
DYNAMICS OF DISTRIBUTED SHORTEST-PATH ROUTING ALGORITHMS

William T. Zaurnen, J.J. Garcia-Luna Aceves

zautnen@nisc.sn.com

garcia@ri.com

SRI International

333 Ravenswood Avenue

Menlo Park, California 94025*

The dynamics of shortest-path routing algorithms bss.ed on dis-

tance vectors and link states are investigated. Detailed quantita-
tive comparisons of the distributed Belhnen-Ford algorithm used

in several routing protocols in the paa~ an ideal link-state ttlgo-

nthm similar to the one used in OSPF and in the 0S1 intradomain

routing protocol, and a loop-free distance-vector algorithm, are

made for the network topologies of the 1988 ARPANET, LOS-

NE’ITOS, DOE-ESNET, and the NSFNET T1 Backbone. Com-

parisons include the response of the algorithms to link-cost
changes and to link end node failures and recoveries. A variety of

quantities, including the length of messages and the average nutn-

ber of paths affected by routing lceps, are computed as a function
of time after a link or node change. Probabilities of various con-
ditions are also obtained as a function of time, including the exis-

tence of loops. As expected, the dwtributed Belhnen-Ford algo-

rithm behaves poorly compared with the other two. However,
deciding between a routing protocol based on a link-state algo-

rithm and one based on a loop-free d~tance-vector algorithm

depends on the particular network in which it will perform.

1. INTRODUCTION

The shortest-path routing algorithms used in computer net-

works today can be classified as distance-vector or link-state algo-

rithms (also called topology-broadcast algorithms). In a dktance-
vector algorithm, anode knows the length of the shortest path

(distance) from each node linked to it to every network destina-

tio~ and uses this information to compute the dwtance and next

node in the path to each destination. In a link-state algorithm, a

node must know the entire network topology to compute its dK-

tance to any network destination. Each ncxle broadcasts update
messages, containing the state of each of the node’s adjacent links

to every other node in the network.

* Thii work was supported by SRI IR&D funds.

Permission to copy without fee all or part of this material is

granted provided that the copies ara not made or distributed for

direct commercial advantage, the ACM copyright notice and the

titla of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otharwise, or to republish, requires a fea

and/or specific permission.

a 1991 ACM 0-89791-444-9/91 1000810031...$1.50

Well-known examples of routing protocols based on d~tance-
vector algorithms, which we call distance-vector protocols (DVP),
implemented in intemetworks are the Routing Information Proto-

col (RIP) [HEDR-88], the HELLO protocol [MILL-83], the

Gateway-to-Gateway Protocol (GGP) [HIND-82], and the Exte-
rior Gateway Protocol (EGP) [MILL-84]. The old ARPANET

routing protocol [MCQU-74] and the routing protocol of the Digi-

tal Network Architecture (DNA) Phase IV [SCHW-86] are

examples of DVPS used in computer networks. All of these DVPS
have used variants of the d~tributed Belhnan-Ford algorithm for

shortest-path computation [FORD-6Z BERT-87]. The primary

disadvantages of this algorithm are routing-table loops and

counting to irfiiity [JAFF-82, GARC-89a]. A routing-table loop
is a path specified in the nodes’ routing tables eta particuhw point
in time, such that the path visits the same node more than once

before reaching the intended destination. A node counts to infin-

ity when it increments its distance to a destination until it reaches
a predefiied maximum distance value.

On the other hand, link-state algorithms me free of the count-
ing-to-irtfiity problem. However, each node needs to receive up-

to-date information on the entire network topology. Well-known

examples of routing protocols that use link-state algorithms,
which we call link-state protocols (LSP) are the new ARPANET

routing protocol [MCQU-80], the ANSI proposal for IS-IS routing

~SO-89], and the Open Shortest Path F~st (OSPF) protocol
[COLT-89].

Because of the poor performance of DVPS implemented using
the distributed Bellman-Ford rdgorithm, because of the clear

improvements obtained with an LSP over a DVP based on the
Bellman-Ford algorithm, and because eftlcient distance vector
algorithms had not appeared until recently, DVPS have been

recently considered to be inferior to LSPS. This view has been

reinforced by previous unsuccessful attempts to solve the Bell-

man-Ford counting-to-infinity and routing-table-lmp problems
[CEGR-75, NAYL-75, SHIN-87, STER-80]. Recently, however,

a number of efficient distance-vector algorithms have been pro-

posed to either eliminate counting to infiity [CHEN-89, LOUG-
89, SHIN-87], or elirnimte routing-table loops altogether [GARC-

89b, JAFF-82, MERL-79].

This paper provides further insight into and understanding of
the dynamics of DVPS and LSPS. The algorithms used in our

31

http://crossmark.crossref.org/dialog/?doi=10.1145%2F115992.115997&domain=pdf&date_stamp=1991-08-01

analysis were the distributed Bellman-Ford algorithm, which has

been used in several DVPS; an ideal link-state algorithm based on
Dijkstra’s shortest-path algorithm, which provides an upper bound

on the performance of today’s LSPS; and the loop-free distance-
vector algorithm proposed by Garcia-Ltma [GARC-89b], which

performs at least as well as any other loop-free distance-vector

algorithm proposed to date.

Previous papers addressing the performance of shortest-path
algorithms have focused on their worst-case behavior (or com-

plexity), or have been limited to the analysis of the average num-

ber of messages and the time required for their wnvergence. This
paper presents a detailed quantitative comparison of the dynamic

behavior of three of the most relevant shortest-path algorithms for

the fiist time. It shows that counting to infiity and looping prob-
lems are no longer an issue when choosing between an LSP and a
DVP. Rather, the choice involves a multifaceted tradeoff that can

be driven by a variety of factors, including the performance and

type of the operating system used at network nodes. Determining

the mean or worst-case values for such quantities as the time to

convergence or the total number of packets sent will not be suffi-
cient and as will be shown, can be misleadmg.

It is not now possible to sample enough dtiferent topologies to
make statistically justillable statements about how an algorithm’s

performance scales with parameters that can characterize a topol-

ogy (e.g., number of nodes and links, diameter, or node degree).
Therefore, we used the topologies of four well-known networks

(ARPANET, LOS-NEITOS, DOE-ESNET, and the NSFNET-T1

Backbone) to analyze by simulation the behavior of the three algo-
rithms mentioned.

