
Operationalisation of Norms for Usage in Electronic
Institutions∗

Huib Aldewereld†
Frank Dignum

Institute of Information and Computing Sciences
Utrecht University
The Netherlands

{huib, dignum}@cs.uu.nl

Andres Garcˇa-Camino‡
Pablo Noriega

Juan Antonio Rodrˇguez-Aguilar
Carles Sierra

Artificial Intelligence Research Institute, IIIA
Spanish Council for Scientific Research, CSIC

Campus de la UAB, Barcelona, Spain

{andres, pablo, jar, sierra}@iiia.csic.es

ABSTRACT
Agent-mediated electronic institutions belong to a new and
promising field where interactions between a group of agents
are regulated by means of a set of explicit norms. Current
implementations of such open-agent systems are, however,
mostly using constraints on the behaviour of the agents,
thereby severely limiting the autonomy of the agents. To
increase the autonomy of agents and possibly boost the
efficiency of the overall system, a more flexible norm en-
forcement is required. However, as norms make extensive
use of vague and ambiguous concepts and lack operational
meaning (not expressing how the norm should be enforced),
translating norms for usage with such a flexible enforcement
mechanism might be difficult. In this paper we propose an
extension to electronic institutions to allow for a flexible
enforcement of norms, and manners to help overcome the
difficulties of translating abstract norms for the use of im-
plementation.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems

General Terms
Theory, Legal Aspects, Design

∗This is a student paper.
†The first author of this paper was supported by the Nether-
lands Organisation for Scientific Research (NWO) under
project number 634.000.017
‡A. Garćıa-Camino was supported by the Spanish Council
for Scientific Research (CSIC) by means of an I3P grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Keywords
Norms, Electronic Institutions, Normative Systems

1. INTRODUCTION
Agent-mediated institutions, introduced in [?, ?], are open

agent systems that allow heterogeneous agents to enter and
perform tasks. Because of this heterogeneous nature of the
agents joining the electronic institution (e-institution), mea-
sures have to be taken to control and regulate the behaviour
of these agents. These measures are needed to improve and
guarantee the safety and stability of the system, as agents
joining the institution might, (un)intentionally, brake the
system by behaving in non-expected or non-accepted man-
ners. It has been widely accepted that norms can be used to
ensure this safety, since norms, which are vague and abstract
in order to express various different circumstances without
the need for change, can be used for defining the legality
and illegality of actions (and states) in e-institutions [?].

For these norms to be used in the e-institutions, thereby
regulating the agents joining the institution, enforcement
mechanisms must be devised to implement the norms in the
institution. Although the norms should be available to the
agents joining the institution to allow them to work more
efficiently in the regulated domain, it is not the agents rea-
soning and trying to adhere to the norms that provide the
safety that the institution needs; it is the institution itself
that has to ensure that this safety exists. As discussed in [?],
the enforcement of norms comes down to either: 1) defining
constraints on unwanted behaviour, or 2) detecting viola-
tions of norms and reacting to these violations. The for-
mer manner is, however seriously reducing the autonomy of
agents, used by current implementations of e-institutions [?].
However, to allow the agents in e-institutions more freedom
and flexibility, while still complying to the norms, we would
like to extend the implementation of e-institutions with the
second manner of enforcing norms.

Previous work on normative systems (mainly focussed on
deontic frameworks [?, ?]) is mostly declarative in nature,
while the implementation of norms and norm enforcement in
e-institutions, as mentioned above, require norms to have an
operational semantics as well. Where the declarative nature
of norms is necessary for reasoning about norms (reasoning
about what is and what is not accepted), the operational se-
mantics define how norms are to be implemented (e.g. what

to do when norms are violated). Recent approaches on nor-
mative systems have begun to research and express this op-
erational meaning of norms, as seen in [?, ?, ?, ?]. These
approaches represent norms and their operational meaning,
but are not conclusive on how the implementation in an
agent system, such as an e-institution, should be obtained.
In this paper we are trying to bridge this gap, by proposing
a translation from the operational approach proposed in [?]
to elements usable for norm enforcement in AMELI. More-
over we will show that the approaches from [?] and [?] can
be translated in this formalism as well.

In this paper we assume institutions to be defined as a
set of norms, which are to be enforced by a distributed set
of (internal) agents. Secondly we assume that the norms
can sometimes be violated by agents in order to keep their
autonomy, which can also be functional for the system as a
whole as argued in [?]. The violation of norms is handled
from the organisational point of view by violation and sanc-
tion mechanisms. And finally, we assume that the internal
state of agents is neither visible, nor controllable from an
institution’s point of view, which, basically, means that en-
forcement of norms needs to be done by the detection of
violations and the reacting to these violations, and that we
can only use the observable behaviour of agents to detect
the violations.

The remainder of this paper is organised as follows. In the
next section we give a short discussion on a formal view of
electronic institutions. In sections 3 and 4 we introduce the
syntax and semantics of the mechanism used for expressing
and handling the violation of norms, while in section 5 we
give a translation from the norm frame of [?] into this en-
forcement mechanism. In section 6 we give a tentative com-
parison on how this enforcement method can be applied to
other normative approaches, and in section 7 we explain how
norms can be operationalised before being implemented.

2. ELECTRONIC INSTITUTIONS
Electronic institutions, as we consider them [?, ?, ?],

shape agent environments that restrict the behaviour of agents
to ensure that agents interact in safe conditions. E-instit-
utions constrain agent behaviour by defining the valid se-
quences of (dialogical) interactions that agents can have to
attain their goals. We differentiate two types of norms in e-
institutions: protocol-based and rule-based. Protocol-based
norms are defined by a group of scenes, a performative struc-
ture, and a dialogical framework that establish the permit-
ted actions at each instant of time taking into account the
past actions of agents. Rule-based norms are defined by a
certain type of first-order formulas that establish a depen-
dency relation between actions. Some actions under certain
conditions fire normative rules which produce new commit-
ments, establishing new pending obligations (actions to be
carried out by agents).

