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Abstract iter : (elt — unit) — t — unit

Iterating over the elements of an abstract collection isligdone
in ML using a fold-like higher-order function provided byetldata
structure. This article discusses a different paradigmteration
based on purely functional, immutable cursors. Contrariold-
like iterators, the iteration can be cleanly interrupteciay step.
Contrary to imperative cursors (such as those found in C+g+ an
Java libraries) it is possible to backtrack the iterator fwrevious
step. Several ways to iterate over binary trees are exan@ndd
close links with Gérard HuetBipperare established. Incidentally,
we show the well-known two-lists implementation of funcizd
queues arising from Zipperbased breadth-first traversal.
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1. Introduction

The ML programmer is used to iterate over the elements of an
abstract collection using a higher-order function. A datacsure
implemented as an abstract datatgpeepresenting a collection of
elements of a given typel t, is naturally equipped with a function

fold :

Iteration, Backtracking, Persistent Data Structures

(elt wa — a) -t - a — «

whose behavior is to build a value of type starting from an
initial value (its third argument) and repeatedly applyanynction
(its first argument) to all elements of the collection (iteasd
argument) and to the value being built. If we are considegng
collection of integers, the typeelt then beingint, we can sum
up all the elements of as simply as

fold (fun x n — n+x) s O

When the function passed f@14d is used only for its side-effects,
we can use a degenerated versiodi@fd:

1This article is illustrated with source code written INB@ECTIVE
CawMmL [2] (OcamL for short), but could be easily adapted to any other
functional programming language.
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This way we can print all the elements sfas simply asiter
(fun x — Printf.printf "%d\n" x) s. Such higher-order
functions iterating over the elements of a data structueecalied
iterators and their use is probably the most idiomatic feature of
functional programming languages. The seasoned ML program
mer uses them widely, appreciates their clarity and coness
and does not conceive any nicer way to proceed.

There are however some (uncommon) situations where the
use of such iterators is not convenient, or even impossibtee
datatype is not abstract, there is usually a most immediateta
iterate over the elements. But if the datatypelistractand we are
only given a higher-order iterator, then we may be in a sibnat
where there is no simple or efficient way to implement thereelsi
algorithm.

The first example is the case of an enumeration that must be
stopped before the end is reached. If for instance we try ¢églch
whether there exists an element in our collectiosatisfying a
given propertyp: int — bool, one solution could be the fol-
lowing:

fold (fun x b — p x || b) s false

But this is not efficient since all the elements will be neeeibs
visited, even if we quickly encounter an element satisfysrand
despite the non-strictness of theoperator (since itis applied here
to a value and not to a program expression). One solutionitiéve
use an exception to interrupt the iteration. We can writeficient
version of our search using the predefined excef®iait:

try

iter (fun x — if p x then raise Exit) s; false
with Exit —

true

Of course, a data structure implementing a collection isalipu
providing a functiorexists : (elt — bool) — t — bool
which does exactly this kind of search, but we always end wpen
situation where the search we want to implement is not pealid
as a primitive. Even if it is efficient, the use of an excepti®mot
always convenient — when a value has to be returned, one needs
to defined a custom exception or to use a reference — and Ig rare
elegant.

This is where theAlA or C++ programmer is pushing forward
his or her way to operate. In such programming languageatdtes
do not appear as higher-order functions but as data stascabie
to produce the elements of the enumeratiore at a time Such
iterators are often referred to esrsors[5]. In JavA, for instance,
the iteration over the elements of a collections written as the
following idiom:

for (Iterator i = t.iterator(); i.hasNext(); )

. visit i.next()



The methoditerator of the data structure builds a new iterator
over the elements afand then the two methodasNext andnext

of this iterator respectively tell if there are still elenteto iterate
over and which is the currently visited element. It is crubiere to
understand that the iterator isvautabledata structure: one call to
next returns the current elemeand moves the iterator to the next
element in the iteratioby a side-effectin the following, we call
this acursorto distinguish it from a higher-order iterator.

In most cases of ML programming, such a cursor would be

less convenient to use compared to its higher-order cquenter
and much less elegant due to the hidden side-effects. Howieve
provides a nice solution to the issue of the premature impéion.

