τ by replacing
some occurrences of Zθ in τ with θ(S(Z)). We use τ s, τ s1 , τ s2 and the likes as
metavariables for elements of τS . We also write pS and ps with obvious meanings.

Observe that, for all Z ∈ dom(S), we have U]
P `X S(Z) < Td, where U]

P ` Z id 7→
(id , T i

d).
We define a binary relation ≈S on types as follows:

≈S = {(τ, τ s) | U]
P `X τ wf and τ s ∈ τS}.

Lemma 30 If U]
P ` τ ≈S τ ′ then U]

P ` τ ≈ τ ′.

49

Lemma 31 If U]
P `X τ ¦ and U]

P `X τ ′ ¦ and U]
P ` τ ::> τ ′, then U]

P ` τ ≈ τ ′.

Lemma 32 If UP , Γ `Y e : τ , then U]
P , Γ `X e : τ .

Proposition 8 Assume ReconstP(P) = UP and UP `Y P : UP and Trans(UP) =
U]

P , then U]
P `X P : U]

P .

Proposition 9 (Subject reduction in TraviataX) Assume ReconstP(P) = UP and
UP `Y P : UP and Trans(UP) = U]

P , and U]
P `X P : U]

P . If U]
P , ∅ `X e : τ1 and

e → e′, then U]
P , ∅ `X e′ : τ1.

Definition 13 A type τ is stable with respect to a lazy program type U if and only if,
for all τ ′ in comps(τ), τ ′ is a type path p.t where p does not contain module variables
and U]

P ` p 7→ (θ, sig . . . datatype t = c of τ ′′ . . . endi) holds.

The function comps on types is defined as follows:

comps(τ) =


∅ τ = τ1 → τ2 or τ = 1
comps(τ1) ∪ comps(τ2) τ = τ1 ∗ τ2

{p.t} τ = p.t

Lemma 33 If U]
P , ∅ `X v : τ , then there is a stable type τ ′ with respect to U]

P such
that U]

P , ∅ `X v : τ ′.

Lemma 34

1. There are no types τ1, τ2 such that either U]
P , Γ `X () : τ1 ∗ τ2 or U]

P , Γ `X () :
τ1 → τ2 holds.

2. There is not a stable type p.t such that U]
P , Γ `X () : p.t.

3. If U]
P , Γ `X (v1, v2) : τ , then there are no types τ1, τ2 such that U]

P , Γ `X

(v1, v2) : τ1 → τ2.

4. If U]
P , Γ `X (v1, v2) : τ , then U]

P , Γ `X (v1, v2) : 1 does not hold.

5. If U]
P , Γ `X (v1, v2) : τ , then there is no stable type p.t such that U]

P , Γ `X

(v1, v2) : p.t.

6. If U]
P , Γ `X (λx.e : τ) : τ ′, then there are no types τ1, τ2 such that U]

P , Γ `X

(λx.e : τ) : τ1 ∗ τ2.

50

7. If U]
P , Γ `X (λx.e : τ) : τ ′, then U]

P , Γ `X (λx.e : τ) : 1 does not holds.

8. If U]
P , Γ `X (λx.e : τ) : τ ′, then there is no stable type p.t such that U]

P , Γ `X

(λx.e : τ) : p.t.

9. If U]
P , Γ `X p.c v : τ , then there are no types τ1, τ2 such that either U]

P , Γ `X

p.c v : τ1 → τ2 or U]
P , Γ `X p.c v : τ1 ∗ τ2 holds.

10. If U]
P , Γ `X p.c v : τ , then U]

P , Γ `X p.c v : 1 does not hold.

Proposition 10 (Progress in TraviataX) Assume ReconstP(P) = UP and UP `Y

P : UP and Trans(UP) = U]
P , and U]

P `X P : U]
P . If U]

P , ∅ `X e : τ then either e is a
value or else there is some e′ with e → e′ with respect to P .