The dialogical framework defines all the conventions re-
quired to make interaction between two or more agents pos-
sible. Moreover, it defines what the participant roles within
the e-institution and the relationships among them will be.
We take interactions to be a sequence of speech acts between
two or more parties. Formally, we express speech acts as illo-
cutionary formulas of the form: ι(speaker, hearer, φ, t). The
speech acts that we use start with an illocutionary particle
(declare, request, promise) that a speaker addresses to a
hearer, at time t, whose content φ is expressed in some ob-

ject language whose vocabulary stems from an e-institution’s
ontology.

A dialogical framework encompasses all the illocutions
available to the agents in a given institution. Formally,

Definition 1. A dialogical framework is a tuple DF =
〈O, LO, P, R, RS〉 where O stands for an ontology (vocabu-
lary); LO stands for a content language to express the in-
formation exchanged between agents using ontology O; P is
the set of illocutionary particles; R is the set of roles; RS is
the set of relationships over roles.

For each activity in an institution, interactions between
agents are articulated through agent group meetings, which
we call scenes. A scene is a role-based multi-agent protocol
specification. A scene defines the valid sequences of interac-
tions among agents enacting different roles. It is defined as
a directed graph where each node stands for scene state and
each edge connecting two states is labelled by an illocution
scheme. An illocution scheme is an illocutionary formula
with some unbound variables. At run-time, agents playing
different roles make a scene evolve by uttering illocutions
that match the illocution schemes connecting states. Each
scene maintains the context of the interaction, that is how
the dialogue is evolving, i.e. which have been the uttered
illocutions and how the illocution schemes have been instan-
tiated.

Definition 2. A scene is a tuple S = 〈s, R, DF, W, w0,
Wf , Θ, λ, min, Max〉 where s is the scene identifier; R is the
set of scene roles; DF is a dialogical framework; W is the
set of scene states; w0 ∈ W is the initial state; Wf ⊆ W is
the set of final states; θ ⊆ W ×W is a set of directed edges;
λ : θ −→ L∗DF is a labelling function, which maps each edge
to an illocution scheme in the pattern language of the DF
dialogical framework L∗DF ; min, Max;R −→ N min(r) and
Max(r) are, respectively, the minimum and the maximum
number of agents that must and can play each role r ∈ R.

The activities in an e-institution are the composition of
multiple, distinct, possibly concurrent, dialogical activities,
each one involving different groups of agents playing differ-
ent roles. A performative structure can be seen as a net-
work of scenes, whose connections are mediated by transi-
tions (a special type of scene), and determines the role-flow
policy among the different scenes by showing how agents,
depending on their roles and prevailing commitments, may
get into different scenes, and showing when new scenes will
be started. The performative structure defines the possi-
ble order of execution of the interaction protocols (scenes).
It also allows agent synchronisation, and scene interleaved
execution.

Definition 3. A performative structure is a tuple PS =
〈S, T, s0, sΩ, E, fL, fT , fO

E , µ〉 where S is a finite, non-empty
set of scenes; T is a finite, non-empty set of transitions;
s0 ∈ S is the initial scene; sΩ ∈ S is the final scene; E =
EI ∪ EO is a set of edge identifiers where EI ⊆ S × T is
a set of edges from scenes to transitions and EO ⊆ T × S
is a set of edges from transitions to scenes; fL : E −→
DNF2VA×R maps each edge to a disjunctive normal form of
pairs of agent variable and role identifier representing the
edge label; fT : T −→ T maps each transition to its type;
fO

E : EO −→ E maps each edge to its type; µ : S −→ {0, 1}
sets if a scene can be multiply instantiated at execution time;

The institutional state consists of the list of scene exe-
cutions (described by their participating agents and inter-
action context) along with the participating agents’ state
(represented by their observable attributes).

3. INTEGRITY & DIALOGICAL
CONSTRAINTS

As mentioned in the introduction, we want to extend
the ISLANDER formalism with mechanisms to implement
norms by means of a distributed set of agents. To achieve
this we need mechanisms to detect violations and react to
these violations. This is accomplished by using, respectively,
integrity constraints and dialogical constraints. The main
idea is that integrity constraints are checked by the insti-
tution to detect and register all violations, i.e. the passing
from a legal state to an illegal state. Besides that, the dialog-
ical constraints express the obligation of the enforcing agents
to act according to the violations detected, i.e. sanction the
responsible agent. The dialogical constraints themselves are
part of the internal enforcing agents.

Due to the fact that the internal agents should be de-
signed to follow the norms of the institution, we might as-
sume that internal agents will always act according to the
dialogical constraints specified. However, the internal agents
might not be responsible for the enforcement of all the norms
in the system, we can specify integrity constraints that ex-
press when a dialogical constraint (which is in a sense an
obligation to enforce) has been violated, i.e. a violation has
occurred, but no action has been taken by the enforcing
agent to punish the violator. In theory, complex hierarchi-
cal structures of enforcement chains (institutions enforcing
the enforcement within another institution, etc.) are possi-
ble with the approach presented in this paper, but we are
not going to discuss them in this paper.

Before enforcement can take place, norm violations have
to be detected. This is done by specifying integrity con-
straints, extracted from previous work [?]:

Definition 4. Integrity constraints are first-order formu-
las of the form

n̂

i=1

uttered(si, wki , ili) ∧
m̂

j=0

ej

!
→ ⊥

where si are scene identifiers or variables, wki is a state ki of
scene si or a variable, ili is an illocution scheme li matching
the schema labelling an outgoing arc from wki and ej are
boolean expressions over variables from uttered predicates.

