Decentralized Planning under Uncertainty
for Teams of Communicating Agents

Matthijs T.J. Spaan

University of Amsterdam

Kruislaan 403, 1098 SJ
Amsterdam, The Netherlands

mtjspaan@science.uva.nl

ABSTRACT

Decentralized partially observable Markov decision processes
(DEC-POMDPs) form a general framework for planning for
groups of cooperating agents that inhabit a stochastic and
partially observable environment. Unfortunately, comput-
ing optimal plans in a DEC-POMDP has been shown to be
intractable (NEXP-complete), and approximate algorithms
for specific subclasses have been proposed. Many of these
algorithms rely on an (approximate) solution of the central-
ized planning problem (i.e., treating the whole team as a
single agent). We take a more decentralized approach, in
which each agent only reasons over its own local state and
some uncontrollable state features, which are shared by all
team members. In contrast to other approaches, we model
communication as an integral part of the agent’s reasoning,
in which the meaning of a message is directly encoded in
the policy of the communicating agent. We explore iter-
ative methods for approximately solving such models, and
we conclude with some encouraging preliminary experimen-
tal results.
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1. INTRODUCTION

Planning refers to the process of computing a conditional
sequence of actions that fulfill a given task as well as possi-
ble. It is a crucial part of any intelligent agent; human, robot
or software agent alike. We are interested in planning un-
der various forms of uncertainty for cooperative multiagent
systems. First of all, the agent might be uncertain regard-
ing the exact consequence of executing a particular action.
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Furthermore, the agent’s sensors may be noisy or provide
only a limited view of the environment. As the agent is
part of a team, a third source of uncertainty are its team-
mates, as it should consider their actions as part of its own
decision making. In this paper, we study scenarios in which
agents have the ability to communicate, but bandwidth is
limited and communication has a certain cost. The range
of possible application domains is broad, including coop-
erative robotics [6], sensor networks [13], distributed space
applications [4], communication networks [16] and supply
chain management [7].

Single-agent planning under uncertainty has been formal-
ized in the partially observable Markov decision process
(POMDP) framework [12]. A POMDP defines stochastic
models to capture the uncertain effects of actions and the
fact that sensors are imperfect and have a limited scope.
In particular, the transition model governs how the sys-
tem’s state is influenced by actions, and the observation
model stochastically relates states to observations. Solving a
POMDP provides the agent with an optimal plan for a given
task, but it is intractable to compute exact solutions in gen-
eral (as it is known to be PSPACE-complete [17]). However,
recent years have seen much progress in the development of
approximate methods [19, 20, 23, 24].

Planning for a team of agents proves to be significantly
harder than planning for just a single agent. In order for the
team to act optimally, each agent not only has to consider
the consequences of its own action, but at the same time also
the actions its teammates will execute. As each agent does
not know what the other agents observe, it will be hard
to predict their actions. Decentralized POMDPs (DEC-
POMDPs) generalize the POMDP framework to coopera-
tive multiagent settings, but solving finite horizon DEC-
POMDPs has been proven to be NEXP-complete [2], a con-
siderable jump in complexity from the single agent case. Be-
sides brute-force enumeration and evaluation of all possible
policy tuples, only one algorithm is known for computing
optimal solutions [11], which in practice is limited to very
small problems. As the general setting is very hard to solve
optimally, research has focused on heuristic methods, which
often also make additional assumptions on the planning do-
main [27, 8, 1, 10, 18].

Allowing agents to communicate with each other can in-
crease team performance, as it mitigates two sources of un-
certainty: a message from a teammate can either provide
information about the state of the system, or about the
teammate’s intentions. In particular, if one assumes that



the agents have unlimited free access to a noise-free commu-
nication channel, the multiagent planning problem reduces
to a single-agent one: each agent shares its observations with
all teammates, which allows each one of them to select the
optimal joint action, and execute its part of the joint ac-
tion vector. However, although optimal, such an approach
is not desirable for several reasons. First of all, in reality
a communication channel is likely to be bounded in band-
width, and sending a message will have a particular cost.
Second, the resulting single agent POMDP will still be hard
to solve, as the size of the problem description grows expo-
nentially in the number of agents. Therefore, we choose to
tackle the problem in a decentralized manner, in which each
agent considers only its local state plus some shared uncon-
trollable state features, instead of the cross-product of the
local states of all agents and the uncontrollable state space.
Furthermore, we consider communication as an integral part
of the system, and model it directly in the DEC-POMDP,
in contrast with other approaches in which communication
decisions are governed by a separate algorithm [8, 5, 14, 22].

