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Abstract. For the register function for t–ary trees, recently introduced by Auber et
al., we prove that the average is log4 n + O(1), if all such trees with n internal nodes
are considered to be equally likely.

This result remains true for rooted trees where the set of possible out–degrees is
finite. Furthermore we obtain exponential tail estimates for the distribution of the
register function. Thus, the distribution is highly concentrated around the mean value.

1. Introduction

The register function of binary trees was introduced by Ershov [3]; the equivalent no-
tion of (Horton–)Strahler numbers was introduced earlier by hydrogeologists Horton [7]
and Strahler [14].

This function is recursively defined by reg(root) = 0, and, if a binary tree T has
subtrees T1 and T2, then reg(T ) = max{reg(T1), reg(T2)}, provided reg(T1) 6= reg(T2),
otherwise it is 1 + reg(T1).

Assuming all binary trees with n internal nodes to be equally likely, the average value
of the register function was found independently and at the same time [6, 8]; compare
also [10]. It is log4 n + O(1), and more precision is available and involves complicated
(fluctuating) terms. The concept has been extended to unary–binary trees [5]. Various
papers about the register function (or Horton–Strahler numbers) have been written;
we cite a few here [2, 9, 15, 13, 11].

Recently, Auber et al. [1] have introduced a generalisation to general rooted trees.
It is again recursively defined via reg(�) = 0 and if the values of the subtrees
reg(T1), . . . , reg(Tt) are written in nonincreasing order as c1 ≥ · · · ≥ ct (where t
is the number of descendents) then the register function of the tree T is given by
reg(T ) = max{c1, c2 + 1, . . . , ct + t− 1}.

The cited paper contains already a few results, but much remains to be done. In
this paper we want to investigate the average value of the register function, provided
that all trees (with certain degree restrictions) with n nodes are equally likely. We
will show that this parameter is log4 n + O(1), too, and that the distribution is highly
concentrated around the mean. This means that the register function is (with high
probability) a “function” of the size of the tree and it “almost” does not depend on
the structure of the tree.

2. Results

Let D ⊆ {1, 2, 3, . . .} be a finite set that contains at least one element greater than
1 and set d = gcd(D). For n with n ≡ 1 mod d let Tn denote the set of rooted trees of
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size n where all nodes have outdegree in D. For example, if D = {t} (for some fixed
t ≥ 2) we just get the set of t–ary rooted trees.1 If we suppose that every tree in Tn is
equally likely then every parameter on trees can be interpreted as a random variable.

The main purpose of this paper is to discuss properties of the random variable Rn,
the register function on Tn. Our first result is an asymptotic relation for its expected
value ERn.

Theorem 1. We have, for n ≡ 1 mod d as n →∞

ERn = log4 n + O(1). (1)

We can also show that the register function is highly concentrated around its mean.
We obtain exponential tail estimates:

Theorem 2. We have uniformly for 0 ≤ y ≤
(

1
2
− η

)
log4 n, where η > 0 is arbitray,

and for all n with n ≡ 1 mod d

P{|Rn − ERn| ≥ y} = O(2−y). (2)

Since Rn = O(log n) it also follows that all centralized moments are bounded. Un-
fortunately our methods are not strong enough to get more precise bounds.

The structure of the proof is the following one. First of all we will work out details
just for t–ary trees in order to make the presentation more readable. Of course, we
will also indicate how the general case of finite D can be treated. In Section 3 we
collect some facts on generating functions that encode the distribution of Rn. The
main part of the proof is contained in Section 4 where we prove asymptotic relations
for these generating functions in order to derive (1). Section 5 is devoted to the proof
of Theorem 2. Finally we indicate that a simplified version of the generating function
leads to the same asymptotic results and sheds some light on the asymptotic structure
that is hidden behind the recurrences of the involved generating functions.

3. Generating Functions For t–Ary Trees

The generating function y = y(z) for the number of t–ary trees (where only internal
nodes are counted) satisfies the functional equation

y = 1 + zyt.

By Lagrange inversion we directly obtain the number of t–ary trees with n (internal)
nodes:

yn = [zn] y(z) =
1

(t− 1)n + 1

(
tn

n

)
∼

√
t

2π(t− 1)3
n−3/2

(
tt

(t− 1)t−1

)n

.

Hence,

z0 =
(t− 1)t−1

tt

1For t–ary trees it is common to count just internal nodes. If there are n internal nodes then the
total number of nodes equals n′ = tn + 1. The advantage is that one does not have to care about the
restriction n′ ≡ 1 mod t.
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is the singularity of y(z) and the local expansion of y(z) around its singularity is given
by

y(z) =
t

t− 1
−

√
2t

(t− 1)3

√
1− z

tt

(t− 1)t−1
+ O

(
1− ztt(t− 1)1−t

)
. (3)

In particular, the power series expansion of y(z) is convergent at z = z0 and we have

y(z0) =
t

t− 1
.

