
Reinforcement Learning for
Declarative Optimization-Based Drama Management

Mark J. Nelson, David L. Roberts, Charles L. Isbell, Jr., Michael Mateas
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, USA

{mnelson, robertsd, isbell, michaelm}@cc.gatech.edu

ABSTRACT
A long-standing challenge in interactive entertainment is the
creation of story-based games with dynamically responsive
story-lines. Such games are populated by multiple objects
and autonomous characters, and must provide a coherent
story experience while giving the player freedom of action.
To maintain coherence, the game author must provide for
modifying the world in reaction to the player’s actions, di-
recting agents to act in particular ways (overriding or mod-
ulating their autonomy), or causing inanimate objects to
reconfigure themselves “behind the player’s back”.

Declarative optimization-based drama management is one
mechanism for allowing the game author to specify a drama
manager (DM) to coordinate these modifications, along with
a story the DM should aim for. The premise is that the au-
thor can easily describe the salient properties of the story
while leaving it to the DM to react to the player and di-
rect agent actions. Although promising, early search-based
approaches have been shown to scale poorly. Here, we im-
prove upon the state of the art by using reinforcement learn-
ing and a novel training paradigm to build an adaptive DM
that manages the tradeoff between exploration and story co-
herence. We present results on two games and compare our
performance with other approaches.

1. INTRODUCTION AND MOTIVATION
We are interested in adding narrative structure to large

open-world games in a way that is not pre-scripted and al-
lows the player to interact with and influence the story.
Many modern games have rich, non-linear plotlines, with
multiple endings, complex story branching and merging, and
multiple subplots. We would like the player to be able to
have a significant impact on what happens, rather than fol-
lowing along with a prewritten script, or being in control
at only a few decision points. However, in contrast to com-
pletely open games, the story that results should exhibit
global narrative coherence and reflect the game author’s aes-

Preprint. Submitted to the Fifth International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS-06), May 8–12, 2006,
Hakodate, Japan.

thetic goals.
Traditionally, story in games is guided by local triggers.

Progress in a linear story depends solely on how much of the
story has unfolded. In slightly more complex situations, the
author can specify condition-action rules (e.g. “if the player
is in the room and if the player is carrying a gun, then have
the non-player character (NPC) hide behind the counter”).
The author must specify rules for every possible combination
of conditions, a tedious (and intractable) burden for stories
of any complexity. Further, the author will find it difficult
to achieve a globally cohesive, pleasing story purely from
local rules.

This difficulty has been recognized for some time, and
grows worse as players demand both true interactive agency
and rich stories. One solution is a drama manager that
watches a story progress, reconfiguring the world to fulfill
the author’s goals. A drama manager may notice a player
moving along a currently undesirable subplot, and attempt
to lure the player toward a better one. To do so, it requests
that one of the agents in the world take some action; for ex-
ample, it may instruct an NPC to start a conversation with
the player. It may even make requests of objects that appear
inert to the player, such as telling a door to lock itself (of
course, reconfiguring inert objects must be done carefully
without the player noticing). Thus the drama manager acts
as a central director of the agents in the game world, mak-
ing requests of them when necessary to maintain a globally
coherent story-line.

We base our work on a specific framework in which a story
is represented as a sequence of discrete plot points, and the
drama manager has a set of requests it can make of agents,
which we call DM actions.

Plot points are important possible events in the story, such
as a player discovering information or an object. DM actions
are any requests for which the game author has implemented
an agent that can respond to the request. Plot points have
a set of (boolean) prerequisites defined as other plot points.
For example, the plot point found book may have the pre-
requisite found key, if it’s hidden in a locked room. Pre-
requisites restrict the set of plot-point sequences—and thus
stories—to those that are physically possible. Note that in
nonlinear games with many plot points there are still a large
number of possible stories.

Plot points are abstractions of concrete events happen-
ing in the game world: For example, in a story that we
use as a case study, Anchorhead, the player can find a safe
in an old mansion. Finding the safe involves a number of

concrete actions, such as entering the room in which it’s lo-
cated, reading a description of the room, possibly examining
various objects in the room, searching the bookshelf on the
wall, and finally picking up the book behind which the safe
is hidden. The drama manager does not need to know the
details of all these actions, since most do not impact the
progression of the story; instead, it is only notified of the
abstract plot point found safe.

