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ABSTRACT
As users interact with an increasing array of personal computing
devices, maintaining consistency of data across those devices be-
comes significantly more difficult. Typical solutions assume ei-
ther access to centralized servers, continual connectivity, or un-
bounded storage and CPU capacity. In practice, users own devices
with widely varying processing and storage capabilities that use in-
termittent or sparsely-connected networks and incur (often asym-
metric) transfer costs. We identify the conditions that enable the
seamless management of a user’s data across devices and present
a multi-agent system built upon a decision-theoretic approach to
constructing and executing multiple plans to achieve consistency
in a peer-to-peer, partially observable, non-deterministic environ-
ment. We analyze the performance of these plans in comparison to
a standard epidemic replication algorithm used in many database
consistency applications.

1. INTRODUCTION AND MOTIVATION
Business professionals and academics regularly use multiple com-
puting devices including desktops, laptops, PDAs, and cell phones.
Each device is potentially powerful enough to provide the ability
to view and manipulate arbitrary data; however, this power comes
with the price of maintaining data consistency across each of those
devices. For example, it is quite common for a user to edit a file on
a desktop at work during the day (such as a paper they are compos-
ing) and then email it to themselves so they can continue writing
when they get home at the end of the day. When they are finished
for the evening, they will often email the latest revision to them-
selves again so they can print and revise it at work. Even if the
user remembers to send the file, they will end up with multiple ver-
sions of the same file which increases the potential they will edit
the wrong version and then have to spend time reconciling the dif-
ferences. This problem is often exacerbated by the fact that the user
may use more than two computers. For example, the user may have
a desktop at work and at home as well as a laptop and PDA.

In this paper, we consider the problem of automatically and trans-
parently ensuring that the user’s data remains consistent across all
devices they use. We construct a Personal Information Environ-
ment (PIE) representing a virtual data space not tied to any one
physical device. The goal is to provide the user the illusion that
every file is available on every device all the time.

To maintain consistency, users could try to use a single storage unit
(such as a USB key or iPod) to store their files, mounting it on any
device they are currently using. This would simplify the data syn-
chronization problem as the master copy of all files would always
be on the storage unit; however, there are several problems with
this approach. First, it requires the user to carry the storage unit
with them, and plug it in to every device they use. If the user for-
gets to plug it in, or leaves it somewhere, they will be unable to
access their files. Second, these devices often have limited storage:
a USB key only has 512 MB or 1 GB and the latest cell phones
have only 2GB of storage1, meaning that only a subset of the user’s
files may fit on the storage unit. Larger devices (such as iPods)
are more expensive and likely to remain so for the foreseeable fu-
ture. Third, the storage unit must be pluggable into any device that
the user accesses. While most modern PCs have a USB port, few
PDAs or cell phones do. Moreover, USB is slow; a user accessing
a large amount of their data would need a faster interface (such as
FireWire) but even fewer devices have those ports. Fourth, a user
may access multiple devices at once. For example, a user may use
a laptop and a desktop at the same time in their office, or may be
sitting at a PC but also accessing their PDA. However, the storage
unit can only be plugged into one device at a time, meaning the
user’s files are only accessible on one device. For all of these rea-
sons, relying on a single physical storage device to manage user
files often simply will not work. A software solution, such as the
one presented here, can deal with each of these issues: it can always
be running on every device, and it can use the full storage capacity
of the device.

Another alternative is for the user to synchronize their files with
a central file server (such as a CVS server, Samba server or NFS
server). This approach avoids the physical limitations of a sin-
gle storage unit. However, the central file server also faces its
own problems. First, for many devices connectivity is intermit-
tent. PDAs may only be connected when within BlueTooth range,
while laptops may only be connected when near a WiFi hotspot.

1Even if one believes that 2GB provides ample storage, there is still
an issue of limitations due to power consumption, something that
is not keeping pace with growth of storage capacity.



Therefore, the device may not always be able to connect to the file
server on demand. We might ask the user to monitor connectiv-
ity and ensure the device is connected when it is time to transfer
files, but this places a burden on the user. Second, not everyone is
willing to set up and maintain a centralized, always connected file
server. Even users with broadband connections are usually behind
a firewall, making it difficult for any device that they set up in their
home (or work) to serve as a file server for when they are not at
home (or work). We might ask the user to contract with a commer-
cial storage service that charges a fee to act as the user’s file server;
however, many users are unwilling to trust their personal data to a
commercial entity. Users may also prefer a free solution to a fee-
charging one. Moreover, such a commercial service will have to be
accessed over the internet, which is often much slower than a short
range connection.