These integrity constraints define sets of states that should
not occur within an e-institution. The meaning of these
constraints is that if grounded illocutions matching the illo-
cution schemes il1 , . . . , iln are uttered in the corresponding
scenes states, and expressions e1, . . . , em are satisfied, then
a violation occurs (⊥).

Since agents can violate norms, the integrity constraints
are not enough. We need to specify which actions are to be
taken by the enforcers after the violation has been detected.
In a sense, the violation of a norm by agents within the e-
institution obliges the enforcers to perform actions, namely
to punish the agent breaking the norm. This “obligation to
enforce” is expressed by means of a dialogical constraint:

Definition 5. Dialogical constraints are first-order for-
mulas of the form:

n̂

i=1

uttered(si, wki , i
∗
li) ∧

m̂

j=0

ej

!
⇒

0
@

n′^
i=1

uttered(s′i, w
′
ki

, i′∗li) ∧
m′^
j=0

ej

1
A

where si, s′i are scene identifiers or variables, wki , w′ki
are

variables or states of scenes si and s′i respectively, i∗li , i′∗li
are illocution schemes li matching the schema labelling an
outgoing arc from wki of scenes si and s′i respectively, and
ej, e′j are boolean expressions over variables from uttered
predicates. These boolean expressions can include functions
to check the state of the institution.

The intuitive meaning of a dialogical constraint is that if
grounded illocutions matching i∗l1 , . . . , i∗ln are uttered in the
corresponding scene states, and the expressions e1, . . . , em

are satisfied, then, grounded illocutions matching i′∗l1 , . . . , i′∗ln
satisfying the expressions e′1, . . . , e

′
m′ must be uttered in the

corresponding scene states as well. Dialogical constraints
assume a temporal ordering: the left-hand side illocutions
must be uttered prior to the illocutions on the right-hand
side, i.e. the illocutions on the left should have time stamps
which precede those of the illocutions on the right.

The dialogical constraints point out the actions to perform
in the enforcement of a violated norm. For instance,

uttered(S,W,inform(A,Role,all,Role2,smoke(),T))⇒
uttered(S,W,inform(B,enforcer,A,Role,decrement(credit,50),T ′))

shows an example of a dialogical constraint which expresses
that every agent that smokes in a scene should be sanctioned
(since smoking is illegal). Whenever an agent performs the
action of smoke, an enforcer agent is obliged to decrement
its credit by 50.

The integrity constraints are then implemented in the
infrastructure of the e-institutions, thereby providing the
means to detect violations of norms, where the dialogical
constraints are implemented in the enforcing agents which
use them to determine the illocutions that should be uttered
when a norm has been violated.

4. SEMANTICS
In this section we present the semantics of the integrity

constraints, used for detecting violations, and the dialogical
constraints, used for specifying enforcement, which we intro-
duced in the previous section. In the definitions below we
rely on the concept of substitution, that is, the set of values
(first-order terms denoted τ) for variables (denoted x, y, z)
in a computation [?, ?]:

Definition 6. A substitution σ = {x0/τ0, . . . , xn/τn} is
a finite and possibly empty set of pairs xi/τi, 0 ≤ i ≤ n,
n ∈ IN .

Definition 7. The application of a substitution follows:
1. c · σ = c for a constant c;
2. x · σ = τ · σ if x/τ ∈ σ; otherwise then x · σ = x;
3. pn(τ0, . . . , τn) · σ = pn(τ0 · σ, . . . , τn · σ).

We conceive the notion of state in an electronic institu-
tion as the set of illocutions uttered and the boolean ex-
pressions that hold during its enactment. The execution
of the institution would be divided into two different, al-
ternating rounds: event addition and processing. Firstly,
we start the execution with a (possibly empty) initial state
where agents’ illocutions are added. Secondly, the rules are
executed evolving the state adding inconsistency marks or
obligations. Then, we again start the event addition round
and so on. The semantics of the integrity constraints are
defined as relationships (sIC) between the current state ∆
and the next state ∆′. Let us first look at the utterances
and boolean expressions that are used in the constraints.
An utterance holds iff it is uttered in the current state:

Definition 8. S(∆, uttered(s, w, i), σ) holds iff
uttered(s · σ, w · σ, i · σ) ∈ ∆

Conjunctions used in the constraints are satisfied in the nor-
mal method:

Definition 9. S(∆, (
Vn

i=1 τi), σ) holds iff S(∆, τi, σ), 1 ≤
i ≤ n, n ∈ IN , hold.

We now define when boolean expressions hold:

Definition 10. S(∆, τ1 ¤ τ2, σ) holds iff τ1 · σ ¤ τ2 · σ
holds. Where ¤ ∈ {=, 6=, >, <,≥,≤} with their usual mean-
ing.

Integrity constraints define the violations of the norms.
An integrity constraint is applicable to the institutional state
(∆), and thus introducing a violation (⊥), iff the conjunction
of utterances and boolean expressions holds in ∆:

Definition 11. sIC(∆, ((
Vn

i=1 uttered(si, wki , ili) ∧Vm
j=0 ej) → ⊥), ∆ ∪ {⊥}) holds iff S(∆, (

Vn
i=1 uttered(si,

wki , ili)), {σ1, . . . , σp}) and S(∆, (
Vm

j=0 ej), {σ1, . . . , σp}), 1 ≤
i ≤ n, 0 ≤ j ≤ m, n, m ∈ IN , hold.

