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Abstract
Iterating over the elements of an abstract collection is usually done
in ML using a fold-like higher-order function provided by the data
structure. This article discusses a different paradigm of iteration
based on purely functional, immutable cursors. Contrary tofold-
like iterators, the iteration can be cleanly interrupted atany step.
Contrary to imperative cursors (such as those found in C++ and
Java libraries) it is possible to backtrack the iterator to aprevious
step. Several ways to iterate over binary trees are examinedand
close links with Gérard Huet’sZipperare established. Incidentally,
we show the well-known two-lists implementation of functional
queues arising from aZipper-based breadth-first traversal.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Language
Constructs and Features]: Control structures, Data types and struc-
tures

General Terms Algorithms, Design

Keywords Iteration, Backtracking, Persistent Data Structures

1. Introduction
The ML programmer is used to iterate over the elements of an
abstract collection using a higher-order function. A data structure
implemented as an abstract datatypet, representing a collection of
elements of a given typeelt, is naturally equipped with a function1

fold : (elt → α → α) → t → α → α

whose behavior is to build a value of typeα starting from an
initial value (its third argument) and repeatedly applyinga function
(its first argument) to all elements of the collection (its second
argument) and to the value being built. If we are consideringa
collection of integerss, the typeelt then beingint, we can sum
up all the elements ofs as simply as

fold (fun x n → n+x) s 0

When the function passed tofold is used only for its side-effects,
we can use a degenerated version offold:

1 This article is illustrated with source code written in OBJECTIVE
CAML [2] (OCAML for short), but could be easily adapted to any other
functional programming language.
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iter : (elt → unit) → t → unit

This way we can print all the elements ofs as simply asiter
(fun x → Printf.printf "%d\n" x) s. Such higher-order
functions iterating over the elements of a data structure are called
iterators and their use is probably the most idiomatic feature of
functional programming languages. The seasoned ML program-
mer uses them widely, appreciates their clarity and conciseness,
and does not conceive any nicer way to proceed.

There are however some (uncommon) situations where the
use of such iterators is not convenient, or even impossible.If the
datatype is not abstract, there is usually a most immediate way to
iterate over the elements. But if the datatype isabstractand we are
only given a higher-order iterator, then we may be in a situation
where there is no simple or efficient way to implement the desired
algorithm.

The first example is the case of an enumeration that must be
stopped before the end is reached. If for instance we try to check
whether there exists an element in our collections satisfying a
given propertyp: int → bool, one solution could be the fol-
lowing:

fold (fun x b → p x || b) s false

But this is not efficient since all the elements will be necessarily
visited, even if we quickly encounter an element satisfyingp and
despite the non-strictness of the|| operator (since it is applied here
to a value and not to a program expression). One solution hereis to
use an exception to interrupt the iteration. We can write an efficient
version of our search using the predefined exceptionExit:

try
iter (fun x → if p x then raise Exit) s; false

with Exit →

true

Of course, a data structure implementing a collection is usually
providing a functionexists : (elt → bool) → t → bool
which does exactly this kind of search, but we always end up inthe
situation where the search we want to implement is not provided
as a primitive. Even if it is efficient, the use of an exceptionis not
always convenient — when a value has to be returned, one needs
to defined a custom exception or to use a reference — and is rarely
elegant.

This is where the JAVA or C++ programmer is pushing forward
his or her way to operate. In such programming languages, iterators
do not appear as higher-order functions but as data structures able
to produce the elements of the enumerationone at a time. Such
iterators are often referred to ascursors[5]. In JAVA , for instance,
the iteration over the elements of a collectiont is written as the
following idiom:

for (Iterator i = t.iterator(); i.hasNext(); )
... visit i.next() ...



The methoditerator of the data structuret builds a new iterator
over the elements oft and then the two methodshasNext andnext
of this iterator respectively tell if there are still elements to iterate
over and which is the currently visited element. It is crucial here to
understand that the iterator is amutabledata structure: one call to
next returns the current elementandmoves the iterator to the next
element in the iterationby a side-effect. In the following, we call
this acursor to distinguish it from a higher-order iterator.