When we move toward a decentralized automated solution, several
difficult problems arise. We must know the files the user will need
on any particular device. The topology of the device network is not
known and may change as devices come and go. As noted above,
regular connectivity is not guaranteed, and for many users there
is no centrally available server. Further, devices may not have a
fixed IP address (e.g., machines on consumer DSL networks may
have continually changing IP addresses) or reside behind firewalls.
As a result certain devices may never communicate directly with
each other, making for a partially observable environment. In this
situation, the role of limited capacity devices such as PDAs and
cell phones frequently on a user’s person becomes that of a cru-
cial vessel to transfer data. Still, the computational and storage ca-
pability of each device varies considerably, as does the capability
and cost of transferring data. Additionally, transferring data is non-
deterministic. Executing, or planning to execute, a transfer between
two devices does not guarantee that the data will transfer success-
fully even if those devices connect. In short, we have a problem of
propagating information in a resource-constrained, distributed and
peer-to-peer non-stationary network that is only locally observable.

Described this way, the problem seems hopeless; however, we have
several advantages. First, users are often at least locally predictable.
They cannot be in many places at once, allowing time to move data
between devices. Even devices that are never directly connected
(e.g., an office machine behind a firewall or turned off at night and
a home machine turned off during the day) can take advantage of
intermediate devices to communicate (e.g., a PDA or cell phone).
Finally, because a limited number of files are touched in a given
day and the number of devices is quite small, the problem admits
practical computational tractability.

Our approach is for each device to identify important data that it
might possess, other devices that might need that data, and to con-
struct plans to move that data using whatever intermediaries may
be necessary.2 In addition, each device adapts the plans of other
devices. Acting on a plan only requires that a device transfer data
based on the utility of the plans associated with that data. There-
fore, plans can be acted upon even by devices with very limited
computational ability. Severely limited devices (e.g., USB keys)
can even contract out the construction and execution of plans to
other more powerful devices in the network.

2Note that our goal is not to have every device have all data. First,
each device should have the data that the user needs for it to have.
Second each device should have any other data that helps other
devices to have the data the user needs them to have.

In the rest of this paper, we describe in detail our algorithm for
building and acting on collections of plans. We discuss several
practical issues that arise and elucidate the assumptions that allow
the system to work. Additionally, we compare the performance of
our algorithm to that of the standard epidemic algorithm and point
out the improvements in performance and behavior. Finally, we
conclude with a discussion of our results and suggest future work.

2. RELATED WORK
One of the best-known systems for managing information on mo-
bile devices is Coda [13]. Coda uses manually constructed or heuris-
tically derived “hoard profiles” that determine which files should
be replicated to which devices. Coda provides support for repli-
cating a file between a device and a central file server, but does not
support multi-hop transfers over resource-constrained devices. Fur-
ther, Coda assumes that when a device is connected to the server,
the connection is of sufficient duration and bandwidth to perform
all necessary transfers. Other prominent mobile systems projects
assume either a central file server, or high-bandwidth, always-on
connections between devices.

There has been a large amount of other work on update consistency
in disconnected or weakly connected networks. Examples include
FICUS [18], Little Work [12], Bayou [7], and Thor [16]. The goal
of most of these systems is to manage updates, propagating them
to a primary copy or to various clients. Our goal is somewhat dif-
ferent: to place cached copies of files where a user will need them
as proactively as possible. Once the replicas are placed, standard
techniques can be used or extended to manage consistency.

Our work is based on ideas drawn from both multi-agent plan-
ning and decision-theoretic planning. While we do not explicitly
represent cooperative or collaborative goals like some multi-agent
systems, the agents in our system operate in unison to achieve a
globally useful—if not globally consistent—state. In the context of
agent collaboration, our agents have an implied contract to make
their best effort to complete any and all multi-plans they receive
during transfers.

In [9, 8], the authors present a framework for agent collabora-
tion. They describe conditions necessary for agents to collaborate
to achieve a single shared goal. [21] outlines a more complex ar-
chitecture for multi-agent interactions, allowing for subgoal con-
tracts to other agents, plan sharing, centralized plan storage, multi-
technology integration, and other forms of agent interaction. There
are also STEAM agents [20], built upon the joint intentions frame-
work [15]. The implied contract between agents in the joint inten-
tions framework requires that each agent, upon obtaining knowl-
edge of another agent’s goal, assumes the goal as its own, pursuing
it until it is achieved or becomes irrelevant. STEAM agents propa-
gate goal existence information and goal status information to each
other via peer-to-peer updates.

