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ABSTRACT
In multi-agent systems, greedly agents can harm the per-
formance of the overall system. This is the case of traffic
commuting scenarios: drivers repete their actions trying to
adapt to daily changes. In this domain, there are several
proposals to achieve the traffic network equilibrium. Re-
cently, the focus has shifted to information provision in sev-
eral forms as a way to balance the load. Most of these
works make strong assumptions such as the traffic author-
ity and/or drivers having perfect information. In reality,
the information the central control provides to drivers con-
tains estimation errors. The goal of this paper is to pro-
pose a socially efficient load balance by internalizing social
costs caused by agents’ actions. Two issues are addressed:
the model of information provision accounts for informa-
tion imperfectness, and the equilibrium which emerges out
of drivers route choices is close to the system optimum due
to mechanisms of road pricing. The model can then be used
for traffic authorities to simulate the effects of information
provision and toll charging.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence
Multiagent systems, Coherence and coordination

General Terms
Economics

1. INTRODUCTION
The increasing demand for mobility in our society causes

frequent jams in highways. Control measures have been
proposed to better control the utilization of the available
infra-structure; among these we find driver information and

guidance systems (DIGS). Normally, information provision
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and route guidance strategies aim at achieving the system

optimum (minimization or maximization of some global ob-
jective criterion). Note that this does not imply the user op-
timum and vice-versa. User optimum means equal costs for
all alternative routes connecting two points in the network,
for each road user. This may lead to system’ suboptimality.
If the focus is on global optimum, then the route guidance
system may eventually recommend a route which is more
costly (for a single user) than it would be the case if the
user optimum were to be recommended. In general, traffic
control authorities are interested in the system optimum,
while the user seeks its own optimum.

In a more general way, this question relates to emergence
of coordination in multiagent systems, in cases where the
agents do not communicate and thus have to achieve coor-
dination in a somehow greedy way. This normally causes the
system to perform suboptimally. Therefore, it is important
to align the user and the system optimum. Previous works
have been proposed but mostly they assume some degree
of cooperation and communication among the agents. Since
drivers are self-interested, this alignment cannot be imposed
by the system as it has been proposed in other works.

2. RELATED WORK: TRAFFIC, INFORMA-
TION, AND COLLECTIVES

Modeling traffic scenarios with multi-agent systems tech-
niques is not new. However, the focus has been mainly
on coarse-grained level regarding traffic problems as traf-
fic agents monitoring problem areas. On the other hand,
our long term work focuses on a fine-grained level or rather
on traffic flow control.

Our previous work with a scenario of iterated route choice
provides a good opportunity to test learning and emergence
of coordination. The main problem is to achieve system op-
timum or at least acceptable patterns of traffic distribution
out of user’s own performance strategies, i.e. users trying
to adapt to the traffic patterns they experiment every day.
There are different means to achieve a certain alignment of
system and user optimum without relegating important is-
sues such as lack of knowledge of non-commuter users, traffic
information and forecast, etc.

The case of simple user adaptation in a binary route choice
scenario, with and without traffic forecast was tackled in [3].
A scenario was simulated where N drivers had to decide for
one out of the available routes, in every round. At the end
of the round, every driver gets a reward that is computed
based on the number of drivers who selected the same route,
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in a kind of coordination game. In [4] different forms of
traffic information – with different associated costs – were
analyzed which may be used to assess the future traffic sit-
uation for the selection of one route. Finally, information
recommendation and manipulation was tested in [2] with
a traffic control center giving manipulated information for
drivers in the scenario of the Braess Paradox, in a tentative
of diverting drivers to less congested routes.

In all these works, different means of utility alignment
were tried. Some were more successful than others regard-
ing the performance of the global metrics. However, in the
present paper we want to drop the “perfect information” as-
sumption (both the traffic control center and all individuals
having knowledge of all alternatives).

From the perspective of the economics of traffic, road pric-
ing has been proposed as a way to realize efficient road uti-
lization i.e. to achieve a distribution of traffic volume as
close as possible to the system optimum. Congestion toll
is one of the road pricing methods: considering the system
optimum, a toll is computed which is the difference between
the marginal social cost and the marginal private cost. No-
tice that this difference can be negative meaning that drivers
actually get a reimbursement.

Regarding the future traffic situation as well as the ef-

fects of the toll system (and other measures to control the
traffic), most of the work published has assumed that the
control center has perfect information, meaning that it will
know precisely the states of near future traffic conditions.
This is a hard assumption given that acurate weather and
accident forecasts are not possible. A state-dependent toll
pricing system is discussed in [5]. Additionally, it is investi-
gated which are the impacts of two alternatives toll schemas:
toll is charged before or after drivers select a route. This
distinction is important because congestion tolls, when an-
nounced before the drivers make their decisions, carry some
meaningful information.