51

O `Y X ; X O `Y Zθ ; Zθ

O `Y p ; p′

O ` p′.M 7→ (θ,K i) K 6= q

O `Y p.M ; p′.M

O `Y p ; p′

O ` p′.M 7→ (θ, qi) O `Y θ(q) ; r

O `Y p.M ; r

O `Y p1 ; p′1 O `Y p2 ; p′2
O ` p′1(p

′
2) 7→ (θ,Ki) K 6= q

O `Y p1(p2) ; p′1(p
′
2)

O `Y p1 ; p′1 O `Y p2 ; p′2
O ` p′1(p

′
2) 7→ (θ, qi) O `Y θ(q) ; r

O `Y p1(p2) ; r

Figure 36: Module path expansion with respect to O in TraviataY

[uni]
U `Y 1 ↓ 1

[arr]
U `Y τ1 ↓ τ ′

1 U `Y τ2 ↓ τ ′
2

U `Y τ1 → τ2 ↓ τ ′
1 → τ ′

2

[pair]
U `Y τ1 ↓ τ ′

1 U `Y τ2 ↓ τ ′
2

U `Y τ1 ∗ τ2 ↓ τ ′
1 ∗ τ ′

2

[dtyp]
U `Y p ; p′ U ` p′.t 7→ (θ, sig . . . datatype t = c of τ . . . endi)

U `Y p.t ↓ p′.t

[opq]
U `Y p ; p′ U ` p′.t 7→ (θ, sig . . . type t . . . endi)

U `Y p.t ↓ p′.t

[typ]
U `Y p ; p′ U ` p′.t 7→ (θ, sig . . . type t = τ1 . . . endi) U `Y θ(τ1) ↓ τ

U `Y p.t ↓ τ

Figure 37: Type expansion with respect to U in TraviataY

U `Y τ1 ↓ τ ′
1 U `Y τ2 ↓ τ ′

2 U ` τ ′
1 ≡τ τ ′

2

U `Y τ1 ≡ τ2

Figure 38: Type equivalence with respect to U in TraviataY

52

Definitions and Specifications

U `Y E : T
U `Y module M = E : module M : T

U `Y S : T
U `Y module M : S : module M : T

U `Y τ1 ¦ U `Y τ1 ↓ τ2

U `Y datatype t = c of τ1 : datatype t = c of τ2

U `Y τ1 ¦ U `Y τ1 ↓ τ2

U `Y type t = τ1 : type t = τ2 U `Y type t : type t

U, ∅ `Y e : τ

U `Y val l = e : val l : τ

U `Y τ1 ¦ U `Y τ1 ↓ τ2

U `Y val l : τ1 : val l : τ2

Module expression

U `Y Ed : Td

U `Y Ei
d : T i

d

Module expression descriptions

U `Y D1 : C1 . . . U `Y Dn : Cn

U `Y struct (Z) D1 . . . Dn end : sig (Z) C1 . . . Cn end

U `Y A : A′ U `Y E : T

U `Y functor(X : A) → E : functor(X : A′) → T

U `Y E : T1 U `Y S : T2 U `Y T1 < Subst(T1, S)

U `Y (E : S) : (T1 : T2)

U `Y p wf

U `Y p : p

Signature

U `Y Sd : Td

U `Y Si
d : T i

d

Signature descriptions

U `Y B1 : C1 . . . U `Y Bn : Cn

U `Y sig (Z) B1 . . . Bn end : sig (Z) C1 . . . Cn end

U `Y A : A′ U `Y S : T

U `Y functor(X : A) → S : functor(X : A′) → T

Module variable signature

U `Y Ad1 : Ad2

U `Y Ai1
d1 : Ai2

d2

Module variable signature description

U `Y B1 : B′
1 . . . U `Y Bn : B′

n

U `Y sig B1 . . . Bn end : sig B′
1 . . . B′

n end

Figure 39: Typing rules for the module language with respect to U in TraviataY

53

Core types

U `Y 1 ¦
U `Y τ1 ¦ U `Y τ2 ¦

U `Y τ1 → τ2 ¦
U `Y τ1 ¦ U `Y τ2 ¦

U `Y τ1 ∗ τ2 ¦
UP `Y p wf U `Y p.t ↓ τ

U `Y p.t ¦
Core expressions

U, Γ `Y () : 1

x ∈ dom(Γ)

U, Γ `Y x : Γ(x)