Furthermore, z = z0 is the only singularity on the circle of convergence |z| = z0 and
y(z) can be uniquely analytically continued to a region of the form |z| < z0 + ε,
arg(z − z0) 6= 0, where ε > 0.

Note further, that 1− tzyt−1 has the local expansion

1− tzy(z)t−1 =

√
2(t− 1)

t

√
1− z/z0 + O (1− z/z0) . (4)

In what follows we will make use of the abbreviation

V :=
1− tzy(z)t−1

z
(

t
2

)
y(z)t−2

=

√
8t

(t− 1)3

√
1− z/z0 + O (1− z/z0) . (5)

Since

y(z) =
t

t− 1
− V

2
+ O(|V |2)

“everything” can be expressed in terms of V . In particular, a local expansion in terms
of V translates into a local expansion around the singularity z0. In this type of tree
enumeration problems, one can always decide whether z or y is the independent vari-
able. It is natural to take z, but usually it is easier to work with y as independent
variable. However, one can always “translate.”

It seems to be natural to work with the generating function

Rp(z) =
∑
n≥0

[number of t–ary trees with n internal nodes and register function p] · zn,

but, as noticed already in the (classical) binary case [12], it is more convenient to work
with

Sp(z) =
∑
n≥0

[number of t–ary trees with n internal nodes and register function ≥ p] · zn.

Of course, Rp = Sp − Sp+1, and S0 = y.

The paper [1] has already the recursion for these functions, if one makes the proper
adjustments (as already mentioned, they count the leaves also as internal nodes, which
amount to the generating function y = z(1 + yt), but we decided to study the more
common version given by y = 1 + zyt):

One sets P1(y, g0) = g0, and recursively

Pt(y, g0, . . . , gt−1) = gt
t−1 + t

∫ y

gt−1

Pt−1(τ, g0, . . . , gt−2)dτ.
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For example, one gets

P2(y, g0, g1) = g2
1 − 2g0g1 + 2g0y,

P3(y, g0, g1, g2) = g3
2 − 3g2

1g2 + 3g0g1g2 − 3g0g
2
2 + 3g2

1y − 6g0g1y + 3g0y
2.

Then Sp = Sp(z) satisfies a recurrence relation of the form

Sp = zPt(y, Sp, Sp−1, . . . , Sp−t+1),

that can be made explicit since g0 (resp. Sp) occurs in Pt at most in first order, in
particular define Dt and Nt by Pt = g0Dt + Nt then we have

Sp =
zNt(y, Sp−1, . . . , Sp−t+1)

1− zDt(y, Sp−1, . . . , Sp−t+1)
. (6)

Here are the first few instances (for t = 2, 3, 4):

Sp =
zS2

p−1

1− 2zy + 2zSp−1

,

Sp =
z

(
3S2

p−1y + S3
p−2 − 3S2

p−1Sp−2

)
1− 3zy2 + 6zSp−1y + 3zS2

p−2 − 6zSp−1Sp−2

,

Sp =
z(6S2

p−1y2+S4
p−3−6S2

p−1S2
p−3+4S3

p−2y−4S3
p−2Sp−3−12S2

p−1Sp−2y+12S2
p−1Sp−2Sp−3)

1−4zy3+12zSp−1y2+4zS3
p−3−12zSp−1S2

p−3+12zS2
p−2y−12zS2

p−2Sp−3−24zSp−1Sp−2y+24zSp−1Sp−2Sp−3
.

Note further that the recursion holds for p ≥ 1, if one chooses initial conditions S0 =
S−1 = S−2 = · · · = y.

It is clear that Nt “starts” with Nt =
(

t
2

)
S2

p−1y
t−2 + · · · and Dt with Dt = yt−1 −

2
(

t
2

)
Sp−1y

t−2 + · · · , where we only encounter the “leading terms” with respect to y.
This means that we can rewrite (6) to

Sp =
z

[(
t
2

)
S2

p−1y
t−2 + Ap

]
1− tzyt−1 + z

[
2
(

t
2

)
Sp−1yt−2 + Bp

] , (7)

where Ap is a homogeneous polynomial of degree t in y, Sp−1, Sp−2, . . . , Sp−t+1, Bp is a
homogeneous polynomial of degree t− 1 in y, Sp−1, Sp−2, . . . , Sp−t+1, and the degrees of
y are all smaller than t− 2.