An integrity constraint does not introduce a violation, if
either the utterances or the boolean expressions does not
hold in ∆, i.e. the integrity constraint is not applicable:

Definition 12. sIC(∆, ((
Vn

i=1 uttered(si, wki , ili) ∧Vm
j=0 ej) → ⊥), ∆) holds iff S(∆, (

Vn
i=1 uttered(si, wki , ili)),

{σ1, . . . , σp}), 1 ≤ i ≤ n, n ∈ IN , does not hold or S(∆,
(
Vm

j=0 ej), {σ1, . . . , σp}), 0 ≤ j ≤ m, m ∈ IN , does not hold.

Dialogical constraints introduce obligations to enforce, based
on the violations detected by integrity constraints. We de-
fine the semantics of dialogical constraints as relationships
(sDC) between current state ∆ and the next state ∆’. A di-
alogical constraint is applicable to a state ∆, thus introduc-
ing an obligation to enforce, iff the conjunction of utterances
and boolean expressions holds in ∆:

Definition 13. sDC(∆, ((
Vn

i=1 uttered(si, wki , i
∗
li
) ∧Vm

j=0 ej) ⇒ (
Vn′

i=1 uttered(s′i, w
′
ki

, i′∗li) ∧
Vm′

j=0 ej)), ∆ ∪
{ Vn′

i=1 uttered(s′i, w
′
ki

, i′∗li) ∧
Vm′

j=0 ej)}}) holds iff

S(∆, (
Vn

i=1 uttered(si, wki , ili)), {σ1, . . . , σp}) and
S(∆, (

Vm
j=0 ej), {σ1, . . . , σp}), 1 ≤ i ≤ n, 0 ≤ j ≤ m,

n, m ∈ IN , hold.

A dialogical constraint does not introduce an obligation to
enforce iff the conjunction of utterances or the conjunction
of boolean expression does not hold in ∆:

Definition 14. sDC(∆, ((
Vn

i=1 uttered(si, wki , i
∗
li
) ∧Vm

j=0 ej)⇒(
Vn′

i=1 uttered(s′i, w
′
ki

, i′∗li)∧
Vm′

j=0 ej)), ∆) holds iff

S(∆, (
Vn

i=1 uttered(si, wki , ili)), {σ1, . . . , σp}), 1 ≤ i ≤ n,
n ∈ IN does not hold or S(∆, (

Vm
j=0 ej), {σ1, . . . , σp}), 0 ≤

j ≤ m, m ∈ IN , does not hold.

From this semantics we can straightforwardly implement
an interpreter in Prolog as done in [?]. This interpreter
would evolve the state of enactment of an institution by
adding inconsistency marks, based on violations detected
through the integrity constraints, or obligations to enforce,
based on the specified dialogical constraints.

In the current AMELI framework, agent interactions are
mediated by a special kind of agents called governors. These
governors regulate the agents’ illocutions following the spec-
ification of electronic institutions, i.e. they only forward
illocutions that match the illocution scheme of an outgo-
ing arc of the current state of the scene. By including the
interpreter mentioned above, we improve the governors by
allowing them to regulate more expressive and flexible spec-
ifications of electronic institution.

The semantics given above provide a basis for the im-
plementation of our interpreter for integrity and dialogical
constraints. We show such an interpreter in figure 1 as a
logic program, interspersed with built-in Prolog predicates;
for easy referencing, we numbered each of the clauses.

1. s(∆, α′, σ) ← member(α′ · σ, ∆)
2. s(∆, (LHS ∧ LHS′), σ) ← s(∆, LHS, σ′), s(∆, LHS′, σ′′),

union(σ′, σ′′, σ)
3. s(∆, ej , σ) ← call(ej · σ)
4. sIC(∆, LHS, [⊥|∆]) ← s(∆, LHS, σ)
5. sIC(∆, (LHS ⇒ ⊥), ∆) ← ¬s(∆, LHS, σ)
6. sDC(∆, (LHS ⇒ RHS), [RHS|∆]) ← s(∆, LHS, σ)
7. sDC(∆, (LHS ⇒ RHS), ∆) ← ¬s(∆, LHS, σ)

Figure 1: An Interpreter for Integrity and Dialogical
Constraints

Clauses 1-7 are, respectively, adaptations of the cases de-
picted in definitions 8 to 14. Clause 1 makes use of the
built-in predicate member/2 that checks if the first argument
is in the list provided as the second argument. Clause 3
makes use of the built-in predicate call/1 that executes the
expression provided as argument.

5. IMPLEMENTING NORMS
The operational approach to norms expressed in [?] that

tries to implement norms from an institutional perspective,
that is to say enforcing norms by means of detecting vio-
lations and reacting to such violations, views norms as a
manner to describe how someone should behave, i.e., they
define obligations, permissions and prohibitions also known
as the declarative meaning of norms (cf. [?, ?]). Since a sys-
tem needs responses to the violations that occur, the norms
in this approach are viewed as a frame which includes not
only this declarative meaning of the norm but also a def-
inition of the responses to violations to the norms, which
are known as sanctions and repairs (also known as the op-
erational meaning of the norm). In [?] this norm frame is
defined as follows:

Definition 15 (Norms).

NORM := NORM CONDITION

VIOLATION CONDITION

DETECTION MECHANISM

SANCTION

REPAIRS

VIOLATION CONDITION := formula

DETECTION MECHANISM := {action expressions}
SANCTION := PLAN

REPAIRS := PLAN

PLAN := action expression | action expression ; PLAN

The norm condition is the declarative norm, as obtained
from, for instance, the legal domain (see definition 16 for a
description of what these norm conditions can be. The other
fields in this norm description are; 1) the violation condition
which is a formula defining when the norm is violated, 2)
the detection mechanism which describes the mechanisms
included in the agent platform that can be used for detecting
violations, 3) the sanction which defines the actions that are
used to punish the agent(s) violating the norm, and 4) the
repairs which is a set of actions that are used for recovering
the system after the occurrence of a violation.