In our domain, there is a shared goal that is not explicitly repre-
sented to the agents. As we shall see below, goals are represented
as “multi-plans”. These multi-plans are sent from agent to agent
along with whatever data they were constructed for. Each device in
the PIE is an element of a set θ of agents and every multi-plan can
be thought of as an unsatisfied goal p. Therefore, the agents and
all of the multi-plans currently being executed by the devices in the
PIE represent a set of joint persistent goals JPG(θ, pi). As the
multi-plans are transferred from device to device, they are merged
and updated with other multi-plans to reflect (as accurately as pos-



sible) the current status of the JPG. A multi-plan can become in-
validated when a device receives information that there is a newer
version of the data associated with that multi-plan. This is identi-
fied during the merge process and can trigger replanning if neces-
sary.

Because the devices that comprise a PIE have varied characteristics,
it is important for agents to have some notion of the ability of their
peers. [1] presents a set of criteria for describing heterogeneous
agents in complex planning architectures. It contains metrics that
indicate characteristics of an agent’s abilities and intentions. These
metrics consist of commitment (a measure of an agent’s desire to
achieve a goal), responsibility (a measure of how much the agent
must plan to see a goal reached), authority (ability of the agent to
access resources), and independence (ability of the agent to con-
struct plans). Agents in our system are all committed to joint goals;
however, different types of devices in a PIE have varying levels
of responsibility, authority, and independence. For example, a rel-
atively powerful desktop computer may have high responsibility
because it is almost always connected and has a fast processor that
enables it to construct multi-plans on behalf of other agents; high
authority for many of the same reasons; and high independence.
On the other hand, a USB key will have little responsibility, au-
thority, and independence. Using these measures, we tag devices
with profiles that enable more powerful devices to aid in operations
that less powerful devices may not be capable of.

There has been a great deal of effort to improve the performance
of decision-theoretic planning by reducing the state-space through
abstractions. For example, in [3] and [5] the authors present an
abstraction method that reduces the state space to significantly im-
prove the performance of constructing decision-theoretic plans. They
prove a bound on the loss of plan precision.

By contrast, our approach exploits the fact that our state space is
limited by the number of devices comprising a typical PIE. We
can thus utilize a brute force greedy approach much in the spirit
of early decision-theoretic planning systems such as [11] and [22];
however, we do improve over the limitations of those systems (sug-
gested by [2]) by utilizing innovative utility functions to encode
more complex information about the environment.

[10] defines a middle ground between traditional goal-directed agents
and preference-based agents. In this middle ground the authors are
able to define various stages of goal satisfaction, including prefer-
ence (or lack thereof) for partially satisfied goals and the trade-off
between satisfying a goal and the cost of resources consumed in
service of the goal. Our characterization of expected plan utility is
amenable to adjusting specific representations of action utility, ac-
tion cost, and the probability of action success to encode each type
of goal-directed behavior.

3. KEY CONCEPTS
In this section we lay the foundation for the Multi-Plan algorithm.
We define several terms and derive the expected utility of plans
and multi-plans. We conclude with a brief discussion of important
implementation details.

3.1 Definitions
Our goal is to place data, here represented by files, on different
devices. A placement is an ordered list of unique device IDs on
which a file is to be located. For example, l(1, 2, 3, 4) is the place-
ment corresponding to a file being located on devices 1, 2, 3, and

4. l(1, 3, 2, 1) is not considered because it corresponds directly to
l(1, 3, 2).

A plan, Pi, is an ordered list of placements: {li,1, li,2, ..., li,k}
where li,j denotes the j-th placement of plan Pi. We constrain each
plan so that each of its placements is a prefix of the placement that
follows. For example, Pi = {l(1), l(1, 4), l(1, 4, 2), l(1, 4, 2, 5)}
is the three step plan moving some file from device 1 to device 5 via
devices 4 and 2, in that order. As such, a plan can be abbreviated
by its final placement: Pi ≡ l(1, 4, 2, 5).

Each placement has an associated utility; that is, there is some
value to having a particular file on a particular device or set of de-
vices. We define the utility of a plan from those placement utilities:
U(Pi, j) is the utility of the plan Pi at position j (U(Pi, j) =
U(l(i1, i2, ..., ij)) where li,j = l(i1, ..., ij)).