Sections 2 through 5 describe the design, vrtlidatiou instm-
mentation, and test cases of our simulation. Sections 6 and 7

describe the static and dynamic behavior of the algorithms, snd

Section 8 compares them.

2. SIMULATION DESIGN

We developed the simulations using an actor-based, discrete-

even~ simulation language called Drunta [ZAUM-91] together
with a network-simulation library. The library treats both nodes

and links as actors. Nodes send packets over links by using the

functional-call interface to the links actor, but they receive packets

by responding to messages delivered from the event queue. Link
failures and recoveries are handled by sending a link-status mes-

sage to the nodes at the endpoints of the appropri~e link. In the

link models used in the simulation, link propagation time is an
input parameter (which can be changed during the course of the

simulation), although all runs were made with unit propagation

time. If a link fails, packets in transit are dropped.

For the routing-algorithm simulations in this study, anode

receives a packet and responds by running a routing algorithm,
then queuing any outgoing updates, and fiially, by waiting for
some processing time. If any incoming packets arrive before the

processing time expires, the routing algorithm is run again and
any new packets generated are queued. Once the processing time

for all these events has expir~ redundant updates are removed
(removal is algorithm dependent) and the queues are sent over the
links. In the nms actually made, processing time was set to zero;

however, Dramus internalmechanisms ensured that all updates

due to arrive at the current simulation time were processed before
any new updates were generated. The advantage to this approach
is that simulation puts multiple updates into the same packet and,

for many networks, the number of packets is a more critical mea-
sure of performance than the number of bits actually transmitted.

Three shortest-path algorithms were implemented-the
Diffusing Update Algorithm (DUAL) [GARC-89b], the

D~tributed Belhnan-Ford algorithm (DBF) [FORD-62, BERT-

87], and an I&al Link-State algorithm (lIX) using Di@Xra’s
shortest-path algorithm [DIJK-59] at each node. In all cases, the

algorithms produced a routing table giving a successor for each

destination. The successor is either a rteighboring node or null (a
null indicates that no current path leads to the destination).

In the DBF simulations, when an update packet is buil~ only
the latest update for a given destination is sent. This reduces the

length of the routing packets. Similarly, redundant updates were

removed in the DUAL simulations. The ILS simulations slightly
underestimate the number of updates that must be senti in prac-

tice, a link-state algorithm will rely on perio&c topology broad-
casts and will need some mechanism to allow sequence numbers
to be reused (a fii~ preferably small,, number of bits are avail-

able for such purposes). We have ignored these complexities

because the mechanisms needed to handle them can be spaced
long enough apart to avoid a severe impact on performance.

Because the overhead imposed by a fail-safe link-state

algorithm is very Itigk however, existing LSPS may simplify the
mechanisms needed to provide fail-safe topology broadcast. Con-

sequently, the performance of ILS institutes an upper band on
the performance that can be achieved with LSPS. For example, to

reduce its overhead OSPF requires only adjacent gateways to

remain synchronized [COLT-89]; no broadcast of link-state

updates takes place when a failed link is placed back in operation.

In theory, this simplification cannot ensure that every gateway
will receive all the necessary updates in a dynamic irttemet [JAFF-

86]; in practice, it means that OSPF can be slower to converge

after topological changes than predicted by the performance of

ILs.

In the following, we occtwionally refer to the Dijkstra-LS
algorithm, instead of ILS, in contexts where the running time of

the shortest-path algoritlun at a node is important.

3. NETWORK MODEL AND ASSUMPTIONS

A network is considered as an undnected connected graph in
which each link has two lengths or costs associated with it-one

for each duection-rmd in which any link exists in both directions

at any one time. The three algorithms implemented assume the

existence of a link-level protowl assuring that

●

●

●

●

Every node knows its neighbors, which implies that anode

detects withirt a fiite time the existence of a new neighbor
or the loss of connectivity with a neighbor.

All packets transmitted over art operational link are received
correctly and in the proper sequence within a fiite time.

If a link fails, all packets transmitted before the failure
occurred but not yet delivered when the link failed are lost.

All messages, changes in the cost of a link, link failures, and
new-neighbor notiilcations are processed one at a time,
within a finite time and in the order in which they occur.

In thk model, each node has a unique identifier and link costs

can vary in time but are always positive. The distance between

two nodes is measured as the sum of the link costs in the path of
least cost or shortest pafh between them. Each node adjacent to a

node i is called a neighbor of node i.

This same model is directly applicable to an inteme~ in which

gateways are the nodes of the graph and networks are the edges of

the graph. For this case, the services listed above are provided by

32

a datagram service at the network level and a transport-level pro-
tocol simiiar to the transmission ccm~ol protcxol (TCP).

4. VALIDATION

To validate the simulation, we performed a series of tests, irti-

tirdly checking small cssea manually using a trace facility that

prints out detailed debugging output. We then performed a com-
prehensive set of tests using the 1988 ARPANET topology, in

which we compared how all three tdgorithms responded to a vari-
ety of topological chartges-node and link failures and recoveries,

random link cost changes, and random sequences of the above.

After each set of changes, we let all algorithms converge, and

compared the distances produced by each to every destination.
Since all are shortest-path routing algorithms, all must produce the
same distances after convergence.

During the fii tesL whenever a bug in any of the simulations
was uncovered after the halfway poin~ we doubled the size of the

test. At the end we ran approximately 250 cases, each consisting

of a long sequence of link changes. Tests that measured the

response of the algorithm to a change in just a single link or node

were replicated to exhaustively cover all nodes and links, but

could not meaningfully be extended. Such tests were rerun after

any progrsm modflcation. Finally, all the test cases were rerun

for DUAL, using a test showing that the algorithm as implem-

ented never produced a routing loop, in accordance with the
algorithm’s theoretical development [GARC-89b]. The routing-

loop test was not applied to the other algorithms because they are

not loop free.