Definition 16 (Norm Condition).

NORM CONDITION := N(a,S 〈IF C〉) |OBLIGED(aENFORCE(N(a,S 〈IF C〉)))
N := OBLIGED | PERMITTED | FORBIDDEN

S := P |DO A |P TIME D |DO A TIME D

C := formula

P := predicate

A := action expression

TIME := BEFORE |AFTER

As definition 16 shows, norms can either be permissions,
obligations or prohibitions. Moreover, norms can be related
to actions or to predicates (states). Through the condition
(C) and deadline (D), norms can be made applicable to cer-
tain situations only (conditions and deadlines are considered
optional).

Before we can use norms specified in the formalism de-
scribed above, we need to translate the abstract and vague
predicates and actions into corresponding concrete utter-
ances and scenes that are specified in the definition of the
institution. Since the norms specified in the formalism of
definitions 15 and 16 are high-level translations of laws and
regulations, they tend to be of a high level of abstraction.
For instance, norms in this formalism would be expressed as

OBLIGED((buyer DO pay(Price,seller)) IF done(buyer,won(Item,Price)))

whereas, in e-institutions, utterances as the following are
used:

uttered(payment,W,inform(A,buyer,B,payee,pay(Item,Price),T))

uttered(auction,w2,inform(C,auctioneer,A,buyer,won(Item,Price),T ′))

The translation necessary for using these highly-abstracted
norms in e-institutions can be considered a contextualisa-
tion, as the actions (and predicates) used in the abstract
norms are linked to their corresponding meaning in the do-
main of the e-institution. We address this issue in section 7.
For now it will suffice to say that some translation from, e.g.,
OBLIGED((a DO A) IF C) into OBLIGED(utter(S, W, I) IF C)
can be given, taking into account that the state S and world
W of the institution will correspond to the applicable state
meant by the norm, and that I is an illocution performed
by a to implement action A.

Once the norms are contextualised, we can map them
to integrity constraints, as specified in the previous sec-
tion, which we use to check whether violations occur. This

mapping of the contextualised norm conditions to integrity
constraints can be done by the use of the following table:

Norm Translation

FORBIDDEN(utter(s,w,i)) uttered(s,w,i)→⊥
OBLIGED(utter(s,w,i) IF C) (C∧¬uttered(s,w,i))→⊥
FORBIDDEN(utter(s,w,i) IF C) (C∧uttered(s,w,i))→⊥
OBLIGED(utter(s,w,i) BEFORE D) (6∃T :uttered(s,w,i(T))∧T<D)→⊥
OBLIGED(utter(s,w,i) AFTER D) (6∃T :uttered(s,w,i(T))∧T>D)→⊥
FORBIDDEN(utter(s,w,i) BEFORE D) (∃T :uttered(s,w,i(T))∧T<D)→⊥
FORBIDDEN(utter(s,w,i) AFTER D) (∃T :uttered(s,w,i(T))∧T>D)→⊥
This table indicates how the norm conditions from the

framework described above are translated (automatically)
into integrity constraints that can be used for checking whether
the norms were violated. OBLIGED(utter(s, w, i) IF C), for
instance, is violated according to this table if in a state C
holds but i has not been uttered.

An observant reader should note that permissions are left
out of this translation, since permissions cannot be violated,
and therefore cannot be specified as an integrity constraint.
Unconditional obligations are also not in this table, since
these would mean that agents are obliged to utter a certain
illocution all the time, which is not meaningful. Likewise,
obligations that should be satisfied after a specific point in
time are not very useful either, since these can never be
violated. This can, however, be adapted by including an-
other deadline before which the obligation has to be fulfilled,
which would mean that, in most cases, the obligation should
be fulfilled before the institution ends.

Dialogical constraints are then used by the enforcing agents
to determine which actions should be performed when a
norm is violated. If a norm with sanction S and repairs R
(which can be obtained from the norm framework), can be
translated to the integrity constraint IC → ⊥, the following
rule can be created (automatically) to oblige the enforcers
to utter the illocution (DC) that is derived from contextu-
alising S and R:

IC ⇒ DC

Since these dialogical constraints are considered obliga-
tions to the enforcers, we need the means to detect that
this obligation has been violated, which is when the origi-
nal norm was violated, but the enforcer did not punish the
violating agent.

(IC∧ ∼ DC) → ⊥
And, if specified by means of the ENFORCE construct (thus
including sanctions and repairs in the norm description),
this violation can itself, by specifying a dialogical constraint,
trigger an obligation to act (but now for a different enforcer).

6. OTHER NORMATIVE APPROACHES
In this section we give a tentative comparison between

the approach just mentioned and the norm frameworks in-
troduced in [?] and [?]. Given the concepts seemingly in
those frameworks we show how we think norms from these
frameworks can be implemented using the language given in
section 3.