If pi,j is the probability of transferring some bits successfully from
device i to device j, and ci,j is the cost of transferring those bits
from device i to device j, we can calculate the expected utility
of a plan in a straightforward way. For notational convenience,
let L(Pi, j) =

Qj−1
x=1 pix,ix+1

be the likelihood of data reach-
ing device ij from device i1 following plan Pi; let C(Pi, j) =
Pj−1

x=1 cix,ix+1
be the cost associated with data reaching device

ij from device i1 following plan Pi; let NL(Pi, j) be the net
loss3 of the plan Pi at its placement li,j ; and let NV (Pi, j) =
U(Pi, j − 1)−C(Pi, j − 1)−NL(Pi, j) be the net value associ-
ated with data reaching device ij−1 from device i1 but not reaching
device ij following plan Pi. The expected utility of a plan is:

EU(Pk) = EU({lk,1, ..., lk,n})

≡ EU(l(k1, k2, ..., kn))

= (1 − pk1,k2
) ∗ −NL(Pk, 2) (1)

+

n
X

i=3

L(Pk, i− 1)(1 − pki−1,ki
) ∗NV (Pk, i) (2)

+ L(Pk, n) ∗ (U(Pk, n)− C(Pk, n)) (3)

Expression 1 is the cost of failure of the entire plan scaled by the
probability of it failing during the first step. Expression 3 offsets
the utility of the success of the plan with the cost of its execution
and scales it by the probability of success. Expression 2 is a similar
computation to Expression 3 but it considers the effect of the plan
failing at each intermediate step.

Plans do not occur in a vacuum. There may be many plans across
different files. A multi-plan is simply a (possibly ordered) set of
plans: Mi = {Pi,1, ..., Pi,n}. Making an assumption about inde-
pendence, we define the expected utility of a multi-plan to be the
sum of the expected utilities of the plans it contains: EU(Mi) =
P

Pk∈Mi
EU(Pk).

From the perspective of an individual agent, we seek a locally op-
timal (according to expected utility) set of multi-plans to approxi-
3The net loss is some measure of the negative effects of not get-
ting data to its desired destination. In our experiments, it is the
utility not realized by failing to complete the plan: NL(Pi, j) =
U({li,j , ..., li,n}) = U({li,1, ..., li,n}) − U({li,1, ..., li,j−1}),
where n is the number of placements in a plan. There are other
possibilities as well.



mate the globally optimal set. Because multi-plans are constructed
in a partially observable environment, it would be infeasible to
consider all inter-plan interaction. Assuming independence allows
concise and computationally tractable plan construction.

3.2 A Note on Probabilities and Costs
In the previous section we defined a notion of expected utilities de-
rived from other values such as placement utilities, costs, and con-
nection probabilities. It is reasonable to wonder how the algorithm
will arrive at these numbers. We are in the process of integrating
multi-plans into the Accord [4] middleware system we are devel-
oping. Using Accord, we can derive values from actual user data.
Here we discuss some of our choices and other possibilities.

The utility of a placement for a particular file is based on the “affin-
ity” of that file for each of the devices in the placement, typically
implemented as a linear combination of total reads and writes for
that file on each device. Transfer probability is the empirical prob-
ability of the success of transferring a number of bits given a con-
nection. Both probabilities and affinity can be stored for windows
of time during the day and/or days of the week, as the probability of
a cell phone being near the office computer on a Monday at 10am
might be different than at 8pm. Using this type of encoding, tempo-
ral extent can be added to expected utility calculations by combin-
ing probabilities of connection for each time window between the
time of the construction of the plan and the desired delivery time of
the data.

Similarly, costs can be related to the actual bandwidth consumption
during a transfer and the amount of a device’s resources that would
be consumed receiving, storing, and/or sending a file. Regardless
of the specific representation of probabilities, utilities, and costs,
our algorithm will select a multi-plan to maximize expected utility.

It is important to note that the relationship between costs and util-
ities is crucial. In particular, the “units” of each should be consis-
tent; otherwise, undesirable behavior will result. For example, if
cost is a relatively low percentage of utility, it is likely that most or
all plans will have high positive expected utility. In the best case,
only a small subset of possible plans should be identified for inclu-
sion in a multi-plan.