The simulation of DUAL was based on a pseudocode descrip-

tion of the algorithm that was developed concurrently with the
simulation itself. Algorithm complexity made a formal proof of

correctness of the pseudocode (as opposed to a purely mathemati-

cal description of the algorithm) not feasible. Whenever a dis-

crepancy =ose between DUAL and the other two (ILS and DBF),

we used the simulation outpu~ consisting of snapshots of various

tables detlmed by the algorithm, to determine if a node behaved
incorrectly. The pseudocode was then checked and mod~kd as
necessary without reference to the simulation source code. The

simulation’s source code was modfkd only if the pseudocode
was changed or if it was determined that the simulation did not

follow the pseudocode. In almost all cases, the algorithm’s devel-

oper made modifications to the pseudocode without reference to
(or even knowledge of) the simulation source code. In all cases in

which the pseudocode had to be modified, it was because it dld

not agree with the mathematical theory on which the algorithm is

based.

5. INSTRUMENTATION

The simulation was instrumented in two ways. The f~st and
simplest requires no more than a set of counters that can be reset
at various points. These counters determine such statistics as the

total number of times all the nodes in the simulation responded to
a packet and the total number of messages sent. When the event
queue empties (iiplying that an algorithm has converged), the
vahtes of the counters are printed. Some counters are associated

with individual nodes or links in the simulation whereas others are

associated with all nodes or links.

In addhion, the simulation gathers information after each event

is processed. At certain points in the main event loop, Drama
allows the programer to provide a function that will bc Galled with

a calling convention specified by the run-time library. In particu-
lar, a copy of the routing tables was analyzed at each step of the

simulation thereby allowing us to characterize the routes each
algorithm produced while the algorithm was still running. Each

copy of every routing table was generated jut before a node’s
script returned. This user-verified function can perform a series of
actions. For each algorithm, just before a node’s script returned,

the node copied its routing tsblea into a global area containing the

successor for each destination. This new table was then analyzed

at each step of the simulatio~ and which allowed us to character-

ize the routes each algorithm produced while the algorithm was

still rtuming.

6. TEST NETWORKS AND STATISTICS

The simulations were run on several network topologies, the
1988 ARPANET and MILNET topologies, the LOS-NE’ITOS

topology, the DOE-ESNET topology, and the NSFN~-Tl-Back-
bone topology as shown in Figure 1. We chose these topologies
to compare the performance of routing algorithms for well-known

cases, given that we cannot yet sample a large enough number of
networks to make statistically justifiable statements about how an

algorithm’s performance scales with network parameters.

DOk-E~NET - NSFNET-T1

MILNFi-

Figure 1. Network topologies

For each network we generated test cases consisting of all sin-
gle failures and recoveries for both links and nodes in which the
routing algorithms were allowed to converge after each chsnge.
We also generated random iii-cost changes; links were chosen at

random, with link costs chosen horn the interval (0,1] and with

Poisson-dktributed irtterarrival times. The link and node failures

and recoveries test runs exhaustively, covering all cases, thus

precluding sampling error. For the cases where link costs
changed, five independent runs were made and the averages and

standard deviations of all quantities measured were determined
overall.

Some runs required the use of a random-number generator,
either to randomly choose a link+ a lii cost (from O to 1), or a

33

Poisson-diitributed interarrival time. The UNIX library function

random was used with a state size of 256. Addhional functions

used this random number generator to produce a double-precision
random-number between O and 1, and to produce a random integer
in the range [0, N] where N is the number of links in a simulation.

We determined that the random numbers produced were uniformly
distributed and ran an autocorrelation test to determine that

successive changes would not be correlated.

In all cases, nodes were assumed to perform computations in

zero time, and links were assumed to provide one time unit of
delay. The link models allow link delay and link cost to be set

independently. Each unit of time therefore represents a step in

which all currently available packets are processed.

Although the choice of input parameters causes the simulation

to proceed synchronously, the node models treat each incoming

packet asynchronously. Each input event is thus processed by a
node independently of other events received during the same

simulation step. Such treatment provides a basis for algorithm
comparison that is independent of link delay and that accurately
reflects the problems caused in any asynchronous distance-vector
algorithm when a node reacts to new information from one neigh-

bor using outdated information obtained from another.

7. TOTAL RESPONSE TO CHANGES

After failure or recovery of a node or link, or a change in lii

cos~ each algorithm w as allowed to run to convergence. Node

failures were modeled as the simultaneous failure of all links

attached to that node, starting from a topology in which all links

were up. Node recoveries were modeled by bringing the attached

links back up simultaneously. Link failures and recoveries

behaved similarly, in that at most one link was down at any time.

As in the validation runs, nodes ran each algorithm in zero time

and link delay was set to unity. For the failure and recovery runs,
costs were set to tmi~, otherwise, they were set to a random num-

ber in the interval (0,1]. Several quantities were then measured.

● Events. The total number of updates (including queries and

replies for the DUAL algorithm) and changes in link status

processed by nodes.

● Packets. The total number of packets transmitted over the

network. Each packet may contain multiple updates.

● Duration. The total elapsed time it takes for an algorithm to

converge.

● Operations. The total number of operations performed by

each algorithm. The operation count is incremented when-

ever tin event occurs, and whenever the statements within a
“for” or “while” loop are executed. (For the DiJkstra-LS
algorithm, one step inserts data into a priority queue. The

number of operations required to do so is estimated to be

log2n, where n is the length of the queue.)

The results appear in Tables 1-5. Both the mean and the standard
deviation of the value dktributions are given. There is no sam-
pling error for the results shown in Tables 14 because the statis-
tics covered all possible cases. For the res~ errors were deter-
mined based on repeated trials (by computing the mean and ssm-
ple standard deviation for data collected over five trials, each

containing approximately 500 points).

In every case, the operation count for the Dijkstra-LS algo-
rithm (replicated at each node) was substantially higher than for

Backbone case. The existence of such an exception indicates that

we cannot yet compare the average performance of routing algo-

rithms in general, but only with respect to particular topologies.
For node recoveries, DUAL sent fewer packets on the average
than ILS. The packet count values for DBF varied considerably
with respect to the vahres for DUAL and ILS. For link-cost
changes, &pending on the network, DBF sent from as many
packets to about twice as many packets as the other algorithms,

and DUAL sent about as many packets as ILS in some cases and
about 35~0 more in the others.