6.1 Norms in Z
In [?] Luck et al. proposed a framework for norms that

could be integrated into their multiagent systems. This
norm frame is composed of the elements shown in figure
2. Like the framework of the previous section it identifies

Norm
addressees, benificiaries : P Agent

normativegoals, rewards, punishments, : P Goal

context, exceptions : EnvState

normativegoals 6= ∅; addressees 6= ∅; context 6= ∅

context ∩ exceptions = ∅; rewards ∩ punishments = ∅

Figure 2: Z definition of a norm in the framework
of Luck et al.

the addressee, normative goal, punishments and context of
norms (in the previous approach these were, respectively,
the role a, the predicate P or action A, the sanctions and
the (temporal) condition C or D). The norm frame of figure
2 expands this with the concepts of beneficiaries, exceptions
and rewards, which were left implicit in the approach of the
previous section. Additionally, the norm frame of figure 2
also specifies that for norms the inclusion of an addressee,
a context and a normative goal are mandatory, and, more-
over, it shows that the sets defining the context and the
exceptions, as well as the sets of rewards and punishments,
are disjoint. Note that punishments and rewards in this
norm frame are specified as goals which are to be achieved
by norm enforcing agents, that is to say, when the norm is
violated the norm enforcing agents of the system are obliged
to fulfil the punishment-goal to punish the agent violating
the norm.

Using the language introduced in section 3 we can again
show that norms specified in this norm frame can be opera-
tionalised for use in e-institutions. After contextualisation,
the norms can be automatically translated to integrity con-
straints and inference rules.

The contextualisation of the norms as specified in figure 2
includes linking the addressee, beneficiaries (if present) and
normative goal to the correct corresponding utterance, as
well as identifying the predicates used in the e-institution to
express the context and exceptions. After this contextuali-
sation the norms can easily be translated into the following
integrity constraint to detect violations of the norm:

(context∧ ∼ exception ∧ ¬goal′) → ⊥
where context and exception are predicates obtained through
the contextualisation for specifying the context and excep-
tions mentioned in the norm, goal′ is the contextualised nor-
mative goal (thus including the addressee and possible ben-
eficiaries), and the ∼ operator is for expressing negation-as-
failure (since no exceptions might be given).

If punishments are specified, the following dialogical con-
straint is also obtained:

(context∧ ∼ exception ∧ ¬goal′) ⇒ punishment

which defines that punishment should be executed by an
enforcing agent when the specified condition (i.e. the viola-
tion of the norm) occurs. Similarly, rewards (if specified)
are handled by the following dialogical constraint:

(context∧ ∼ exception ∧ goal′) ⇒ reward

specifying that a reward should be given when agents com-
ply to the norm, which is when the norm is active and the
normative goal (included in goal′) has been achieved.

The obligations of the enforcing agents to punish viola-
tions or reward compliance can again be violated, which

can be detected by the following integrity constraints:

(context∧ ∼ exception ∧ ¬goal′∧ ∼ punishment) → ⊥
(context∧ ∼ exception ∧ goal′∧ ∼ reward) → ⊥

Of course, if punishments and rewards for these violations
were specified, these can be translated into new dialogical
constraints.

6.2 Event Calculus Norms
Artikis et al. propose in [?] the use of event calculus for

the specification of protocols. The event calculus is a formal-
ism to represent reasoning about actions or events and their
effects in a logic programming framework. It is based on
a many-sorted first-order predicate calculus. The following
figure shows the main predicates of the event calculus.

Predicate Meaning

happens(Act,T) Action Act occurs at time T

initially(F=V) The value of fluent F is V at time 0

holdsAt(F=V,T) The value of fluent F is V at time T

initiates(Act,F=V,T) The occurrence of action Act at time T

initiates a period of time for which

the value of fluent F is V

terminates(Act,F=V,T) The occurrence of action Act at time T

terminates a period of time for which

the value of fluent F is V

Predicates that change along time are called fluents. As
shown in table below, obligations, permissions, empower-
ments, capabilities and sanctions are formalised by means of
the following fluents: obl(Ag, Act), per(Ag, Act), pow(Ag, Act),
can(Ag, Act) and sanction(Ag). Prohibitions are not for-
malised in the example of [?] as a fluent since they assume
that every action not permitted is forbidden by default.

Fluent Domain Textual Description

requested(S,T) boolean subject S requested the floor at time T

status {free,granted(S,T) the status of the floor: status = free

denotes that the floor is free whereas

status = granted(S, T) denotes that the

floor is granted to subject S at time T

best candidate agent identifiers the best candidate for the floor

can(Ag,Act) boolean agent Ag is capable of performing Act

pow(Ag,Act) boolean agent Ag is empowered to perform Act

per(Ag,Act) boolean agent Ag is permitted to perform Act

obl(Ag,Act) boolean agent Ag is obliged to perform Act

sanction(Ag) Z∗ the sanctions of agent Ag

The expression below shows an example of an obligation
specified in Event Calculus extracted from [?]. The obliga-
tion that C revokes the floor holds at time T if C enacts
the role of chair and the floor is granted to someone else
different from the best candidate.

holdsAt(obl(C, revoke floor(C)) = true, T) ←
role of(C, chair)
holdsAt(status = granted(S, T ′), T), (T ≥ T ′),
holdsAt(best candidate = S′, T), (S 6= S′)

If we translate all the holdsAt predicates into uttered
predicates, we can translate the obligations and permission
of the example by including the rest of conditions in the
LHS of the integrity constraints:

(uttered(s, w, inform(A, R, B, R′, best candidate(S′))∧
uttered(s, w, inform(C, chair, S, candidate, granted(S)∧
S 6= S′) → ⊥
(uttered(s, w, inform(A, R, B, R′, best candidate(S′))∧
uttered(s, w, inform(C, chair, S, candidate, granted(S))∧
S 6= S′) ⇒ utter(s, w, inform(C, chair, A, R′′, revoke floor))

However, since there is no concrete definition of a norm, we

cannot state that Artikis’ approach is fully translatable into
integrity constraints and dialogical constraints.

Although event calculus models time, the deontic fluents
specified in the example of [?] are not enough to inform
an agent about all types of duties. For instance, to inform
an agent that it is obliged to perform an action before a
deadline, it is necessary to show the agent the obligation
fluent and the part of the theory that models the violation
of the deadline.