Drama-manager actions are similarly abstract, but corre-
spond to sequences of concrete actions in the game world.
For example, the DM action hint safe location may result in
a complex series of concrete events, in which an NPC tries
to draw the player into a conversation and let slip a hint.
To the drama manager, what matters is the expected out-
come of the request, so DM actions are given as an ordered
pair (action, plot point), where action is one of: cause, deny,
temporarily deny, reenable, or hint. These actions cause the
plot point in question to, respectively, either: happen im-
mediately (e.g. an NPC gives the player an item); become
impossible for the duration (e.g. inconspicuously make an
item disappear from the world entirely before the player has
noticed it); become temporarily impossible (e.g. tell an NPC
to refuse to speak to the player for now); become possible
again (e.g. tell the NPC to be talkative again); or become
more likely by leading the player towards the plot point (e.g.
tell an NPC to hint about an item’s location). Actions have
constraints. They must be consistent (a plot point cannot
be reenabled unless it has previously been temporarily de-
nied), and there can also be constraints on when, from the
author’s perspective, the action makes sense (e.g. an action
that causes something should only be taken at points in the
story when it is plausible to cause its target plot point).

Finally, the author provides an evaluation function that
takes a sequence of plot points and the history of drama-
manager actions, and rates the completed story. This is
the central feature of what we call declarative optimization-
based drama management (DODM): The author specifies
what constitutes a good story, and leaves to the drama man-
ager the problem of how to bring it about in the complex
environment of a continually-progressing game.

To specify an evaluation function, the author will gener-
ally annotate plot points or DM actions with some informa-
tion and then specify a feature using that information, which
is a numerical score rating how much a particular story ex-
hibits some desired property. The final evaluation function
is a weighted sum of these features, in accordance with the
author’s judgment of their importance. For example, the
author may annotate plot points with a the subplot they be-
long to, and assign a higher score to stories where the player
progresses along one subplot for several plot points in a row;
or, the author may annotate plot points with a description
of the knowledge they provide to the player, and assign a
higher score to stories where knowledge unfolds gradually
and climaxes in a burst of revelations near the end (e.g. in
a mystery story). Actions can be annotated with a judg-
ment of how likely the player is to sense that the drama
manager is fiddling with the world; stories would then be
assigned scores in inverse proportion to how much total ma-
nipulation took place. These desired features may in many
cases conflict in surprising and constantly changing ways;
the drama manager is responsible for making these complex
tradeoffs.

In short, the problem of drama management is to optimize

the use of the available drama-manager actions in response
to a player’s actions, given the set of plot points and an
evaluation function. This is well-modeled as a reinforcement
learning (RL) problem. RL algorithms attempt to learn a
policy that, given a world modeled by states and a (possibly
unknown) transition function between states, specifies an
action to take in each state in a manner that maximizes
expected evaluation according to some function. In this
case, state is specified by the sequence of plot points and
drama-manager actions that have happened so far (order
is important); actions are the drama-manager actions plus
the null action (do nothing); transitions are the likelihood of
plot points occurring in any given state, and are given by the
combination of prerequisites for a plot point, the player, and
any influence from drama-manager actions; and the evalua-
tion function is the one provided by the author. Although
nicely defined, this is a complicated reinforcement-learning
problem: the player is difficult to model and highly stochas-
tic, and the state space is extremely large.

In the rest of this paper, we present our approach to
this problem. We review earlier search-based techniques,
discuss our application of temporal-difference (TD) learn-
ing methods to the problem, and show how our novel ap-
proach to training, self-adversarial / self-cooperative explo-
ration (SASCE), outperforms search-based methods and im-
proves the performance of TD methods.