Finally we want to state the differences if we consider finite outdegree sets D of
cardinality greater than 1. Here the generating function y(z) of the numbers yn = |Tn|
(where all nodes are counted) is given by

y(z) = z
∑
t∈D

y(z)t.

For convenience, set Φ(y) =
∑

t∈D yt, so that we have y(z) = zΦ(y(z)). It is well known
(see [4]) that the series y(z) converges as an analytic function inside the complex disc
|z| < z0, where z0 = τ/Φ(τ) and τ is the unique positive real solution of the equation
Φ(τ) = τΦ′(τ). Furthermore, y(z) has dominant singularities of square–root type (3):

y(z) = τ −

√
2Φ(τ)

Φ′′(τ)

√
1− z/z0 + O(|1− z/z0|).
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If d = gcd(D) = 1 then z = z0 is the only singularity on the circle |z| = z0. If d > 1
then the points z0e

2πik/d, k = 1, . . . , d−1, are also square–root singularities of the same
type. Eventually this leads to the asymptotic expansion

yn = d

√
Φ(τ)

2πΦ′′(τ)
n−3/2zn

0

(
1 + O

( 1

n

))
if n ≡ 1 mod d (and yn = 0 otherwise). In what follows we will always assume that
d = 1. The case d > 1 can be treated in a completely similar way. Note that we also
have the local expansion

zΦ′(y(z)) = 1−

√
2τ 2Φ′′(τ)

Φ(τ)

√
1− z/z0 + O(|1− z/z0|).

Thus, with

V =
1− zΦ′(y(z))

zΦ′′(y(z))/2
=

√
8Φ(τ)

Φ′′(τ)

√
1− z/z0 + O(|1− z/z0|)

we get y(z) = τ − V/2 + O(|V |2).
Furthermore, since Sp = Sp(z) satisfies the recurrence relation

Sp = z
∑
t∈D

Pt(y, Sp, Sp−1, . . . , Sp−t+1)

we thus get

Sp =
z

[
1
2
Φ′′(y)S2

p−1 + Ap

]
1− zΦ′(y) + z [Φ′′(y)Sp−1 + Bp]

, (8)

where Ap is (now) a polynomial of degree tmax = max(D) in y, Sp−1, Sp−2, . . . , Sp−t+1,
Bp is a of degree tmax−1 in y, Sp−1, Sp−2, . . . , Sp−t+1, and the degrees of y are all smaller
than tmax− 2. This means that the “general case” follows completely the same pattern
as the t–ary case.

4. Asymptotic Properties For The Expected Value

In order to prove an asymptotic expansion for the expected values ERn for the
register function of t–ary trees we consider the generating function

E(z) =
∑
n≥0

ERn ynz
n =

∑
p≥1

Sp(z). (9)

We will show that the behaviour of E(z) around its singularity is of the following form.

Proposition 1. There exists a constant D > 0 such that

E(z) = D −

√
t

2(t− 1)3

√
1− z/z0 log

1

1− z/z0

+ O
(√

1− z/z0

)
for |z− z0| ≤ ε and | arg(z− z0)| ≥ π

2
− η, where ε > 0 and η > 0 are sufficiently small

constants. Furthermore, E(z) is analytic and uniformly bounded in a range of the form
|z| < z0 + ε2, |z − z0| > ε, where ε2 > 0 is another sufficiently small constant.
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Theorem 1 is an immediate consequence of Proposition 1 by a transfer lemma of
Flajolet and Odlyzko, see [4].

We start our analysis with the asymptotic behaviour of Sp(z0), where z0 =
(t− 1)t−1t−t is the singularity (and also the radius of convergence) of y(z).

Lemma 1. The sequence Sp(z0) satisfies Sp(z0)/Sp−1(z0) ≥ 1/t and Sp(z0)/Sp−1(z0) →
1/2 as p →∞. In particular, we have

Sp(z0) = Cp2
−p, (10)

where the sequence Cp satisfies

Cp = C∞ + O(2−p)

with a positive constant C∞.

Note that Lemma 1 can be restated as Sp(z0) = C∞2−p + O(4−p) but (10) is more
useful for our purpose, see Lemma 2.

Proof. Most parts of Lemma 1 are contained in [1]. However, since some of the ideas
of the proof will be used in the sequel we provide a complete proof.

First observe that Sp(z0) → 0 monotonically. In fact, from the combinatorial inter-
pretation it directly follows that Sp(z0) ≤ Sp−1(z0). Further, if the register function of
a tree T is at least p then T must have at least 2p − 1 nodes. Hence

Sp(z0) ≤
∑

n≥2p−1

ynz
n
0 → 0,

where we have also used the fact that y(z0) is finite.