‘We propose a decentralized model for tackling cooperative
multiagent planning problems, which incorporates a commu-
nication channel. In contrast to most work on distributed
POMDPs, we do not define an explicit communication lan-
guage, but instead treat the semantics of communication as
part of the optimization problem. We will present an it-
erative method for computing a joint policy for the team
in a decentralized fashion. Given a set of fixed policies for
all agents but agent ¢, we convert the DEC-POMDP to a
POMDP from i’s perspective which incorporates the ex-
pected contribution to the joint team reward of the other
agents’ policies. We propose a heuristic method for com-
puting a communication policy and we conclude with en-
couraging preliminary experimental results in two domains.

2. PLANNING FORMULTIAGENT TEAMS

We will start by reviewing the cooperative multiagent
planning problem from a decision-theoretic perspective. First
we will briefly introduce partially observable Markov deci-
sion processes (POMDPs), a rich mathematical framework
for single-agent planning under uncertainty. Next, we will
look at decentralized POMDPs which constitute a multia-
gent extension of the POMDP model, and at existing exact
and approximate methods for solving them.

2.1 Partially observable Markov decision pro-
cesses

A partially observable Markov decision process (POMDP)
models the repeated interaction of an agent with a stochas-
tic environment, parts of which are hidden from the agent’s
view [12]. The agent’s goal is to perform a task by choosing
actions which fulfill the task best. At each time step the
environment is in a state s € S, and the agent executes an
action a € A, which will move the environment to a new
state s’ according to a stochastic transition model p(s’|s, a).
As a by-product the environment will generate a scalar re-
ward signal R(s, a), which defines the agent’s task. Next the
agent receives an observation o € O which is stochastically
related to s’ according to p(o|s’,a), but in general will not
uniquely identify s’. As such, the agent is uncertain about
the true state of the system, which is often modeled as a
probability distribution over all states. The probability dis-
tribution, or belief b(s) in POMDP terminology, summarizes

all relevant history and is updated using Bayes’ rule:

plols’, a) > p(slsa (1)

ao !
() = p(ola, b)
where p(ola,b) = >, cgp(ols’,a) > .5 P(s[s, a)b(s) is anor-
malizing constant.

The goal of the agent is to compute an optimal policy
m(b) that maps beliefs to actions. Optimal is defined as
maximizing a certain performance measure, for instance the
expected discounted sum of rewards F [ Z?:o ~'R], where h
is the planning horizon and + is a discount rate, 0 < v < 1.
Without going into details of exact POMDP solving, it suf-
fices to say that computing an optimal policy is intractable
in general [17]. In recent years a number of approximate
algorithms including PBVI [19], BPI [20], HSVI [23], and
PERSEUS [24] have been proposed, which allow for solving
larger POMDP domains by, e.g., exploiting structure in the
domain.

2.2 Decentralized POMDPs

A straightforward extension of the POMDP framework
to cooperative multiagent settings is called the decentral-
ized POMDP (DEC-POMDP) model [2]. Instead of a single
agent we now consider a set of agents, which share the same
reward function. If the agents have individual (and differ-
ing) reward functions, the model is known as a partially
observable stochastic game (POSG) [11]. A DEC-POMDP
is defined as follows:

I=11,...

e S is a finite set of states.

,n} is a set of n agents.

e A, is a finite set of actions for agent i.
e O, is a finite set of observations for agent 1.

e p(s'|s, a) is the joint transition model which defines the
probability of jumping to state s’ € S given that the
team executed joint action a € A1 X ... x A, ins € S.

e p(ols,a) is the joint observation model which defines
the probability that after taking joint action a and
ending up in state s results in joint observation o €

O1 X ... %X Oy

o R:SxA1x...xA, — Ris the reward function which
gives a scalar reward signal to the team.

o 1Y € A(S) is the initial state distribution.
e v is a discount rate, 0 < v < 1.

e h is the planning horizon.

