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Towards Unbiased End-to-End Network Diagnosis
Yao Zhao, Yan Chen, and David Bindel

Abstract—Internet fault diagnosis is extremely important
for end-users, overlay network service providers (like Akamai
[1]), and even Internet service providers (ISPs). However, be-
cause link-level properties cannot be uniquely determined from
end-to-end measurements, the accuracy of existing statistical
diagnosis approaches is subject to uncertainty from statistical
assumptions about the network. In this paper, we propose a
novel least-biased end-to-end network diagnosis (in short, LEND)
system for inferring link-level properties like loss rate. We define
a minimal identifiable link sequence (MILS) as a link sequence of
minimal length whose properties can be uniquely identified from
end-to-end measurements. We also design efficient algorithms
to find all the MILSs and infer their loss rates for diagnosis.
Our LEND system works for any network topology and for both
directed and undirected properties and incrementally adapts to
network topology and property changes. It gives highly accurate
estimates of the loss rates of MILSs, as indicated by both extensive
simulations and Internet experiments. Furthermore, we demon-
strate that such diagnosis can be achieved with fine granularity
and in near real-time even for reasonably large overlay networks.
Finally, LEND can supplement existing statistical inference ap-
proaches and provide smooth tradeoff between diagnosis accuracy
and granularity.

Index Terms—Internet diagnosis, linear algebra, network
measurement.

I. INTRODUCTION

“WHEN something breaks in the Internet, the Internet’s
very decentralized structure makes it hard to

figure out what went wrong and even harder to assign
responsibility.”—“Looking Over the Fence at Networks: A
Neighbor’s View of Networking Research,” by the Committee
on Research Horizons in Networking, National Research
Council, 2001.

Internet fault diagnosis is important to end-users, overlay
network service providers (like Akamai [1]), and Internet
service providers (ISPs). For example, with Internet fault
diagnosis tools, users can choose more reliable ISPs. Overlay
service providers can use such tools to locate faults in order
to fix them or bypass them; information about faults can also
guide decisions about service provisioning, deployment, and
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redirection. For ISPs, diagnosis tools can be used to verify ser-
vices from provider/peering ISPs and to troubleshoot problems
with the physical network.

The modern Internet is heterogeneous and largely unregu-
lated, which renders link-level fault diagnosis an increasingly
challenging problem. The servers and routers in the network
core are usually operated by businesses, and those businesses
may be unwilling or unable to cooperate in collecting the
network traffic measurements vital for Internet fault diagnosis.
Therefore, most research in this area is focused on end-to-end
approaches.

Internet tomography is an important approach to fault diag-
nosis in which link properties [2]–[5] or shared congestion [6]
are inferred from end-to-end measurements. In many of these
systems, path properties are assumed to be linearly related to
link quantities. For example, the latency along a path is the sum
of the latencies along the links that make up the paths, and we
may write this fact as a matrix equation relating unknown link
latencies to measured path latencies. However, as we observed
in [7], [8], the linear system is fundamentally underconstrained:
There exist unidentifiable links with properties that cannot be
uniquely determined from path measurements.

Because of the challenge of unidentifiable links, existing to-
mography systems must make certain assumptions in order to
infer the property of each link. These modeling assumptions
may not always hold in the Internet, and so these systems will
have systematic inference errors with nonzero expected value.
In other words, the error in the model assumptions prevents
the inference error from converging to zero, even when there
are many measurements available. We call this modeling error
bias, and we call the problematic statistical assumptions biased
assumptions.

In this paper, we advocate a different paradigm for network
diagnosis: unbiased diagnosis. Note that there are two funda-
mental statistical assumptions for any end-to-end network diag-
nosis approach:

• End-to-end path properties can be measured accurately.
• The properties of each path are a known linear function of

the properties of the link on the path.
Though these assumptions work well in practice (see

Section III-A), they may still introduce some bias. However,
this is the minimal amount of bias for any end-to-end diagnosis
scheme. We call these assumptions basic assumptions. In this
paper, we aim to only use the basic assumptions to achieve
the least biased diagnosis. We define a minimal identifiable
link sequence (MILS) as a link sequence of minimal length
whose properties can be uniquely identified from end-to-end
measurements without bias. We then propose the least-biased
end-to-end network diagnosis (LEND) system, which uses
linear algebra to find MILSs and infer their properties. Our
LEND system achieves the finest diagnosis granularity possible
without additional assumptions.
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Fig. 1. The spectrum of network diagnosis methods.

When combined with statistical inference, our approach
gives a full spectrum of network diagnosis methods with
smooth tradeoff between diagnosis accuracy and diagnosis
granularity,1 as shown in Fig. 1. Because of the unidentifiable
link problem, LEND cannot infer properties for each link.
However, with more and stronger statistical assumptions, we
can reduce the diagnosis granularity while introducing more
bias and sacrificing diagnosis accuracy.

An interesting problem that we faced when designing the
LEND system is that our inference methods behave much differ-
ently on directed graphs than they do on undirected graphs. For
a simple network with symmetric link properties,2 the network
can be modeled as an undirected graph in which the nodes are
connected by undirected links. For networks modeled as undi-
rected graphs, we can use routing information to get the MILSs
that are uniquely defined by the inherent path sharing of the
networks, and we propose efficient algorithms to find all such
MILSs. However, the real Internet has asymmetric link proper-
ties (e.g., loss rate), and so must be modeled as a directed graph.
However, to find the MILSs in a directed graph is significantly
more challenging.

In this paper, we make the following contributions in the al-
gorithm design.

• We advocate the unbiased end-to-end diagnosis paradigm
and introduce the concept of MILS.

• Taking a network as a directed graph, when only topology
information is used, we prove that each path is a MILS:
No path segment smaller than an end-to-end path has
properties that can be uniquely determined by end-to-end
measurements.

• To address the problem above, we observe that, in prac-
tice, there are many good paths with zero loss rates. Then,
as a fact rather than a statistical assumption, we know all
the links on such paths must also have no losses. Based
on this observation, we propose a “good path” algorithm,
which uses both topology and measurement snapshots to
find MILSs with the finest granularity.

• We design efficient algorithms to incrementally update
the MILSs and their loss rate estimates when the network
topology or overlay measurement nodes change.

• We show that our approach complements other tomog-
raphy techniques—it helps significantly reduce their com-
plexity and improves their inference accuracy.

We evaluate the LEND system through extensive simulations
and Internet experiments. Both give promising results. We
define the diagnosis granularity of a path as the average of the

1We define diagnosis accuracy as the inference accuracy of the properties
of the link sequences and diagnosis granularity as the length of the smallest
consecutive link sequences whose properties are inferred. Formal definitions
are in Section VI-A.

2A link property between routers � and � is symmetric if ���� has the
same property as link ����.

lengths of all the lossy MILSs contained in the path. For the
experiments with 135 PlanetLab hosts (each from a different
organization), the average diagnosis granularity is only four
hops for all the lossy paths. This can be further improved with
larger overlay networks, as shown through our simulation with
a real router-level topology from [9]. This suggests we can do
very fine-level accurate diagnosis with reasonably large overlay
networks.