DBF was by far the worst for mean duration of node failures.
For both link and node recoveries, DBF took approximately one

time unit less than DUAL, at least partly because of an implemen-

tation detaik in DUAL’s implementation, when a node recovers,

it broadcasts its distance of O.@ in DBF’s implementation, neigh-

boring nodes assume that this dstance will be zero because the

distance of any destination to itself is zero. The mean duration for

node failures for DUAL was 1.7 to 3.1 times as long as for ILS,
depending on the network. For link failures, the mean duration

ratio of DUAL to ILS varied from about 1.3 to 2.0 and for link

chrmges, from about 1.4 to 1.9.

8. DYNAMIC RESPONSE TO CHANGES

The mean duration in Tables 1-5 is a very crude measure of an

algorithm’s performance because it ignores the possibility that

routing tables may provide some usable routes while the algorithm
is still running. This in fact turns out to be the case. To study the

dynamics of routing algorithms, we ran rut exhaustive series of

test cases for all node failures and recoveries, and recorded, at
each step of the simulation, the number of nodes that (a) reached

each destination, (b) had no successor, (c) could not reach a given

destination because of loops, and (d) could not reach a given des-
tination because of a downstream node with no successor for that

destination. We also recorded the queue lengths and the number
of outstanding messages. Finally, we recorded the number of
paths containing anode or a link that is part of a routing loop

(yossibly for a dtiferent destination).

Treating every node change as a separate case, we obtained a

statistical characterization of each routing algondun’s perfor-

mance by computing a distribution as a function of time. For
example, the 1988 ARPANET topology has 47 nodes, and one can

compute the probability P(n) that n nodes (for n c [0,46]) can

reach some arbitrary destination (we do not consider paths from a
node to itself, because they do not require a network). When all

nodes and links are up, 46 nodes will reach their destination when

the routing algorithms converge. When a no& fails, it will not be
able to reach any other destination, and other nodes cannot reach

it. In most cases, 45 nodes will be able to reach an arbitrary desti-

nation after some node has failed, except for the cases in which a
node failure partitions the remainder of the network. As a resul~

P(45) after the algorithms converge is slightly less than 1.0.

During convergence, P(45) varies with time. In cases where one
slice of the distribution function is show the other slices dld not
contain anything of interest-small nonzero probabilities, but with

no d~cemable pattern.

In addition, some of the statistics have been characterized by
the probability as a function of time that some condition is true,
and by an average value given that it is true. For example, we

show the probability that a loop exists and the average number of
loops given that at least one loop exists. This is useful because, in

the other two algorithms, often more than an order of magnitude

higher. For node and link failures, DBF sends signitlcsntly more
packets than DUAL, except for link failures in NSFNET-T1

34

Table 1

ROUTING-ALGORITHM RESPONSE TO A SINGLE NODE FAILURE

DUAL I DBF I ILs
Parameter mean 1 sdev mean I sdev mean I sdev

ARPANET Node-Failure Cases
Even cmnt 1050 661 6510 1840 218 64.1
Packet count 382 97.5 5690 63.3 212 62.5
Duration 17.8 7.71 47 0 8.66 0.974
operation count 1320 721 6770 1870 34000 9890

MILNET Node-Failure Cases
Eveo count 4500 4070 79300 51400 686 284
Packet count 1480 720 60500 335 680 282
Duration 31.6 21.8 144 0 10.1 1.31
Operation count I 5370 I 4420 I 80200 I 51600 1492000 I 2040tXl

LOS-NE’ITOS Node-Failure Cases

Even count 73 25.4 273 72.1 31.8 9.61
Packet count 45.5 3.26 217 20.2 26.7 7.2
Duration 6.91 0.996 11 0 4.09 0.514
operation count 124 50.2 324 89.2 673 195

DOE-ESNET Node-Failu re Cases
Even count 321 273 1950 915 72.2 28.3
Packet count 135 23.7 1380 43.4 67.2 26
Duration 11.1 1.42 26 0 6.27 0.901
operation count 444 328 2080 961 5080 1980

NS FNEW-Tl-Bac kbone Node- Failure cases
Even count 176 76.7 472 17.6 65.1 9.89
Packet count 97.2 24.5 443 13.4 59.1 8.8
Duration 12.6 5.58 0 5.21 0.558
Operation count 254 89.2 5:: 28.1 2070 282

Table 2

ROUTING-ALGORITHM RESPONSE TO A SINGLE NODE RECOVERY

DUAL I DBF I ILs
Pammeter mean sdev mean I sdev mean sdev

ARPANET Node-Recove ry Cases
Even count 692 317 823 353 301 83.6
Packet count 207 41.6 242 65 295 82.1
Duration 8.45 0.82 7.57 0.765 9.62 1.35
Operation count 958 394 1090 433 50100 14000

MILNET Node-Recoveq Cases
Even count 2390 1680 2850 1900 854 309
Packet count 644 166 743 259 848 307
Duration 10.2 1.11 9.32 1.11 10.4 1.18
Operation count 3260 2080 3720 2300 625000 227000

IX)S-NE’ITOS Node-Recov ery Cases
Even count 94.3 40.5 118 53.4 49.4 18.6
Packet count 41 12.4 39.7 12.5 44.3 16.2
Duration 4.73 0.445 3.73 0.445 4.09 0.514
operation count 145 66.5 169 79.3 1520 610

DOE-ESNET Node-Recov ery Cases

Even count 276 173 341 210 102 45
Packet count 97 28.1 106 38.7 97.2 42.6
Duration 6.5 5.58 0.494 6.42 1.01
Operation count 399 23?5 464 273 8550 3830

NSFN ET-T1 -Backbone Node-R ecovery Cases

Even count 153 40.2 186 45.9 104 13.8
Packet count 60.9 9.47 61.8 11.9 98.3 12.7
Duration 4.5 0.5 3.5 0.5 6 0.926
Operation count 231 56.3 264 62.2 4150 597

35

Table 3

ROUTING-ALGORITHM RESPONSE TO A SINGLE LINK FAILURE

I DUAL 1 DBF I ILs
Parameter mean sdev mean adev mean I adev

ARPANET Link-Failnm Cases

Even count 721 503 649 13(X) 160 20.9
Packet count 266 94.1 437 1310 158 20.9
Duration 15.1 2.63 9.13 9.55 8.56 0.793
Operation count 813 503 741 1300 25600 3390