U `Y τ1 ↓ τ2 → τ3 U `Y τ1 ¦ U, Γ, x : τ2 `Y e : τ4 U `Y τ4 ≡ τ3

U, Γ `Y (λx.e : τ1) : τ2 → τ3

U, Γ `Y e1 : τ1 U, Γ `Y e2 : τ2

U, Γ `Y (e1, e2) : τ1 ∗ τ2

U, Γ `Y e : τ1 ∗ τ2

U, Γ `Y πi(e) : τi

U, Γ `Y e1 : τ1 → τ U, Γ `Y e2 : τ ′
1 U `Y τ1 ≡ τ ′

1

U, Γ `Y e1 (e2) : τ

U `Y p ; p′ γY (U, p′, c) = (t, τ1) U, Γ `Y e : τ2 U `Y τ1 ≡ τ2

U, Γ `Y p.c e : p′.t

U, Γ `Y e1 : τ1 U `Y p wf U `Y p ; p′

γY (U, p′, c) = (t, τ2) U `Y τ1 ≡ p′.t U, Γ, x : τ2 `Y e2 : τ

U, Γ `Y case e1 of p.c x ⇒ e2 : τ

U `Y p wf U `Y p ; p′ U ` p′ 7→ (θ, sig . . . val l : τ ′ . . . endi) U `Y θ(τ ′) ↓ τ

U, Γ `Y p.l : τ

U `Y τ1 ¦ U `Y τ2 ¦ U `Y τ2 ↓ τ τ1 ` τ2 ::> U, Γ `Y e : τ3 U ` τ1 ≡ τ3

U, Γ `Y (e : τ1 :: τ2) : τ

Figure 40: Typing rules for the core language with respect to U in TraviataY

γY (U, p, c) = (t, τ) when
U ` p 7→ (θ, sig . . . datatype t = c of τ ′ . . . endi) and U `Y θ(τ ′) ↓ τ

Figure 41: Datatype look-up with respect to U in TraviataY

54

U `Y X wf U `Y Z id wf

U `Y p.M ; q U `Y p wf

U `Y p.M wf

U `Y p1 wf U `Y p2 wf U `Y p1 ; p′1 U `Y p2 ; p′2
U `Y p1(p2) ; q U ` p′1 7→ (θ, (functor (X : Aj

d) → T)i) U `Y p′2 < θ[X 7→ p′2](Ad)

U `Y p1(p2) wf

Figure 42: Well-formed module paths with respect to U in TraviataY

U `Y Td < Sd

U `Y T i
d < Sj

d

U `Y Td < Ad

U `Y T i
d < Aj

d

U `Y Td < Sd

U `Y (T : T i
d) < Sd

U `Y p ; p′ U ` p′ 7→ (θ, T i
d) U `Y θ(Td) < Sd

U `Y p < Sd

σ : {1, . . . ,m} 7→ {1, . . . , n} ∀i ∈ {1, . . . ,m}, U `Y Cσ(i) < Bi

U `Y sig (Z) C1 . . . Cn end < sig (Z ′) B1 . . . Bm end

U `Y A′ < A U `Y [X 7→ X ′]T < S

U `Y functor(X : A) → T < functor(X ′ : A′) → S

σ : {1, . . . ,m} 7→ {1, . . . , n} ∀i ∈ {1, . . . ,m}, U `Y Cσ(i) < Bi

U `Y sig C1 . . . Cn end < sig B1 . . . Bm end

U `Y type t < type t U `Y type t = τ < type t U `Y datatype t = c of τ < type t

U `Y τ1 ≡ τ2

U `Y type t = τ1 < type t = τ2

U `Y τ1 ≡ τ2

U `Y val l : τ1 < val l : τ2

U `Y τ1 ≡ τ2

U `Y datatype t = c of τ1 < datatype t = c of τ2

U `Y T < S
U `Y module M : T < module M : S

Figure 43: Subtyping with respect to U in TraviataY

55

Trans(T i
d) = trans1(Td)

i

trans1(sig (Z) C1 . . . Cn end) = sig (Z) trans1(C1) . . . trans1(Cn) end

trans1(functor(X : A) → T i
d) = functor(X : A) → trans1(Td)

i

trans1((T i1
d1 : T i2

d2)) = (trans1(Td1)
i1 : trans2(Td1, Td2)

i2)

trans1(p) = p

trans1(module M : T i
d) = module M : trans1(Td)