In addition, the loss rate inference on the MILSs is highly
accurate, as verified through the cross-validation and IP spoof-
based validation schemes. The LEND system is also highly effi-
cient. For the PlanetLab experiments with 135 hosts, the average
setup (monitoring path selection) time is 109.3 s, and the online
diagnosis of 18 090 paths, 3714 of which are lossy, takes only
4.2 s.

The rest of the paper is organized as follows. In Section II,
we survey related work. Then, we define MILSs in Section III,
present algorithms to discover MILSs in Section IV, and de-
scribe how we validate our approach in Section V. We describe
our evaluation of LEND in simulation in Section VI and the
evaluation on an Internet testbed in Section VII. We discuss our
results in Section VIII and conclude in Section IX.

II. RELATED WORK

Ping and traceroute are the earliest Internet diagnosis tools,
and they are still widely used. However, the asymmetry of In-
ternet routing and of link properties makes it difficult to use
these tools to infer properties of individual links. The latest
work on network diagnosis can be put into two categories: pure
end-to-end approaches [2]–[5], [7], [10], [11] and router-re-
sponse-based approaches [12], [13].

A. Pure End-to-End Approach

Most end-to-end tomography tools fall in one of two classes:
tools that are based on temporal correlations among multiple
receivers in a multicast-like environment [2]–[4], [10], [11] and
tools that impose additional statistical assumptions beyond the
linear loss model described in Section III-A [5], [7]. As we dis-
cuss below, none of these tools provides unbiased diagnosis as
defined in Section I. As evidence of the utility of least-unbiased
diagnosis, we show in Section VI that our inference is much
more accurate than the inference of one statistical tool based on
Gibbs sampling introduced in [5].

Under certain assumptions, tools in the first class infer a loss
rate for each virtual link (i.e., sequence of consecutive links
without a branching point) with high probability. Thus, these
tools diagnose failures at the granularity of individual virtual
links; obviously, this is a bound on the granularity obtainable
by the end-to-end tomography system. Typically, these systems
assume an ideal multicast environment, but since true multicast
is very rare in the Internet, they use unicast for approximation.
Thus, the accuracy of the probe measurements heavily depends
on the cross traffic in the network, and there is no guarantee of
their accuracy.

As for the second class of tools, the statistically based tools
introduced in [5] and [7] use only uncorrelated end-to-end mea-
surements to identify lossy network links. To see why these tools
are insufficient, we consider a simple tree topology, shown in
Fig. 2. The numbers in the figure are the loss rates of the cor-
responding paths or links. In this tree, we can only measure
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Fig. 2. Example of an underconstrained system.

the loss rates of two paths: and . In the figure,
(a) and (b) show two possible link loss rates that lead to the
same end-to-end path measurements. The linear programming
approach in [5] and SCFS [7] will always obtain the result of
(a) because they are biased toward minimizing the number of
lossy link predictions, but such results may not be correct. As
for the random sampling and Gibbs sampling approaches in [5],
either (a) or (b) may be predicted. In fact, none of the loss rates
for these three links are identifiable from end-to-end measure-
ments. The LEND system will determine that none of the indi-
vidual links are identifiable and will get MILSs
and .

Other than the aforementioned two classes, Shavitt et al. use
a linear algebraic algorithm to compute some additional “dis-
tances” (i.e., latencies of path segments) that are not explicitly
measured [14]. The algorithm proposed in [14] has the same
function as our link-level diagnosis algorithm in undirected
graph model. However, our LEND system incorporates the
scalable measurement approach designed in [8] and reuses its
outputs to save the computational complexity for link-level
diagnosis, and our LEND system is hence both measurement
cost-efficient and computation-efficient. More importantly, the
Internet should be modeled as a directed graph, in which the
algebraic algorithm in [14] fails to do any link-level diagnosis,
shown in Theorem 1 (see Section IV-C-I).

B. Router-Response-Based Approach

All the router-based approaches to network diagnosis are
based on response packets sent by interior routers. Unfortu-
nately, interior routers may be unwilling to respond or may
respond in an insufficiently informative manner. For example,
because many routers implement ICMP filtering or ICMP rate
limiting, some ICMP-based tools [12], [13] cannot measure
the loss rate on each link. These systems also do not scale well
to the task of simultaneously measuring many paths in a large
overlay network; furthermore, the accuracy of measurements
may be affected by ICMP cross traffic [12].

Tulip, the latest representative of this router-based approach
[12], cannot accurately infer the loss rates of links or link se-
quences because of the following two problems. First, a Tulip
probe involves two small ICMP packets and one large UDP
data packet. To identify whether the loss happens on the for-
warding path or not, Tulip only takes into account the case when
only UDP packets are lost. About 40% of the time, a loss in-
volves one of the ICMP packets as well. Tulip simply ignores
these cases and consequently underestimates overall loss rates
by about 40% [12]. Second, Tulip is sensitive to other simul-
taneous measurement probes. Tulip requires continuous IP-IDs
of replies from the probed router, and it may fail to get accurate

TABLE I
NOTATION

loss rate if other measurements (e.g., another instance of Tulip)
probe the router at the same time.

III. MODELS AND ARCHITECTURE

In this section, we briefly describe the algebraic model and the
system architecture of the LEND system. The algebraic model
is widely used in Internet tomography and other measurement
works [3], [8], [14]. However, the techniques for diagnosis re-
quire a significant amount of extra design over this framework,
as we will describe in the paper—e.g., the MILSs introduced in
Section IV-A.

A. Algebraic Model

Here, we briefly introduce the algebraic model that is widely
used in network diagnosis. For easy indexing, all the impor-
tant notations in the paper can be found in Table I.3 Suppose
an overlay network spans IP links. We represent a path by a
column vector , where the th entry is one if link

is part of the path, and zero otherwise. Suppose link drops
packets with probability . Then, the loss rate of a path rep-
resented by is given by

(1)

In the equation above, we assume that packet loss is indepen-
dent among links. We believe that such an assumption is sup-
ported by the findings of Caceres et al. [16]. They find that the
diversity of traffic and links makes large and long-lasting spatial
link loss dependence unlikely in a real network such as the In-
ternet [16]. Our Internet experiments also show that the link loss
dependence has little effect on the accuracy of (1). Formula (1)
has also proven useful in other work on link/path loss inference
[4], [5], [17], [18].

Suppose we take logarithms on both sides of (1). Then,
by defining a column vector with elements

3The standard algebraic terms in Table I can be found in [15].
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, and writing as the transpose of the
vector , we can rewrite (1) as follows:

(2)

There are paths in the overlay network, thus
linear equations of the form (2). Putting them together, we form
a rectangular matrix that represents these paths.
Each row of represents a path in the network: when
path contains link , and otherwise. Let be the
end-to-end loss rate of the th path, and let be a column
vector with elements . Then, we write the in
form (2) as

(3)

Normally, the number of paths is much larger than the
number of links . However, in general, is rank deficient: i.e.,

and [8]. In this case, we will be unable to
infer the loss rate of some links from (3). These links are also
called unidentifiable in the network tomography literature [7].
Fig. 2 shows an example in which no link is identifiable.