MILNET Link-Failure Cases
Even count 2540 2120 11300 35200 506 90.2
Packet count 767 431 8010 20200 504 90.2
Duration 20.3 10 25.2 45.5 9.92 1.26
Operation count 2830 2120 11600 35200 3660tM 66000

LOS-NETTO S Link-Failnr e Cases
Even count 49.9 18.6 65.7 90.3 29.7 5.87
Packet count 32.6 11.8 58.6 92.8 27.7 5.87
Duration 6.71 1.33 4.29 3.57 4.21 0.558
Operation count 69.9 18.6 85.7 90.3 724 169

DOE-ESNET Link-Failu re Cases

Even count 265 207 552 746 63.1 14.8
Packet count 111 37 432 617 61.1 14.8
Duration 11.1 1.58 10.8 9.58 6.34 0.922
Operation count 315 207 602 746 4750 1220

NSFNET-Tl-Bac kbone Link-F ailure Cases

Even count 91.6 47.8 37.7 21.3 53 2.32
Packet count 53 19.1 22.3 10.6 51 2.32
Duration 6.95 0.785 3.29 0.452 5.43 0.495
Operation count 118 47.8 63.7 21.3 1840 61.6

Table 4

ROUTING-ALGORITHM RESPONSE TO A SINGLE LINK RECOVERY

t

DUAL 1 DBF I ILS
Parameter mean sdev mean sdev ~ mean sdev

ARPANET Link-Recovery Cases ‘
Even count 362 176 363 174 163 21.3
Packet count 79.4 26 118 43.9 161 21.3
Duration 7.31 1.19 6.6 1.13 7.74 0.699
operation count 454 176 455 174 26900 3450

MILNET LI“nk-Recovery Cases
Even count 1180 704 1200 698 510 90.8
Packet count 232 118 341 168 508 90.8
Duration 8.71 1.67 8.17 1.61 9.36 1.05
Operation couut 1460 704 1480 698 371000 66000

L OS-NETTOS Link-Recov ery Cases
Even count 45.7 7.45 46.1 33.3 6.66
Packet count 17 7.25 19.6 E3 31.3 6.66
Duration 3.71 0.881 2.93 0.799 3.86 0.35
Operation count 65.7 7.45 66.1 9.8 944 173

DOE-ESNET Link-Recove v Cases
Even count 160 73.7 166 71.4 66.5 15.7
Packet count 45.4 16.6 63.2 24.1 64.5 15.7
Duration 5.69 0.916 5.12 0.74 5.56 0.496
Operation count 210 73.7 216 71.4 5410 1230

NSFN ET-TI-Back bone Link-Re covery Cases
Even count 67.6 19 65.6 19 57 2.32
Packet count 22 6.28 28.4 11.6 55 2.32
Duration 3.86 0.35 2.9 0.294 4.71 0.452
Operation count 93.6 19 91.6 19 2140 76.8

36

Table 5

ROUTING-ALGORITHM RESPONSE TO A CHANGE IN LINK COST

\
DUAL I DBF II-S

f

Parameter mean adev mean adev mean adev

ARPANET Node-Recovexy Cases
Even count 435 * 7.7 655 * 17.3 182 + 7.5 375 * 15.8 83.4 * 0.21 83.9 ~ 0.19
Packet count 109*1.O 132 * 1.26 699 *29 1630 * 83.6 84.4 * 0.213 84.9 k 0.19
Duration 14~0.18 5.6 * 0.205 18.8 * 0.9 15.8 * 0.67 7.81 + 0.010 0.781 + 0.017
Operation eotmt 481 k 7,7 687 k 17 715*29 1650 +83 13600*71 13700*68

MILNE T Node-Recovep Cases
Eveo count 1880 *54 3450 *69 274*0.15 276+0.18
Packet count 366 * 5.6 471*6
Duration

273*0.15
18.5 i 0.32 8.12 + 0.36

275+0.18
9.49 k 0.028

Operation count 2020 *54 3530 *70
1.07*0.011

199000 * 729 200WI * 743

Los-NE TTOS Node-Recov ?ry cases
Even count 43* 2.0 59.4 k 3.6 39.3 k 2.5 64.1 + 6.0 18.5 k 0.061 18.5 t 0.051
Packet count 19.2 t 0.41 23.3 * 0.61 18.1*1.14 28.1 * 2.5 17.5 * 0.061 17.5 * 0.050
Duration 5.91 A0.12 2.64 + 0.16 4.91 * 0.23 3 * 0.22 4.05 * 0.045 0.458 + 0.030
Operation cxxnt 53*2.1 67* 3.5 49.3 * 2.5 70.7 f 5.8 479 * 3.1 4802.9

DOE-ES NET Node-Reeove ry Cases

Even count 150* 1.9 229 * 3.6 202* 15 427 *45 38.6 * 0.076 38.7 * 0.070
Packet count 47.7 * 0.37 55.7 * 0.30 7S.3 t 6.0 142* 12
Duration 9.38 * 0.093

37.6 * 0.076
3.57 + 0.036

37.7 * 0.070
11.5*0.44 8.8 * 0.31 5.83 + 0.(XJ70 0.612 + 0.0073

Operation count 175 * 1.9 246 * 3.4 227*15 440 k 446 3010*25 3020 * 259

NSFNET-T1 -Backbone Node-R ecovery Cases
Even count 67.7 * 1.2 94 X3.1 62.4 * 4.2 107 *12 28.5 * 0.024 28.5 * 0.023
Packet count 28.4 k 0.32 35 t 0.54 25.9 * 1.7 40.8+ 3.8 27.5 k 0.024 27.5 * 0.023
Duration 6.99 k 0.15 3.08 + 0.19 6.12 + 0.30 3.81 * 0.30 4.74 * 0.C094 0.438 + 0.0049
Operation count 80.7*1.15 104*3.O 75.4 * 4.16 116*12 101O* 1.9 1020 * 1.9

some cases, the probability of a loop is fairly low. The average

number of loops over all cases would be heavily bhaed by ~

cases where there are no loops at all, and is not a particularly

interesting number.