Contrary to the single agent case, in a DEC-POMDP it is
not possible in general to compute a belief state as an agent
only knows its local observation o; but not the complete
observation vector o, which is required for computing the
belief update (1). As such, each agent chooses its action a;
at time t based on its policy m; : x¢—1(A; X O;) — A;, i.e.,
it only considers its own history of actions taken and obser-
vations received until time ¢. The goal of the team of agents
is to compute a joint policy m = {m1,...,mn} which max-
imizes the future discounted reward V™ = E [Z?:o fth].
Unfortunately, computing an optimal policy 7* is NEXP-
complete [2], and there is only one known algorithm for com-
puting an exact solution (apart from brute-force), which we
will describe next [11].



2.3 Solving decentralized POMDPs

Hansen et al. [11] present a dynamic programming oper-
ator for finite horizon POSGs, which allows for incremental
construction of policies: starting from a solution for hori-
zon t it computes a solution for horizon ¢t + 1. When the
POSG is a DEC-POMDP, i.e., the agents share the same
reward function, the algorithm will result in a set of policies
optimal for a certain planning horizon. A belief is main-
tained over the cross-product of the state of system and
the future conditional plans, or policy trees, of all other
agents. However, the set of possible policy trees grows dou-
bly exponential in the planning horizon, which renders a
brute-force approach infeasible in practice. To combat the
growth, at every iteration (very weakly) dominated policy
trees are pruned. A policy tree for agent ¢ is dominated
if its removal does not decrease the value of any belief for
agent i. However, even with pruning at every iteration the
algorithm can solve only very small problems before running
out of memory.

As solving a DEC-POMDP is intractable in the general
case, methods have been proposed for approximately solving
more restricted DEC-POMDP variations. Simplified models
that have been studied include extra assumptions regarding
the observation model, in particular that an agent’s observa-
tions are independent from those of its teammates [8] or that
each agent can observe its own local state with full certainty,
which reduces the problem to a decentralized MDP [27, 1,
10]. The latter assumption requires a factored state repre-
sentation in which the state space is the cross-product of
each agent’s local state space and optionally a set of shared
external state features which each agent can observe but
not influence. Examples include time or any other external
information relevant to the team’s task. Given a factored
state space one can further assume that the agents’ transi-
tions are independent [27, 1, 18], or impose a particular joint
reward structure [1]. Apart from restricting the model one
can also limit the expressive power of the solution method,
for instance by only searching in the space of finite state
controllers of a particular size [3, 25]. Another way of com-
puting a locally optimal solution is to optimize one agent’s
policy while keeping the other policies fixed, and iterate over
all agents until convergence [15, 5, 3].

A different dimension to tackle decentralized POMDP
models is to assume the agents have a way to communi-
cate with each other (which is not modeled in the DEC-
POMDP). As we noted above, if a team of agents is allowed
to communicate for free and without limitations, then each
agent can broadcast at every time step its perceived obser-
vation to all of its teammates. As a result every agent knows
the joint observation vector which it uses to update the joint
belief of the team, based on which the next joint action is se-
lected. As such, free communication reduces the distributed
control problem to a centralized, single-agent one, which
can be solved using standard POMDP solution techniques.
However, in reality communication is often not free or un-
limited, and modeling a team of agents in this way might not
be desirable. Nevertheless, several methods treat the multi-
agent system as if communication were truly free, solve the
large centralized POMDP, and execute the resulting joint
policy in a distributed fashion while imposing communica-
tion constraints [5, 14, 22]. While executing the policy a lim-
ited form of communication is used to attempt to preserve
coherent behavior of the team. Note that the communica-

tion decisions are not part of the centralized policy, but are
made by a separate algorithm, which for instance monitors
the uncertainty regarding the joint belief. We refer to [21,
9] for a detailed analysis of communication issues arising in
DEC-POMDP settings.

In contrast, Xuan et al. [27] propose a model that incor-
porates the communication decision directly in the agent’s
policy. It adds a communication sub-stage to the decision
process, in which an agent decides whether it will communi-
cate with its teammates. In this way an agent can explicitly
reason about communication, instead of relying on an in-
dependent instrument to handle communication issues. Ex-
tending this framework, Goldman and Zilberstein [8] present
a formal model for decentralized control with communica-
tion decisions based on the DEC-POMDP model. In such
decentralized models agents reason over their local state,
instead of considering the state of all teammates. A decen-
tralized model seems more appropriate for agents who can-
not observe each other’s state nor have free and unrestricted
communication at their disposal. Decentralized models also
do not suffer from the exponential growth in the size of the
centralized state space when the number of agents increases.
Limited communication abilities, however, can be exploited
to improve the team’s performance, by allowing agents to
share information at a certain cost.