If we assume an ©AML cursori over our collections, we can
easily check for an element satisfying the property

let rec test () =

has_next i && (p (mext i) || test ())

Unfortunately, there is (at least) another situation whmegicher
the higher-order iterators nor the cursors can help: whenees

to come backo a previous state in the iteration, that is when the

iterator is involved in &acktrackingalgorithm. As an example,

let us assume that we can to check whether our set of integers

contains a subset whose sum is 100. If thessetould be given
concretely as a list of integers, it would be really easy tdena
program performing this test

let rec sum n = function

| [ — n = 100

| x ::r — sum (n+x) r || sumn r
in
sum O s

But if the sets is implemented by an abstract datatype that only

provides higher-order iterators or cursors, then such kttaaking
algorithm (that is to try with the current element involvedthe
sum and then without it in case of failure) is no more possible
Fortunately there exists a better solution. It consists ¢nraor
implemented using ersistentdata structurg that is where the

with Exit —
n = 100

in

sum O (start s)

The code is highly similar to the one above, apart from ligtisity
replaced by cursors of typmum. We can notice that, when the type
t is actually the typent 1list, we can defing@ype enum = int
list, thestart function as the identity and thetep function as
the destructuring function for the constructar.

In this article, we focus on these cursors implemented ysing
sistent data structures, which we gadirsistent iteratorsn the fol-
lowing. This is not an original technique and such iteratoespart
of ML folklore. They are used for instance to implement a ltota
ordering over binary search trees irc®vL and SML standard
libraries, which is an instance of the samefringe problef .
However, the solutions are oftewl-hocand the persistence of the
iterator is usually not exploited (it is not really mandatdsut im-
perative programming is simply not considered). The main-co
tribution of this paper is to show how suetd-hocsolutions can
be retrieved in a systematic way using Gérard Hugifsper [8].
Incidentally, we show how the well-known implementatiorpef-
sistent queues using a pair of lists shows up fromzipper-based
persistent iterator for breadth-first tree traversal.

Though this is not the main focus of this paper, persistenait
tors can also be implemented lagy lists(with or without memo-
ization). Actually, thead-hocandZipper-based persistent iterators
discussed in the following can be seenresfied (or defunction-
alized [6]) versions of lazy lists-based implementations. Thus we
briefly present this alternative solution and discuss thmeotions
with our first-order approach.

This article is organized as follows. Section 2 shows how to
implement persistent iterators for several traversalg dieary
trees. Then Section 3 establishes the connections witHipper.
Section 4 shows the equivalence between persistent iteratal
lazy lists. Finally, Section 5 quickly compares the perfarmes of
all these implementations. Thed®@ML source code corresponding

move to the next element does not modify the cursor but rather to what is described in this article is freely available paliat

returns a new one. Let us assume that such an cursor is pdasde
an abstract data typsmum equipped with two functionstart and
step:

type enum
val start : t — enum
val step : enum — elt X enum

The start function builds a new cursor for the whole collection
which is given as argument. One can see it as pointing to thet™fi
element. Thestep function returns the element pointed to by the
cursor together with aewcursor pointing to the next element. We
assume thattep is raising theExit exception when the iteration

is ovef. Then we can rewrite the backtracking algorithm above as

follows:

let rec sum n i =
try

let x,i = step i in sum (n+x) i || sum n i

2|t is easy to improve this code, but this is not the point here.

3The qualifier “persistent” is to be preferred to “purely ftinoal” or
“immutable” that are too restrictive. The precise meaniftpersistent” is
indeed “observationally immutable”, as explained in Oké#isdook [11],
and is thus more general.

4We could equivalently use a sum type instead of an excepiving step
the typeenum — (elt X enum) option. Using a custom datatype to
avoid the indirection, we indeed retrieve the same perfages. However,
using an exception simplifies most of the forthcoming code.

http://www.lri.fr/~filliatr/pub/enum.ml

2. Persistentiterators for binary trees

In the following of this article, we assume that the datacitrre to
be iterated over is a binary tree containing integers onsiode

type t = E | Nof t X int X t

The generalization to balanced trees — thus containing rimere
formation within nodes — or trees containing elements otlagio
type is immediate since only the traversals matter here.