B. System Architecture

Suppose end-hosts belong to a single overlay network or to
a confederation of overlay networks. They cooperate to share an
overlay monitoring and diagnosis service and are instrumented
by a central authority [e.g., an overlay network center (ONC)]
to measure the routing topology and path loss rates as needed.
First, the end-hosts measure the topology and report to the ONC,
which selects a small number of paths to measure and instru-
ments the end-hosts to execute such measurements. The end-
hosts periodically report the measured loss rates to the ONC.
Then, the ONC infers the loss rates of nonmeasured paths and
locates the congestion/failure points. Applications can query the
ONC for the loss rate or diagnosis of any path, or they can set
up triggers to receive alerts when the loss rates of paths/links of
interest exceed a certain threshold.

The core part of the LEND system consists of two stages. In
the first stage, we select a small amount of paths to measure and
then infer the loss rates of all end-to-end paths. The first stage
is done in our previous work [8]. The basic idea of [8] is to find
a minimal set of paths so that all the path properties can be in-
ferred based on the measurement of the set of paths. Specifically,
modeling with the algebraic model introduced in Section III-A,
a path set that corresponds to a basis of the row(path) space of
path matrix satisfies our purpose. It is much more
challenging to infer the properties on the link level in the second
stage, which is our focus in this paper. Nevertheless, for overlay
diagnosis, we naturally inherit the scalability and load balancing
from [8] with this architecture. That is, to diagnose an overlay
network of nodes, we only need to measure paths
instead of all the paths. This load is evenly distributed
across the end-hosts.

IV. IDENTIFYING MILSS

In this section, we define a minimal identifiable link sequence
(MILS) and introduce algorithms to identify MILSs and to infer

Fig. 3. Sample topologies and MILSs.

their properties. For simplicity, we first study link property in-
ference for undirected graphs. We then turn to the more realistic
problem of inferring link properties in directed graphs.

A. Minimal Identifiable Link Sequence

As mentioned before, we know that not all the links (or the
corresponding variables in the algebraic model) are uniquely
identifiable. Thus, our purpose is to find the smallest path seg-
ments with loss rates that can be uniquely identified through
end-to-end path measurements. We introduce MILS to define
such path sequences. These path sequences can be as short as
a single physical link or as long as an end-to-end path. Our
methods are unbiased and work with any network topology.
This provides the first lower bound on the granularity at which
properties of path segments can be uniquely determined. With
this information, we can accurately locate what link (or set of
links) causes any congestion or failures.

Fig. 3 illustrates some examples for undirected graphs. In the
top figure, we cannot determine the loss rates of the two phys-
ical links separately from one path measurement. Therefore, we
combine the two links together to form one MILS. In the middle
figure, three independent paths traverse three links. Thus, each
link is identifiable, and thus each link is a MILS. In the bottom
figure, there are five links and four paths. Each path is a MILS
since no path can be written as a sum of shorter MILSs. How-
ever, link 3 can be written as , which means
link 3 is identifiable, and there are five MILSs. These examples
show three features of the MILS set:

• The MILSs may be linearly dependent, as in the bottom
example. We can shrink our MILS set to a basis for the
path space by removing such linear dependence, e.g., by
removing the MILS in the bottom example in Fig. 3.
However, it is helpful to keep such links for diagnosis.

• Some MILSs may contain other MILSs. For instance,
MILS is contained in MILSs and in the bottom
example.

• The MILS is a consecutive sequence of links because, for
diagnosis purposes, we often want to limit the range within
the network where congestion/failure happens.

The problem of decomposing a network topology into MILSs
is similar to the sparse basis problem in numerical linear algebra.
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The sparse basis problem is to find a basis for the range of a ma-
trix with as few nonzeros as possible. However, finding MILSs
differs from the usual problem of finding a sparse basis for the
following reasons:

• The sparse basis problem is an NP-hard problem, and
nearly all the heuristic algorithms for this problem are
based on a nondegeneracy assumption. In particular, these
heuristics require that every submatrix of with the order
of is nonsingular [19], an assumption does not
hold for typical network path matrices.

• For Internet diagnosis, we want to locate the possible lossy
links in a networking region that is as small as possible.
Thus, we want to have vectors that correspond to consec-
utive link sequences. If we did not make this assumption,
there could exist an exponentially large number of MILSs.

A MILS is a path segment and, like a path, it can be rep-
resented by a vector in whose nonzero entries denote
the physical links used. Our requirement that the properties of
MILSs must be determined by the end-to-end measurements is
equivalent to the requirement that the vector of the MILS is in
the path space . Compared to finding a basis of
made of end-to-end paths, which was addressed in [8], identi-
fying MILSs is a more challenging task.

B. MILSs in Undirected Graphs

As we have defined them, MILSs satisfy two properties:
1) they are minimal—i.e., they cannot be decomposed into
shorter MILSs; and 2) they are identifiable—i.e., they can
be expressed as linear combinations of end-to-end paths.
Algorithm 1 finds all possible MILSs by exhaustively enumer-
ating the link sequences and checking each for minimality and
identifiability. An identifiable link sequence on a path will be
minimal if and only if it does not share an endpoint with a MILS
on the same path. Thus, as we enumerate the link sequences on
a given path in increasing order of size, we can track whether
each link is the starting link in some already-discovered MILS,
which allows us to check for minimality in constant time. To
test whether a link sequence is identifiable, we need only to
make sure that the corresponding path vector lies in the path
space. Since is an orthonormal basis for the path space,
will lie in the path space if and only if .

Now, we analyze the computational complexity of identifying
MILSs. If a link sequence contains links, then will con-
tain only nonzeros, and it will cost time to com-
pute . This cost dominates the cost of checking for min-
imality, and so the overall cost to check whether one link sub-
sequence is a MILS will be at worst . On a path of
length , there are link subsequences, each of which costs
at most time to check, so the total time to find all the
MILSs on one end-to-end path is at most . However, we
can further reduce the complexity from to
using dynamic programming (detail omitted). If we check every
end-to-end path in the network, the overall complexity of Algo-
rithm 1 will then be . However, our simulations and
Internet experiments show that only a few more MILSs are ob-
tained from scanning all end-to-end paths than from scanning
only the end-to-end paths that are directly monitored. Fur-
thermore, each physical link used by the network will be used
by one of the monitored paths, so the MILSs obtained from
this smaller set of paths do cover every physical link. Therefore,

Algorithm 1. Seeking All MILSs in an Undirected Graph.

Fig. 4. MILSs in undirected graph.

in practice, we scan only the monitored paths, which costs
time, and we accept a slight loss of diagnosis gran-

ularity.
Once we have identified all the MILSs, we need to compute

their loss rates. We do this by finding a solution to the underde-
termined linear system system (see [8]). For example,
in Fig. 4, . Ob-
viously, shows some identifiable vectors in , but they
may not be MILSs. Then, for each MILS with vector , the loss
rate is . The elements of need not be the real link loss
rates: Only the inner products are guaranteed to be unique
and to correspond to real losses. We also note that because loss
rates in the Internet remain stable over time scales on the order
of an hour [20], the path measurements in need not be taken
simultaneously.

It is worth mentioning that the same problem for undirected
graph was solved in [14] with the same order of computational
complexity. However, our focus of this paper is on the case of di-
rected graphs, which is ignored in [14]. Furthermore, compared
to [14], our approach inherits the key feature of measurement
efficiency of [8] (i.e., requiring only measurements
of end-to-end paths instead of measurements) and reuses the
computational output of [8] such as and .