It is also worth noting that any information used to give value to
the abstract concepts of probabilities, costs, and utility will likely
be based on statistics gathered by individual devices in the PIE.
Much in the manner of the joint intentions framework, in order
for a device to have accurate enough information to build a multi-
plan to get data to another device, it will either need to connect
directly to it, or receive the information from another third party
device. The third party may have received that information through
direct connection or via another third party, and so on. Interestingly
enough, the data can then be sent between devices as the payload
of the transfers that are executed as a result of the multi-plans that
are based on it.

4. MULTI-PLANS
In this section, we present the Multi-Plan algorithm and show how
it can be used to intelligently transfer files between devices. Multi-
plans are constructed using a simple greedy, but locally optimal
strategy. Our approach is an approximation of a true globally opti-
mal set of multi-plans; however, that can only be computed if the
environment is fully observable.

Each agent in the system uses a straightforward strategy.4 Identify
every file it contains that it believes is the most recent version and
that is out of sync with other devices.5 For each such file, construct
a multi-plan (Section 4.1) to transfer the file to any device needing
to be updated. When a connection is established with another de-
vice, exchange and synchronize file location information and sets
of multi-plans (replanning if necessary), and execute a transfer or-
dering (Section 4.2). Repeat as necessary.

4.1 Construction of Multi-Plans
Suppose it is necessary to transfer a file f from a device x to another
device y. Further, suppose there are d devices in the PIE. This
algorithm constructs multi-plans to achieve that goal:
CONSTRUCT-MULTI-PLAN(f, d, x, y)
1 Set S ← NIL
2 MultiP lan MP ← NIL
3 for i← 2 to d

4 do S ← S ∪ { All Plans of length i from x to y }
5 for each Pk in S

6 do u← EU(Pk)
7 if u > 0
8 then MP ←MP ∪ Pk

9 return MP

Note that when there are no positive utilities, the algorithm will re-
turn an empty multi-plan because any action (or transfer) would
be expected to result in a decrease in overall utility. It can be
shown that any multi-plan constructed according to our algorithm
will yield a maximum expected utility plan.

LEMMA 1. Let f be some data to transfer, d be the number of
devices in the PIE, x be the original location of the file, and y be the
ultimate destination of the file. A multi-plan to transfer f from x to
y constructed using this Algorithm will yield a maximum expected
utility multi-plan.

In the interests of space, we have stated this as a lemma and omit
a formal proof. The proof relies on two observations. First, adding
only plans with positive expected utility will maximize the util-
ity of the multi-plan. While this can be proved rigorously, it intu-
itively follows from the definition of utility. Second, considering
only plans of length 2, ..., d is sufficient. A plan of length < 2
is always satisfied, and any plan of length > d does not add any
utility.

4.2 Transfer ordering
Once plans have been constructed, they have to be acted upon. Act-
ing on a plan is defined to be transferring the data associated with
it and updating its progress.

Suppose a device x has a set of multi-plans S and connects to a
device y.
EXECUTE-TRANSFERS(S, x, y)
1 for each MP in S

2 do u← 0.0
3 for each Pi in MP

4 do if NEXT-HOP-IS(Pi, y)

4For computationally limited devices like USB keys, these steps
can be contracted to a peer device.
5The Accord middleware can provide this information.



5 then u← u + EU(Pi)
6 MP.value← u

7 SORT-SET-BY-VALUE(S)
8 for each MP in S

9 do TRANSFER(MP, MP.data)

The algorithm first tags each multi-plan with a value based on the
total expected utility that is due to plans containing device y as the
next hop. The set of multi-plans are then sorted based on this value
to obtain the final transfer ordering. The result of this operation
is to transfer the data that has the highest expected utility based
on arriving at y first. This ordering allows the agent to make a
decision about which files are most important to get to the currently
connected device. As we shall see below, this algorithm provides
the most benefit when either connectivity between devices or the
capacity of any crucial device is limited and the decision-theoretic
value of the multi-plans influence the agent to optimally prioritize
the files with the highest expected utility.

When device capacity is limited, a device must decide which files
and associated multi-plans to accept or reject during transfers. In
our case, a limited capacity device always accepts newer versions
of files it already contains, but when faced with a choice accepts
new files only if the multi-plans associated with the new file have
higher utility than the lowest utility multi-plans for files already on
the device. We later refer to this as the smart eject/reject policy.

4.3 Implementation Optimizations
There are a few implementation details that enable faster perfor-
mance. While each placement must be considered during multi-
plan construction, possible placements change very slowly and are
pre-enumerated before any connection. Similarly, utility calcula-
tion can occur offline and incrementally. In practice, the values of
the costs and utilities are based on information gathered from other
devices, so some recalculation must occur in response to new infor-
mation. Unfortunately, this new information will only be obtained
during a connection. Therefore, this recalculation needs to be as
efficient as possible.