3. PROPOSED MODEL

In [8, 9] a framework for modeling cooperative multia-
gent systems as a decentralized POMDP with a global re-
ward function is proposed. The agents reason explicitly over
their communication decisions, but the observations of each
agent are independent. We propose a different decentralized
model which draws on [8, 9], but in which a communication
channel is established by allowing agents to send messages
as part of their action vector, and messages are received in
the next time step as part of the recipients’ observation vec-
tors. In contrast to most work on distributed POMDPs, we
do not manually define a communication language, but treat
the semantics of communication as part of the optimization
problem.

We refine the DEC-POMDP model as described in Sec. 2.2
as follows:

e The state space S factors into n + 1 components: S =
So X S1 X ...x Sy, where S; is the set of state features
relevant to agent ¢ and Sp the set of external state fea-
tures, which are shared by all agents but which cannot
be controlled. A local state of an agent i is defined as
3; = (so0, 8:), where sg € Sp, s; € Si.

e 3, is a finite set of possible messages, and o; € X; de-
notes a message sent by agent i. Not sending any mes-
sage is defined as sending the empty message o; = ().

e A; = A x A7 is the action set for agent 4, where A¢
is the set of domain level actions and A7 the set of
communication acts.

e O; = 0% x 07 is the observation set for agent i, where
O¢ is the set of domain level observations the agent
receives through its sensors, and Oy = 31 X...XX;_1X
Yit1 X ... X X, the set of possible messages the agent
can receive from any of its teammates.



e The joint transition model p(s’|s,a) depends only on
the domain level component of each agent’s action
(sending messages does not influence the state of the
environment). We assume that the agents’ transitions
are independent, allowing us to factor the joint tran-
sition model:

p(s'ls,a) = p(solso) ] wlsilsiad),  (2)

i=1l...n
/ / d d
where sg, so € So, s;,8i € Si, and aj € Af.

e The local observation model p(0;|3;,a;) specifies the
probability of receiving observation o; = (of,07) after

executing action a; and ending up in §;.

e We define p(0f|5) as the probability that a message
vector ¢ = (01,...,0i-1,0i41,...,0n) Will be inter-
preted as a particular observation o, which can be
used to model noise in the communication channel.

e The reward function R(s,a) gives the team of agents a
scalar reward at each time step for taking joint action
a in state s. It is defined as the sum of each agent’s
local reward function and the joint reward of the team:

R(s,a) = Z Ri(8iya:) + R(S0, -+, 8n,01,.-.,0n).

i=1l...n
(3)
The local reward R;(5i, a;) is defined as the sum of the
reward for the domain level action R;(S;, aﬁl) and the
communication cost R;(5;,af):

0 if o, =0
r. < 0 otherwise

Ri(8i,a7) = { (4)

e Initial belief b?, discount rate 7, and planning hori-
zon h as in Sec. 2.2.

In the remainder of this paper we shall limit our discus-
sion to two agents, but our methods and experiments gener-
alize to more than two agents. Broadcast communication is
used, and we will focus on noise-free communication, fixing
p(0f]5) to be the identity matrix.

3.1 Example: Multiagent Heaven or Hell

To give some intuition on the range of problems our model
captures we will now discuss a very simple example appli-
cation. The “Multiagent Heaven or Hell” problem (inspired
by [26]) is a scenario in which two agents have to meet in
one of two locations, one called “heaven” and the other one
“hell”, see Fig. 1. At the start of each trial heaven is posi-
tioned either in the bottom-left state (so = left) or in the
bottom-right state (so = right) with equal probability, and
hell will be located in the other state. If the agents meet in
heaven the team receives a reward of r, > 0, but meeting in
hell is penalized with a reward of —r;,. However, each agent
does not know the location of heaven or hell until it visits the
“priest” state, in which it receives an observation indicating
whether heaven is left or right. Visiting the priest results in
an individual negative reward of r, < 0 for the particular
agent, and we assume that the reward obtainable in heaven
makes visiting the priest a viable option, i.e., r, > —nr.