C. MILSs in Directed Graphs

1) Special Properties for Directed Graphs: Surprisingly, our
MILS algorithm cannot be extended to directed graphs directly.
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Fig. 5. Undirected graph versus directed graph.

We found that no path can be decomposed into more than one
MILS, i.e., each path itself is a MILS. Fig. 5 shows a simple star
topology as both an undirected graph and a directed graph. In
the undirected graph on the left, the loss rate of each link is iden-
tifiable from the loss rate of the three paths. In contrast, in the
directed graph on the right, , and none of the six
links are identifiable from measurements of the six end-to-end
paths. Only the end-to-end paths are identifiable in this case.
This is typical of directed networks. In the case illustrated in
Fig. 5, we can explain the lack of identifiable links as follows.
We can split into two submatrices, one containing only in-
coming links and the other only containing outgoing links of the
router . Thus, any vector in

satisfies because any path
in has one incoming link and one outgoing link. Vectors like

do not belong to , as they do not satisfy
that condition. This example illustrates the intuition of Theorem
1 below, which shows that, in a directed graph, each path itself
is a MILS—i.e., it is the minimal identifiable consecutive path
segment.

Theorem 1: In a directed graph, no end-to-end path contains
an identifiable subpath except loops.

Proof: For any interior node in the network, define vec-
tors such that if link is an incoming
link for node , and if link is an outgoing link for
node . For any path with vector , is nonzero iff the path
begins or ends at . Because is an internal node and the rows
of all correspond to end-to-end paths, .

Any identifiable link sequence in the network can be repre-
sented by a vector such that for some ; for such a
link sequence, ; therefore, cannot cor-
respond to a link sequence with an endpoint at . Thus, no iden-
tifiable link sequence may have an endpoint at an interior net-
work node. This means that the only identifiable link sequences
are loops and end-to-end paths.

Routing loops are rare in the Internet; thus, Theorem 1 says
that each path is a MILS and there are no others. This means that
there are no individual links or subpaths whose loss rates can be
exactly determined from end-to-end measurements. Next, we
will discuss some practical methods to get finer level unbiased
inference on directed graphs, such as the Internet.

2) Practical Inference Methods for Directed Graphs: Con-
sidering the simple directed graph in Fig. 5, the problem of de-
termining link loss rates is similar to the problem of breaking a
deadlock: If any of the individual links can be somehow mea-
sured, then loss rates of all other links can be determined through
end-to-end measurements. Since link loss rates cannot be nega-
tive, for a path with zero loss rate, all the links on that path must

Fig. 6. The operational flowchart of the LEND system architecture.

Fig. 7. Examples showing all the matrices in the flowchart.

also have zero loss rates. This can break the deadlock and help
solve the link loss rate of other paths. We call this inference ap-
proach the good path algorithm. Note that this is a fact instead
of an extra assumption. Our PlanetLab experiments a as well as
[20], show that more than 50% of paths in the Internet have no
loss.

In addition, we can relax the definition of “good path” and
allow a negligible loss rate of at most (e.g., , which
is the threshold for “no loss” in [20]). Then, we again have a
tradeoff between accuracy and diagnosis granularity, as depicted
in our framework. Note that although the strict good path algo-
rithm cannot be applied to other metrics such as latency, such
bounded inference is generally applicable.

As illustrated in the second stage of Fig. 6, we identify MILSs
in directed graphs in two steps. First, we find all the good paths
in and thus establish some good links. We remove these good
links and good paths from to get a submatrix . Then, we
apply Algorithm 1 to to find all lossy MILSs and their loss
rates in . For the good links that are in the middle of lossy
MILSs identified, we add them back so that MILSs are con-
secutive. In addition, we apply the following optimization pro-
cedures to get quickly for the identifiability test (step 10 of
Algorithm 1).

We remove all the good links from and get a smaller sub-
matrix than . By necessity, contains a basis of . We
can then use the small matrix to do decomposition and
thus get . Since is usually quite small even for from
a reasonably large overlay network, this optimization approach
makes LEND very efficient for online diagnosis. In Fig. 7, we
use a simple topology to show the matrices computed in the
whole process. The path from to is a good path, and thus
links 2 and 6 are good links.
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D. Dynamic Update for Topology and Link Property Changes

During monitoring, good links may become lossy and vice-
versa, routing paths between end-hosts may change, and hosts
may enter or exit the overlay network. These changes may result
in changes to the reduced matrix , forcing us to recompute
the MILSs and their loss rates. We perform this recomputation
in two steps: We first incrementally update the decomposition
of the matrix, and then we compute the MILSs and their
properties using the algorithm described in Section IV-B.

We express changes to and in terms of four kinds of
primitive updates: adding a bad path, deleting a bad path, adding
a good path, and deleting a good path. Any more complicated
change can be expressed in terms of these four operations. For
example, if the routing tables changes so that some bad paths
are rerouted, we would delete the original bad paths from the
system and add the routes for the new good paths. When a bad
path is added or deleted, there may be one row that is added
to or removed from ; similarly, when a good path is added
or deleted, the set of links identified as good by the good path
algorithm may change, so that a few columns are added to or
removed from . To update a QR decomposition of after
one column or row update costs time proportional to the size
of the matrix, or time (see the discussion in [21,
Section 4.3]), and since at most rows or columns are affected
by one of our primitive updates, the total cost of such updates
is at most . This cost is much less expensive than
the initial QR factorization of , which costs .

In Section VII-B4, we show that it takes only a few seconds to
complete an incremental update to and and reidentify the
MILSs. Given that end-to-end Internet paths tend to be stable
on the time scale of a day [22] and link loss rates remain oper-
ationally stable on the time scale of an hour [20], our algorithm
should suffice for online updates and diagnosis.

E. Combining With Statistical Diagnosis

As discussed before, the linear system is underconstrained,
and so there exist some unidentifiable links. With MILSs, we
attempt to discover the smallest path segments for which proper-
ties can be uniquely identified. However, there are various statis-
tical methods that produce estimates of properties at a finer gran-
ularity, e.g., at the virtual link level (see Section II-A for defini-
tion). Essentially, these methods use statistical assumptions to
resolve the likely behavior in the unmeasured space discussed
in Section III-A and therefore provide only possible estimates
as shown in Fig. 2 [5].

Because of this, our LEND approach and other statistical
methods can complement each other nicely. For example, we
can discover some links or link segments that are lossy by the
least-unbiased approach. If the user wants to make predictions
at a finer level of granularity with potential degradation of ac-
curacy, we can further apply the statistical algorithms on the
lossy MILSs. In comparison with the traditional statistical to-
mography that has to consider the whole path, our scheme can
help significantly reduce complexity without losing inference
accuracy by considering a subset of the links. Our MILSs are
vectors in , and the MILS set contains a basis of .
Thus, inference with MILSs is equivalent to inference with the
whole end-to-end paths.

Take the linear optimization and Bayesian inference using
Gibbs sampling introduced in [5], for example; these algorithms

Fig. 8. IP spoofing example.

can be used without modification on our MILS set rather than
on the original end-to-end paths. Section VI-C6 shows that
Gibbs sampling inference combined with our least-unbiased
approach improves its accuracy. In addition, the computational
complexity of Gibbs sampling inference based on the MILS
set is dramatically reduced because the input “paths” are much
shorter than the whole end-to-end paths.