Information obtained during a connection about the location of a
file in the system can have one of two effects. First, if the new infor-
mation indicates that the file has arrived at a destination for which
there is a pending multi-plan, the effect will be that the need for the
plan will be eliminated. Second, the information can indicate that
a device previously believed to have a file no longer does. In that
case, a new multi-plan may need to be constructed. Fortunately,
the number of devices tends to be small, so plan construction does
not require a significant amount of time. In the former case, it is
important to note that replanning after information is exchanged at
the beginning of a connection period will quickly correct any inac-
curacies caused by multi-plans being constructed with out-of-date
information.

Also, while not explicitly stated above, we allow for short circuit
evaluation of multi-plans. For example, if a plan from a device
x to a device y contains intermediate steps a and b (x → a →
b→ y) but x connects directly to y before a, the plan will be short
circuited. Then, when replanning occurs during future connections,
both x and y know if a or b still need a copy of the data for which
the multi-plan was constructed and will act accordingly.

5. ANALYSIS
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structed, where f is the number of files.

In order to analyze our algorithm’s performance, we ran simula-
tions for various device topologies, number of files, device capabil-
ities, and transfer strategies. We ran simulations to determine the
time required to plan, to measure performance during bootstrapping
a PIE6, and to determine performance under a typical workload.

5.1 Timings
In an attempt to identify what can be considered an upper bound
on the offline CPU time necessary to bootstrap a PIE, we ran tests
to determine how long it takes to construct multi-plans in environ-
ments with five, six, and seven devices. The results are plotted in
Figure 1. All tests were conducted on a 1.7GHz Pentium M. The
timings were gathered by iteratively increasing the number of files
in the PIE. Each simulated device received f

d
simulated files to start

the simulation where f is the number of files and d is the number of
devices. The time to construct a plan to get each file to every other
device in the PIE was then recorded and the process was repeated.
In other words, each device constructed (d−1)∗f

d
multi-plans.

Notice that for five devices and 3,000 files, 2,400 multi-plans can
be constructed in less than 1/2 a second. Because the number of
possible plans increases hyper-exponentially with the number of
devices, it is not surprising to see the sharp increase in the time
required to construct plans for six and seven devices; however, even
those times are reasonable for a bootstrap process (e.g., 1.5 seconds
for 2500 multi-plans with 3,000 files and six devices).

It is worth noting that in practice, significantly fewer plans will
need to be constructed during normal operations. Our initial user
study has indicated that an average user modifies between five (dur-
ing periods of normal use) and forty-five (during periods of heavy
work such as coding or preparing a paper submission) files a day.
Even in a PIE consisting of seven devices that connect to other de-
vices once a day, constructing 45 × 6 = 270 multi-plans will take
less than one second. With the exception of very extreme cases
where connections between devices last for mere fractions of a sec-
ond, time used to plan and replan during connections will be bene-
ficial.

5.2 Bootstrapping
We ran simulations using five devices with 200 and 400 files in
total. Files were distributed uniformly across the devices. Con-
6Bootstrapping a PIE occurs when devices (with possibly disjoint
sets of files) are “introduced” for the first time and may exchange
files with each other to achieve consistency.
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nections between devices were exclusive (i.e., a device could not
establish or accept a new connection while connected to another
device) and intermittent (i.e., were not always available and were
randomly terminated after 3 to 10 seconds).

We ran three sets of trials to determine the performance of multi-
plans in comparison to the epidemic replication algorithm [6] mod-
eled after the epidemiological spread of disease, a popular mecha-
nism for distributing data [17]. In the epidemic model, each device
simply transfers any files missing from any other device it comes
in contact with. For each set of trials, the simulations were started
from the same initial state (i.e., file locations, utility values, prob-
abilities, costs, and so on). The simulations were considered com-
plete when bootstrapping completed (when all devices had received
a copy of every file in the PIE).