Next we show that Sp(z0) ≥ Sp−1(z0)/t for all p ≥ 1 (compare with [1]). Set (as
above) Pt = g0Dt +Nt and Et = tyt−1−Dt. Since 1− tz0y(z0)

t−1 = 0 we get for z = z0

Sp =
Nt(y, Sp−1, . . . , Sp−t+1)

Et(y, Sp−1, . . . , Sp−t+1)

and Nt and Et satisfy the recurrences

Nt(y, g1, . . . , gt−1) = gt
t−1 + t

∫ y

gt−1

Nt−1(τ, g1, . . . , gt−2) dτ

and

Et(y, g1, . . . , gt−1) = tgt−1
t−1 + t

∫ y

gt−1

Et−1(τ, g1, . . . , gt−2) dτ.

For example, for t = 3 we have

Sp =
3S2

p−1y − 3S2
p−1Sp−2 + S3

p−2

6Sp−1y − 6Sp−1Sp−2 + 3S2
p−2

.

The recurrence relations for Nt and Et also imply

Nt −
g1

t
Et = (gt−1 − g1)g

t−1
t−1 + t

∫ y

gt−1

(Nt−1 − g1Et−1) dτ.

Assume that 0 ≤ g1 ≤ g2 ≤ · · · ≤ gt−1 ≤ y. Then we have N2−(g1/t)E2 = g2
1(1−2/t) ≥

0 and by induction

Nt(y, g1, . . . , gt−1) ≥
gt−1

t
Et(y, g1 . . . , gt−1) ≥ 0.
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Consequently

Sp(z0) =
Nt(y(z0), Sp−1(z0), . . . , Sp−t+1(z0))

Et(y(z0), Sp−1(z0), . . . , Sp−t+1(z0))
≥ Sp−1(z0)

t
.

We now use (7) to represent the ratio

Sp

Sp−1

=
1 + A′

p

2 + B′
p

,

where

A′
p =

Ap(
t
2

)
S2

p−1y
t−2

, B′
p =

Bp(
t
2

)
Sp−1yt−2

.

For example, for t = 3 we have

A′
p =

S3
p−2

3yS2
p−1

− Sp−2

y
(11)

and

B′
p =

S2
p−2

ySp−1

− 2Sp−2

y
. (12)

Since we know that Sp−j/Sp−1 is bounded for each fixed j ≥ 1 and that Sp → 0 (as
p →∞) we also get that A′

p → 0 and B′
p → 0. Consequently

Sp

Sp−1

→ 1

2
(p →∞).

In particular we have Sp ≤ 3
4
Sp−1 for sufficiently large p ≥ p0 and, thus, Sp = O((3/4)p).

This also implies A′
p = O((3/4)p) and B′ = O((3/4)p) which gives

Sp

Sp−1

=
1

2

(
1 + O((3/4)p)

)
.

Hence,

Sp = S0
S1

S0

· · · Sp

Sp−1

= O(2−p)

and consequently A′
p = O(2−p) and B′

p = O(2−p). The proof is now completed by
setting

Cp = S0

∏
j<p

1 + A′
p

1 + B′
p/2

.

Obviously we also have Cp = C∞ + O(2−p), where

C∞ = S0

∏
j≥1

1 + A′
p

1 + B′
p/2

.

�

Next we consider Sp(z) when z is close to z0. We will state all properties is terms of
V = (1− tzy(z)t−1)/(z

(
t
2

)
y(z)t−2), see (5). For the sake of transparency we will split

up our considerations into several lemmata.
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Lemma 2. Suppose that |z − z0| < ε and | arg(z − z0)| ≥ π
2
− η, that is, |V | < ε′ and

| arg(V )| ≤ π
4

+ η′, where ε, η > 0 resp. ε′, η′ > 0 are sufficiently small constants. Then
there exists δ > 0 and constants C ′, C ′′ > 0 such that

C ′2−p ≤ |Sp(z)| ≤ C ′′2−p

for all complex p ≤ − log2 |V | − δ.

Proof. In order to simplify the notation we restrict ourselves to the case t = 3. The
general case runs along the same lines. Further, we again use the recurrence for Sp of
the form

Sp =
Sp−1(1 + A′

p)

2 + V/Sp−1 + B′
p

, (13)

where A′
p = Ap/

((
t
2

)
S2

p−1y
t−2

)
and B′

p = Bp/
((

t
2

)
Sp−1y

t−2
)
. In particular, for t = 3 we

have (11) and (12).