i

trans1(C) = C when C is not a module specification

trans2((T i1
d1 : T i2

d2), Td) = trans2(Td2, Td)

trans2(p, sig (Z) C1 . . . Cn end) = sig (Z) trans3(p, C1) . . . trans3(p, Cn) end

trans2(p, functor(X : A) → T i
d) = functor(X : A) → trans2(p(X), Td)

i

trans2(sig (Z1) C1 . . . Cmend, sig (Z2) C ′
1 . . . C ′

n end)
= sig (Z2) trans4(Z1, Cσ(1), C

′
1) . . . trans4(Z1, Cσ(n), C

′
n) end

trans2(functor(X1 : A1) → T i1
d1, functor(X2 : A2) → T i2

d2)
= functor(X2 : A2) → trans2([X1 7→ X2]Td1, Td2)

i2

trans3(p, module M : T i
d) = module M : trans2(p.M, Td)

i

trans3(p, type t) = type t = p.t

trans3(p, C) = C when C is not a module specification nor opaque type specification

trans4(p, module M : T i1
d1, module M : T i2

d2) = module M : trans2(Td1, Td2)
i2

trans4(p, C,C ′) = trans3(p, C ′) when C ′ is not a module specification

Figure 44: Breaking type abstraction

56

SelfMap(T i
d) = selfmap1 (Td)

selfmap1 (sig (Z) C1 . . . Cn end) =
∪

i selfmap2 (Ci)

selfmap1 (functor(X : A) → T) = SelfMap(T)

selfmap1 ((T i
d : T)) = selfmap3 (Td, T) ∪ selfmap1 (Td)

selfmap1 (p) = ∅

selfmap2 (module M : T) = SelfMap(T)

selfmap2 (C) = ∅ when C is not a lazy module specification

selfmap3 ((T i
d : T ′), T) = selfmap3 (Td, T)

selfmap3 (p, sig (Z id) C1 . . . Cn endi) = [Z 7→ p] ∪ ∪
i selfmap4 (p, Ci)

selfmap3 (p, (functor(X : A) → T)i) = selfmap3 (p(X), T)

selfmap3 (sig (Z id
1) C1 . . . Cn end, sig (Z id

2) C ′
1 . . . C ′

m endi)
= [Z1 7→ Z id

2] ∪ ∪
i selfmap5 (Cσ(i), C

′
i)

selfmap3 (functor(X : A) → T i
d, (functor(X

′ : A′) → T ′)i)
= selfmap3 ([X 7→ X ′]Td, T

′)

selfmap4 (p, module M : T) = selfmap(p.M, T)

selfmap4 (p, C) = ∅ when C is not a lazy module specification

selfmap5 (module M : T i
d, module M : T) = selfmap3 (Td, T)

selfmap5 (C,C ′) = ∅ otherwise

Figure 45: Extracting substitutions

57

dom(θ1) = dom(θ2) ∃X ∈ dom(θ1), U ` θ1(X)
τ
⇀ θ2(X)

−−−−∀X ′ ∈ dom(θ1)\{X}, θ1(X
′) = θ2(X

′)−−−−
U ` Zθ1

τ
⇀ Zθ2

U ` p
τ
⇀ p′

U ` p.M
τ
⇀ p′.M

U ` p
τ
⇀ p′

U ` p(q)
τ
⇀ p′(q)

U ` q
τ
⇀ q′

U ` p(q)
τ
⇀ p(q′)

U ` p 7→ (θ, qi)

U ` p
τ
⇀ θ(q)

Figure 46: Transition rules for paths with respect to U

U ` 1
1
⇀ 0 U ` τ1 → τ2

ari⇀ τi U ` τ1 ∗ τ2
prdi⇀ τi

U ` p
τ
⇀ p′

U ` p.t
τ
⇀ p′.t

U ` p.t 7→ (θ, sig . . . type t = τ . . . endi)

U ` p.t
τ
⇀ θ(τ)

U ` p 7→ (θ, sig . . . datatype t = c of τ . . . endi)

U ` p.t
c

⇀ θ(τ)

U ` X 7→ (θ, sig . . . type t . . . endi)