In most cases of ML programming, such a cursor would be
less convenient to use compared to its higher-order counterpart,
and much less elegant due to the hidden side-effects. However, it
provides a nice solution to the issue of the premature interruption.
If we assume an OCAML cursori over our collections, we can
easily check for an element satisfying the propertyp:

let rec test () =
has_next i && (p (next i) || test ())

Unfortunately, there is (at least) another situation whereneither
the higher-order iterators nor the cursors can help: when weneed
to come backto a previous state in the iteration, that is when the
iterator is involved in abacktrackingalgorithm. As an example,
let us assume that we can to check whether our set of integerss
contains a subset whose sum is 100. If the sets would be given
concretely as a list of integers, it would be really easy to write a
program performing this test2:

let rec sum n = function
| [] → n = 100
| x :: r → sum (n+x) r || sum n r

in
sum 0 s

But if the sets is implemented by an abstract datatype that only
provides higher-order iterators or cursors, then such a backtracking
algorithm (that is to try with the current element involved in the
sum and then without it in case of failure) is no more possible.

Fortunately there exists a better solution. It consists in acursor
implemented using apersistentdata structure3, that is where the
move to the next element does not modify the cursor but rather
returns a new one. Let us assume that such an cursor is provided as
an abstract data typeenum equipped with two functionsstart and
step:

type enum
val start : t → enum
val step : enum → elt × enum

The start function builds a new cursor for the whole collection
which is given as argument. One can see it as pointing to the “first”
element. Thestep function returns the element pointed to by the
cursor together with anewcursor pointing to the next element. We
assume thatstep is raising theExit exception when the iteration
is over4. Then we can rewrite the backtracking algorithm above as
follows:

let rec sum n i =
try
let x,i = step i in sum (n+x) i || sum n i

2 It is easy to improve this code, but this is not the point here.
3 The qualifier “persistent” is to be preferred to “purely functional” or
“immutable” that are too restrictive. The precise meaning of “persistent” is
indeed “observationally immutable”, as explained in Okasaki’s book [11],
and is thus more general.
4 We could equivalently use a sum type instead of an exception,giving step
the typeenum → (elt× enum) option. Using a custom datatype to
avoid the indirection, we indeed retrieve the same performances. However,
using an exception simplifies most of the forthcoming code.

with Exit →

n = 100
in
sum 0 (start s)

The code is highly similar to the one above, apart from lists being
replaced by cursors of typeenum. We can notice that, when the type
t is actually the typeint list, we can definetype enum = int
list, thestart function as the identity and thestep function as
the destructuring function for the constructor::.

In this article, we focus on these cursors implemented usingper-
sistent data structures, which we callpersistent iteratorsin the fol-
lowing. This is not an original technique and such iteratorsare part
of ML folklore. They are used for instance to implement a total
ordering over binary search trees in OCAML and SML standard
libraries, which is an instance of the samefringe problem [10, 3].
However, the solutions are oftenad-hocand the persistence of the
iterator is usually not exploited (it is not really mandatory, but im-
perative programming is simply not considered). The main con-
tribution of this paper is to show how suchad-hocsolutions can
be retrieved in a systematic way using Gérard Huet’sZipper [8].
Incidentally, we show how the well-known implementation ofper-
sistent queues using a pair of lists shows up from theZipper-based
persistent iterator for breadth-first tree traversal.

Though this is not the main focus of this paper, persistent itera-
tors can also be implemented aslazy lists(with or without memo-
ization). Actually, thead-hocandZipper-based persistent iterators
discussed in the following can be seen asreified (or defunction-
alized [6]) versions of lazy lists-based implementations. Thus we
briefly present this alternative solution and discuss the connections
with our first-order approach.

This article is organized as follows. Section 2 shows how to
implement persistent iterators for several traversals over binary
trees. Then Section 3 establishes the connections with theZipper.
Section 4 shows the equivalence between persistent iterators and
lazy lists. Finally, Section 5 quickly compares the performances of
all these implementations. The OCAML source code corresponding
to what is described in this article is freely available online at
http://www.lri.fr/∼filliatr/pub/enum.ml.

2. Persistent iterators for binary trees
In the following of this article, we assume that the data structure to
be iterated over is a binary tree containing integers on nodes:

type t = E | N of t × int × t

The generalization to balanced trees — thus containing morein-
formation within nodes — or trees containing elements of another
type is immediate since only the traversals matter here.