If no communication is possible, or the communication
cost (—r¢) is prohibitively large, the optimal policy could
be for each agent to visit the priest, find out where heaven

Priest

Heaven? Hell?
Hell? Heaven?

Figure 1: Multiagent Heaven or Hell environ-
ment. The priest (top state) can tell the agents
where heaven is located (bottom-left or bottom-
right state).

is located and go there. However, when communication is
relatively cheap, i.e., 7. > rp, more interesting scenarios be-
come feasible. For instance, only agent i could ask the priest
and inform agent j by sending it a message. This would save
agent j the cost of visiting the priest and still be able to tell
heaven from hell. However, instead of defining such seman-
tics a priori, we would like the agents to learn when and how
to communicate, and how to interpret incoming messages.
In particular, the agents should optimize their use of com-
munication with respect to the cost of sending a message 7.

3.2 Belief tracking

In a general DEC-POMDP setting it is not possible for
an agent to maintain an exact belief over the true state of
the system, as it only receives its own part of the obser-
vation vector. As such, agent i has to reason about what
observation agent j might have observed, but at the same
time agent j is modeling agent ¢, which leads to the very
high complexity class of solving DEC-POMDPs. As a re-
sult of the lack of independence between agents, only ap-
proximate beliefs can be computed. Alternatively, one can
assume that agent i’s observations are independent from
those of agent j [15], which together with a common tran-
sition independence assumption precludes any use of direct
communication in the DEC-POMDP model, as the agents
cannot influence each other. In contrast, in our decentral-
ized model the domain level component o¢ of an observation
0; = (of,of) only depends on an agent’s local state s;, but
the communication component o; does depend on agent j,
as follows

(of, o7 |51, i) ()

(085, ai)p(o7), (6)

p(oilsi,ai) =p
=P
where p(of) is the probability that the other agents send
agent ¢ a particular message vector in the previous time step,
which we will approximate based on their policies. Conse-
quently, we can only perform an approximate belief update,

but it allows us to model a built-in communication channel.
Analogous to (1), agent #’s belief b; is updated as follows



when it takes action a; and receives observation o;:

a5 a; 7
b?ioi (5() _ p(of|5i, ai)p(o7) Z

‘ p(Ogvoﬂai?bi)

p(§;|§i, ai)b’i(g’i)a

(7
where p(o¢,0f|ai,b;) is a normalizing constant. The prob-
ability that b7 will be the successor of b; when agent 4
executes action a; is defined as

5;€(SoxS;)

p(b7*% |bi, ai) = p(oi|bi, as) (8)
= Z p(oi|§i,ai)bi(§i). (9)
5,€(So%xS;)

Since individual beliefs can be defined through (7), local
policies 7; can be defined as in a standard POMDP setting,
i.e., as mappings 7; : A(So x S;) — A; from local beliefs b;
to actions. The only term not yet defined in (7) is p(o7):
the probability that agent ¢ receives a message o; and in-
terprets it as observation of. It is defined by two factors:
the probability that agent ¢ receives o; as of, as defined
by the channel noise model p(of |o;), times the probability
that agent j actually sends o;. The latter probability is
estimated by computing the set of possible beliefs {bJ,} in
which agent j sends o; according to m;, and summing the
probabilities p(b;+) that any of those beliefs in b;: € {b7,}
will occur:

pea1 (07 |m5) = p(of]os) Y
by {7}
o d o o
{07} = {bjel(aj, a7) = 7;(bj0), af = o5} (11)
where p(b;,) is the probability that agent j is in belief b;;
at time ¢t. The following equation computes p(b;+) as a re-

cursion from time step 0, at which we know agent j is in its
initial belief b with probability 1:

p(by.), with  (10)

b= ift=0
bt P(bjelbse—1,m5(bje—1))p(bj—1) otherwise

which uses (9). The set {b;:} of all possible beliefs which
agent j could believe to be true at a particular time step is
finite for any given ¢, as we have assumed finite models.