V. DIAGNOSIS VALIDATION THROUGH IP SPOOFING

Internet diagnosis systems are difficult to evaluate because
of the general lack of ground truth—it is very hard, if not
virtually impossible, to obtain the link level performance from
the ISPs. We will first evaluate the system through simulations
in Section VI. Then, we test LEND on the real Internet in
Section VII. For validation on the real Internet, in addition
to the classical cross validation, we need a more powerful
approach. As shown in Section II, existing router-based diag-
nosis tools like Tulip are neither very accurate nor scalable
and, therefore, do not suit our needs. In this section, we pro-
pose an IP-spoofing-based mechanism for link-level diagnosis
validation.

Though IP spoofing is usually used by malicious hackers to
hide their identities, it also is a useful tool to cope with the rigid
routers. For example, IP spoofing is used to help measure ICMP
generation time in routers [23]. We use IP spoofing to obtain
a limited source routing, which helps validate the accuracy of
MILSs. With this technique, we can measure the properties of
new paths that we could not normally probe. These additional
measurements are then used to validate the inferred loss rates of
MILSs.

Fig. 8 shows an example of how to use IP spoofing to “create”
a new path. Each line in the figure can be a single link or a se-
quence of links. For simplicity, we just call it a link in this sec-
tion. Assume router is on the path from the node to node

, and the path from to does not go via . To create a new
path , sends an ICMP ECHO request packet to
with spoofed source IP as . When the packet reaches router ,

will generate an ICMP ECHO reply packet and send it to .
Thus, we get a path from to via router . Assume is the
logarithm of the success rate of link as defined before and
is the logarithm of the success rate of path . Thus,
we have . Since , we get a lower bound of

, i.e., . For validation, we use the source routing ca-
pability we have created to measure some new paths and check
whether they are consistent with the MILSs and their inferred
loss rates obtained from normal non-IP-spoofed measurements.
For example, normal measurements on path reveal that
there is a single lossy MILS on , then the logarithm of
’s success rate should be bounded by as discussed before.

See details in Section VII-B2, where the consistency checking
idea is also used in cross validation.

The principle of IP-spoofing-based source routing is simple.
However, many practical problems need to be addressed.
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• First, most edge routers check outgoing packets and dis-
able IP spoofing from the internal networks. In addition,
all PlanetLab hosts are disabled from IP spoofing. How-
ever, we were able to get one host, our institution, exempted
from such filtering.

• Second, as with other router-based diagnosis approaches
[12], our scheme is subject to ICMP rate-limiting on
routers for measuring the loss rates. We filter those routers
with strict ICMP rate-limiting.

VI. EVALUATION WITH SIMULATION

In this section, we present our evaluation metrics, simulation
methodology, and simulation results.

A. Metrics

The metrics we have used to evaluate our algorithms include
the granularity of diagnosis, MILS loss rate estimation accuracy,
and the speed of setup and online diagnosis.

Of these metrics, the first one, diagnosis granularity, is par-
ticularly important. For diagnosis, we focus on the lossy paths
and examine how many links we suspect could be the cause of
the network congestion/failures. We define the diagnosis gran-
ularity of a path as the average of the lengths of all the lossy
MILSs contained in the path. The diagnosis granularity of an
overlay network is defined as the average diagnosis granularity
of all the lossy paths in the overlay. For example, suppose an
overlay network has only two lossy paths: one path has two
lossy MILSs of length 2 and 4 separately, and the other lossy
path consists of only one lossy MILS of length 3. Then, the di-
agnosis granularity for the overlay is .
We measure lengths in terms of physical links, except when we
compare to other approaches for which the natural unit of length
is a virtual link.4

We call a MILS as lossy (or bad) if its loss rate exceeds 3%,
which is the threshold between “minor loss” and “perceivable
loss” (like “tolerable loss” and “serious loss”) as defined in [20].
As we mentioned in Section VI-B, we call a path “good” if it has
less than 0.5% loss, which is the threshold for “no loss” in [20].
Because we allow “good” paths to have nonzero loss, the good
path algorithm introduces some error. The question is whether
this error will accumulate in a serious way when we compute the
loss rates for MILSs. If the error does not accumulate, we can
simply adjust the threshold of what we consider to be a “good”
path in order to trade higher accuracy for better granularity and
faster computations.

For each MILS, we evaluate the error of the inferred loss rate
compared to the real loss rate by analyzing both the absolute

error and the error factor , which is defined in
[4] to be

(4)

where and . Thus, and
are treated as no less than , and the error factor is the maximum
ratio, upward or downward, by which they differ. We use the
default value , which is consistent with the link loss
rate distribution selected in simulation (see Section VI-B). If the
estimate is perfect, the error factor is one.

4As defined before, a network is composed of virtual links after merging con-
secutive links without a branching point.

The LEND system operates in two stages: setup and moni-
toring. In the first phase, we select paths to mon-
itor, while in the second phase, we monitor these paths and use
our measurements to diagnose any congestion/failure locations
among all paths in the system. The setup phase takes
only a few minutes even for a reasonably large overlay network
of several hundred hosts, as shown in [8]. In this paper, we eval-
uate the speed of the second phase.

B. Simulation Methodology

We consider the following dimensions for simulation.
• Topology type: We experiment with three types of BRITE

[24] router-level topologies—Barabasi–Albert, Waxman,
and hierarchical models—as well as with a real router
topology with 284 805 nodes [9].

• Topology size: the number of nodes ranges from 1000 to
20 000. This node count includes both internal nodes (i.e.,
routers) and end-hosts.

• Fraction of end-hosts on the overlay network: We define
end-hosts to be the nodes with the least degree. We then
choose 50 to 300 end-hosts at random to be on the overlay
network. We prune the graphs to remove the nodes and
links that are not referenced by any path on the overlay
network.

• Link loss rate distribution: 95% of the links are classi-
fied as “good” and the rest as “bad.” We focus on di-
rected graphs, so the bidirectional links between a pair of
nodes are assigned separate loss rates. We use two different
models for assigning loss rate to links, as in [5]. In the first
model , the loss rate for good links is selected
uniformly at random in the 0%–0.2% range and the rate for
bad links is chosen in the 5%–10% range. In the second
model , the loss rate ranges for good and bad
links are 0%–0.2% and 0.2%–100%, respectively. Given
space limitations, most results discussed are under model

except for Section VI-C4.
• Loss model: After assigning each directional link a loss

rate, we use either a Bernoulli or Gilbert model to simulate
the loss processes at each link in the same manner as in [5]
and [8]. The Gilbert model is more likely to generate bursty
losses than the Bernoulli model. The state transition proba-
bilities are selected so that the average loss rate matches the
loss rate assigned to the link. We found that the results for
the Bernoulli and the Gilbert models are similar. Since the
Gilbert loss model is more realistic, all results presented in
the paper are based on this model.

We repeated our experiments five times for each simulation
configuration unless noted otherwise, where each repetition has
a new topology and new loss rate assignments. The path loss
rate is simulated based on the transmission of 10 000 packets.
Using the loss rates of selected paths as input, we compute
then the loss rates of all the MILSs.