2. RELATED WORK
Using a drama manager to guide interactive drama was

first proposed by Laurel [3]. The story and drama-manager
formalism we use—and treating drama management as an
optimization problem—was proposed by Bates as search-
based drama management (SBDM) [1]. SBDM formulates
the drama management problem similarly to a minimax
game-tree search problem as has been used for games like
chess; however, because the player in interactive drama is
not truly an opponent, expectimax search is used, alternat-
ing maximizing nodes where the drama manager chooses
its best available action with expectation-calculating nodes
where the player is assumed to act according to some prob-
abilistic model.

Weyhrauch [12] applied SBDM to a simplified version
of the Infocom interactive fiction Deadline, named Tea for
Three. Full-depth search is intractable, so he used shallow
searches with static cutoff values calculated by sampling a
small number of possible stories that could follow the cutoff
and averaging their evaluations, achieving impressive results
on Tea for Three. Lamstein & Mateas [2] proposed reviving
the technique, but work by Nelson & Mateas [7] on a dif-
ferent story, Anchorhead, showed that the impressive per-
formance of Weyhrauch’s limited-depth sampling search did
not generalize to other stories.

In formulating drama management as an RL problem,
temporal-difference (TD) learning [9] seems a natural candi-
date algorithm. In particular, the approach used by TDGam-
mon [10] to learn a policy for playing backgammon as well
as the best human players [11] seems a useful starting point.
Some have argued (to some controversy) that these results
are due in part to the particular stochastic properties of
backgammon [8]. As we shall see, we address this concern
by modifying the stochastic properties of the training regi-
men.

There have also been several other drama management

systems that take quite different approaches.1

The Mimesis architecture [13] constructs story plans for
real-time virtual worlds. The generated plans are annotated
with a rich causal structure, and the system monitors for
player actions that might threated causal links, replanning
or preventing player actions if a threat is detected. This ap-
proach differs substantially from ours in that authors spec-
ify concrete goals for the planner to achieve as part of the
story, while an author in DODM specifies abstract and pos-
sibly conflicting features that the story as a whole should
possess.

The Interactive Drama Architecture [4] takes a prewritten
plot and tries to keep the player on the plot by taking cor-
rective action according to a state-machine model of likely
player behavior. This addresses a much different problem
than ours, since we’re interested in letting players’ actions
substantially affect the overall plot, rather than just incor-
porating their actions into variants of a prewritten plot.

The beat-based drama manager in Façade [6] sequences
small pieces of story progression called dramatic beats, con-
structing the story out of these directly-chosen pieces. This
is substantially different from the DODM approach, which
for the most part lets the story run itself in the traditional
way, stepping in to instruct the agents with DM actions only
when it seems necessary. We hypothesize that this makes
beat-based drama management better suited to tight story
structures, where ideally all activity in the story world con-
stributes to the story, while DODM lends itself more natu-
rally to more open-ended games, especially in large worlds
that may include much player activity not directly relevant
to the story.

3. METHODS
In this paper, we focus on quantitatively evaluating the

performance of the optimization component of DODM. Given
a story world modeled by plot points, a set of available
drama-manager actions, and an author-supplied evaluation
function, we can determine to what extent the drama man-
ager succeeds in maximizing story quality according to that
evaluation function. To do so, we use the drama manager
to guide simulated games many times, score each resulting
game using the evaluation function, and plot the distribu-
tion of scores on a histogram. For a baseline distribution, we
run the same simulations without a drama manager (equiv-
alent to a null drama manager that never takes any DM
actions). If the drama manager is successful, its distribu-
tion will be generally skewed towards the right compared
to the baseline: high-quality stories will appear more often,
and poor-quality stories will happen infrequently if at all.
For the simulations, we use a fairly naive player model (pro-
posed by Weyhrauch) that assumes the player is exploring
the world; the player chooses uniformly from available plot
points (plot points whose prerequisites are satisfied), with
increased probability of doing something the drama manager
has hinted at.

We compare three approaches to optimizing the selection
of DM actions: the limited-depth sampling search (SAS+)
proposed by Weyhrauch; standard temporal-difference (TD)
learning; and TD learning with our modified training reg-
imen (SASCE). We evaluate our results on two different

1The interested reader is directed to [5] for a more complete
review of the drama-management literature (as of 1997).

stories: one a variant of the Tea for Three story used by
Weyhrauch, and the other the Anchorhead story used by
Nelson & Mateas; we also perform more detailed analysis
on a subset of Anchorhead.