3.3 Communication

The previous section defined how each agent updates its
belief and how j’s policy affects i’s belief update, and here we
provide the intuition how this implements a communication
channel. For a particular incoming message o; agent ¢ can
use its knowledge of ; and the set of beliefs {b; .} for agent j
to compute the set {b7,} (11) from which agent j would send
the particular message ;. In this way, receiving message o;
at time t + 1 informs agent 7 about agent j’s local state at

time t:
p?il(gj) = Z
by, €467 .}

combining (12) and (11). The crucial point is that, as
agent j’s local state 5; includes So, receiving message o;
will provide agent i with information about sg:

prii(so) = Y prii(s;) with 55 = (so0,s;). (14)

s5;E€S;

bjt(55)p(bje), (13)

In summary, the fact that so¢ is shared by all agents allows
for communication-based learning, by enabling an agent j

to modify the observation model of some other agent i, via
the term p(o7) in (7).

Depending on the quality of agent j’s communication pol-
icy, communication can improve team performance. For in-
stance, if agent j communicates uniformly at random, agent
i will not benefit from communication as the information
content of the message is zero. However, in the Multiagent
Heaven or Hell example described above, if agent j com-
municates o; = 1 if it knows heaven is left, communicates
o; = 2 if it knows heaven is right, and does not communi-
cate otherwise, then agent i can use o; to update its belief
about the location of heaven in a useful manner and proceed
to heaven without visiting the priest.

3.4 Discussion

When comparing with other recent approaches to plan-
ning for cooperative multiagent systems in partially observ-
able environments, there are two main advantages to the
proposed model. First of all, we treat communication as an
integral part of an agent’s reasoning, not as an add-on. In
particular, we do not define a priori semantics for a mes-
sage, but treat it as part of the optimization problem. The
meaning of a particular message o; is defined by the situ-
ations in which agent i will send o;. Of course, assuming
a message set 2; with user-defined, high quality and fixed
semantics simplifies the optimization problem, but we be-
lieve it is worthwhile to explore optimizing communication
as part of (approximately) solving the DEC-POMDP.

The second feature of the proposed model is that it is de-
centralized, and does not require an (approximate) solution
to the large single-agent POMDP resulting from truly free
communication (as described in Sec. 2.3). The centralized
state, action and observation spaces grow exponentially in
the number of agents, rendering even approximate solutions
infeasible. In our decentralized model, only the observation
set for each agent grows with the number of agents, which
can be limited by manipulating the size of possible mes-
sages ;. One other possible solution to combat this expo-
nential growth would be to assume that messages from dif-
ferent agents are conditionally independent given the state,
which would allow us to factorize each agent’s observation
model. A factorized observation model induces a particular
structure in an agent’s POMDP (see next section), which
can facilitate solving the POMDP.

We trade off exploiting an (approximately) optimal cen-
tralized solution for a potentially more scalable decentral-
ized setting, in which each agent only considers it own lo-
cal state (and some shared uncontrollable state features).
Furthermore, a decentralized framework is more natural for
modeling agents who cannot observe each other’s state nor
have truly free communication available.

4. SOLUTION METHOD

After proposing a decentralized model for planning for a
team of communicating agents, we will now present an ap-
proach for computing a plan in our model. We propose to
compute a joint policy for the team of agents in an itera-
tive fashion [15, 5, 3]. We start with a (randomly selected)
policy m; for each agent i. We fix the policy for all agents
except for one, our protagonist agent i. From i’s perspective
we can treat the other agents as part of the environment,
and ¢ can build a POMDP model of this environment, given
that it knows the policies of the other agents. For the re-



sulting POMDP model it computes a policy using a stan-
dard (approximate) POMDP solver which replaces its cur-
rent policy m;. We then move on to the next agent and
repeat the procedure from its perspective. This process is
iterated until some convergence criterion is met, at which
time the joint policy will have reached a local maximum.
Multiple random restarts are necessary in general to reach
good performance. We will solve the POMDP models using
PERSEUS [24]. It computes a policy in the form of a value
function V; : A(Sp x S;) — R, which for every belief esti-
mates the amount of future discounted reward the agent can
obtain.