C. Simulation Results

In this section, we discuss the results of our simulations. For
all three types of synthetic topologies in our study, we found our
system had similar accuracy. Barabasi–Albert topologies have
the smallest MILSs, but also the shortest path lengths, while
hierarchical topologies have both the longest MILSs and path
lengths. Barabasi–Albert topologies have the largest ratios of
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Fig. 9. Accuracy of MILSs on lossy paths: (top) cumulative distribution of absolute errors and (bottom) error factors under the Gilbert model for various topologies.

diagnosis granularity to average path length, while hierarchical
topologies have the smallest such ratios. Thus, we only show the
Barabasi–Albert and hierarchical topology results and omit the
results of Waxman topology because of limited space.

1) Accuracy of MILSs: For all topologies in Section VI-B, we
achieved highly accurate estimates of the MILS loss rates. Since
our goal is to diagnose lossy paths, we evaluate the accuracy of
the estimates of loss rates only for MILSs on the lossy paths.
The results are even better when we consider the MILSs on all
paths.

We plot the cumulative distribution functions (cdfs) of abso-
lute errors and error factors with the Gilbert model in Fig. 9.
The results on Waxman and hierarchical topologies are similar
to those on Barabasi–Albert topologies, and so we omit them in
the interest of space.

The errors come from the measurement noise and the approx-
imation of the good path algorithm. The accumulated error is a
potential problem for inference in a large network. However, our
simulation results show it is not severe at all in our system. For
all the configurations, 90% of the absolute errors are less than
0.006, and 90% of the error factors are less than 1.6. This shows
that errors introduced by the good path algorithm and measure-
ments do not accumulate in the matrix computations.

2) Granularity of MILSs: Table II shows the granularity of
MILSs and related statistics under hierarchical BRITE topolo-
gies and the real-world Mercator topology. We first prune the
topology so that it only contains the links on the paths among the
random selected end-hosts. Then, we merge the links without
branching points into one virtual link. We select a basis set

for monitoring, which is again much smaller than the total
number of paths. After that, we remove the good paths and good
links inferred from these good paths from and obtain . The
number of lossy paths and the number of links in the lossy paths
gives the size of , as shown in this table. The loss rate esti-

mation of MILSs is actually based on , of which the size is
about 30%–50% of the size of for the loss rate distribution
of .

The MILS identification and loss rate calculation are based
on virtual links to reduce the computational cost. Thus, the
length of lossy paths and MILSs in the rightmost two columns
of Table II are computed based on virtual links. The average
lengths in terms of physical links are given in parentheses. The
average length of the MILSs is quite small, less than two virtual
links and less than three physical links. The last column of
Table II shows the diagnosis granularity in length of both virtual
links and links. Most diagnosis granularity is less than two
virtual links, which is quite close to the diagnosis upper bound
of pure end-to-end approaches (i.e., diagnosing every virtual
link). Clearly, the diagnosis granularity becomes finer as more
hosts are employed. This shows that the granularity of MILSs is
very small, and we can effectively locate the congestion/failure
points.

3) Influencing Factors of the MILS Granularity: In this sub-
section, we study two factors that influence MILS length: the
size of overlay network and loss rate distributions of links.

Fig. 10 (top) shows the length of MILSs with different sizes
of overlay network under the Mercator topology and
loss rate distribution. Link merging in the figure means to merge
consecutive link sequences without branching into virtual links.
When the overlay network size is very small, less than 50, there
is not much path sharing, so the MILSs are long. With more
hosts and paths, sharing becomes significant, and the MILSs are
dramatically shorter.

Fig. 10 (bottom) shows the lengths of MILSs for an overlay of
100 end-hosts under the Mercator topology with different per-
centage of links to be lossy links. Again, the loss rate distribution
is . The lengths of the MILSs almost grow linearly with
the percentage of lossy links. Usually the percentage of lossy
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TABLE II
SIMULATION RESULTS FOR HIERARCHICAL BRITE TOPOLOGY AND A REAL ROUTER TOPOLOGY. OL MEANS THE OVERLAY NETWORK.

PL MEANS THE PATH LENGTH. NUMBER OF LINKS SHOWS THE NUMBER OF LINKS AFTER PRUNING (I.E., REMOVING THE NODES

AND LINKS THAT ARE NOT ON THE OVERLAY PATHS). NUMBER OF VLS (VIRTUAL LINKS) GIVES THE NUMBER OF LINKS

AFTER MERGING CONSECUTIVE LINKS WITHOUT BRANCHING POINT. LP STANDS FOR LOSSY PATHS.
THE RIGHTMOST FOUR COLUMNS ARE COMPUTED USING THE VIRTUAL LINKS AFTER MERGING.

THE CORRESPONDING LENGTH VALUES BEFORE MERGING ARE GIVEN IN THE PARENTHESES

Fig. 10. (top) Granularity of MILSs with different network sizes and
(bottom) different percentage of links as lossy links.

links in the Internet is very small—2% or even less. Therefore,
the lengths of the MILSs are very small, which we also verify
in the Internet experiment described in Section VII.

The average length of lossy MILSs is always higher than that
of good MILSs. This is not surprising because the longer the

MILS is, the more likely it is to be lossy. Thus, the diagnosis
granularity may be larger than the average length of all MILSs.

4) Results for Different Link Loss Rate Distribution and Run-
ning Time: We have run all the simulations above not only with
the model, but also with the model. The results
in the latter case are very similar to those of , except that
with larger loss rates and the same percentage of lossy links, the
length of MILSs on the lossy paths has been increased by a bit.
Given space limitations, we only show the lossy path inference
with the Barabasi–Albert topology model and the Gilbert loss
model in Table III.

The running times for and are similar, as in
Table III. All speed results in this paper are based on a 3.2-GHz
Pentium 4 machine with 2 GB memory. Note that it takes about
45 min to setup (select the measurement paths) for an overlay
of 300 end-hosts, but less than 1 min for an overlay of size
100. Note that the setup only needs to run once, and there are
efficient schemes to incrementally update when there are
routing changes or adding/removing links [8]. Meanwhile, the
continuous monitoring, inference, and diagnosis are very fast,
for all cases. Even for the large overlay with 300 end-hosts,
89 700 paths, and more than 20 000 links, we can diagnose all
trouble spots within 1 min. This shows that we can achieve near
real-time diagnosis.

5) Results for Dynamic Changes: Because routes change in
the Internet, and because end-hosts may join or leave the overlay
network, our monitoring system must allow for dynamic up-
dates. In this section, we describe two common scenarios: a
change to the routing or a new host that joins the overlay. We
show that the updates required by these changes can be ex-
pressed in terms of four primitive types of updates provided by
the LEND system. In Section IV-D, we analyze the complexity
of these updates. Here, we describe the performance of the up-
date algorithms in simulations with a real Internet topology [9].

Adding Nodes: We start with an overlay network of 90
random end-hosts. Then, we randomly add an end-host to join
the overlay, and repeat the process until the size of the overlay
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TABLE III
SIMULATION RESULTS WITH MODEL ���� USING BARABASI–ALBERT TOPOLOGIES

Fig. 11. (left) Absolute error and (right) relative error factor of Gibbs sampling and LEND.

reaches 100. Averaged over three runs, the average running time
for adding a node is 0.21 s.