First, we want to show that we have

3

10
≤ |Sp(z)|
|Sp−1(z)|

≤ 5

6
(14)

for p ≥ p1 (where p1 has to be chosen appropriately) and for all p that satisfy |Sp−1| ≥
4|V | (where z is close to z0 according to the assumptions of Lemma 2).

Since Sp(z0) → 0 and Sp(z0)/Sp−1(z0) → 1/2 as p → ∞ and since all func-
tions z → Sp(z) are continuous it follows that there exist p1 and ε > 0 such that
|Sp1−1(z)|/|Sp1−2(z)| ≥ 3/10, |Sp1−2(z)| ≤ 1/30, and |y(z)| ≥ 1 for all z with |z−z0| < ε
and arg(z − z0) 6= 0. We now show by induction that this will be then satisfied for all
p ≥ p1 as long |Sp−1| ≥ 4|V |. First we get

|A′
p1
| ≤ |Sp1−2|3

3|ySp1−1|2
+
|Sp1−2|
|y|

≤
(10

3

)2 1

3

1

30
+

1

30

≤ 1

4

and similarly

|B′
p1
| ≤ |Sp1−2|2

|ySp1−1|
+

2|Sp−2|
|y|

≤ 10

3

1

30
+

2

30

≤ 1

4
.

Since we also assume that |V/Sp1−1| ≤ 1
4

we thus obtain

1− 1
4

2 + 1
2

≤
|1 + A′

p1
|

|2 + V/Sp1−1 + B′
p1
|
≤

1 + 1
4

2− 1
2

or
3

10
≤ |Sp1|
|Sp1−1|

≤ 5

6
.
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Furthermore, we have |Sp1 | ≤ 5
6
|Sp1−1| ≤ |Sp1−1| ≤ 1/30 so that we can proceed by

induction. This proves (14).

These considerations also prove Sp = O((5/6)p) and consequently A′
p = O((5/6)p)

and B′
p = O((5/6)p). Set p̃ = p̃(z) = max{p : |Sp−1(z)| ≥ 4|V |}. Then we also have

|V/Sp−1| = O((5/6)p̃−p). Consequently∣∣∣∣ Sp

Sp−1

∣∣∣∣ =
1

2
+ O

((5

6

)p

+
(5

6

)p̃−p
)

and also

C ′2−p ≤ |Sp(z)| ≤ C ′′2−p

for p ≤ p̃. Finally with help of this estimate it also follows that p̃ = − log |V | + O(1).
This completes the proof of Lemma 2. �

Lemma 3. Suppose that z satisfies the same assumptions as in Lemma 2. Then there
exist η > 0 such that

Sp(z) = Cp2
−p − V

2
+ O

(
p 2−p|V |

)
+ O

(
2p|V |2

)
(15)

for p ≤ − log2 |V | (where the constants Cp = 2pSp(z0) are from Lemma 1)

Proof. We have to be a little bit more precise than before. From (13) we get

Sp = Sp−1

1 + A′
p

(1 + B′
p/2)

− V

4

1 + A′
p

(1 + B′
p/2)2

+ O(2p|V |2)

which yields

Sp = S0

∏
j≤p

1 + A′
j

1 + B′
j/2

1

2p
− V

4

∑
j≤p

1 + A′
j

(1 + B′
j/2)2

2j−p + O(2p|V |2)

= Cp(V )2−p − V

2

(
1 + O(p 2−p)

)
+ O(2p|V |2),

where

Cp(V ) = S0

∏
j≤p

1 + A′
j

1 + B′
j/2

.

We will now show by induction that Cp(V ) = Cp + O(p|V |). Of course, (15) is then
immediate.

Suppose that we already know that |Cj(V ) − Cj| ≤ Cj|V | for j < p (with some
C ≥ 1 that will be fixed in the sequel and for some sufficiently large p that will be also
specified). This assumption also gives

Sj = Cj2
−p + O(Cp 2−p|V |)− V

2
+ O(2p|V |2)

for j < p and also

A′
j = aj2

−j + O(Cj 2−j|V |) + O(|V |) and B′
j = bj2

−j + O(Cj 2−j|V |) + O(|V |)
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for j ≤ p, where aj, bj are proper constants that satisfy aj = a∞ + O(2−j) and bj =
b∞ + O(2−j). (Note that 2p|V | ≤ 1 for p ≤ − log2 |V | and that we can always assume
that |V | is sufficiently small.) Hence,

Cp(V ) = (y(z0) + O(V ))
∏
j≤p

1 + aj2
−j + O(Cj 2−j|V |) + O(|V |)

1 + bj2−j−1 + O(Cj2−j|V |) + O(|V |)

= y(z0)
∏
j≤p

1 + aj2
−j

1 + bj2−j−1

∏
j≤p

1 + O(C j2−j|V |) + O(|V |)
1 + O(Cj 2−j|V |) + O(|V |)

= Cp (1 + O(C|V |) + O(p|V |))
= Cp + O(C|V |+ p|V |).