We chose to compare our work against epidemic replication rather
than ad hoc network routing methods, such as those in [14], for
a few reasons. First and foremost, our multi-plans are designed
to provide data consistency by taking the path from a device to an-
other device that balances the best chance for success with the most
improvement along the way. While epidemic replication does not
consider more than one hop at a time like multi-plans, it is designed
to be used in situations where data consistency is the desired result.
On the other hand, ad hoc network routing is designed solely to
move information from one point to its destination as efficiently
(in terms of bandwidth) as possible. This is not our goal. Sec-
ondly, there is a distinction to be made between peer-to-peer net-
works and peer-to-peer device networks. The former is a (usually)
large number of loosely coupled and relatively powerful machines
connected over the internet where decentralized and (more impor-
tantly) intentionally disjoint resources are shared. The latter is a
small number of possibly resource constrained devices tightly (al-
beit intermittently) connected that are sharing data that is supposed
to be consistent across all devices.

For our experiments, one set of trials was run with 200 files and a
randomly generated connection scenario. The second set of trials
was run using 200 files and connection probabilities that encode a
typical five device scenario: there are two machines in the work
place behind a firewall, two machines at home behind a firewall,
and one device that is carried between work and home that is the
only means of connection between the two sets of machines. The
actual pairwise connection probabilities used are presented in Ta-
ble 1. This scenario is a simplified version of the one described in

Connection Probabilities for the Bow Tie Trials
Device 1 2 3 4 5

1 – 0.95 0.5 0.0 0.0
2 0.95 – 0.5 0.0 0.0
3 0.5 0.5 – 0.5 0.5
4 0.0 0.0 0.5 – 0.95
5 0.0 0.0 0.5 0.95 –

Table 1: Pairwise connection probabilities between all five de-
vices in the bow tie simulation. While they happen to be sym-
metric in this example, they need not be.
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Figure 3: This plot indicates the relative frequency that a device
in the simulation was the first to obtain a copy of all of the files
during the bow tie simulations with 400 files.

the next section and we refer to it as the “bow tie” scenario because
a graphical depiction of the connection scheme resembles a bow
tie. The last set of trials was run with 400 files and the work/home
connection scenario.

Figure 2 shows the performance of the two algorithms. There is
a clear advantage to using the multi-plans in all cases. The multi-
plans reached consistency with an average 14.25% fewer connec-
tions for the randomly generated connection scenario. Addition-
ally, the simulations run using multi-plans outperformed the epi-
demic on the work/home connection scenario as well. The simula-
tions run using 400 files yielded similar results to the random sce-
nario with multi-plans reaching consistent file placement in an av-
erage of 14.08% fewer connections than the epidemic. Even more
improvement occurs in the 200 file home/work scenario with an
average of 18.95% fewer connections.

5.3 Behavior
Perhaps the most interesting result of the bootstrap simulations is
the high level behavior seen during the bow tie simulations. By
looking at the probabilities in Table 1, we know that any file on
device 1 would have have to pass through device 3 before it can
reach device 4 or 5. Figure 3 plots the relative frequency that a
device in the bow tie simulation was the first to receive a copy of
every file.

This is interesting to examine because the problem structure makes
it necessary to get a copy of every file to device 3 before any of
the other devices can obtain a copy. As can be seen from Figure 3,
the multi-plan simulations far outperformed the epidemics in this
sense. Device 3 first obtained a copy of every file in 80% of the
simulations run using the multi-plans but only 40% of the simula-
tions run using the epidemic.
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5.4 Performance Under Load
Our interests are practical, so it is important to determine the per-
formance of the multi-plans in a setting that more closely models
everyday usage. Our simulator allows us to specify reads and writes
on specific files over different periods of time, and to allow modi-
fiable connection times. Further, to capture meaningful error, we
measured stale accesses: the number of attempted reads and writes
on files that are not the most recently modified version across all
devices.

In each scenario, a user travels between home and work. There are
two devices at each location and a fifth “go-between” device. Each
location employs a firewall, so the go-between is the easiest way
to transfer data between home and work. Scenarios differ in the
connectivity and storage characteristics of the go-between: a Blue-
Tooth phone (low capacity, low connectivity); a BlueTooth PDA
(low capacity, high connectivity when docked); and a laptop (high
capacity, mixed connectivity depending on connection mode).

All devices are capable of executing plans and using the smart
eject/reject policy described earlier; however, when a cell phone
is the go-between device, it is not capable of constructing plans.
When the epidemic is used, there is no utility information available
so the limited capacity device randomly ejects files to accept new
incoming files.