Routing Changes: Changes in network routing tables can
substantially change the paths between hosts in the overlay net-
work. To study the cost to update the LEND system after a
routing change, we created an overlay network with 100 ran-
domly chosen end-hosts. Then, we removed one of the links
used by the overlay and recomputed the routes. In order to up-
date the LEND system in this instance, we may require all four
of the primitive updates described in Section IV-D. Averaged
over three runs, the time to change a routing path (deleting one
path and adding a new one) is about 1.2 s. This time is com-
parable to the time to recompute all the matrices from scratch,
which is about 2.3 s. This is because the topology is relatively
small (only 100 end-hosts) and because we tuned the perfor-
mance of the initialization algorithm.

6) Comparison With Gibbs Sampling: In [5], Padmanabhan
et al. propose three statistical methods to infer the loss rate of
links using end-to-end measurement. We also implemented the
Gibbs sampling algorithm, which was shown to be the most ac-
curate approach in [5]. Note that in [5], the object is only to find
out which virtual links are lossy; the method does not give an
estimate of the loss rate. We modified the algorithm to use the
average loss rate of all the samplings as the estimate of the loss
rate of the virtual links.

Fig. 11 shows the absolute and relative errors of the infer-
ence of virtual links or MILSs. In this experiment, we use the
real Mercator topology measured in [9] with Gilbert loss model
and distribution. There are 50 end-hosts and, thus, 4950
paths in total. Fig. 11 clearly shows that the accuracy of MILSs
is much better than that of Gibbs sampling on virtual links. We
note that the false positives and false negatives in Gibbs sam-
pling are relatively frequent (about 10% in total), and thus for
some virtual links, the absolute error is quite high .

Fig. 11 also shows that Gibbs sampling inference based on our
MILSs is more accurate than that based on end-to-end paths.
This may be because MILSs have finer granularity and reduce
the interaction between identified MILSs in the inference. The
relative error factor results in Fig. 11 show the same trends we
see in the absolute errors. As for running speed, Gibbs sampling
based on the whole paths takes about five times longer than
Gibbs sampling based on the MILS set when using the same
running environment (i.e., the same machine and Matlab tool).

VII. INTERNET EXPERIMENTS

Shortest path routing is often violated in the Internet, a phe-
nomenon known as path inflation [25]. In addition, the loss be-
havior of real links may be more complicated than the behavior
in synthetic models. Therefore, we deployed and evaluated our
LEND system on the PlanetLab [26], and we discuss our results
in this section.

A. Methodology

We deployed our monitoring system on 135 PlanetLab hosts
around the world (see Table IV). Each host is from a different
institution. About 60% of the hosts are in US, and the others are
located mostly in Europe and Asia. There are altogether

end-to-end paths among these end-hosts. In our
experiments, we measured all the paths for validation. However,
in practice, we only need to measure the basis set of on average
5706 end-to-end paths. The measurement load can be evenly
distributed among the paths with the technique in [8] so that
each host only needs to measure about 42 paths.

First, we measured the topology among these sites by simul-
taneously running “traceroute” to find the paths from each host
to all others. Each host saves its destination IP addresses for
sending measurement packets later. Then, we measured the loss
rates between each pair of hosts. Our measurement consists of
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TABLE IV
DISTRIBUTION OF SELECTED PLANETLAB HOSTS

TABLE V
INTERNET EXPERIMENT RESULTS. THE LAST TWO ROWS ARE COMPUTED

USING THE VIRTUAL LINKS. THE CORRESPONDING LENGTH VALUE

USING PHYSICAL LINKS ARE GIVEN IN THE PARENTHESIS

300 trials, each of which lasts 300 ms. During a trial, each host
sends a 40-byte UDP packet to every other host. The packet con-
sists of 20-byte IP header, 8-byte UDP header, and 12-byte data
on sequence number and sending time. For each path, the re-
ceiver counts the number of packets received out of 300 to cal-
culate the overall loss rate. We used the sensitivity test similar
to that of [8] to choose these parameters so that measurement
packets will not cause additional congestion.

To prevent any host from receiving too many packets simul-
taneously, each host sends packets to other hosts in a different
random order. Furthermore, any single host uses a different per-
mutation in each trial so that each destination has equal op-
portunity to be sent later in each trial. This is because when
sending packets in a batch, the packets sent later are more likely
to be dropped than received. Such random permutations are pre-
generated by each host. To ensure that all hosts in the network
take measurements at the same time, we set up sender and re-
ceiver daemons, then use a well-connected server to broadcast
a “START” command.

B. Experiment Results

In April 2005, we ran the experiments 10 times at different
times of night and day. We report the average results from the
10 experiments.

1) Granularity of MILSs and Diagnosis: Of the
end-to-end paths, 65.5% were good paths, and these

paths contained about 70.5% of the links. After removing good
paths, only 6450 paths remained. The average length of lossy
MILSs on these bad paths is 3.9 links or 2.3 virtual links (see
Table V).

The diagnosis granularity of lossy paths is a little high:
3.8. However, we believe this is reasonable and acceptable for
the following two reasons. First, it is well known that many
packet losses happen at edge networks. In the edge networks,
the paths usually have a long link chain without branches. For
example, all paths starting from planetlab1.cs.northwestern.edu
go through the same five first hops. If we use virtual link as
the unit, we find the granularity is reduced to about 2.3 virtual

Fig. 12. Length distribution of lossy MILSs in physical links.

links. This shows our LEND approach can achieve good diag-
nosis granularity comparable to other more biased tomography
approaches while achieving high accuracy.

Second, we find that there are some very long lossy MILSs. In
our experiments, some MILSs were longer than 10 hops. Such
long lossy MILSs occur in relatively small overlay networks be-
cause some paths do not overlap any other paths. Fig. 12 shows
the distribution of the length in physical links of lossy MILSs
during different times in a day (US Central Standard Time).

As shown in Section VI-C6, we can further apply the Gibbs
sampling approach [5] based on the MILSs found and obtain
a lower bound on the diagnosis granularity, which is 1.9 phys-
ical links (and one virtual link, obviously). However, accuracy
will be sacrificed to some extent as shown in Section VI-C6.
Nevertheless, by combining Gibbs sampling with our LEND
system, we have the flexibility to trade off between granularity
and accuracy.

2) Accuracy Validation Results: We apply the two schemes
in Section V to validate our results: cross validation and consis-
tency checking with IP-spoof-based source routing.

Cross Validation: We split the paths in the basis into two
sets. We use the first set as the input to the LEND system to
generate MILSs and to infer their loss rates. Then, we use the
measurements of the second part to test the inferred link loss
rates for cross validation. The basic idea is that if a path in
the second validation set contains some nonoverlapped MILSs

obtained by the inference on the first set, then
the loss rate of should be no less than the total loss rate of
these MILSs because may have some additional lossy links
that are not covered by these MILSs. Assuming the loss rate of

is measured to be and the calculated loss rate of each MILS
is , we check whether the following inequality holds:

(5)

shows the tolerable value of errors. In our experiments, is
chosen to be 0.5%. We run the cross validation for each Internet
experiment. The detailed numbers in different experiments are
slightly different, but the cross-validation results are similar.
Therefore, we take one experiment as an example. In this exper-
iment, we have 5720 paths in , and we choose 2860 of them
to identify 571 MILSs and infer their loss rates. Then, we vali-
date the loss rates against the other 2860 paths. Of 571 MILSs,
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TABLE VI
MILS-TO-AS PATH LENGTH

320 are on the paths of the second set and, thus, verified by 2200
paths. The result shows that more than 99.0% paths in the second
set are consistent with MILSs computed by the first set. This
shows that the loss rate inference of the MILSs is accurate.