This section describes the implementation of persistent iterators
for various traversals of binary trees, with the common following
signature:

type enum
val start : t → enum
val step : enum → int × enum

As indicated in the introduction, thestep function is assumed to
raise theExit exception when the enumeration is over.

2.1 Inorder traversal

We start with inorder traversal, which is the most natural traversal
when trees are binary search trees. In inorder traversal, the left
subtree is visited first, then the element at the node and finally the
right subtree. A higher-order iteratorinorder is thus written as
follows:



let rec inorder f = function
| E → ()
| N (l, x, r) → inorder f l; f x; inorder f r

A persistent iterator corresponding to this traversal can be found
in the “literature” (the OCAML and SML standard libraries for in-
stance). Since the iteration must begin with the leftmost element in
the tree, we start writing a function going left in the tree and build-
ing the list of elements and right subtrees encountered meanwhile.
We can define a custom list datatype for this purpose:

type enum = End | More of int × t × enum

and aleft function implementing the left descent from a given
treet and an enumeratione representing the elements to be visited
after the ones oft:

let rec left t e = match t with
| E → e
| N (l, x, r) → left l (More (x, r, e))

We initialize the enumeration with the “empty list”End:

let start t = left t End

and thestep function is simply returning the element in front of
the list and callingleft with what was the right subtree of this
element in the initial tree:

let step = function
| End → raise Exit
| More (x, r, e) → x, left r e

2.2 Preorder traversal

In preorder traversal, the element at the node is visited first, then
the elements of the left subtree and finally the elements of the right
subtree:

let rec preorder f = function
| E → ()
| N (l, x, r) → f x; preorder f l; preorder f r

It is exactly a depth-first traversal of the tree and thus the iterator
can be simply implemented as astack, that is a list of trees:

type enum = t list

The iterator is initialized with a one element list containing the
initial tree:

let start t = [t]

Thestep function examines the element in first position in the list
and, when it is a node, it returns its value while pushing the right
and left subtrees on the stack:

let rec step = function
| [] → raise Exit
| E :: e → step e
| N (l, x, r) :: e → x, l :: r :: e

We can slightly optimize this code to avoid pushing empty trees on
the stack:

let start = function E → [] | t → [t]
let step = function

| [] → raise Exit
| N (E, x, E) :: e → x, e
| N (E, x, r) :: e → x, r :: e
| N (l, x, E) :: e → x, l :: e
| N (l, x, r) :: e → x, l :: r :: e
| → assert false

On this example, we can see that the iterator is nothing else than
the reification of the call stack. Incidentally, it illustrates another

benefit of persistent iterators: to avoid astack overflow. Even if in
the case of balanced binary trees it is unlikely that the depth of a
tree can be responsible for a stack overflow, the case of otherdata
structures, such as graphs for instance, can be more problematic
for iterators simply written as recursive functions. Of course, it is
always possible to make the stack explicit, even in the case of usual
higher-order iterators.

2.3 Postorder traversal

In postorder traversal, we visit the element at the nodeafter having
visited the elements of the two subtrees. Surprisingly, postorder
traversal is more difficult to implement than preorder traversal. Of
course, we could reuse the idea of making the call stack explicit and
pushing elements as well as trees. But it would not be an efficient
solution. More subtly, we can reuse ideas from the inorder traversal
since the first element to be visited is also the leftmost element in
the tree. Thus we reuse the same iterator type and theleft and
start functions:

type enum = End | More of int × t × enum
let rec left t e = match t with

| E → e
| N (l, x, r) → left l (More (x, r, e))

let start t = left t End

Only thestep function needs to be updated. It must now consider
the right subtreer beforethe elementx:

let rec step = function
| End →

raise Exit
| More (x, E, e) →

x, e
| More (x, r, e) →

step (left r (More (x, E, e)))

Pushing the empty treeE together withx on the last case is not
very elegant. We can refine this solution by introducing a custom
constructorMore1 to handle this particular case:

type enum =
| End
| More of t × int × enum
| More1 of int × enum

let rec left t e = match t with
| E → e
| N (l, x, E) → left l (More1 (x, e))
| N (l, x, r) → left l (More (r, x, e))

let start t = left t End
let rec step = function

| End → raise Exit
| More1 (x, e) → x, e
| More (t, x, e) → step (left t (More1 (x, e)))