This means that there exists a univeral constant c > 0 such that |Cp(V ) − Cp| ≤
c(C|V | + p|V |) if |V | is sufficiently small. We can now assume that our induction has
started for some p ≥ 2c and that C ≥ 2c was chosen appropriately. Then cC + cp ≤ Cp
and consequently |Cp(V ) − Cp| ≤ Cp|V |. This completes the proof of Cp(V ) = Cp +
O(p|V |) for p ≤ p0 = b− log2 V c. �

Up to p ≤ b− log2 |V | − δc the behaviour of Sp is very regular. The reason is that Sp

is large compared to V . This means that the denominator V + 2Sp−1 + B′′
p of

Sp =
S2

p−1 + A′′
p

V + 2Sp−1 + B′′
p

, (16)

is dominated by the behaviour of Sp−1 and V has only a minor influence; here A′′
p =

S2
p−1A

′
p and B′′

p = Sp−1B
′
p are polynomials in Sp−1, . . . , Sp−t+1. However, if 2Sp−1 is of

order V , in particular if 2Sp−1 is close to −V then it might occur that Sp gets arbitrarily
large and we are confronted with an chaotic behaviour. On the other hand, if Sp (or
Sp−1) is small compared to V then the denominator of (16) is dominated by the V
and Sp ≈ S2

p−1/V . This means that Sp will converge to 0 very rapidly. This means

that one has to manage the gap between p ≈ − log2 |V | − δ where Sp ≈ 2δ|V | and
p ≈ − log2 |V |+ δ′ where |Sp| should be small compared to |V |. Fortunately this phase
transition of finitely many steps can be managed in the following way.

Lemma 4. Suppose that z satisfies the same assumptions as in Lemma 2 and set
p = b− log2 |V | − δc, where δ = O(1) is chosen in a way that |Sp(z)| ≥ 2|V |. Then
for every δ′ > 0 we have uniformly for all z (that satisfy the same assumptions as in
Lemma 2) and for 0 ≤ ` ≤ δ + δ′

Sp+`(z) =
V(

V
Sp

+ 1
)2`

− 1
+ O(|V |2). (17)

Proof. For a moment let us assume that A′′
p = B′′

p = 0, that is, we consider the recur-
rence

Tp =
T 2

p−1

V + 2Tp−1

(18)

instead of (16). This recurrence can be explicitly solved since it is equivalent to

V

Tp

+ 1 =
( V

Tp−1

+ 1
)2

.
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Hence

Tp+` =
V(

V
Tp

+ 1
)2`

− 1
.

Here we have lim
`→∞

Tp+` = 0 if and only if∣∣∣∣ V

Tp

+ 1

∣∣∣∣ > 1.

In particular, this is satisfied if <(V/Tp) > 0 or if | arg(Tp)| < π
4
− η′2 (since we have

assumed that | arg(V )| < π
4

+ η′2 for some small constant η′2).

Since Sp is asymptotically given by (17) it follows that arg(Sp) = O(2−δ) if p ≤
− log2 |V | − δ. Thus we can start with a save starting point Tp ≈ Sp.

The crucial step is now to observe that the explicit solution Tp of (18) is a good
approximation for Sp. Assume that Tp = Sp for p = b− log2 |V | − δc. Then Tp (and Sp)
are of order |V |, A′′

p is of order |V |3 and and B′′
p of order |V |2.

Set

f(x, ε, η) =
x2 + ε

1 + 2x + η
.

Then we uniformly have f(x, ε, η) = f(x, 0, 0) + O(max{|ε|, |η|}) uniformly if x varies
in a compact set that avoids x = −1/2 as max{|ε|, |η|} → 0. Consequently it follows
by induction that

f `(x, ε1, . . . , ε`, η1, . . . , η`) = fk(x, 0, 0) + O

(
max
1≤j≤`

{|εj|, |ηj|}
)

for every fixed ` (where f ` denotes the `-th iterate of f , for example f 2(x, ε1, ε2, η1, η2) =
f(f(x, ε1, η1), ε2, η2)).

Now we have

Sp/V = f(Sp−1/V,A′′
p/V

2, B′′
p/V ) and Tp/V = f(Tp−1/V, 0, 0),

compare with (16) and (18). Hence, if we now consider δ + δ′ steps (where δ′ is any
fixed number) then we have Sp+` = Tp+` + O(|V |2) for 0 ≤ ` ≤ δ + δ′. This completes
the proof of the lemma. �

The final case p ≥ − log2 |V |+ δ′ can be managed in a quite easy way.