Figure 2-15 show the transient response of routing the algo-

rithms after anode failure. The remaining graphs (Figures 16-18)
show the transient response for anode recovery. All the results
shown in these graphs are for the ARPANET topology. Graphs

for the other topologies occasionally dtifered in shape. The most

notable dfierence is that for the MILNET topology, the number
of loops showed a prornirtent spike just before the BF and II-S

algorithms terminated. This occumd as the probability of loops

drop- suggesting that the spike is related to worst-case

behavior.

9. ALGORITHM COMPARISON

Detertnining which algorithm is best for a particular network

really depends on a wide variety of considerations:

.

.

●

●

Does responding to a routing packet require a context

switch? If so, how long does a context switch take?

To what extent are CPU time and memory overhead

important parameters?

How much trttff3c will be routed before the routing algorithm

responds. Do routing updates have priority over user traffic?

Does each outgoing link at a router have its own buffer poo~

For example, for high-speed networks, the &lay in moving

routing packets between neighboring nodes may be large enough

that even a tmrtsiertt routing loop can be sigrtitlcant-lwfore the

routing algorithm can respond enough user packets may be in the
loop to fill up available buffers.

For the networks sirnula@ ILS seems to be best in most cases
for Animiziirtg the number of routing packets that need to be sen~

albeit at the cost of amsiderably more CPU time compared to
DUAL. ILS tdao runs to completion for node failures in txmsider-

ably less time than DUAL does. This total elapsed time is some-

what misleadmg, however. Aa cart be seen in Figures Z 3, and 8,

most of the routes are determined correctly in approximately the

same time as for the BFD and ILS.t For node tmd link recoveries,

the corrqondmg figures are similar for rdl three algorithms, with

running time roughly proportional to network diameter. Figure 2

shows that imrttedately after a single node failure, fewer nodes

have paths to their destination using DUAL than for the other
algorithms. ‘Ilk is the consequence of the mechanisms used by

DUAL to prevent routing loops for all cases, including those in
which multiple node failures occur at about the same time. For a

particular application, a tradeoff has to be made to determine

whether this behavior is worth the reduetion in congestion, which

also affects paths to no&s other than the one that failed.

One should also note tha~ although additional messages are

sent by DUAI+ compared to IL.S ‘s, DUAL is loop free, whereas
the ILS is not. F@res 13-15 provide a comparison, At arty time

after anode failurq ILS is usually loop free, but in some cases it
produces a loop. That loop cam lead to congestion if enough
packets travel along it while it persists. Figure 14 shows the num-
ber of paths that will reach a node that is part of a loop for some

37

0.9

IT

@w--

~p

~ 0.8 ~
~
m J
$ 0.7

PrObaMity that exaolty 45
nodes reach a destlrwhn

8 (for m arbitrary desiinmtlo~
m 0.6 aft.r a node failure)

0.5H
— DUAL
.......... RF
---- ii

0.4 .
0 5 10 45

TIME AFTER NODE FAILUiEU+;~

Figure 2. For DUAL, probabilities are lower

than for ILS or DFB immediately after
the node failure, because DUAL will

not us,e alternative routes to a
destination until it can determine that
there are no loops.

1.0

0.9
....................................... . .

c 0.s~ 1{probability Uret exactiy 1 nodn

~ 0.7
hes no succassor
(for an arbitrary destlrratio~

g eftef B node failure)
a 0.6

o 510152i2&3i35.JJ &l!
TIME AFTER NODE FAILURE

=+PWZ

Figure 3.

I

Directly after a node failure, DUAL is

more likely than the others to have

multiple nodes with no successor as
an artifact of the mechanism that

produces loop-free routes, reducing

the probability that only one no& has
no successor to a destination.

0.30> i

[

Probebilify that a routing loop exiete
0.25 (fer an erbftrary deetfnetion,

after ● node feilure)

& 0.20
~
m
~ 0.15

~
2
0- 0.10 : BF

s ‘--- LS

0.05 DUAL VALUES ARE ZERO
..

:
0.00

0 510152 O253O354O45W
TIME AFTER NODE FAILURE ~~la

Figure 4. Time values for DBF values extend

well beyond those for LSI because of

the counting to infinity problem.

w

‘“l
..J

~ 25 #
Averege number

1#

~ 2.0 j~
of muting Ioope

u (for an arbitrary
w
m

d , desffnetiom efler

31.5 : : e node feilure)

z 5

.......... BF
‘--- LS

0.0+ , :
0 510152U25SU354O4

Figure 5,

TIME AFTER NOOE FAILURE~~la)

Average number of loops for routes to
an arbitrary destination, given that at
least one loop exists.

0.30-
ProbeMity ffmf a path to en arbftrery

0.25.
desffrretion entere e loop (aftef a
node feilufe)

g 0.20
~
m
< 0.15
g

0- 0.10

0.05

0.00

;
:

.......... BF
‘--- LS

.
:

0 51015202520354045
TIME AFTER NODE FAILURE~~lo,

Figure 6. The probability of a DBF loop is low

for times between 5 and 45, because

a node failure does not cause a loop

for all destinations.

I

I
1- 45. g ...
a
: 40. ::

:. .
:

0 35. j Averege number of patfre :
a to en arbitrary deefinetion :
: 30- ;: en ferfng e loop :
z (after e node feilure)

~

3 25. ~ ;
z :

c)
:

u 10.
:

9 BF ~
* 5. ; ‘--- LS ~

Oi
.

0 51015202a 30354045 50
TIME AFTER NODE FAILURE ~~,w

Figure 7. Average number of paths to an
arbitrary destination that enter a loop,

given that at least one loop exists for
that destination.

38

1.004 ..

IL ‘
1
1 Probability of packete j
1 in freneit ;

0.s0 ~

E
: (after e node feilure) :
8 :

~
CLJ 0.s0

\
8
g 0.40 : -y~

I
I
I !

0.20 Jt
;

a
;
f

O.CO
o 510152O253O354.6.G

a

L
Iiu

m It

~ 10 ~1
z

!#
:\

551 i
— DUAL
.......... BF

>
<:

i

‘--- LS

o
0510152026303540 ‘ti))

TIME mwpmas TIME AFTER NODE FAILURE ~.v~l.10

Figure 8. The peaks at times around 45 for

DBF occur because near that point,

the algorithm has counted to infinity

and some nodes will determine that

there is no successor before others.