2.4 Breadth-first traversal

We end this section devoted to binary trees with breadth-first traver-
sal. It is usually implemented using aqueuecontaining trees. The
whole tree is inserted into an initially empty queue and then, for
each tree popped out of the queue, we visit the element at the node
and insert the two subtrees into the queue (the left one and then the
right one). Writing the usual higher-order iterator using the imper-
ative queues from OCAML standard library is straightforward:

let bfs f t =
let q = Queue.create () in
Queue.push t q;
while not (Queue.is_empty q) do
match Queue.pop q with



| E → ()
| N (l, x, r) →

f x; Queue.push l q; Queue.push r q
done

To implement the corresponding persistent iterator, we simply
need to substitutepersistent queuesto imperative queues. It hap-
pens that it is quite easy to implement persistent queues using a
pair of lists while keeping good performances [11]. The codeis
given in appendix as a moduleQ implementing as abstract datatype
α t for persistent queues containing elements of typeα. The per-
sistent iterator is then directly implemented as a persistent queue
containing trees:

type enum = t Q.t

Thestart function builds the queue containing only one element,
namely the whole tree:

let start t = Q.push t Q.empty

and thestep function applies the same algorithm as above:

let rec step e =
try match Q.pop e with
| E, e → step e
| N (l, x, r), e → x, Q.push r (Q.push l e)

with Q.Empty →

raise Exit

Note: as we did for the preorder traversal, it is possible to slightly
optimize this code by avoiding pushing empty trees in the queue.
This remark also applies to the imperative algorithm, of course.

3. Connections with the zipper
In this section, we investigate the connections between thepersis-
tent iterators and Gérard Huet’sZipper [8, 7]. More precisely, we
show how persistent iterators can be discovered in a systematic way
using theZipper.

3.1 The zipper

We introduce theZipper for the reader who would not be familiar
of this data structure. TheZipper is to the purely applicative data
structure what the pointer is to a mutable data structure: a way to
designate a piece of the structure and to modify it. In the case of
a purely applicative data structure, “to modify” of course means
building a new value but this does not simplify the issue. Let
us assume we are visiting the nodes of a binary tree looking for
some node satisfying a given property and, once it has been found,
we want to perform a local modification. With an imperative data
structure, it is immediate. But with an applicative data structure,
we need to maintain the path from the root of the tree to the
visited node, to be able to rebuild the corresponding nodes.That
is precisely what theZipperdoes, with the greatest elegance.

Such a path from the root is represented in a bottom-top way, as
a list going from the visited node to the root, the direction followed
at each step being indicated. The OCAML type for this path is the
following:

type path =
| Top
| Left of path × int × t
| Right of t × int × path

TheZipper is then the pair of the subtree which is “pointed to” and
of the path to the root:

type location = t × path

The construction can be generalized to any algebraic datatype, each
constructor being duplicated into several variants (in ourcase, the
constructorN is duplicated intoLeft andRight).

We create aZipperpointing to the root of a treet by associating
it to the empty path:

let create t = (t, Top)

Then we can buildnavigation functions allowing to move in the
tree represented by theZipper. To descend to the left subtree,
when there is one, we simply need to extend to path with the
Left constructor, which records the value at the node and the right
subtree, and then to take the left subtree as the new designated tree:

let go_down_left = function
| E, → invalid_arg "go_down_left"
| N (l, x, r), p → l, Left (p, x, r)

Symmetrically, we can define a function to descend to the right
subtree:

let go_down_right = function
| E, → invalid_arg "go_down_right"
| N (l, x, r), p → r, Right (l, x, p)

Similarly, we can define functions to move from a tree to its left or
right sibling, when they exist:

let go_left = function
| , Top | , Left → invalid_arg "go_left"
| r, Right (l, x, p) → l, Left (p, x, r)

let go_right = function
| , Top | , Right → invalid_arg "go_right"
| l, Left (p, x, r) → r, Right (l, x, p)

Finally, we can define a function to move up in the tree:

let go_up = function
| , Top → invalid_arg "go_up"
| l, Left (p, x, r) | r, Right (l, x, p) →

N (l, x, r), p

Iterating this function until we reach the empty pathTop is a way
to retrieve the whole tree represented by theZipper. The local
modification, which was the motivation for theZipper, is trivially
implemented as a replacement of the designated subtree witha new
one:

let change ( , p) t = (t, p)

We note that all these operations are implemented in constant time
and space.