Lemma 5. Suppose that z satisfies the same assumptions as in Lemma 2 and that
p ≥ − log2 |V |+ δ′. Then

|Sp(z)| = O
(
|V |e−η2p|V |) . (19)

Proof. For the range p ≥ − log2 |V |+ δ′ we proceed as follows. We estimate S2
p−1 + A′′

p

in a crude way and get |S2
p−1 +A′′

p| ≤ c′|Sp−t+1|2 for some constant c′ > 0. Furthermore,

there exists κ > 0 with |2Sp−1 +B′′
p | ≤ |V |/2 and |Sp−t+1|2 ≤ 1

2
|V |/(2c′) for p ≥ p0 +κ.

Consequently

|Sp| ≤
|Sp−t+1|2

|V |/(2c′)
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for p ≥ p0 + κ and by induction we get

|Sp| ≤
|V |
2c′

(
|Sp0−t+1+κ|
|V |/(2c′)

)2p−p0−κ

= O
(
|V |e−η2p|V |) ,

where η > 0 is sufficiently small. �

Lemma 6. Let ε > 0 be from Lemma 2. Then There exists ε2 > 0 such that for all z
with z0 ≤ |z| ≤ z0 + ε2 and |z − z0| ≥ ε we have

|Sp(z)| ≤ 2−p. (20)

Proof. If we restrict z in the range z0 ≤ |z| ≤ z0 + ε/2 and |z − z0| ≥ ε then |V |
is uniformly bounded below by |V | ≥ ε′ for some ε′ > 0. Furthermore, we also have
|y(z)| ≥ ε′′ for some ε′′ > 0 since y = 1 + zyt.

The idea of the proof is to show that (for sufficiently large p) |S2
p−1 +A′′

p| ≤ 2−(p−1)ε′

and |2Sp−1 + B′′
p | ≤ 1

2
ε′. By assuming that we get

|Sp| ≤
2−(p−1)ε′

|V | − 1
2
ε′
≤ 2−p

and the result follows by induction.

In order to simplify notation we just consider the case t = 3. Here we have

A′′
p =

S3
p−2

3y
−

Sp−2S
2
p−1

y

and

B′′
p =

S2
p−2

y
− 2Sp−2Sp−1

y
.

If |z| = z0 we have |Sp(z)| ≤ Sp(z0) ≤ C ′2−p, where we can assume that C ′ ≥ 1. We
now fix some “starting” p. By continuity there exists 0 < ε2 ≤ ε/2 such that

|Sp−1(z)| ≤ 2C ′2−p+1 and |Sp−2(z)| ≤ 2C ′2−p+2

for all z with z0 ≤ |z| ≤ z0 + ε2 and |z − z0| ≥ ε. Hence

|S2
p−1 + A′′

p| ≤ 4C ′22−2p+4 +
8C ′32−3p+6

3ε′′
+

8C ′32−3p+5

ε′′

and

|2Sp−1 + B′′
p | ≤ 4C ′2−p+1 +

4C ′22−2p+4

ε′′
+

8C ′22−2p+3

ε′′
.

If we choose the “starting” p sufficiently large then we surely get

|S2
p−1 + A′′

p| ≤ 2−(p−1)ε′ and |2Sp−1 + B′
pSp−1| ≤

1

2
ε′

and (as noted above) |Sp| ≤ 2−p ≤ C ′2−p. This completes the proof of Lemma 6 (by
induction). �

Now it is easy to complete the proof of Proposition 1.
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Proof. We first consider the range |z − z0| < ε and | arg(z − z0)| ≥ π
2
− η and split up

the sum (9) into two parts:

E(z) =
∑

p≤− log2 |V |

Sp(z) +
∑

p>− log2 |V |

Sp(z) = E1 + E2.

By Lemma 3 we have

E1 =
∑

p≤− log2 |V |

Cp2
−p +

V

2
log2 |V |+ O(|V |)

=
∑
p≥0

Cp2
−p +

V

2
log2 V + O(|V |).

and
E2 = O(|V |).

By (5) this directly translates to (9).

Finally, Lemma 6 implies that E(z) is bounded in the range z0 ≤ |z| ≤ z0 + ε2 and
|z − z0| ≥ ε. �

5. Tail Estimates

In this section we shortly comment on the proof of Theorem 2. We can use the
estimates of Lemma 3 and Lemma 4 to get approximations for

P{Rn ≥ p} =
[zn] Sp(z)

yn

.