3.1 SAS+
Weyhrauch’s search-based drama manager [12] chooses

actions by performing expectimax search, a modification
of standard minimax game-tree search in which the “op-
ponent” (in this case the player) is assumed to be acting
probabilistically according to the player model rather than
adversarially. Since full-depth search in even fairly small
stories is intractable, he proposes a sampling search, SAS+.
Full-width search is performed to a fixed cutoff depth; from
each node at the cutoff, a fixed number of possible plot-
point sequences that could follow that node are sampled
and scored; and the average of their scores is the evalua-
tion of that node. To avoid dead ends, temporarily-denied
plot points are reenabled prior to sampling, but the drama
manager otherwise takes no action during sampling.

3.2 TD learning
Temporal-difference learning [9] is a reinforcement-learning

technique that, over many thousands of simulated games, es-
timates the values of story states (a story state is either a
partly- or fully-completed story). For completed stories, the
state value is simply what the evaluation function says it is;
for partial stories, it is the expected value of the complete
story (i.e. the average of all stories that are continuations
of that partial story, weighted according to likelihood). The
drama manager’s policy is then to simply pick whichever
DM action leads to the highest-valued successor state.

A full description of TD learning is beyond the scope of
this paper, but the general idea is that as a simulation run
progresses, the value of each state encountered is estimated
based on the current estimate of its successor. Since at the
end of each story we can use the evaluation function to get
the real value for the last state, the real values propagate
backwards, and all states’ estimates should eventually con-
verge to the true values. Since there are far too many pos-
sible story states to store the value estimates in a lookup
table, we follow Tesauro [10] in training a neural network as
a function approximator to estimate a function from states
to their values.

In story-based games, the order of plot points is of course
important, so the state cannot simply include what has hap-
pened, but also the order in which it happened. We encoded
state as an n × n precedence matrix, where n is the num-
ber of plot points and mi,j indicates whether plot point i

happened after plot point j.2 For example, in a story where
there are four possible plot points, and in which plot points
3, 4, and 2 have occurred so far (in that order), the prece-
dence matrix would look like:

M =









0 0 0 0
0 0 1 1
0 0 0 0
0 0 1 0









2This bears some resemblance to the more common bigram
encoding, which specifies for each pair of events i, j whether
that sequence appeared in the history. The precedence ma-
trix trades off some information about exact sequences for
a gain in information about global ordering.

3.3 SASCE
Self-adversarial / self-cooperative exploration (SASCE) is

our modified training regimen for TD learning. Our ex-
periments on TD learning both with and without SASCE
were identical except for the player model used for training.
Typically in machine learning we assume that training data
is drawn from the same distribution as the test data. In
this domain the TD learner would therefore be trained on
a player similar to the one it is expected to encounter when
deployed. In our case, this is the player exploring the world.

Instead, the SASCE player model uses the drama man-
ager’s current value function to select its actions. Because
the SASCE player model uses the agent’s state-value es-
timates, it can choose to act cooperatively or adversari-
ally. A cooperative player model would select actions that
put the player in the highest-rated subsequent state, while
the adversarial player would move to lower-rated states.
The basic idea behind SASCE is to convert the asymmetric
non-adversarial drama management problem into a pseudo-
adversarial or pseudo-cooperative problem. This feedback
loop is intended to force meaningful exploration of the state
space.

We implemented the player model to select states based
on an exponential distribution:

p(si) =
eαβ(si)V (si)

∑

sj∈S
eαβ(sj)V (sj)

.

Here s is a state; V (s) is the agent’s current state-value
estimate; α is a parameter controlling the “desire” of the
model to cooperate (large positive values are more strongly
cooperative and large negative more adversarial); and β(s)
is function that responds to the “desires” of the drama man-
ager. In our case, β(s) = 1.0 for all states except for those
the manager has explicitly attempted to increase the likeli-
hood of (e.g. by providing a hint). In those cases, β(s) is
some constant ca > 1 associated with action a.