Still related to the quest of user vs. system optimum,
Tumer and Wolpert [6] have investigated the use of a mul-
tiagent system to control routing of packages in a computer
network, as well as the sensitivity of the network to the
Braess paradox using the Collective Intelligence (COIN) for-
malism. In COIN, the world utility, G(ζ), is an arbitrary
function of the state of all agents across all times. The util-
ity for an agent is given by the difference between the total
cost accrued by all agents in the network and the cost ac-
crued by agents when all agents sharing the same destination
are “erased”. The problem with the use of this approach in
a road network is that we cannot expect the agents (drivers)
to have any idea about the global goal or cost. This is possi-
ble in the computer network scenario because the agents are
router nodes which have knowledge about the throughput
(packages to be routed to different destinations).

3. MODEL AND RESULTS
We have developed a simple model for the adaptive route

choice. Since an agent has only qualitative information
about the routes, and none about the other agents, each
agent needs an expectation of the costs s/he will have if s/he
selects a certain route. This can be understood as the prob-
ability according to which a driver selects one route. For
instance, if it is 1 for route r then the driver always takes
route r. With a certain periodicity, driver d updates this
heuristic according to the rewards s/he has obtained on the

routes s/he has taken so far. The update of the heuristic is
done according to the following formula: heuristics(d, ri) =

P

t utilityri
(d,t)

P

i

P

t utilityri
(d,t)

.

The variable utilityri
(d, t) is the reward agent d has ac-

cumulated on route ri up to time t. Therefore an important
factor is how often and in which intervals the heuristic is
updated. This is especially relevant because the reward de-
pends on the other agents. Using this simple model, we have
performed experiments varying the frequency of heuristic
adaptation. To prevent that all agents update their heuris-
tics during the same round, each agent adapts with a given
probability.

In order to model the imperfectness of information, we
follow [1] who represent the traffic conditions as L discrete
states. We also consider K information types. For each
combination of state and information type, there is a cost
function which also depend on the traffic volume. Thus,
the dynamics on the routes are simulated according to these
abstract cost functions which nonetheless can reproduce the
macroscopic behavior of the system given that it includes a
stochastic component regarding the traffic states.

The cost functions we use were adapted from [5], from
which we also use much of the nomenclature, cost functions,
and some scenarios, althought these were slightly modified
to include the drivers’s adaptation to route choice. We also
assume R alternative routes between two points in the net-
work. Both have a traffic capacity of M vehicles. Traf-
fic can be in one of L states (e.g. if L = 2 we can have
congested/non-congested states only). In the model, each
state occurs with probability ql. The control center predicts
traffic based on imperfect information and provides informa-
tion to the drivers which is also imperfect. There can be K

types of information. At a given time, one information k is
given with probability pk. There can be any correspondence
between K and L but mostly it is assumed that L ≥ K,
K ≥ 2, and L ≥ 2.

The probability of a state l to occur after information
k is given by πk,l. If πk,l = 1/L, the information conveys
basically no meaning i.e. it is tantamount to no information.
When L = K (i.e. for each k there is an exclusive l) we can
have perfect information provided one of the π’s is one and
the others are zero. For example, if K = L = 2, when
πk,l1 = 1 and πk,l2 = 0 (l1 6= l2), this is a situation of
perfect information provision because it is known for sure
which state is expected to occur after the information is
provided.

3.1 Parameters and Settings
In the examples discussed here, R = K = L = 2, and the

travel cost functions used are linear of type cl
i = ζl

i +vl
i ×xk

i ,
where x is the number of drivers. In particular we use the
following functions [5]:
c1
1 = 1.0 + 0.6 × 0.001 × xk

1 c2
1 = 1.5 + 1.6 × 0.001 × xk

2

c2
1 = 1.0 + 0.4 × 0.001 × xk

1 c2
2 = 1.5 + 0.1 × 0.001 × xk

1

The meaning of these functions is that the marginal costs
(vl

i) of each route ri differ. Therefore we expect the number
of drivers to be smaller in route 2 when l = 1. In [5] the
system equilibrium (without any toll etc.) is computed for
M = 3000 drivers: 2391.5 (route 1) and 608.5 (route 2) for
k = 1; 1927.3 (route 1) and 1072.7 (route 2) for k = 2.