U ` X.t
X.t
⇀ 0

Figure 47: Transition rules for types with respect to U

58

Definitions and Specifications

U `X E : T
U `X module M = E : module M : T

U `X S : T
U `X module M : S : module M : T

U, ∅ `X e : τ

U `X val l = e : val l : τ

U `X τ ¦ U ` τ ≈ τ ′

U `X val l : τ : val l : τ ′

U `X type t : type t U `X type t : type t = τ

U `X τ ¦ U ` τ ≈ τ ′

U `X datatype t = c of τ : datatype t = c of τ ′
U `X τ ¦ U ` τ ≈ τ ′

U `X type t = τ : type t = τ ′

Module expression

U `X Ed : Td

U `X Ei
d : T i

d

Module expression descriptions

U `X D1 : C1 . . . U `X Dn : Cn

U `X struct (Z) D1 . . . Dn end : sig (Z) C1 . . . Cn end

U `X A : A′ U `X E : T

U `X functor(X : A) → E : functor(X : A′) → T

U `X E : T1 U `X S : T2 U `X T1 < S

U `X (E : S) : (T1 : T2)

U `X p wf

U `X p : p

Signature

U `X Sd : Td

U `X Si
d : T i

d

Signature descriptions

U `X B1 : C1 . . . U `X Bn : Cn

U `X sig (Z) B1 . . . Bn end : sig (Z) C1 . . . Cn end

U `X A : A′ U `X S : T

U `X functor(X : A) → S : functor(X : A′) → T

Module variable signature

U `X Ad1 : Ad2

U `X Ai1
d1 : Ai2

d2

Module variable signature descriptions

U `X B1 : C1 . . . U `X Bn : Cn

U `X sig B1 . . . Bn end : sig C1 . . . Cn end

Figure 48: Typing rules for the module language with respect to U in TraviataX

59

Core types

U `X 1 ¦
U `X τ1 ¦ U `X τ2 ¦

U `X τ1 → τ2 ¦
U `X τ1 ¦ U `X τ2 ¦

U `X τ1 ∗ τ2 ¦
U `X p wf U `Y p ; p′ U ` p′ 7→ (θ, T i

d)
Td is a lazy signature type containing a type specification for t

U `X p.t ¦
Core expressions:

U, Γ `X e : τ ′ U ` τ ≈ τ ′

U, Γ `X e : τ

U, Γ `X () : 1

x ∈ dom(Γ)

U, Γ `X x : Γ(x)

U ` τ ≈ τ1 → τ2 U `X τ ¦ U, Γ, x : τ1 `X e : τ2

U, Γ `X (λx.e : τ) : τ

U, Γ `X e1 : τ1 U, Γ `X e2 : τ2

U, Γ `X (e1, e2) : τ1 ∗ τ2

U, Γ `X e : τ1 ∗ τ2

U, Γ `X πi(e) : τi

U, Γ `X e1 : τ1 → τ2 U, Γ `X e2 : τ1

U, Γ `X e1 (e2) : τ2

U `X p wf U `Y p ; p′ γX(p′, c, t) = (τ1,)U, Γ `X e : τ1

U, Γ `X p.c e : p′.t

U `X p wf U `Y p ; p′

γX(p′, c, t) = (τ1,) U, Γ `X e1 : p′.t U, Γ, x : τ1 `X e2 : τ

U, Γ `X case e1 of p.c x ⇒ e2 : τ

U `X p wf U `Y p ; p′ U ` p′ 7→ (θ, sig . . . val : τ . . . endi)

U, Γ `X p.l : θ(τ)

U `X τ1 ¦ U `X τ2 ¦ U, Γ `X e : τ1 U ` τ1 ≈ τ2

U, Γ `X (e : τ1 :: τ2) : τ2

Figure 49: Typing rules for the core language with respect to U in TraviataX

γX(U, p, c) = (t, θ(τ)) when
U ` p 7→ (θ, sig . . . datatype t = c of τ . . . endi)

Figure 50: Datatype look-up with respect to U in TraviataX

60

U `X X wf U `X Z id wf

U `Y p.M ; q U `X p wf

U `X p.M wf

U `X p1 wf U `X p2 wf U `Y p1 ; p′1 U `Y p2 ; p′2
U `Y p1(p2) ; q U ` p′1 7→ (θ, (functor (X : Aj

d) → T)i) U `X p′2 < θ[X 7→ p′2](Ad)