In practice, we train using a mixed strategy. The mixed-
strategy player has three parameters. It has both co-operative
and adversarial values for α and a probability (q) that the
player will use the adversarial value of α. The goal of the
mixed strategy is to keep from learning a worst-case policy:
Since we don’t expect the player to actually be acting adver-
sarially, we don’t want the policy to optimize only for that
case.3

4. RESULTS
We first present results on Tea for Three and a subset4 of

Anchorhead, demonstrating that TD learning outperforms
SAS+ on complex domains, and further that using SASCE
improves TD learning’s performance on both relatively sim-
ple and complex domains. We analyze this subset of Anchor-
head extensively to understand why the policies behave as
they do. We then present some results on a larger portion5 of

3The reader may wish to improve upon our results by us-
ing our mixed strategy only as a bootstrapping mechanism.
Although space limitations preclude a lengthy discussion,
an attempt to simulate this by gradually annealing α and q
towards an exploring player provided no extra benefit.
4The subset includes all the plot points from one major sub-
plot, and all DM actions relevant to those plot points.
5The larger portion is the one used by Nelson & Mateas [7],
itself a subset of the very large original interactive fiction

Tea for Three Anchorhead subset

Method Mean Median Mean Median

SAS+ 96.3% 96.7% 42.5% 50.5%
TD 81.2% 81.8% 80.4% 70.5%
TD/SASCE 91.3% 93.3% 82.8% 83.6%

Table 1: Summary of results using SAS+ search and
TD learning with and without SASCE. Numbers are
in percentiles relative to the non-drama-managed
distribution of story qualities (see text).

Anchorhead in which none of the policies perform well, but
demonstrate that adding more DM actions improves per-
formance markedly, illustrating some potential authorship
pitfalls.

4.1 Tea for Three and an Anchorhead subset
Table 1 summarizes the performance of SAS+ sampling

search, TD learning trained conventionally, and TD learning
trained using the SASCE training regimen, each evaluated
on both Tea for Three and a subset of Anchorhead. Per-
formance is summarized by calculating the mean and me-
dian story quality of each drama-managed distribution, and
reporting that in terms of a percentile of the non-drama-
managed distribution (e.g. a percentile of 70% for the mean
would say that the average story quality using drama man-
agement is better than 70% of stories without using drama
management).

There are three interesting things to note. First and fore-
most, training TD using SASCE consistently improved its
performance by all measures on both stories. Secondly, while
search does marginally better than SASCE on the simpler
Tea for Three story, its performance degrades significantly
on the Anchorhead subset—which has a more complicated
relationship between story structure and evaluation—while
the RL methods continue to perform well. Finally, SASCE
greatly improves median performance on the Anchorhead
subset in comparison to conventionally-trained TD learning.

Figure 1 shows the detailed distributions on each story
both without drama management and using TD learning
without SASCE. Notice in the non-drama-managed distri-
butions that the stories are qualitatively quite different: Tea
for Three has a relatively smooth unimodal distribution,
while the Anchorhead subset is distinctly trimodal. This
suggests that there are points in the Anchorhead subset that
have significant influence on the ultimate outcome. It is at
these points that SASCE learns to make better decisions.
This also suggests why search performs so poorly in the An-
chorhead-subset domain: its relatively short horizon doesn’t
allow it to effectively make long-term global decisions. As a
result it only performs well in “easy” domains where local
decisions can result in globally good results, as noted in [7].
We were able to reproduce these results, but also show that
reinforcement learning is able to make global decisions in
both types of domains effectively.

While not shown in a figure, the story-quality distribution
using search on Anchorhead remains trimodal like the dis-
tribution of randomly-generated stories, lending support to
the hypothesis that search fails to find the important deci-

piece.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.4 0.5 0.6 0.7 0.8 0.9

F
re

qu
en

cy

Evaluation

TD
No DM

(a) Tea for Three

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

F
re

qu
en

cy

Evaluation

TD
No DM

(b) Anchorhead subset

Figure 1: Story-quality distributions for conventionally-trained TD learning versus no drama management.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.6 0.65 0.7 0.75 0.8 0.85 0.9

F
re

qu
en

cy

Evaluation

TD+SASCE
TD

(a) Tea for Three

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

F
re

qu
en

cy

Evaluation

TD+SASCE
TD

(b) Anchorhead subset

Figure 2: Story-quality distributions for TD learning trained using SASCE versus trained conventionally.

sion points that steer between the different types of stories.
By contrast, the TD-learned policy’s distribution is bimodal
and almost entirely missing the stories that form the low-
est of the three modes (see Figure 1(b)), indicating that it
successfully learns how to avoid the worst batch of stories.