This section describes the implementation of persisterdtiors
for various traversals of binary trees, with the commondieihg
signature:

type enum
val start
val step :

: t — enum
enum — int X enum

As indicated in the introduction, thetep function is assumed to
raise theExit exception when the enumeration is over.

2.1

We start with inorder traversal, which is the most naturabérsal
when trees are binary search trees. In inorder traversallett

subtree is visited first, then the element at the node andyfited

right subtree. A higher-order iteratanorder is thus written as
follows:

Inorder traversal



let rec inorder f = function
| E— O

| N (1, x, r) — inorder f 1; f x; inorder f r

A persistent iterator corresponding to this traversal carfdund
in the “literature” (the @AML and SML standard libraries for in-
stance). Since the iteration must begin with the leftmaaneint in
the tree, we start writing a function going left in the treel &wild-
ing the list of elements and right subtrees encountered wigbn
We can define a custom list datatype for this purpose:

type enum = End | More of int X t X enum

and aleft function implementing the left descent from a given
treet and an enumeratiomrepresenting the elements to be visited
after the ones of:

let rec left t e = match t with
| E— e

| N (1, x, r) — left 1 (More (x, r, e))
We initialize the enumeration with the “empty listhd:

let start t = left t End

and thestep function is simply returning the element in front of
the list and callingleft with what was the right subtree of this
element in the initial tree:

let step = function
| End — raise Exit
| More (x, r, e) — x, left r e

2.2 Preorder traversal

In preorder traversal, the element at the node is visitet flisn
the elements of the left subtree and finally the elementseofitnt
subtree:

let rec preorder f = function
| E— O
| N (1, x, r) — f x; preorder f 1; preorder f r

It is exactly a depth-first traversal of the tree and thus teeior
can be simply implemented astack that is a list of trees:

type enum = t list

The iterator is initialized with a one element list contampithe
initial tree:

let start t = [t]

Thestep function examines the element in first position in the list
and, when it is a node, it returns its value while pushing tgetr
and left subtrees on the stack:

let rec step = function
| [1 — raise Exit
| E:: e — step e
| N 1, x, r) :: e —-x,1::1T :: e

We can slightly optimize this code to avoid pushing emptgdren
the stack:

let start = function E — [1 | t — [t]
let step = function

| [ — raise Exit

| N (E, x, E) :: e — x, e

| N (E, x, r) :: e > X, T :: e

| N 1, x, E) :: e —-x, 1 :: e

| N 1, x, r) :: e > x,1 :: 1 e

|

_ — assert false

On this example, we can see that the iterator is nothing letse t
the reification of the call stack. Incidentally, it illustes another

benefit of persistent iterators: to avoigtack overflowEven if in
the case of balanced binary trees it is unlikely that the ldepia
tree can be responsible for a stack overflow, the case of dttar
structures, such as graphs for instance, can be more pratitem
for iterators simply written as recursive functions. Of =m it is
always possible to make the stack explicit, even in the chgsual
higher-order iterators.

2.3 Postorder traversal

In postorder traversal, we visit the element at the raftier having
visited the elements of the two subtrees. Surprisinglytqrdsr
traversal is more difficult to implement than preorder traaé Of
course, we could reuse the idea of making the call stack@xatid
pushing elements as well as trees. But it would not be an effici
solution. More subtly, we can reuse ideas from the inordesetrsal
since the first element to be visited is also the leftmost etd@nmn
the tree. Thus we reuse the same iterator type and élie and
start functions:

type enum = End | More of int X t X enum
let rec left t e = match t with

| E— e

| N (1, x, r) — left 1 (More (x, r, e))
let start t = left t End

Only thestep function needs to be updated. It must now consider
the right subtree beforethe elemenk:

let rec step = function
| End —
raise Exit
| More (x, E, e) —
X, €
| More (x, r, e) —
step (left r (More (x, E, e)))