3.2 Persistent iterators derived from the zipper

We now show how theZippercan be used to retrieve the persistent
iterators over binary trees introduced in Section 2.

3.2.1 Inorder traversal

Let us start with the inorder traversal. The persistent iterator is
directly represented by aZipper and thestart function sets the
Zipper to the root of the tree:

type enum = location
let start t = (t, Top)

The step function is then implemented by combining the navi-
gation functions provided by theZipperand the local modification
function to get rid of the visited elements one at a time. If the whole
tree is empty, then the iteration is over:

let rec step = function
| E, Top → raise Exit



If the designated subtree is a node, then we must keep descending
to the left, using theZipperprimitivego down left, and callstep
recursively. If we expandgo down left, we get:

| N (l, x, r), p → step (l, Left (p, x, r))

Finally, when we reach the empty treeE, the elementx right above
is the one to visit and we can replace the designated node by its
right sibling. This is achieved by a combination of the primitives
go up andchange. Once expanded, we get the following code:

| E, Left (p, x, r) → x, (r, p)

To sum up, thestep function is only three lines long:

let rec step = function
| E, Top → raise Exit
| E, Left (p, x, r) → x, (r, p)
| N (l, x, r), p → step (l, Left (p, x, r))

We notice that theZipperconstructorRight has not been used and
thus can be eliminated:

type path = Top | Left of path × int × t
type enum = t × path

Consequently, we obtainexactly the datatype introduced in Sec-
tion 2, that is a list of pairs composed of elements and their associ-
ated right subtrees. Theleft function from the initial solution has
disappeared: it is now encoded directly by thestep function. The
behavior is slightly different, though: some calls toleft in the ini-
tial solution are now suspended in the first component of theZipper
and will only be performed on the next call tostep. If we stop an
iteration on a node with no left subtree and a huge right subtree (to
the left) then we save the descent to the left in this huge tree. As
a consequence, the solution inspired by theZipper is slightly more
efficient.

3.2.2 Preorder traversal

We keep implementing the persistent iterator directly as theZipper
and thestart function is unchanged, as is the termination case of
the iteration:

let rec step = function
| E, Top → raise Exit

If the visited subtree is a node, then we return its element and we
move theZipper to the left subtree (go down left):

| N (l, x, r), p → x, (l, Left (p, x, r))

Finally, when the iteration reaches the leftmost element, we imme-
diately jump to the right subtree since the element at the node has
already been visited:

| E, Left (p, , r) → step (r, p)

Putting all together, we get the following code:

let rec step = function
| E, Top → raise Exit
| E, Left (p, , r) → step (r, p)
| N (l, x, r), p → x, (l, Left (p, x, r))

Once again we note that the constructorRight is useless, and so is
the element stored in the constructorLeft. Thus we can simplify
the definition of the iterator into

type path = Top | Left of path × t
type enum = t × path

We find againexactlythe same datatype as in the initial solution,
namely a list of trees (with a particular case for the first element,

represented as a pair). As far as efficiency is concerned, this solu-
tion inspired by theZipper is intermediate between the two solu-
tions proposed in Section 2, since it avoids pushing some empty
trees on the stack, but not all of them.

3.2.3 Postorder traversal

The persistent iterator datatype, thestart function and the termi-
nation case forstep are still unchanged:

let start t = (t, Top)
let rec step = function

| E, Top → raise Exit

If the tree pointed to is a node, we need to descend into its left
subtree:

| N (l, x, r), p → step (l, Left (p, x, r))

If the iteration is done with a left subtree, it must now consider its
right sibling:

| E, Left (p, x, r) → step (r, Right (E, x, p))

Finally, if the iteration reaches the rightmost element, itsimply
needs to return this element and to suppress the corresponding
node:

| E, Right ( , x, p) → x, (E, p)

We get the following code forstep:

let rec step = function
| E, Top → raise Exit
| E, Left (p, x, r) → step (r, Right (E, x, p))
| E, Right ( , x, p) → x, (E, p)
| N (l, x, r), p → step (l, Left (p, x, r))

Here, bothZipper’s constructorsLeft andRight are used but we
notice that the first argument ofRight is not used. Thus we can
slightly simplify the definition of the persistent iteratorinto

type path =
| Top
| Left of path × int × t
| Right of int × path

type enum = t × path

Once again, we find out a datatype isomorphic to the one introduced
in Section 2 (Left corresponding toMore andRight to More1).