U `X p1(p2) wf

Figure 51: Well-formed paths with respect to U in TraviataX

U `X Td < Sd

U `X T i
d < Sj

d

U `X Td < Ad

U `X T i
d < Aj

d

U `X Td < Sd

U `X (T : T i
d) < Sd

U `Y p ; p′ U ` p′ 7→ (θ, T i
d) U `X θ(Td) < Sd

U `X p < Sd

σ : {1, . . . ,m} 7→ {1, . . . , n} ∀i ∈ {1, . . . ,m}, U `X Cσ(i) < Bi

U `X sig (Z) C1 . . . Cn end < sig (Z ′) B1 . . . Bm end

U `X A′ < A U `X [X 7→ X ′]T < S

U `X functor(X : A) → T < functor(X ′ : A′) → S

σ : {1, . . . ,m} 7→ {1, . . . , n} ∀i ∈ {1, . . . ,m}, U `X Cσ(i) < Bi

U `X sig C1 . . . Cn end < sig B1 . . . Bm end

U `X type t < type t U `X type t = τ < type t U `X datatype t = c of τ < type t

U ` τ1 ≈ τ2

U `X type t = τ1 < type t = τ2

U ` τ1 ≈ τ2

U `X val l : τ1 < val l : τ2

U ` τ1 ≈ τ2

U `X datatype t = c of τ1 < datatype t = c of τ2

U `X T < S
U `X module M : T < module M : S

Figure 52: Subtyping with respect to U in TraviataX

61

9 Type inference for the core language

We implemented a type inference algorithm for the core language by determining an
inference order using the module path expansion algorithm, then running a standard
inference algorithm along this order. Concretely, using PathExp, we build a call graph
of functions (represented by a directed graph), which expresses how functions in mod-
ules depend on each other: the strongly connected components of the graph indicate
sets of value components whose type should be inferred simultaneously, referring to
each other monomorphically; by topologically sorting the connected components, we
generalize types in a connected component before moving on to typing the next one.
For instance in Figure 2, we build an inference order:

Tree.split → {Tree.labels, Forest.labels}
→ {Forest.sweep} → Forest.incr

where braces indicate strongly connected component. The inference order we build
for Figure 1 is

{Tree.map} → {Forest.map}
For the purpose of type inference, we do not consider that Tree.map and Forest.map

are mutually recursive, since the signatures of Tree and Forest specify exported
types for these functions.

We must also check for well-formedness of types, as module variables should not
escape their scope during unification. This is checked after the inference. Note that
when an abstract type depends on a functor argument, then the argument explicitly
appears inside the type. For instance, in Figure 2, the type Tree.t is internally
represented as TF[X7→X].Tree.t.

Explicit type annotations can be used to break dependencies in the call graph,
and allow polymorphic recursion. Annotations cannot be completely avoided, as type
inference for polymorphic recursion is known to be undecidable.

62

10 Related work

Much work has been devoted to investigating recursive module extensions of the ML
module system. Notably, type systems and initialization of recursive modules pose
non-trivial issues, and have been the main subjects of study.

10.1 Type systems

To the best of our knowledge, no work has proposed a type system for recursive
modules with applicative functors, except for the experimental implementation in
Objective Caml [16], or examined type inference for recursive modules whether func-
tors are applicative or generative. Moreover, only Traviata can type the examples on
the expression problem in Section 6 without modifications.

The experimental implementation of recursive modules in Objective Caml is most
related to our work. Indeed, we followed it in large part when designing Traviata.
O’Caml supports a highly expressive core language and a strong type inference al-
gorithm, which are one of our motivations for the effort to enable type inference.
O’Caml also supports recursive signatures, with a rather concise syntax. However,
it allows to write problematic modules whose type checking diverges.The potential
for divergence when typing O’Caml modules is well-known, but is assumed to be a
rare phenomenon in practice. Recursive signatures seem to make the problem much
more acute. This is one of our motivations in insisting on decidable type checking for
Traviata. Of course we obtain it through restrictions, and a less expressive signature
language. Yet, this may be the price for safety. Since we have similar typing rules,
we hope that our approach can apply to O’Caml with little change.