Pushing the empty treetogether withx on the last case is not
very elegant. We can refine this solution by introducing aamus
constructoiMore1 to handle this particular case:

type enum =
| End
| More of t X int X enum
| Morel of int X enum

let rec left t e = match t with

| E— e

| N (1, x, E) — left 1 (Morel (x, e))

| N (1, x, r) — left 1 (More (r, x, e))
let start t = left t End
let rec step = function

| End — raise Exit
| Morel (x, e) — x, e
| More (t, x, e) — step (left t (Morel (x, e)))

2.4 Breadth-first traversal

We end this section devoted to binary trees with breadthtfager-
sal. It is usually implemented usinggaeuecontaining trees. The
whole tree is inserted into an initially empty queue and tHen
each tree popped out of the queue, we visit the element abtie n
and insert the two subtrees into the queue (the left one amdttie
right one). Writing the usual higher-order iterator usihg tmper-
ative queues from ©amML standard library is straightforward:

let bfs £ t =
let q = Queue.create () in
Queue.push t q;
while not (Queue.is_empty q) do
match Queue.pop q with



- O
a, x, ) —
f x; Queue.push 1 q; Queue.push r g

| E
| N
done

To implement the corresponding persistent iterator, weplsim
need to substitutpersistent queue® imperative queues. It hap-
pens that it is quite easy to implement persistent queues) @si
pair of lists while keeping good performances [11]. The cade
given in appendix as a modulgmplementing as abstract datatype
a t for persistent queues containing elements of typ&he per-
sistent iterator is then directly implemented as a pensisieeue
containing trees:

type enum = t Q.t

Thestart function builds the queue containing only one element,
namely the whole tree:

let start t = Q.push t Q.empty
and thestep function applies the same algorithm as above:

let rec step e =
try match Q.pop e with
| E, e — step e
| N (1, x, r), e — %, Q.push r (Q.push 1 e)
with Q.Empty —
raise Exit

Note: as we did for the preorder traversal, it is possibldighty
optimize this code by avoiding pushing empty trees in theugue
This remark also applies to the imperative algorithm, ofrseu

3. Connections with the zipper

In this section, we investigate the connections betweempéhsis-
tent iterators and Gérard HueZpper [8, 7]. More precisely, we
show how persistent iterators can be discovered in a sysiteweay

using theZipper.

3.1 The zipper

We introduce th&ipper for the reader who would not be familiar
of this data structure. Th&ipperis to the purely applicative data
structure what the pointer is to a mutable data structureayter
designate a piece of the structure and to modify it. In the cds
a purely applicative data structure, “to modify” of courseans
building a new value but this does not simplify the issue. Let
us assume we are visiting the nodes of a binary tree looking fo
some node satisfying a given property and, once it has besmlfo
we want to perform a local modification. With an imperativeada
structure, it is immediate. But with an applicative dataisture,
we need to maintain the path from the root of the tree to the
visited node, to be able to rebuild the corresponding notikat
is precisely what th&ipperdoes, with the greatest elegance.

Such a path from the root is represented in a bottom-top veay, a
a list going from the visited node to the root, the directioldived
at each step being indicated. The ML type for this path is the
following:

type path =
| Top
| Left of path X int X t
| Right of t X int X path

TheZipperis then the pair of the subtree which is “pointed to” and
of the path to the root:

type location = t X path

The construction can be generalized to any algebraic getagach
constructor being duplicated into several variants (inaasge, the
constructol is duplicated intd.eft andRight).

We create &ipperpointing to the root of a tree by associating
it to the empty path:

let create t = (t, Top)

Then we can builchavigationfunctions allowing to move in the
tree represented by theipper. To descend to the left subtree,
when there is one, we simply need to extend to path with the
Left constructor, which records the value at the node and thé righ
subtree, and then to take the left subtree as the new desibtmat:

let go_down_left = function
| E, - — invalid_arg "go_down_left"
| ¥ (1, x, ), p — 1, Left (p, x, 1)

Symmetrically, we can define a function to descend to thet righ
subtree:

let go_down_right = function
| E, - — invalid_arg "go_down_right"
| N (1, x, r), p — r, Right (1, x, p)

Similarly, we can define functions to move from a tree to ifsde
right sibling, when they exist:

let go_left = function
| -, Top | _, Left _ — invalid_arg "go_left"
| r, Right (1, x, p) — 1, Left (p, x, r)

let go_right = function
| -, Top | _, Right _ — invalid_arg "go_right"
| 1, Left (p, x, r) — r, Right (1, x, p)