Figure 11. Average number of updates in a
packet after a noda failure. As time

progress%, the number of updates

in a packet drop, so the packets get

shorter.

200-
Averege number of pecketo

Isa . given et Ieest 1 pccket

160. (aftef e nO& feilure)

140.
,;.%,

12u. :

lw - j

so. !

— DUAL ~
.......... BF :
‘--- LS ~

20.

0
51015202530354045

20-

$
Averege number of pethe thet
reech e nortc with no euccceeor

n (erbitiery destfnado~ effw
&15. :

11
● node feilurw)

a 11
w
m 11

~lo. :! ::
z

K

;;
::

g :;

$ 5. : \
— DUAL ;!
.......... SF ::

~ ,1 ‘--- LS ::

AI

;;
::,, :

O*
0510152025303540 45!

TIME u.@9148

0
TIME AFTER NODE FAILURE ~@91.11

Figure 12. Average number of packets given

that at least one packet was sent.
DBF algorithm sends more packets

Figure 9, Average number of paths to an

arbitrary destination that reaches a
node with no successor given that at

least one node for that destination
has no successor.

than the others for much longer.

rPr0bet41ify thef at feaet

0.s0 $ one routing loop exiela

c b
(after a node failure)

=060 :
~“ $

1
~ 0.40 I

t

g ;;. Average Numberof Updeteo
in ● Pecket

~ 9- (efter ● node failure)

~;

~ 6-

— DUAL

1.

0
051015202530354045 50

TIME AFTER NODE FAILURE ~+ti91a

1
I
I BF

0.20 1 ‘--- LS

:

0.004
I

* I
O51O15ZO253O354O45 50

TIME AFTER NODE FAILURE ~w$ln

Figure 13. Probability that at least one routing

loop exists, regardless of the
destination.

Figure 10. Probability of packets in transit after
a node failure.

39

~ 1100.

~lcw- X
~ 900. : JJ

..?
:

& -“ ;;; Averegenurnber ofpethethet !
I peee though 8 node thet i

1K 700 J ; ~ ~fi of a routing l@P
g 81w- . .

I (after ● node failure) :
3 m. 9

~
~
?

[;: : .“........ BF \

z 100. I ‘--- LS ~
I

o-l
O51O152O25W354O45 w

TIME AFTER NODE FAILURE ~~l.l,

1.00n L.. -1

iRobabiltty of at : ~
O.BO ~aat I peoket ~ I

z existing afw a : I

4 0.50 noderecovery : :

1I ---- Ls ●1-l
3

O.CQ4 1
\

O 1 23456789101112131415
TIME AFTER NODE RECOVERY

2A-qS91-16

Figure 14. Average number of paths that pass

though a node that is part of some
loop, including loops for other
destinations.

Average nwnfwr of path U’@ wee
700. through ● link that te in some loop

(after e nede feilure)
MO.

:

;
300.

;
~,

2oo-
;

i. BF ;

100. I ‘--- LS ~
:

:
:
.

o+
0510152)2520354045 50

TIME AFTER NODE FAILURE ~~1-14

Figure 15. Average number of paths pass
though a link in some loop, including
links for other destinations.

Average pecket length

g 70” .- eftw ● nodn recovery

~ so- :

~ ‘. ;

$ 40. :

n i
w 20. m

3 m.
— DUAL
......”.”. SF

Y ‘--- LS
a 10= L..

o
0 1 234567 S 91011121314 15

TIME AFTER NODE RECOVERY
7Au#91.15

Figure 16. Probability of packets in transit

after a node recove~.

Figure 17. Average number of updates in a

packet.

0

Averege nurntw of

: . ~ one pecket exiete)
; ! I
t-- i...

. . . . :
:
! : .q — DUAL

P- I :
...””...”. BF

I ‘--- LS
~
8...

●

01234567891011121314
TIME AFTER NODE RECOVERY

‘zA-@91-17

Figure 18. Average number of packets given
that at least one packet was sent.

destination, and Figure 15 shows the number of paths that will

reach a link that is part of a loop, There are 2162 paths that may
exist at any one time (2162 is the number of source-destination

pairs, ignoring coses in which the source is the destination), so a
sizable fraction of the paths may be affected by the congestion
caused by loop. Whether or not congestion will buildup fast

enough to cause problems is, of course, dependent on many fac-
tors, some of which were described above.

In terms of the number of messages sen~ DUAL has an inter-
esting property-the length of time that messages are sent may
exceed the time needed for the routing tables to converge. This

extra time is needed for synchronization and to provi& loop free

routes when multiple topological changes occur while the algo-
rithm is nmning. This is evident from F@ms 12 and 18. It may
be possible to use a heuristic approach to minimize the number of
such packets. For exemplq the use of holddowns can help mini-

mize the number of packets sent over a network, but may increase
an algorithm’s time to convergence. Once it is likely that all the
routing tables have converged, the use of such mechanisms may

increase the time to termination, but not the time the routing tables
need to wnverge.

40

Finally, we note that DUAL sends shorter messages at later

times after anode failure or recovery than after earlier times, as
shown in Figures 11 and 17. This is interesting, because it indi-

cates that the longer messages affect only a small number of

nodes, because each time unit represents packets that propagate
farther; and that a heuristic approach based on the local topology

for improving performance can be used to improve its
performance.

10. CONCLUSIONS

As expect~ DBF performs very poorly after resource failures
or link cost increases. The results of this study show that a choice

between a DVP based on loop-free distance-vector algorithm and
an LSP involve a multifaceted tradeoff that can be driven by a
v~iety of factors, including the performance and type of the

operating system used in the routers. Determining g the mean or
worst-case values for such quantities as the time to cmvergence,

or the total number of packets sent are not sufficient and in some
cases (as seen above) can be misleading. The statistical tech-
niques, especially the time series analysis, used in our analysis do,

however, provide a way of characterizing the performance of
various algorithms, and can be used as a basis for a tradeoff analy-

sis during network design by changing the weights assigned to
various properties, tradeoffs csn be made without re-running the

simulations. It also appears that a heuristic approach to improving
the performance of routing algorithms can be effective—the time

behavior of loop-free distance-vector algorithms shows that

parameters such as packet size can change as updates propagate,
thereby suggesting the possibility of heuristics that can exploit

local conditions.