IP-Spoof-Based Consistency Checking: For validation, we
started the loss rate measurements and sent IP spoof packets
at the same time. To reduce the overhead introduced by IP
spoofing, we intentionally select the spoofed IP addresses to
only infer the path segments that are more likely to be lossy
based on some previous experiments. We applied the method
introduced in Section V to measure 1000 path segments. Then,
similar to the cross validation, we adopted (5) for matching
validation. Out of a total of 1664 lossy MILSs, 361 are on the
1000 new paths and thus validated. When using the same pa-
rameter , 93.5% of the loss rates of the new spoofed
paths are consistent with the loss rate of these MILSs. Note
that Internet routing changes may affect the validation results
because once the path routing is changed, the reflecting router
may no longer be on the original path, making the validation
inapplicable. Fortunately, Internet routing is quite stable, and
the IP-spoof-based consistency checking thus demonstrates
that the MILS loss rate inference is very accurate.

3) MILS-to-AS Mapping: After we identify the lossy MILSs,
we can locate and study the distribution of the lossy links. For
example, are the lossy links usually within an AS or between
two ASs?

To study this problem, we first need to obtain an accurate
IP-to-AS mapping. A complete IP-to-AS mapping can be con-
structed from BGP routing tables by inspecting the last AS (the
origin AS) in the AS path for each prefix. Mao et al. show that
the IP-to-AS mapping extracted from BGP tables can lead to
accurate AS-level forwarding path identification by changing
about 3% assignment of the original IP-to-AS mapping [27].
However, their available IP-to-AS mapping result was obtained
from measurement in 2003, and it is incomplete—we found that
1/4 of routers on our measurement paths are not mapped to any
AS. Thus, we derive the IP-to-AS mapping from BGP tables di-
rectly, using the BGP tables published in Route Views [28] on
March 2, 2005. The mapping is quite complete, and only 1.6%
IPs involved (end-hosts and internal routers) cannot be mapped
to ASs.

Ignoring these unmapped nodes, we map MILSs to their AS
sequences, then analyze the relationship between lossy links and
ASs. Table VI shows the length of AS paths of the lossy MILSs.
Since it is impossible to infer which link or links are lossy in a
long MILS, we only consider the short MILSs with length 1 or 2,
which consist of about 44% of all lossy MILSs. It is obvious that
most lossy links are connecting two different ASs. For example,
most length 1 MILSs (27.5% of all MILSs) are connecting two
ASs. This observation is consistent with common belief that the
links connecting two ASs are more likely to be congested than
those within an AS.

4) Speed Results: The LEND system is very fast in our In-
ternet experiments. After topology measurement, the average
setup (monitoring path selection, i.e., stage 1 in Fig. 6) time is
109.3 s, and the online diagnosis (stage 2 in Fig. 6) of the 3714
lossy paths for altogether 18 090 paths takes only 4.2 s.

VIII. DISCUSSION

A. Link Properties for Diagnosis

In this paper, we focus on inferring link loss rates, but a nat-
ural question is whether the algorithms are applicable to other
link properties. One difficulty is that the linear algebraic model
only works for additive metrics, such as loss rate and latency.
Link bandwidth and capacity are not additive metrics, and there-
fore do not fit the linear algebraic model. Another difficulty is
that the good path algorithm will not work if the path proper-
ties are always positive; thus, our approach does not apply to
latency directly (in the directed graph model). However, latency
can be decomposed into propagation delay, transmission delay,
and queuing delay. In diagnosis, people usually care about the
queuing delay, which is zero when the network traffic is light
and becomes very large when congestion happens. Therefore,
the good path algorithm may apply when most paths are over-
provisioned, so queuing delay is negligible for most paths. It is a
future work to conduct experiments to evaluate the applicability
of our methods in this case.

B. Justifying the MILS Definition

In this section, we discuss other possible identifiable units for
diagnosis. Currently, MILSs have very strong conditions:

• MILSs consist of consecutive sequences of links.
• Each MILS is a subpath of one end-to-end path.
• The MILSs are minimal, i.e., one MILS cannot be ex-

pressed as a sum of other MILSs.
• Each MILS is identifiable, i.e., their properties can always

be uniquely determined by end-to-end properties.
By defining MILSs in this way, we ensure that there are not too
many of them: There may be at most MILSs for each path of
length , and because of path overlap, there will typically be far
fewer than MILSs overall. By requiring that MILSs be
identifiable, we also ensure that we can cheaply compute their
loss rates using Algorithm 1. However, it is possible to relax the
conditions in our definition, and we consider the effect that more
relaxed definitions would have below.

As we have shown with Theorem 1, these conditions are so
strong that, in a directed graph, the only MILSs are end-to-end
paths. In order to localize the physically lossy links, we there-
fore used bounds on link loss rates at a granularity finer than that
of the MILSs, which we obtain through the good path algorithm.
With sufficiently tight bounds on a few physical links, we are
able to get tight bounds on loss rates for link sequences that are
shorter than end-to-end paths. This suggests that one could relax
the definition of a MILS to allow some unidentifiable MILSs
with loss rates that, though not uniquely identifiable, might still
be known to lie within a small interval. The drawback to al-
lowing unidentifiable MILSs is that it is impossible to tell which
unidentifiable link sequences might have tightly bounded loss
rates from the topology alone.

As we see in the bottom example of Fig. 3, MILSs can overlap
each other. In this example, the sum of the loss rates on physical
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links 1 and 4 is uniquely determined by end-to-end measure-
ments, but because those links are nonconsecutive, we add link
3 in order to get the MILS . Therefore, if we allowed noncon-
secutive link sequences to be MILSs, we could conceivably get
more detailed information. For example, if path were lossy,
we might be able to tell that the fault was in link 3 and not in
links 1 or 4. However, the number of possible nonconsecutive
link sequences in each path grows exponentially with the path
length , and so it would be infeasible to test every nonconsec-
utive link sequence to see if it is identifiable. While it seems
better to relax the requirement of continuity in MILSs, iden-
tifiable nonconsecutive link sequences are quite rare in prac-
tice. We did try several different topologies (synthetic topolo-
gies and Planetlab topology) and found only a small number of
identifiable nonconsecutive sequences existed. Compared to the
number of identifiable MILSs, they can be ignored. The experi-
mental results suggest that our MILS definition is quite efficient
and it represents the identifiable sequences in the paths.

IX. CONCLUSION

In this paper, we advocate a nonbiased end-to-end network
diagnosis paradigm that gives a smooth tradeoff between accu-
racy and diagnosis granularity when combined with various sta-
tistical assumptions. We introduce the concept of minimal iden-
tifiable link sequence and propose the good path algorithms to
leverage measurement snapshots to effectively diagnose for di-
rected graphs. Both simulation and PlanetLab experiments show
that we can achieve fine level diagnosis with high accuracy in
near real time. We further design a novel IP spoofing based
scheme to validate Internet experiments.
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