Finally, we can define a function to move up in the tree:

let go_up = function
| _, Top — invalid_arg "go_up"
| 1, Left (p, x, r) | r, Right (1, x, p) —
N (1, x, ¥), p

Iterating this function until we reach the empty padyp is a way
to retrieve the whole tree represented by Hipper. The local
modification, which was the motivation for tt#pper, is trivially
implemented as a replacement of the designated subtrea weév
one:

let change (., p) t = (t, p)

We note that all these operations are implemented in corstas
and space.

3.2 Persistent iterators derived from the zipper

We now show how th&ippercan be used to retrieve the persistent
iterators over binary trees introduced in Section 2.
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Let us start with the inorder traversal. The persistentattaris
directly represented by ZAipper and thestart function sets the
Zipperto the root of the tree:

Inorder traversal

type enum = location
let start t = (t, Top)

The step function is then implemented by combining the navi-
gation functions provided by th&ipperand the local modification
function to get rid of the visited elements one at a time. éfthole
tree is empty, then the iteration is over:

let rec step = function
| E, Top — raise Exit



If the designated subtree is a node, then we must keep désgend
to the left, using th&ipperprimitive go_down_left, and callstep
recursively. If we expango_down_left, we get:

| N (1, x, r), p — step (1, Left (p, x, r))

Finally, when we reach the empty treethe elemenk right above
is the one to visit and we can replace the designated nodeshy it
right sibling. This is achieved by a combination of the ptiwas
go_up andchange. Once expanded, we get the following code:

| E, Left (p, x, r) — x, (r, p)
To sum up, thestep function is only three lines long:

let rec step = function
| E, Top — raise Exit
| E, Left (p, x, ) — x, (zr, p)
| N (1, x, r), p — step (1, Left (p, x, r))

We notice that th&ipperconstructoRight has not been used and
thus can be eliminated:

Top | Left of path X int X t
t X path

type path =
type enum =

Consequently, we obtaiexactlythe datatype introduced in Sec-
tion 2, that is a list of pairs composed of elements and trssioai-
ated right subtrees. Thesft function from the initial solution has
disappeared: it is now encoded directly by tep function. The
behavior is slightly different, though: some callsltft in the ini-
tial solution are now suspended in the first component oZthper
and will only be performed on the next call saep. If we stop an
iteration on a node with no left subtree and a huge right sek(tio
the left) then we save the descent to the left in this huge #ee
a consequence, the solution inspired byZiper is slightly more
efficient.

3.2.2 Preorder traversal

We keep implementing the persistent iterator directly aZthper
and thestart function is unchanged, as is the termination case of
the iteration:

let rec step = function
| E, Top — raise Exit

If the visited subtree is a node, then we return its elemedtves
move theZipperto the left subtreego_down_left):

I ¥ (1, x, r), p — x, (1, Left (p, x, 1))

Finally, when the iteration reaches the leftmost elementimme-
diately jump to the right subtree since the element at the rinach
already been visited:

| E, Left (p, -, r) — step (r, p)
Putting all together, we get the following code:

let rec step = function
| E, Top — raise Exit
| E, Left (p, -, r) — step (r, p)
| N (1, x, ©), p — x, (1, Left (p, x, 1))

Once again we note that the construd@oght is useless, and so is
the element stored in the constructerft. Thus we can simplify
the definition of the iterator into

type path =
type enum =

Top | Left of path X t
t X path

We find agairexactlythe same datatype as in the initial solution,
namely a list of trees (with a particular case for the firstredat,

represented as a pair). As far as efficiency is concernesisitil-
tion inspired by theZipper is intermediate between the two solu-
tions proposed in Section 2, since it avoids pushing sometyemp
trees on the stack, but not all of them.