The principal limitations for these results involve the idealiied

network parameters (unit link delay and negligible processing

time at the nodes) together with ignoring multiple node failures.
The later assumption is reasonable in practice-even for a 144

node network such as MILNET, the mean time between node fail-

ures is much larger than the time it takes for an algorithm to con-
verge, so the probability of multiple failures ocauring whale an

algorithm is responding to a previous failure is negligible. These
limitations we not inherent in the simulation and statistical analy-
sis techniques used in this work and were imposed primarily to

constrain the number of parameters that had to be varied so as to

reduce processing time for the simulations.

BIBLIOGRAPHY

BERT-87] D. Bertsekas and R. Gallager, 1987: Data

Networks. Englewood Cliffs, Nl? Prentice-

Hall, Jnc.

[CEGR-75] T. Cegrell, 1975: “A Routing Procedure for

the TIDAS Message-Switching Netsvorlq”
IEEE Transactwns on Camrnunicatio?w
Vol. COM-23, No. 6, pp. 575-585.

[CHEN-89] C. Cheng, 1989 “A Loop-Free Extended

Bellman-Ford Routing Protocol without

Bouncing Effect:’ ACM Computer Communi-
cation Review, Vol. 19, No. 4, pp. 224-236.

[COLT-89] R. Cohn, 1989: “OSPF An Internet Routing
protocol; ConneXims, Vol. 3, No. 8,

pp. 19-25.

[DIJK-59]

[DIJK-80]

[FORD-62]

[GARC-89a]

[GARC-89b]

[HEDR-88]

[HIND-82]

~SO-89]

[JAFF-82]

[JAFF-86]

[LOUG-89]

[MERL-79]

[MCQU-74]

[MCQU-80]

E.W. Dijkstr~ 1959: “A Note on Two Prob-

lems in Connection with Graphs,” Akner.

Math., Vol. 1, pp. 269-271.

E.W. Dijkstra and C.S. Scholte~ 1980:
‘“Termination Dete&ion for Diffusing Compu-

tations,” I@ormation Processing Letters,

Vol. 11, No. 1, pp. 1-4.

L.R. Ford and D.R. Ftdkerson, 1962: Flows

in Networks. Princeton, Nk Princeton Uni-
versity Press.

J.J. Garcia-Luna-Aceves, 1989 “A Mini-

mum-Hop Routing Algorithm Based on Dis-

tributed Information,” Computer Networks

and ISDN Systems, Vol. 16, No. 5,

pp. 367-382.

J.J. Garcia-Luna-Aceves, 1989 “A Unified
Approach for Loop-Free Routing Using L&

States or Distance Vectors: ACM Computer
co ~“cation Review, Vol. 19, No. 4,
pp. 212-223.

C. Htilck, 1988: “Routing Information
protocol: RFC 1058, Network Information

Center, SRI International, Menlo Park, CA

94025 (June).

R. Hinden and A. Sheltzer, 1982: “DARPA

Jntemet Gateway,” RFC 823, Network
Information Center, SRI International, Menlo

Park, CA 94025, (September).

International Standards Organization, 1989:

“Intra-Domain IS-IS Routing Protocol,”
Iso~c JTC1/SC6 WG2 N323, (September).

J.M. Jaffe and F.M. Moss, 1982: “A Respon-
sive Routing Algorithm for Computer Net-
works,” IEEE Transactwns on Conununica-

tiom, Vol. COM-30, No. 7, pp. 1758–1762.

J.M. Jaffe, A.E. Baratz, and A. Segall, 1986:

“Subtle Design Issues in the Implementation

of DistzibutecL Dynamic Routing Algoritiuns,”
Computer Networb and ISDN Systems,

Vol. 12 No. 3, pp. 147-158.

K. Lougheed and Y. Rekhter, “A Border

Gateway protocol; 1989: RFC 1105, SRI

International, Menlo Park CA 94025 (June).

P.M. Merlin and A. Segall, 1979: “A Failsafe
Distributed Routing protom~” IEEE Tram-
actwns on Communication, Vol. COM-27,

No. 9, pp. 1280-1288.

J. McQuillan, 1974 “Adaptive Routing
Algorithms for Distributed Computer Net-

works,” BBN Rep. 2831, Bolt Beranek and

Newman Inc., Cambridge MA (May).

J. McQuilhm, et al., 1980 “The New Routing

Algorithm for the ARPANETV IEEE Trans-
actions on Communications, Vol. COM-28,

(May).

41

[MILL-83] D. Mills, 1983: “DCN Local-Network Proto-

cols,” RFC 891, Network Information Center,
SRI httemation~ Menlo Pwk, CA 94025
(Deeember).

[MILL-84] D. Mills, 1983: “Exterior Gateway Protocol

Formal Speeii3cationV RFC 904, Network

Information Center, SRI International, Menlo
Park, CA 94025, (December).

~AYL-75] W.E. Naylor 1975: “A Loop-Free Adaptive

Routing Algorithm for Packet Switched Net-
works,” Proceedings of the Fourth Data

Comtnuni”catwns Symposim Quebec City,
Canada pp. 7.9–7.15 (October).

[SCHW-86] M. Schwartz, 1986 Telecommunication
Networks: Protocols, Modeling and Analysis,

Chapter6, Menlo Park CA Addison-Wesley

Publishing Co.

[SHIN-87] K.G. Shin and M. Chem 1987: “Performance

Analysis of Distributed Routing Strategies
Free of Ping-Pong-Type Looping,” IEEE

Transactions on Computers, Vol. COMP-36,

No. 2, pp. 129-137.

[STER-80] T.E. Stem, 1980 “An Improved Routing

Algorithm for Distributed Computer Net-
works,” IEEE International Symposium on

Circuits and Systems, Workshop on Lmge-

Seale Networks and Systems, Houston, Texas
(April).

[ZAUM-91] W,T. Zaume~ 1991: “Simulations in

Dram%” Network Information System Center,

SRI International, Menlo Park, CA 94025

(January).

42