We show here that this equilibrium is never achieved when
drivers use greedy strategies such as selection of route based
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on average of past travel time. However, when the selection
is based on an utility function which includes the toll paid
or the amount reimbursed, then traffic volumes are close to
the system equilibrium.

3.2 Scenarios
In scenario I we are interested in reaching the equilib-

rium by only allowing users to apply their probabilities to
select route ri, given the information provision k. In our
case this is done via adaptation of these probabilities (de-
notated as ρd

r,k) given the past utilities which are function
of the costs. The basic mechanism for each driver d is given

by: ρd
r,k =

Ud
r,k

R
P

i=1

Ud
i,k

, 1 ≤ i ≤ R, where Ud
r,k is the average

of past utility for selecting route ri when the information
provided was k.

In scenario II a toll is computed by the traffic control
center and paid by the driver. This computation depends on
the information k so that drivers have to make a relation to
their previous choice for the last situation where k was pro-
vided. The toll value for each driver on route ri is calculated

as τk
ri

=
xk

r−xk∗

r

xk
r

where: xk∗

ri
is the number of drivers in the

equilibrium situation for route ri given information k, and
xk

ri
is the expected number of drivers, estimated by the last

time k was provided. Notice that this value can be positive
(driver pays) or negative (driver gets a reimbursement).

The reasoning of the driver d is as follows. If information
k is provided and the last time this has happened I was re-
imbursed because I have chosen route ri, then I better select
ri again with probability ρd

ri,k = 1−ratecur. However, if in-
formation k is provided and the last time this has happened
I had to pay, then I select ri with probability ρd

ri,k = τd
ri,k.

Here ratecur is the rate of curiosity, i.e. a probability of d

experimenting another route (other than ri) even though ri

was good the last time; and τd
ri,k is the toll paid by driver d

when selecting route ri under information k.

3.3 Results
We have used M = 3000 agents in order to compare the

results to those in [5]. If we let the drivers select routes only
according to the utility they perceive (scenario I), then an
user stable state is reached, but it is far from the system op-
timum. Number of drivers in both route (graphic not shown
here) are not as mentioned before (Section 3.1). For k = 2
the M = 3000 drivers select each route with equal probabil-
ity, so that nearly 1500 end up in each route, at any given
time. This happens because the utility of drivers is nearly
the same when we substitute xk

i = 1500 in the cost functions.
For k = 1, the expected system equilibrium is two-thirds in
route 1 and one-third in route 2. However, this equilibrium
is nerver reached: users are stuck in a suboptimal stable
state. Thus, a mechanism is needed which internalizes the
externalities caused by the drivers selections.

Our scenario II simulates exactly what happens when
drivers update their route choice probabilities according to
a utility which is based on the past toll. Figure 1 depicts the
number of drivers in each route, for each k, when a toll is
charged and the curiosity rate is zero, meaning that drivers
act only based on the the reward or punishment represented
by the toll in the last time information k was provided. As
we see in that graph, the user equilibrium is now much closer
to the system equilibrium. For k = 1 the distribution of
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Figure 1: Number of drivers at each route, for each

k; with toll and curiosity rate equal 0

drivers is around 2300 to 700 (routes 1 and 2 respectively),
and for k = 2 this distribution is around 2000 to 1000.

Different rates of curiosity of course change these figures.
The higher the rate, the more drivers deviate from the sys-
tem equilibrium.

In summary, this paper shows that congestion tolls are
useful to internalize the costs drivers impose to others when
they act greedly. Tolls are the equivalent of the utility align-
ment proposed in the COIN framework, but departing from
the assumption that agents are cooperative. For the con-
text of multiagent systems, the present work can contribute
to the development of a more general method of mechanism
design, specially when agents are self-interested and the sys-
tem optimum has to be reached without imposing explicit
central coordination.
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Braess paradox: simulating route recommendation and
learning in abstract and microscopic models.
Transportation Research C 13, 4 (August 2005),
299—319.
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[4] Klügl, F., Bazzan, A. L. C., and Wahle, J.

Selection of information types based on personal utility
- a testbed for traffic information markets. In
Proceedings of the Second International Joint

Conference on Autonomous Agents and Multi-Agent

Systems (AAMAS) (Melbourne, Australia, July 2003),
ACM Press, pp. 377–384.

[5] Kobayashi, K., and Do, M. The informational
impacts of congestion tolls upon route traffic demands.
Transportation Research A 39, 7–9 (August-November
2005), 651–670.

[6] Tumer, K., and Wolpert, D. Collective intelligence
and braess’ paradox. In Proceedings of the AAAI

(2000), AAAI Press, pp. 104–109.

    128