3.2.4 Breadth-first traversal

The case of breadth-first traversal is more complex. Indeed,using
only the navigation primitives provided by theZipperto move from
one node to the next node in the breadth-first traversal is quite
difficult: one needs to come back to an upper node in the tree and
then to move down following another branch, in a way that depends
on theglobal structure of the tree.

As usual with breadth-first traversals, we need to generalize the
problem toforests(see for instance [12]), that is to lists of trees.
Indeed, it is therefore possible to represent the list of allthe subtrees
of a same level and then to move from one node to its right sibling
in this forest.

There happens to be aZipper for variadic arity trees and thus
for forests. In the original paper introducing theZipper [8] the case
of variadic arity trees is even considered before the particular case
of binary trees. TheZipper is defined as follows:

type path = Top | Node of t list × path × t list
type location = t × path

The three arguments of theNode constructor represent a position
within a forest, the first list containing the trees on the left in reverse



order and the second list the trees on the right. The navigation
primitives that are of interest here are the following:

let go_left = function
| t, Node (l :: ll, p, r) →

l, Node (ll, p, t :: r)
| → invalid_arg "go_left"

let go_right = function
| t, Node (l, p, r :: rr) →

r, Node (t :: l, p, rr)
| → invalid_arg "go_right"

As with the previous traversals, the persistent iterator isdirectly
represented by theZipper and thestart function sets theZipper
on the root of the tree:

type enum = location
let start t = t, Node ([], Top, [])

As previously, thestep function is implemented using the navi-
gation primitives and removing the elements as soon as they are
visited. The case of the empty forest terminates the iteration:

let rec step = function
| E, Node ([], , []) → raise Exit

If the designated tree is a node, we return the correspondingele-
ment and we replace this tree by its left and right subtrees, pushed
onto the left list. In order to avoid considering too many particular
cases, we replace the designated tree by an empty tree:

| N (l, x, r), Node (ll, p, rr) →

x, (E, Node (r :: l :: ll, p, rr))

If the designated tree is precisely an empty tree, then we move right
into the forest:

| E, Node (ll, p, r :: rr) →

step (r, Node (ll, p, rr))

Finally, if it is no more possible to move right, we need to come
back to the leftmost position in the forest (to move to the next
level). This amounts to applying thego left function repeatedly
as much as possible, which results in the reversing of the left list
into the right list (in the efficient way, that is using an accumulator
which is here the right list). Thus we can useList.rev directly:

| E, Node (ll, p, []) →

step (E, Node ([], p, List.rev ll))

Putting all together, we get the following code:

let rec step = function
| E, Node ([], p, []) → raise Exit
| E, Node (ll, p, []) →

step (E, Node ([], p, List.rev ll))
| E, Node (ll, p, r :: rr) →

step (r, Node (ll, p, rr))
| N (l, x, r), Node (ll, p, rr) →

x, (E, Node (r :: l :: ll, p, rr))
| , Top → assert false

We immediately notice that theZipper is always of the kind
Node( ,Top, ). Thus we can suppress theTop and Node con-
structors and represent here theZipper by a pair of lists. We can
also put the designated subtree in head position of the rightlist,
which gives the final code below:

type enum = t list × t list
let start t = [], [t]
let rec step = function

| [], [] → raise Exit

| ll, [] → step ([], List.rev ll)
| ll, E :: rr → step (ll, rr)
| ll, N (l, x, r) :: rr → x, (r :: l :: ll, rr)

The interpretation of the two lists composing the iterator is quite
simple: one list stores the nodes still to be traversed on thecurrent
level, while the other one collects the nodes of the next level, in
reverse order. Reversal occurs precisely when the iteratormoves
from one level to the next one.

It appears that this isexactlythe solution given in Section 2.4,
except that the code for persistent queues using pairs of lists (see
the appendix) is hereinlined in thestep function. Incidentally, we
have retrieved the efficient coding of persistent queues while using
theZipper to perform a breadth-first traversal.