In order to extract the coefficient of [zn] Sp(z) we copy the methods of [4], that is we
use Cauchy’s formula and integrate around the singularity with distance |1−z/z0| = 1

n
.

In particular, if p ≤ log4 n then we have to use (15) and (20) and we get

P{Rn ≥ p} = 1 + O(2p/
√

n ) + O(p 2−p) + O(eη′′n)

For the case p ≥ log4 n we apply (19) and (20) and derive

P{Rn ≥ p} = O(e−η′2p/
√

n ) + O(eη′′n),

where η′ and η′′ are positive constants. Of course, these two estimates imply Theorem
2.

6. The approximate recursion

Let us consider the simplified recursion

Sp =

(
t
2

)
zS2

p−1y
t−2

1− tzyt−1 + 2
(

t
2

)
zSp−1yt−2

, S0 = y,

which is obtained from the original one by discarding the less important terms. It is
exact for the classical case t = 2. Since one can say a lot more in the binary case,
we will sketch that this is also the case for this simplified recursion, which has, as
demonstrated before, the explicit solution

V

Sp

+ 1 =
(V

y
+ 1

)2p

,
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or

Sp = V

(
V
y

+ 1
)−2p

1−
(

V
y

+ 1
)−2p .

Set V
y

+ 1 = eτ , then

Ep(z) =
∑
p≥1

Sp(z) ∼ t

t− 1
τ

∑
p≥1

e−2pτ

1− e−2pτ
.

But this series is well understood [12], with the result

Ep(z) ∼ D − t

t− 1
τ log4 τ,

with more terms being available. Rewriting,

τ ∼ t− 1

t

√
8t

(t− 1)3

√
1− z/z0,

we are completely in the same situation as in Proposition 1. We find that the average
value (related to the simplified recursion) satisfies

1

yn

[zn]
∑
p≥1

Sp ∼ log4 n,

with more terms available (including periodic functions of log4 n). However, since we do
not fully understand how well the original recursion is approximated by the simplified
recursion, we do not pursue this any further.
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Théor. Appl., 30(5):443–456, 1996.

[3] A. P. Ershov. On programming of arithmetic operations. Communications of the ACM, 1:3–6,
1958.

[4] P. Flajolet and A. Odlyzko. Singularity analysis of generating functions. SIAM Journal on Dis-
crete Mathematics, 3:216–240, 1990.

[5] P. Flajolet and H. Prodinger. Register allocation for unary-binary trees. SIAM J. Comput.,
15:629–640, 1986.

[6] P. Flajolet, J.–C. Raoult, and J. Vuillemin. The number of registers required for evaluating
arithmetic expressions. Theoretical Computer Science, 9(1):99–125, 1979.

[7] R. E. Horton. Erosioned development of systems and their drainage basins. Bulletin geological
society of America, 56:275–370, 1945.

[8] R. Kemp. The average number of registers needed to evaluate a binary tree optimally. Acta
Inform., 11(4):363–372, 1978/79.

[9] P. Kruszewski. A note on the Horton–Strahler number for random binary search trees. Inform.
Process. Lett., 69(1):47–51, 1999.

[10] A. Meir, J. W. Moon, and J. R. Pounder. On the order of random channel networks. SIAM J.
Algebraic Discrete Methods, 1(1):25–33, 1980.

[11] M. Nebel. A unified approach to the analysis of Horton–Strahler parameters of binary tree struc-
tures. Random Structures Algorithms, 21(3-4):252–277, 2002. Random structures and algorithms
(Poznan, 2001).



THE REGISTER FUNCTION FOR t–ARY TREES 15

[12] H. Prodinger. Some analytic techniques for the investigation of the asymptotic behaviour of tree
parameters. EATCS Bulletin, 47:180–199, 1992.

[13] H. Prodinger. On a problem of Yekutieli and Mandelbrot about the bifurcation ratio of binary
trees. Theoretical Computer Science, 181:181–194, 1997.

[14] A. N. Strahler. Hypsomic analysis of erosional topography. Bulletin geological society of America,
63:1117–1142, 1952.

[15] I. Yekutieli and B. Mandelbrot. Horton–Strahler ordering of random binary trees. J. Phys. A,
27(2):285–293, 1994.

Michael Drmota, Department of Discrete Mathematics and Geometry, Wiedner
Hauptstr. 8–10/104, A-1040 Wien, Austria

E-mail address: michael.drmota@tuwien.ac.at

Helmut Prodinger, Mathematics Department, University of Stellenbosch, 7602
Stellenbosch, South Africa

E-mail address: hproding@sun.ac.za