Crary, Harper and Puri [3] gave a foundational type theoretic analysis of recursive
modules in the context of a phase-distinction formalism [11].

Russo [24, 23] proposed a type system for recursive modules, which we examined
in Section 2.

Dreyer [5] gave a theoretical account for type abstraction inside recursive modules.
In particular, he investigated generative functors in the context of recursive modules,
by proposing a “destination passing” interpretation of type generativity. There is
a critical difference in design choices between us, with respects to type abstraction
inside recursive modules. For instance, consider the two programs:

module M = (struct type t = N.t end : sig type t end)

module N = (struct type t = M.t end : sig type t end)

and

63

module M = (struct type t = N.t list end : sig type t end)

module N = (struct type t = M.t * M.t end : sig type t end)

Dreyer prohibits both programs, whereas we accept both. A motivation of our design
choice is that we want to keep liberal uses of polymorphic variants and objects, which
are useful constructs supported in O’Caml; prohibiting the latter program may result
in restriction in using these constructs and recursive modules together.

10.2 Initialization

Boudol [1], Hirschowitz and Leroy [12], and Dreyer [4] have proposed type systems
which ensure that initialization of recursive modules does not try to access compo-
nents of modules that are not yet evaluated. They are interested in the safety of
initialization, hence their modules do not have type components.

Their type systems judge the two modules:

module M = struct (Z) val l = Z.m val m = Z.l end

and

module N = struct (Z) val l = λx → x + Z.m val m = Z.l(3) end

to be ill-typed. In both cases, evaluation of the component m cyclically requires
evaluation of itself. Our type system, in particular the core type reconstruction
algorithm, can reject the cycle for the former, but not for the latter.

64

11 Conclusion

In this paper, we presented a type system for recursive modules by extending Leroy’s
applicative functor calculus. The type system is decidable and sound for a call-
by-value operational semantics. It supports type inference for recursive modules,
hence type abstraction both inside and outside the recursion is handled equally; the
programmer does not need to write two different signatures for the same module to
assist the type checker.

We examined three examples. The first two presented typical uses of recursive
modules with different choices of where to enforce type abstraction. The last one
gave a solution to the expression problem and demonstrated how recursive modules
add to the expressive power of the programming language when combined with other
language constructions.

Here we give a brief overview of future work.

Separate type checking Although we have not discussed, Traviata is already
prepared for separate type checking. In short, we only have to extend the look-up
judgment (Figure 7) so that the judgment informs the type system of signatures of
modules which are type checked separately(i.e., to replace concrete module expres-
sions with their signatures).

Lazy modules with eager value components The operational semantics pre-
sented in this paper uses lazy evaluation for both modules and their value components
in the sense that only components of modules that are accessed are evaluated, and
the evaluation is triggered at access time. This semantics simplifies the soundness
statement and its proof. For a practical system, however, we are investigating lazy
modules with eager value components, that is, to keep modules lazy but evaluate all
the value components (but not module components) of a module at once, triggered
by the first access to some component of the module. Lazy semantics of modules
would allow flexible uses of recursive modules; eager semantics of value components
would give the programmer a way to initialize recursive modules.

We need to explore the evaluation strategy of modules. For instance, we want to
succeed in evaluating the following modules whether the evaluation begins at M or at
N.

module M = struct val m1 = 3 val m2 = N.n1 val m3 = 7 end

module N = struct val n1 = 5 val n2 = M.m1 val n3 = M.m3 end

We also need to cope with unsafe modules whose evaluation cannot be successful,

65

for instance the modules we saw in Section 10.2; we want to avoid running into
divergence but to reject them statically or, at least, to raise run-time errors.

We believe that our algorithms for path resolution are useful for efficient and safe
implementation of lazy recursive modules. We need more investigation on this topic.

The double vision problem It is desirable to solve the double vision problem
without requiring type coercion annotations from the programmer. The current type
system always passes to TypExp the whole lazy program type ReconstP constructed.
This seems too näıve. Given that TypExp terminates for whatever input, we think it
is safe to pass TypExp different signature information depending on whether it is used
inside sealing or not. For instance in Figure 26, we should make TypExp interpret
the sealing signature of Forest transparently during type checking inside Forest.