4. Lazy lists and continuation passing style
In this section, we briefly explore an alternative solution where
persistent iterators are implemented aslazy lists. Memoization set
apart, a lazy list is simply a function returning its first element
together with the remaining elements as another lazy list. Thus a
persistent iterator is represented directly as a function giving the
next element together with the new iterator5:

type enum = unit → int × enum

Therefore thestep function is simply an application of this func-
tion:

let step k = k ()

As a consequence, all the algorithmic complexity is moved tothe
start function, which must build a single closure containing all
the forthcoming computation. At this point, it is useful to switch
to continuation passing style(CPS) and to define a more general
function, calledrun here, which takes a continuation as argument
and to initiate the computation with the “empty” continuation that
raises theExit exception to signal the end of the iteration:

let run t k = ...
let start t = run t (fun () → raise Exit)

Defining the run function for inorder, preorder and postorder
traversals is rather straightforward:

Inorder traversal

let rec run t k = match t with
| E → k
| N (l, x, r) →

run l (fun () → (x, run r k))

Preorder traversal

let rec run t k = match t with
| E → k
| N (l, x, r) →

(fun () → (x, run l (run r k)))

Postorder traversal

let rec run t k = match t with
| E → k
| N (l, x, r) →

run l (run r (fun () → (x, k)))

5 Such a type definition requires to set the-rectypes option of the OCAML
compiler. We could do without, using a boxed type such as

type enum = F of (unit -> int * enum)

but the resulting boxing and unboxing imply a severe loss of performance,
at least in OCAML (up to 60% slower code in our tests).



traversal implementation random left right full
inorder Section 2.1 1.07 0.86 0.11 0.25

zipper 1.14 1.12 0.11 0.27
lazy list 1.28 1.38 0.12 0.29

preorder Section 2.2 1.01 0.76 0.10 0.26
— variant 0.91 0.08 0.07 0.21
zipper 0.99 0.99 0.11 0.27
lazy list 1.51 0.14 0.16 0.41

postorder Section 2.3 1.26 0.86 1.04 0.28
— variant 1.20 0.69 0.87 0.29
zipper 1.42 1.08 1.06 0.35
lazy list 1.63 1.44 1.21 0.43

bfs Section 2.4 14.57 0.44 0.47 4.62
— variant 9.26 0.24 0.24 2.05
zipper 15.38 0.18 0.17 3.65

Figure 1. Compared performances of the various implementations

This solution is somewhat systematic. Unfortunately, it isless
efficient than the previous approaches, mostly because closures
and their applications are using much more time and space than
custom data structures (some benchmarks are presented in the
next section). To improve the efficiency of this code, we could
defunctionalizeit i.e. replace the closures by some custom data
type [6]. Then we would find out implementations roughly similar
to approaches of sections 2 and 3. Thus our persistent iterators and
lazy lists are actually equivalent.

There is even a systematic way to turn a fold-like (or iter-like)
iterator into lazy lists using delimited continuations [3,9]. Thus it
is always possible to get persistent iterators for any data structure
providing a traditional higher-order iterator, even when the data
structure is implemented as an abstract datatype.

5. Performance
In this section we quickly compare the efficiency of the various so-
lutions proposed in this article. The Figure 1 gathers the timings
performed for the various kinds of traversals and the various im-
plementations. Each implementation is tested against a large set
of trees of various sizes (between 0 and 100000 elements) andwe
measure the total time spent in the full traversals of these trees.
Four different shapes of trees are considered: random trees, left-
linear trees, right-linear trees and full trees. The iterators intro-
duced in Section 2 are named “Section 2.1” to “Section 2.4” and
“variant” refers to the optimizations (where we do not push empty
trees); “zipper” refers to the solutions introduced in Section 3; fi-
nally, “lazy list” refers to the solutions introduced in theprevious
section. The code was compiled with the OCAML native-code com-
piler (ocamlopt, without any option apart from-rectypes) on a
Pentium 4 processor running under Linux. The timings are given
in seconds and correspond to CPU time obtained using the UNIX
times system call.

We notice that the persistent iterators described in Section 2 are
slightly more efficient than the versions derived from theZipper.
This is due to a slightly more immediate data structure (there is
no pair at the top of the data structure), but the difference is not
significant. In the case of the breadth-first traversal, we notice that
the Zipper solution is sometimes more efficient, but this is due
to the inlining of the persistent queues implementation. Last, we
notice that the lazy lists are always less efficient6. There are at least

6 apart from the very special case of a preorder traversal of a left-linear
tree, which is then equivalent to the usual traversal of a list and thus quasi
optimal.

two possible explanations. First, a closure is usually larger than a
ad-hocdata structure, thus resulting in a slightly more expensive
allocation and initialization. Second, modern processorscan deal
more efficiently with pattern matching (using branch prediction)
than with unknown function calls.