4.1 Computing an agent’s POMDP model

A crucial component is building the POMDP model from
the known problem description and the policies of all team-
mates. In this POMDP model the reward function for agent ¢
should not only consist of its local reward function R; but
also the expected contribution of the joint reward func-
tion R. For instance, in the Multiagent Heaven or Hell ex-
ample described in Sec. 5.1, if agent ¢ predicts that agent j’s
policy directs j to the heaven location, agent ¢’s local reward
function should report that if i goes to heaven too, it can
receive the joint reward of r;. We summarize the influence
of the other agent by computing two statistics: p(a;|5;) is
the probability agent j will execute a; in §;, and p(§;) is
the probability that agent j will be in a particular state 5;.
We approximate these probabilities by simulating the belief
tree for the team, given the pair of policies {m;,m;}. The
root of the belief tree at ¢ = 0 is the starting belief b of
each agent i. We compute the set of possible ¢ + 1 beliefs
for each agent by propagating each of its beliefs at time t:

{bier1} = {73 |a; = mi(bi,e), 0 € Os}. (15)

In order to keep the memory requirements in check in gen-
eral pruning will be necessary. From the belief sets at time
step {b;,+} and the probability that each of the beliefs will
be encountered (according to (12)) we can approximate the
required statistics p(a;|3s;) and p(5;).

We use these statistics to define the local reward function
R; r; for agent 4, which takes into account the expected
contribution from agent j’s policy ;:

Rir;(5i,0:) = Ri(5:,ai) +
Z R(507Si7Sj7ai7aj)p(aj|'§j)p('§j)7 (16)

5;€(S0%5;),a;€A;

with (so, s;) = ;. From the same statistics the observation
model for agent i can be computed, which will encode the
information contained in incoming messages from agent j, as
we described in Sec. 3.3. To complete the POMDP model,
the transition model for agent i is given by

(5554, a:) = p(s6, 5|0, 8, af, af) (17)
= p(sols0)p(silsi, af). (18)

4.2 Learning to communicate

The iterative scheme described above is able to react to
any incoming communications, which are incorporated in
the local reward model and exploited by the POMDP solver.
However, it will not learn from scratch to send any mes-
sages, as the other agent’s policy has not yet learned how it
can benefit from incoming messages. Therefore we begin by
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Figure 2: Multiagent Heaven or Hell results. Solid
lines indicate results for 2 agents, and dashed lines
show results for a team of 3 agents. Plot (a) shows
the expected discounted reward (E R) obtained for
different communication rewards (r.), and figure (b)
plots the average number of messages sent.

equipping each agent with a fixed heuristic communication
policy and iteratively optimize the agents’ domain level com-
ponent of their policies to exploit the incoming messages.
Next we aim to optimize the communication component of
each agent’s policy with respect to the communication re-
ward r. < 0. In particular, initially all agents could at
each time step send the last domain level observation they
received, and we could improve team performance by only
sending messages that are useful.

A message is useful when it conveys some information
which the other agent can use to improve team performance.
As the meaning of a message is defined over so, the entropy
of p%i(so) (14) measures the information content of a par-
ticular message. However, if a message has low entropy does
not necessarily mean it is useful to send. One proposal for
testing its value is to modify each agent’s local reward model
(16) to prefer communicating low entropy messages to not
sending them, but only at states in which it would send the
messages under the initial heuristic communication policy.
This ensures the other agent will know how to respond to
the incoming message. Next we repeat the process of itera-
tive optimization, allowing the agents to adjust to the new
communication behavior.

S. EXPERIMENTS

We will present experimental results in the Multiagent
Heaven or Hell domain and in a game of tag, in which
agents have to cooperate in order to tag an opponent. In
these experiments we included the time step of the system
in sg, which allows for a single message to have a different
meaning, depending on which time step it was sent. Adding
time to so requires no extra assumptions, but does allow the
agents to more closely correlate their behavior. Providing
correlation for agents in a DEC-POMDP has been shown to
improve team performance [3].

5.1 Multiagent Heaven or Hell

First we will consider the Multiagent Heaven or Hell do-
main as introduced in Sec. 3.1. The environment contains
seven grid cells (]S;| = 7) and the shared state so is the
cross-product of the time index and {“heaven is in bottom-
left grid cell”,“heaven is in bottom-right grid cell” }, where
we set the horizon of the problem to 15. Each agent has
a domain level action set A¢ = {north, east, south, west,
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Figure 3: Pack Tag results. Plot (a) shows the ex-
pected discounted reward (E R) obtained for differ-
ent communication rewards (r.), and figure (b) plots
the average number of messages sent.

stay in place}, where the first four are movement actions
that transport the agent one grid cell in the corresponding
direction, and the last action is a no-op which has no effect
on the agent’s location. Each agent can observe whether
there is a wall to the left or to the right of it, and in the
priest state it can observe the location of heaven, resulting
in six possible observations O ={left, right, both, neither,
heaven-left, heaven-right}. Meeting in heaven by all agents
is rewarded by 7, = 10 and meeting in hell by —rj. Visiting
the priest incurs a negative reward r, = —2, every move-
ment action a reward of —0.1, and the discount factor ~y is
set to 0.95. Both the transition and observation model are
deterministic, and the agents always start in the center grid
cell (the cell at the T-intersection).