7. CONTEXTUALISING NORMS
In previous sections we have mentioned that norms need

to be contextualised in order to be used in e-institutions.
This contextualisation is, in a sense, interpreting the ab-
stract norm from the institution’s point of view such that it
is usable for implementation. In the example that we used
earlier this interpretation was quite clear, as we translated
the actions in the following norm:

OBLIGED((buyer DO pay(Price,seller)) IF done(buyer,won(Item,Price)))

into the utterances that would be used in an e-institution:

uttered(payment,W,inform(A,buyer,B,payee,pay(Item,Price),T))

uttered(auction,w2,inform(C,auctioneer,A,buyer,won(Item,Price),T ′))

However, if we regard institutional norms that are derived
(or translated) from human laws and regulations, the con-
textualisation becomes much harder, as laws contain vague
and ambiguous concepts and cannot always be related to
a single integrity constraint. In order to implement such
norms with a high level of abstraction two steps must be
taken: 1) interpreting the abstract concepts and link them
to concrete concepts used in the institution, and 2) adding
procedural information and artifacts to the institution to
simplify (or allow) the enforcement of the norm. In this
section we examine both these elements.

7.1 Ontological Interpretations of Concepts
The first and mandatory process of the contextualisation

of norms with a high level of abstraction is solving this ab-
stract characteristic of the norm, since agents and institu-
tions cannot handle these abstract concepts (protocols and
procedures are expressed in concrete concepts and lack any
connection to abstract concepts in norms). Consider the fol-
lowing norm of an auction house, expressing that the obli-
gation to identify oneself upon entering an auction:

OBLIGED((participant DO identify) IF (participant DO enter(auction)))

The action identify in this norm has an abstract mean-
ing and can be implemented in various different manners.
To implement this norm the meaning of this abstract action
must be defined, which is done by connecting the abstract
action to concrete action(s), e.g. through the use of a counts-
as operator [?, ?]:

[participant DO give(certificate,manager) AND

manager DO check(certificate)] counts-as participant DO identify

describing that giving an identification certificate to the auc-
tion manager, and the manager checking this certificate is
seen as an implementation of the identify action. These
counts-as definitions, defining the scope (and applicability)
of the abstract concept, are highly context dependent and
not necessarily one-one definition, such as we used earlier in
section 5.

Implementing these counts-as definitions is achieved by
extending the existing ontology of the institution, which al-
ready consist of all the concrete concepts used in the in-

stitution, with the abstract concepts that are used in the
norms and the relation between the abstract and concrete
concepts. This relation is defined as a conceptual subset
relations, specifying that the ontological meaning of the
concrete concepts is included in the ontological meaning of
the abstract concepts. In the case of our example, this
would mean that the ontological meaning of the actions
give(certificate, manager) and check(certificate) are in-
cluded in the meaning of the abstract action identify:

give(certificate,manager)ucheck(certificate,manager)<identify

7.2 Introducing Procedural Information
After interpreting the abstract concepts of the norm, the

norm can be implemented by means of integrity and dialog-
ical constraints as mentioned in sections 3 and 4. In some
cases, though, trying to detect a violation would involves
making lots of checks, which could be computationally hard
or totally infeasible from the institution’s point of view. For
instance, checking whether every participant of the institu-
tion is able to identify oneself at any given time can be very
hard, particularly in very crowded institutions.

Moreover, there might be norms in the institution which
would have a severe impact on the institution if the norm
would be violated. As recovery from such violations (nor-
mally done by sanctions and repairs, defined in the dialogical
constraints, see section 5) would be (nearly) impossible, it
would be wise to try to minimise such violations to an ab-
solute minimum. For example, as murder is, in itself, a very
severe violation of the norms of society, any measures that
can be taken to limit the occurrence of this violation should
be taken (e.g. the prohibition of owning (fire-)arms).

In both cases, one is trying to simplify the enforcement
process such that it either becomes feasible to detect the vi-
olation, or protect the system from very harmful violations.
This process of contextualising norms can be done in two
ways. Either the norm is translated to smaller and simpler
norms which are easier to check but ensure the compliance
of the original norm, or the norm is translated to a set of
constraints that ensure the compliance.

Consider the following norm in an auction house, express-
ing that as an agents bids on an item it has to pay for the
item if it won the auction:

OBLIGED((buyer DO pay(Price,seller)) IF done(buyer,won(Item,Price)))

Violations of this norm occur, for instance, because the
agent does not have enough money to pay, the agent does
not want the item anymore or the agent simply disconnects
(unintentionally or on purpose). Although the violation
of this norm can be detected easily, sanctioning the agent
and repairing the situation might be difficult (especially if
the agent disconnects). To avoid these situations, one can
choose to implement this norm by means of a constraint;
upon entering the institution all agents have to deposit an
amount of money (for security) that they will get back when
leaving the institution if no violations have occurred:

OBLIGED((agent DO pay(Security Fee)) IF done(agent,enter(Institution)))

However, if a violation of the mentioned norm occurs, this
money can be used to pay for the items, thereby sanction-
ing the agent. This means that our original norm has been
implemented by introducing a norm that is easier to en-
force (i.e. agents are obliged to pay security before enter-
ing), which generates the constraint (or mechanism) that is
used for enforcing the original norm. Thus, instead of im-

plementing one norm which was hard to enforce, we have
implemented two norms (which were derived from the orig-
inal norm) that are easily enforced.