References

[1] G. Boudol. The recursive record semantics of objects revisited. Journal of
Functional Programming, 14(3):263–315, 2004.

[2] W. R. Cook. Object-Oriented Programming Versus Abstract Data Types.
In Proc. REX Workshop, volume 489 of Lecture Notes in Computer Science.
Springer-Verlag, 1990.

[3] K. Crary, R. Harper, and S. Puri. What is a Recursive Module? In ACM
SIGPLAN Conference on Programming Language Design and Implementation.
ACM Press, 1999.

[4] D. Dreyer. A type system for well-founded recursion. In ACM SIGPLAN Sym-
posium on Principles of Programming Languages. ACM Press, 2004.

[5] D. Dreyer. Recursive Type Generativity. In ACM SIGPLAN International
Conference on Functional Programming. ACM Press, 2005.

[6] D. Dreyer. Understanding and Evolving the ML Module System. PhD thesis,
Carnegie Mellon University, 2005.

[7] J. Garrigue. Programming with polymorphic variants. In ACM SIGPLAN Work-
shop on ML, 1998.

[8] J. Garrigue. Code reuse through polymorphic variants. In Workshop on Foun-
dations of Software Engineering, 2000.

66

[9] J. Garrigue. Private rows: abstracting the unnamed. http://www.math.

nagoya-u.ac.jp/~garrigue/papers/privaterows.pdf, 2005.

[10] R. Harper and M. Lillibridge. A Type-Theoretic Approach to Higher-Order
Modules with Sharing. In ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages, pages 123–137, 1994.

[11] R. Harper, J. C. Mitchell, and E. Moggi. Higher-order modules and the phase
distinction. In ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, pages 341–354, 1990.

[12] T. Hirschowitz and X. Leroy. Mixin modules in a call-by-value setting. In Eu-
ropean Symposium on Programming:LNCS, volume 2305, pages 6–20. Springer-
Verlag, 2002.

[13] X. Leroy. Manifest types, modules, and separate compilation. In ACM SIG-
PLAN Symposium on Principles of Programming Languages. ACM Press, 1994.

[14] X. Leroy. Applicative functors and fully transparent higher-order modules. In
ACM SIGPLAN Symposium on Principles of Programming Languages. ACM
Press, 1995.

[15] X. Leroy. A modular module system. Journal of Functional Programming,
10(3):269–303, 2000.

[16] X. Leroy, D. Doligez, J. Garrigue, and J. Vouillon. The Objective Caml system,
release 3.09. Software and documentation available on the Web, http://caml.
inria.fr/, 2005.

[17] D. MacQueen. Modules for Standard ML. In Proc. the 1984 ACM Conference
on LISP and Functional Programming, pages 198–207. ACM Press, 1984.

[18] R. Milner. communicating and mobile systems: the pi-calculus. Cambridge
University Press, 1999.

[19] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1997.

[20] K. Nakata and J. Garrigue. Path resolution for recursive modules. Technical
Report 1545, Kyoto University Research Institute for Mathematical Sciences,
2006.

67

[21] B. Pierce, editor. Advanced Topics in Types and Programming Languages, chap-
ter 9. The MIT Press, 2004.

[22] D. Rémy and J. Garrigue. On the expression problem. http://pauillac.

inria.fr/~remy/work/expr/, 2004.

[23] S. Romanenko, C. Russo, N. Kokholm, and P. Sestoft. Moscow ML, 2004.
Software and documentation available on the Web, http://www.dina.dk/

~sestoft/mosml.html.

[24] C. Russo. Recursive Structures for Standard ML. In ACM SIGPLAN Interna-
tional Conference on Functional Programming. ACM Press, 2001.

[25] D. Sangiorgi and D. Walker. The Pi-Calculus. Cambridge University Press,
2003.

[26] M. Torgersen. The Expression Problem Revisited. In European Conference on
Object-Oriented Programming:LN CS, volume 3086. Springer-Verlag, 2004.

[27] P. Wadler. The expression problem. Java Genericity maling list, 1998. http:

//www.cse.ohio-state.edu/~gb/cis888.07g/java-genericity/20.

[28] M. Zenger and M. Odersky. Independently Extensible Solutions to the Expres-
sion Problem. In Proc. FOOL 12, 2005.

68