Scenario data was gathered over 20 trials using 1000 files. Only
450 of the files were eligible for reads and writes by the user. The
capacity of the go-between device was varied from 0.05% to 100%
of the number of files in the simulation. For simulations with ca-
pacity under 8%, the go-between was modeled as a cell phone. For
simulations between 8% and 50%, the go-between was modeled as
a PDA. For the 100% capacity simulation, the go-between device
was modeled as a laptop. Additionally, when the go-between de-
vices was modeled as a cell phone, the frequency that a file was
modified on it was reduced significantly in comparison to when
it was modeled as a laptop or PDA. These variations allow us to
test for different relationships between storage capacity, connection
quality (probability of failure), and device usage.

For each scenario (and its variations), we simulated eight days worth
of user activity. To gauge the adaptivity of each policy, we used a
workload in which the working set of files changed after the first
four days. This corresponds to a situation where the user begins
working on one project on Sunday, finishes on Wednesday, and
switches to a new project for the rest of the week. Regardless,
portions of the working set remained in constant usage throughout

the entire week, modeling files such as those modified by reading
email.

We selected a workload of this nature for a few reasons. First, we
feel it is an accurate model of typical users’ file usage pattern. This
type of workload is intended to model a scenario where a user is
writing code for a few days to obtain results for a paper she is about
to write. Once the code has been written, the user can “switch con-
text” and begin writing the paper, effectively changing the working
set of files. Second, we feel it is a fairly difficult scenario for our
algorithm to handle and may provide an advantage to the epidemic
algorithm. This advantage is due to the fact that the epidemic does
not have a “memory” and likely will not be affected by the shift
in working set. Our algorithm remembers the frequency of read
and write operations on a file and uses that to determine the file’s
importance. When the working set changes in the middle of the
simulated week, our algorithm has to choose between keeping the
old working set of files consistent (as they seem important with a
large number of reads and writes) and keeping the new set of files
consistent (with only a few recent reads and writes).

The results are shown in Figure 4. Note that the percentage of stale
write operations is higher in all cases than the percentage of stale
read operations. This is an artifact of our decision to be consistent
with our initial user studies and treat large sets of files in the simu-
lation as read only files (e.g., as would happen with music files).

With the exception of the 100% capacity simulations, the multi-
plans (in most cases significantly) outperformed the epidemic algo-
rithm. With severely limited capacity (0.05%), the multi-plans did
not reduce the error by as large a margin as with other capacities but
still provided some benefit. In the best case (with the go-between
cell phone having 8% capacity), the error rate on write operations
was less than half of the error rate for the epidemic model.

6. CONCLUSION AND FUTURE WORK
We have described the problem of managing data across an array
of resource-constrained devices. Because it is difficult for users
to deal with this problem directly, we have argued for building a
distributed support system to allow multiple agents to act on the
user’s behalf.

The problem is complex and challenging. For example, knowledge
of the working set of files is critical to ensuring that the proper files
are prioritized for transfer in the presence of network connections
with a high failure rate. Additionally, when certain devices never
connect directly, it becomes even more crucial that there be some
intelligent management of the routing of data via more highly con-
nected devices.

We have presented motivation for the use of decision-theoretic multi-
plans for file consistency management in a distributed peer-to-peer
device network. We have shown that there is a distinct advantage to
using planning techniques to intelligently order file transfers in the
presence of constrained device networks over current algorithms
for distributed data replication. Further, it is worth noting that in
a scenario where every device has virtually unlimited storage and
connectivity, our algorithm performs exactly as an epidemic repli-
cation algorithm would (within 0.115% error in simulation); how-
ever, when there is a physical constraint such as limited connection
time or limited storage capacity, our algorithm far outperforms the
epidemic (reducing error by as much as 51%).



Based on a series of initial user studies, we are currently working
to fully integrate this method with our Accord middleware, a multi-
device meta-data manager. The meta-data obtained using Accord
will allow us to further augment our characterizations of utility and
cost with other information such as locality and personal biases not
easily identified from the type of raw statistics used in our experi-
ments.

The end goal is to have systematic support for the use of statisti-
cal machine learning techniques to discover patterns in the usage
of data and to infer relationships between resources for a particular
user. For example, the context in which a file is being used—and
therefore the other files it may rely on—can play an important role
in its value. For example, suppose a user is writing a Java pro-
gram. While the user is actually writing the code, it is important
that all the Java classes in the project be up to date so compilation
and testing will not fail; however, if the user has completed writing
the code and is going to write documentation, it may not be quite
as important that all of the files be up to date. We have some pre-
liminary work on this topic [19]. Those behaviors and relationships
can then be used to build personalized models of file affinity and to
drive the construction of the most efficient multi-plans possible for
any given user.
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