3.2.3 Postorder traversal

The persistent iterator datatype, theart function and the termi-
nation case fostep are still unchanged:

let start t = (t, Top)
let rec step = function
| E, Top — raise Exit

If the tree pointed to is a node, we need to descend into its lef
subtree:

| N (1, x, r), p — step (1, Left (p, x, 1))

If the iteration is done with a left subtree, it must now caoiesiits
right sibling:

| E, Left (p, x, r) — step (r, Right (E, x, p))

Finally, if the iteration reaches the rightmost elementsiihply
needs to return this element and to suppress the corresgpndi
node:

| E, Right (., x, p) — x, (E, p)
We get the following code fostep:

let rec step = function
| E, Top — raise Exit
| E, Left (p, x, r) — step (r, Right (E, x, p))
| E, Right (., x, p) — x, (E, p)
| N (1, x, r), p — step (1, Left (p, x, 1))

Here, bothZippers constructord.eft andRight are used but we
notice that the first argument @fight is not used. Thus we can
slightly simplify the definition of the persistent iteraiato

type path =
| Top
| Left of path X int X t
| Right of int X path
type enum = t X path

Once again, we find out a datatype isomorphic to the one inted
in Section 2 Left corresponding tdore andRight to Morel).

3.2.4 Breadth-first traversal

The case of breadth-first traversal is more complex. Indesidg
only the navigation primitives provided by tEépperto move from
one node to the next node in the breadth-first traversal ige qui
difficult: one needs to come back to an upper node in the trde an
then to move down following another branch, in a way that depe
on theglobal structure of the tree.

As usual with breadth-first traversals, we need to generifie
problem toforests(see for instance [12]), that is to lists of trees.
Indeed, itis therefore possible to represent the list ahalsubtrees
of a same level and then to move from one node to its rightrgjbli
in this forest.

There happens to beZipper for variadic arity trees and thus
for forests. In the original paper introducing tBgper[8] the case
of variadic arity trees is even considered before the pdaicase
of binary trees. Th&ipperis defined as follows:

type path = Top | Node of t list X path X t list
type location = t X path

The three arguments of thisde constructor represent a position
within a forest, the first list containing the trees on theilefeverse



order and the second list the trees on the right. The navigation | 11, [1 — step ([], List.rev 11)
primitives that are of interest here are the following: | 11, E :: rr — step (11, rr)

let go_left = function | 11, N 1, x, r) :: rr — x, (r :: 1 :: 11, rr)

| t, Node (1 :: 11, p, ) — The interpretation of the two lists composing the iterawquite
1, Node (11, p, t :: 1) simple: one list stores the nodes still to be traversed ortheent
| - — invalid_arg "go_left" level, while the other one collects the nodes of the nextl|éme
reverse order. Reversal occurs precisely when the iteratwes
let go_right = function from one level to the next one.
| t, Node (1, p, r :: rr) — It appears that this iexactlythe solution given in Section 2.4,
r, Node (t :: 1, p, rr) except that the code for persistent queues using pairstef(ise
| - — invalid_arg "go_right" the appendix) is henalined in thestep function. Incidentally, we

have retrieved the efficient coding of persistent queuesewising

As with the previous traversals, the persistent iteratdirisctly the Zipperto perform a breadth-first traversal

represented by thgipper and thestart function sets th&ipper

on the root of the tree: . . . .
, 4. Lazy lists and continuation passing style
type enum = location

let start t = t, Node ([1, Top, [1) In this section, we briefly explore an alternative solutiohere

. . i . persistent iterators are implementeda®y lists Memoization set

As previously, thestep function is implemented using the navi-  apart, a lazy list is simply a function returning its first relent
gation primitives and removing the elements as soon as ey & together with the remaining elements as another lazy listisTa
visited. The case of the empty forest terminates the itemati persistent iterator is represented directly as a functiging the

let rec step = function next element together with the new iterdtor

| E, Node ([], _, [1) — raise Exit type enum = unit — int X enum

If the designated tree is a node, we return the correspor®l®g  Therefore thestep function is simply an application of this func-
ment and we replace this tree by its left and right subtreeshed tion: P Py PP