Fig. 2 shows results obtained by using the local reward
modification scheme described in Sec. 4.2, for teams of 2
and 3 agents. First, we see in Fig. 2(a) that the team per-
formance increases when the penalty for communication de-
creases, i.e., r. becomes less negative. In all cases one agent ¢
will visit the priest, but it will only send a message indicat-
ing the location of heaven if the communication cost is low
(re > —2), see Fig. 2(b). Otherwise the other agent(s) will
go to one of the heaven/hell locations, and agent ¢ will only
join them if it is indeed the correct location. When com-
munication is free, performance is best and a large num-
ber of messages are communicated, as one would expect.
On the other extreme, when communication is expensive
(re = —3,—2.5), the performance remains stable.

5.2 Pack Tag

The “Pack Tag” problem models a game of tag, in which
two robots have to tag an opponent robot [19, 5]. The game
is played on a k x k grid, with one robot starting in the
bottom-left corner and the other one in the top-right corner.
At the beginning of each game the opponent is positioned
uniformly at random in one of the grid cells and remains
stationary. The two robots have to occupy the same grid
cell as the opponent and execute the tag action simultane-
ously in order to tag the opponent. The robots can move in
any of the four compass directions, and their actions are de-
terministic. The two robots have a sensor which detects the
opponent with full certainty when the opponent is sharing
the same grid cell. Each robot receives a null observation
otherwise, but remains perfectly localized due to the known
starting position and noise-free motion. Each action incurs
a reward of —0.1 and successfully tagging the opponent re-

sults in a reward of 10. The agents have to tag the opponent
in 10 time steps, and v was set to 0.95.

As in Sec. 5.1 we varied the communication cost while em-
ploying the local reward modification method, and using a
grid size k = 3. Fig. 3 shows that when the communication
cost is high, r. < —0.05, the agents converge to a non-
communicating policy pair. They both search the grid, and
when one of them sees the opponent it waits for the other
to join it before jointly tagging it. However, when com-
munication is cheaper the agents communicate when they
observe the opponents, which indicates to the other agent
the location of the opponent. Here the benefit of including
time in so is manifested, as receiving the same message at
a different time step has a different meaning: agent ¢ knows
agent j’s policy, and therefore knows j’s search pattern, and
in this way knows in what grid cell agent j observed the
opponent when j send its message. After receiving an in-
formative message an agent abandons its search pattern and
moves directly to its teammate’s position, where they jointly
tag the opponent. The policy pair computed for r. = —0.01
has converged to better local maximum, which uses a more
efficient form of communication.

6. CONCLUSIONS

In this paper we studied the problem of computing a plan
for a team of agents. We considered a general problem set-
ting, in which agents inhabit a stochastic environment that
is only partially observable to them. The agents have the
capability to communicate, but sending messages has a cer-
tain cost and the available bandwidth is limited. Decentral-
ized partially observable Markov decision processes (DEC-
POMDPs) formalize such multiagent planning problems for
groups of cooperating agents. We presented a decentralized
model for tackling these kinds of planning problems, which
incorporates a communication channel. Decentralized mod-
els potentially scale better and are a more natural paradigm
for modeling agents that cannot observe each other’s state.
Contrary to other recent approaches, we treat communica-
tion as an integral part of the model, and model it directly
in the DEC-POMDP. We proposed an approximate itera-
tive method for computing policies in the proposed model,
and obtained encouraging preliminary experimental results
in two domains.

As future work we would like to examine possibilities of
simultaneous learning of communication-derived POMDPs
for two or more agents, which could potentially improve
upon the alternating-maximization paradigm. Furthermore,
we would like to experiment on problems with more agents,
which are too large to be solved by centralized methods. For
problems that are still solvable by centralized algorithms, we
intend to compare the centralized solution to the decentral-
ized one, to gain more insight in how optimality is traded
off for more efficient computation.
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