We also performed a similar comparison for the memory use,
measuring the evolution of the size of the persistent iterator. Results
are very similar to those of time performances: solutions from
Section 2 and those inspired by theZipper use similar amounts
of memory, and the lazy lists solution is using much more memory
(but within a constant factor).

The results of these benchmarks can be reproduced using the
source code available online.

6. Conclusion
In this article, we have considered an alternative to the traditional
higher-order iterators that can be found in ML, as step-by-step iter-
ators based on persistent data structures. Thesepersistent iterators
allow the premature interruption of an iteration and, even better,
the resumption on a previous state of the iteration, which isuseful
when the iterator is involved in a backtracking algorithm.

Such iterators are known from some programmers, though their
persistence is usually not exploited. They are however not widely
spread and deserve more advertisement. We have already donea
step in that direction in the OCAMLGRAPH [1, 4] library: some per-
sistent iterators are provided for depth-first and breadth-first graph
traversals and are used in a backtracking-based graph coloring al-
gorithm. Similarly, one could provide persistent iterators for other
usual data structures such as hash tables, queues, stacks, etc.

This article also pointed out the close connections with Gérard
Huet’sZipper: using the navigation primitives provided by theZip-
per, we could easily find out persistent iterators implementations
for various binary trees traversals. As a bonus, we rediscovered the
two-lists efficient implementation of persistent queues while study-
ing aZipper-based breadth-first traversal.

Finally, we think that a more systematic study of persistent
iterators would also help implementingimperativecursors (as used
in object-oriented programming libraries), which is notoriously
difficult but has received little consideration so far [13].

A. Appendix: Persistent queues
We give here a simple but efficient implementation of persistent
queues [11]. The idea is to represent a queue as a pair of lists,
one to insert the new elements (in head of the list) and the other
to extract the elements (also in head). We may have eventually to
reverse the first list whenever the second one becomes empty,but
theamortizedcomplexity ofpush andpop is still O(1).

module Q : sig
type α t
exception Empty
val empty : α t
val is_empty : α t → bool
val push : α → α t → α t
val pop : α t → α × α t

end = struct
type α t = α list × α list
exception Empty
let empty = [], []
let is_empty = function [], [] → true | → false
let push x (i,o) = (x :: i, o)
let pop = function

| i, y :: o → y, (i,o)
| [], [] → raise Empty



| i, [] → match List.rev i with
| x :: o → x, ([], o)
| [] → assert false

end
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Designing a Generic Graph Library using ML Functors. Submitted
for publication.http://www.lri.fr/∼filliatr/ocamlgraph/
main.ps, May 2006.

[5] James O. Coplien.Advanced C++ Programming Styles and Idioms.
Addison-Wesley, 1992.

[6] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at Work. In
Søndergaard, editor, 3rd International Conference on Principles and
Practice of Declarative Programming (PPDP ’01), June 2001.

[7] Ralf Hinze and Johan Jeuring. Functional Pearl: Weavinga Web.
Journal of Functional Programming, 11(6):681–689, November
2001.

[8] Gérard Huet. The Zipper.Journal of Functional Programming,
7(5):549–554, Septembre 1997.

[9] Oleg Kiselyov. From enumerators to cursors: turning theleft
fold inside out, 2004. Athttp://okmij.org/ftp/Haskell/
fold-stream.lhs.

[10] John McCarthy. Another samefringe.SIGART Newsletter, 61,
February 1977.

[11] Chris Okasaki. Purely Functional Data Structures. Cambridge
University Press, 1998.

[12] Chris Okasaki. Breadth-First Numbering: Lessons froma Small
Exercise in Algorithm Design. InInternational Conference on
Functional Programming (ICFP), Montreal, Canada, 2000.

[13] Richard Rasala. A Model C++ Tree Iterator Class For Binary
Search Trees. InProceedings of the twenty-eighth SIGCSE technical
symposium on Computer science education SIGCSE, 1997.