onto the left list. In order to avoid considering too manytjzaitar

cases, we replace the designated tree by an empty tree: let step k =k O
| N (1, x, ), Node (11, p, rr) — As a consequence, all the algorithmic complexity is movethé&
x, (E, Node (r :: 1 :: 11, p, rr)) start function, which must build a single closure containing all
fthe desi d . isel h ol the forthcoming computation. At this point, it is useful twitch
It eh e?|gnat.e tree Is precisely an empty tree, then weemght to continuation passing styléCPS) and to define a more general
into the forest: function, calledrun here, which takes a continuation as argument
| E, Node (11, p, r :: rr) — and to initiate the computation with the “empty” contineatithat
step (r, Node (11, p, rr)) raises th&xit exception to signal the end of the iteration:
Finally, if it is no more possible to move right, we need to @m let run t k =

back to the leftmost position in the forest (to move to thetnex let start t = run t (fun () — raise Exit)

level). This amounts to applylng t@__left functlc_)n repeatt_adly Defining the run function for inorder, preorder and postorder
as much as possible, which results in the reversing of thdigef traversals is rather straightforward: ’

into the right list (in the efficient way, that is using an acuuator '

which is here the right list). Thus we can Usest . rev directly: Inorder traversal
| E, Node (11, p, [1) — let rec run t k = match t with
step (E, Node ([], p, List.rev 11)) | E — k

I N 1, x, 1) —

Putting all together, we get the following code: rum 1 (fan O — (x, rum r K)

let rec step = function

| E, Node (I[], P> [1) — raise Exit Preorder traversal
| E, Node (11, p, [I) — let rec run t k = match t with
step (E, Node ([], p, List.rev 11)) | E — k
| E, Node (11, p, r :: rr) — N @, x, 1) —
step (r, Node (11, p, rr)) (fun ) — (x, run 1 (run r k)))
| N (1, %, r), Node (11, p, rr) —
x, (E, Node (r :: 1 :: 11, p, rr)) Postorder traversal
| -, Top — assert false let rec run t k = match t with
We immediately notice that th&ipper is always of the kind | E— k
Node (_,Top,_). Thus we can suppress tlep and Node con- I N (1, x, ¥) —
structors and represent here thigper by a pair of lists. We can run 1 (run r (fun O — (x, k)))
also put the designated subtree in head position of the ligtht
which gives the final code below: 5Such a type definition requires to set thesctypes option of the GAML

compiler. We could do without, using a boxed type such as
type enum = t list X t list
let start t = [], [t]
let rec step = function but the resulting boxing and unboxing imply a severe lossesfqgumance,
| [0, [1 — raise Exit at least in @AML (up to 60% slower code in our tests).

type enum = F of (unit -> int * enum)



traversal | implementation| random | left | right | full
inorder Section 2.1 1.07| 0.86| 0.11 | 0.25
Zipper 114 1.12| 0.11| 0.27
lazy list 1.28 | 1.38| 0.12 | 0.29
preorder | Section 2.2 1.01] 0.76 | 0.10 [ 0.26
— variant 0.91| 0.08| 0.07| 0.21
zipper 0.99| 099 | 0.11| 0.27
lazy list 151| 0.14| 0.16 | 0.41
postorder| Section 2.3 126 | 0.86| 1.04 | 0.28
— variant 1.20| 0.69| 0.87 | 0.29
Zipper 1.42| 1.08| 1.06 | 0.35
lazy list 163 | 1.44| 1.21| 0.43
bfs Section 2.4 1457| 044 0.47| 4.62
— variant 9.26 | 0.24| 0.24 | 2.05
zipper 15.38 | 0.18 | 0.17 | 3.65

Figure 1. Compared performances of the various implementations

This solution is somewhat systematic. Unfortunately, ieiss
efficient than the previous approaches, mostly becauseirrel®s
and their applications are using much more time and space tha

two possible explanations. First, a closure is usuallydatban a
ad-hocdata structure, thus resulting in a slightly more expensive
allocation and initialization. Second, modern processars deal
more efficiently with pattern matching (using branch préadic
than with unknown function calls.

We also performed a similar comparison for the memory use,
measuring the evolution of the size of the persistent iber&esults
are very similar to those of time performances: solutiorsnfr
Section 2 and those inspired by tEéper use similar amounts
of memory, and the lazy lists solution is using much more ntgmo
(but within a constant factor).

The results of these benchmarks can be reproduced using the
source code available online.