8. CONCLUSIONS
With the development of electronic institutions, in their

aim of implementing normative open-agent systems, comes
the problem of ensuring the safety and stability of the sys-
tem. Previous implementations of electronic institutions en-
forced norms by ensuring that the agents joining the system
followed a pre-defined protocol, thereby guaranteeing norm
compliance of the agents. As this approach severely limits
the autonomy of the agents, a more flexible enforcement was
desired. This paper proposes the use of integrity constraints
and dialogical constraints to implement such a flexible en-
forcement of norms. This norm enforcement is based on the
detection of and reacting to the violations of norms.

In order for any kind of norm enforcement to be imple-
mented, norms need to be expanded with an operational
meaning, as the declarative nature of norms only defines
what is legal/illegal, but never expresses how this legal-
ity/illegality is obtained/averted. In [?] we introduced sev-
eral mechanisms for operationalising norms, where we anno-
tated norms (expressed in deontic logic) with operational as-
pects, like sanctions and repairs. In this paper we have used
this normative frame to design an implementation scheme
usable for implementing norm enforcement in electronic in-
stitutions. However, before norms can be implemented using
this scheme, the norms need to be contextualised. This con-
textualisation is 1) connecting the abstract concepts of the
norm to the concrete concepts used in the institution, and 2)
extending the norm with additional procedural information
before attempting to implement it. The contextualisation
of the norms is, in fact, a further operationalisation of the
norms, where, in contrast to declarative norms (which never
change the world), the second step of this operationalisation
changes the world in order to enforce the norm.

Acknowledgements
This paper was partially supported by the Spanish Science
and Technology Ministry as part of the Web-i-2 project
(TIC-2003-08763-C02-00).

9. REFERENCES
[1] K. R. Apt. From Logic Programming to Prolog.

Prentice-Hall, U.K., 1997.

[2] A. Artikis, L. Kamara, J. Pitt, and M. Sergot. A
protocol for resource sharing in norm-governed ad hoc
networks. In Proceedings of the Declarative Agent
Languages and Technologies (DALT) workshop.
Springer, July 2004.

[3] C. Castelfranchi. Formalizing the informal?: Dynamic
social order, bottom-up social control, and
spontaneous normative relations. Journal of Applied
Logic, 1(1-2):47–92, February 2003.

[4] F. Dignum. Abstract norms and electronic
institutions. In Proceedings of the International
Workshop on Regulated Agent-Based Social Systems:
Theories and Applications (RASTA ’02), Bologna,
pages 93–104, 2002.

[5] F. Dignum, J. Broersen, V. Dignum, and J.-J. Ch.
Meyer. Meeting the Deadline: Why, When and How.

In 3rd Goddard Workshop on Formal Approaches to
Agent-Based Systems (FAABS), Maryland, April 2004.

[6] M. Esteva. Electronic Institutions: from specification
to development. Number 19 in IIIA Monograph Series.
PhD Thesis, 2003.

[7] M. Esteva, J. Rodŕıguez-Aguilar, B. Rosell, and
J. Arcos. AMELI: An Agent-based Middleware for
Electronic Institutions. In Third International Joint
Conference on Autonomous Agents and Multi-agent
Systems, New York, US, July 2004.

[8] M. Esteva, W. Vasconcelos, C. Sierra, and
J. Rodŕıguez-Aguilar. Verifying norm consistency in
electronic institutions. In Proc. of The AAAI-04
Workshop on Agent Organizations: Theory and
Practice (ATOP), San Jose, California, July 2004.

[9] M. Fitting. First-Order Logic and Automated Theorem
Proving. Springer-Verlag, New York, U.S.A., 1990.

[10] A. Garćıa-Camino and J. Rodŕıguez-Aguillar.
Implementing norms in electronic institutions. In
Proceedings of the 4th Int. Joint Conf. on Autonomous
Agents & Multi Agent Systems (AAMAS-05), Utrecht,
The Netherlands, July 2005.

[11] A. Garćıa-Camino, J. Rodŕıguez-Aguillar, C. Sierra,
and W. Vasconcelos. A distributed architecture for
norm-aware agent societies. In Proc. of the 3rd Int.
Workshop on Declarative Agent Languages and
Technologies (DALT 2005), Utrecht, The Netherlands,
July 2005.

[12] D. Grossi, H. Aldewereld, J. Vázquez-Salceda, and
F. Dignum. Ontological aspects of the implementation
of norms in agent-based electronic institutions.
Computational and Mathematical Organization
Theory, to appear in 2006.

[13] D. Grossi, F. Dignum, and J.-J. Ch. Meyer.
Contextual taxonomies. In J. Leite and P. Toroni,
editors, Proceedings of CLIMA V Workshop, Lisbon,
September, pages 2–17, 2004.

[14] A. Lomuscio and D. Nute, editors. Proc. of the 7th
Int. Workshop on Deontic Logic in Computer Science
(DEON04), volume 3065 of LNCS. Springer Verlag,
2004.

[15] F. López y López and M. Luck. Towards a Model of
the Dynamics of Normative Multi-Agent Systems. In
G. L. et.al., editor, Proc. of RASTA ’02, pages
175–194, Bologna, July 2002.

[16] P. Noriega. Agent-Mediated Auctions: The Fishmarket
Metaphor. Number 8 in IIIA Monograph Series. PhD
Thesis, 1997.

[17] J. A. Rodriguez-Aguilar. On the Design and
Construction of Agent-mediated Electronic
Institutions. Number 14 in IIIA Monograph Series.
PhD Thesis, 2001.

[18] J. Vázquez-Salceda, H. Aldewereld, and F. Dignum.
Implementing norms in multiagent systems. In
G. Lindemann, J. Denzinger, I. Timm, and R. Unland,
editors, Multiagent System Technologies, LNAI 3187,
pages 313–327. Springer-Verlag, 2004.