6. Conclusion

In this article, we have considered an alternative to thditicmal
higher-order iterators that can be found in ML, as stepiep-ger-
ators based on persistent data structures. Thesistent iterators
allow the premature interruption of an iteration and, evettds,
the resumption on a previous state of the iteration, whialseful
when the iterator is involved in a backtracking algorithm.

Such iterators are known from some programmers, though thei

custom data structures (some benchmarks are presente@ in thpersistence is usually not exploited. They are however ricéiyw

next section). To improve the efficiency of this code, we doul
defunctionalizeit i.e. replace the closures by some custom data
type [6]. Then we would find out implementations roughly $ami
to approaches of sections 2 and 3. Thus our persistentaterand
lazy lists are actually equivalent.

There is even a systematic way to turn a fold-like (or itee)i
iterator into lazy lists using delimited continuations €3, Thus it
is always possible to get persistent iterators for any datetsire
providing a traditional higher-order iterator, even whée tdata
structure is implemented as an abstract datatype.

5. Performance

In this section we quickly compare the efficiency of the vasigo-
lutions proposed in this article. The Figure 1 gathers thenijs
performed for the various kinds of traversals and the varioo-
plementations. Each implementation is tested againstge Iset
of trees of various sizes (between 0 and 100000 elementsyand
measure the total time spent in the full traversals of thesest
Four different shapes of trees are considered: random, tiefes
linear trees, right-linear trees and full trees. The i@nstintro-
duced in Section 2 are named “Section 2.1" to “Section 2.4} an
“variant” refers to the optimizations (where we do not pusipgy
trees); “zipper” refers to the solutions introduced in 8etB; fi-
nally, “lazy list” refers to the solutions introduced in thesvious
section. The code was compiled with the &ML native-code com-
piler (ocamlopt, without any option apart fromrectypes) on a
Pentium 4 processor running under Linux. The timings arergiv
in seconds and correspond to CPU time obtained using the UNIX
times system call.

We notice that the persistent iterators described in Setiare
slightly more efficient than the versions derived from #ipper.
This is due to a slightly more immediate data structure &lisr
no pair at the top of the data structure), but the differesceot
significant. In the case of the breadth-first traversal, w&cadhat
the Zipper solution is sometimes more efficient, but this is due
to the inlining of the persistent queues implementatiorst eve
notice that the lazy lists are always less effidiefihere are at least

Sapart from the very special case of a preorder traversal eftdinear
tree, which is then equivalent to the usual traversal oftals thus quasi
optimal.

spread and deserve more advertisement. We have alreadyadone
step in that direction in the @AMLGRAPH [1, 4] library: some per-
sistent iterators are provided for depth-first and bredidshgraph
traversals and are used in a backtracking-based graphrgpkalr
gorithm. Similarly, one could provide persistent iteratéor other
usual data structures such as hash tables, queues, stacks, e
This article also pointed out the close connections witha@k
Huet'sZipper. using the navigation primitives provided by tHao-
per, we could easily find out persistent iterators implemeateti
for various binary trees traversals. As a bonus, we red&seavthe
two-lists efficient implementation of persistent queuedevtudy-
ing aZipper-based breadth-first traversal.
Finally, we think that a more systematic study of persistent
iterators would also help implementiigperativecursors (as used
in object-oriented programming libraries), which is natosly
difficult but has received little consideration so far [13].

A. Appendix: Persistent queues

We give here a simple but efficient implementation of peesist
queues [11]. The idea is to represent a queue as a pair qf lists
one to insert the new elements (in head of the list) and theroth
to extract the elements (also in head). We may have eventiaall
reverse the first list whenever the second one becomes ebuypty,
theamortizedcomplexity ofpush andpop is still O(1).

module Q : sig
type o t
exception Empty
val empty : a t
val is_empty : a t — bool
val push : «a - ot — a t
val pop : at - a X at
end = struct

type o t = o list X « list
exception Empty

let empty = [1, []
let is_empty = function [], [] — true | _ — false
let push x (i,0) = (x :: i, o)
let pop = function
| i, y :: o — y, (i,0)
| [1, [1 — raise Empty



| i, [J — match List.rev i with
| x :: 0o — x, ([1, o)
| [ — assert false
end
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