The policy trained with SASCE does even better, with a
unimodal distribution that is shifted higher (see Figure 2(b)),
indicating that it is not missing any major decision points.
To give a more detailed idea of how SASCE improves TD
learning, Figure 2 shows the full distributions of story qual-
ities using each method on both stories we evaluated. Re-
member, qualitatively the goal is to shift the distribution
upwards as far as possible, reducing the frequency of lower-
scored stories and increasing that of higher-scored stories.
Notice how in Figure 2(a), SASCE is consistently better:
On the lower side of the distribution (below the mean) its
frequencies are lower, while on the higher side they’re higher.
In Figure 2(b), the improvement takes on a different shape,

keeping roughly the same proportion of highly-scored sto-
ries, but increasing the quality of the lower- and middle-
scored stories significantly, pushing the main peak (and the
median) towards the upper end of the range.

Recall that, using SASCE, a player model can be adversar-
ial (negative α), cooperative (positive α), or mixed (choos-
ing an adversarial player with probability q, and a coopera-
tive player with probability 1 − q). Interestingly, all mixed
models except the fully cooperative player (q = 0.0) im-
proved TD learning, both quantitatively and qualitatively.
In the examples shown here, as in most of our experiments,
training on the mixed player gave the best performance,
as shown in Figure 3, although the mean and median are
not significantly different. Training on the fully coopera-
tive player consistently gave the worst performance. All
types of SASCE players display a roughly unimodal his-
togram, in stark contrast to the bimodal histogram seen in
conventionally-trained TD learning, and the trimodal distri-

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

F
re

qu
en

cy

Evaluation

Adversarial
Mixed

Cooperative

Figure 3: Story-quality distributions on the Anchor-

head subset using different values of q for training.
The three values shown are q = 0.0 (cooperative),
q = 0.5 (mixed), and q = 1.0 (adversarial).

Adversarial Mixed TD

Mixed TD Search TD Search Search

5.6 5.1 1.4 4.8 1.4 1.4

Table 2: Average number of plot points occurring in
the Anchorhead-subset story before policies disagree
on which action to take.

bution of the unmanaged stories (Figure 1(b)). This lends
some further support to our hypothesis that the modes are
due to distinct decision points.

Intuitively, training against an (even occasionally) adver-
sarial player forces the drama manager to learn how to max-
imize the worst-case performance. That is, the manager
learns how to take actions that will prevent the player from
arriving in a state where it can then easily do harm to the
story. This proves useful for a wide variety of actual player
types, including players who are exploring. A cooperative
player acts as an antidote for those cases where such states
can also lead to remarkably good outcomes.

It is worthwhile to try to understand in more detail how
the policies learned by the various methods differ. To that
end, we use them simultaneously to guide our simulated
player until they reach a point at which they disagree on
which action to take. Table 2 shows the average number of
plot points occurring prior to disagreement for each pair of
policies. Search is making different decisions very early. TD
without SASCE diverges from SASCE-trained TD around
the fifth plot point. Interestingly, the policies trained with
adversarial and mixed players diverge not much later, but
have much more similar distributions, suggesting that the
important decisions have already been made by the fifth or
sixth plot point (on average).

Finally, while space prevents a full discussion, it is worth
noting that when there was a disagreement between policies
on which action to take, we kept track of the plot point
that preceded the disagreement and the pair of conflicting
actions. We found that there were a small number of plot
points after which most of these disagreements occurred,

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

F
re

qu
en

cy

Evaluation

TD+SASCE
SAS+

No DM

Figure 4: Story-quality distributions on Anchorhead

for SASCE-trained TD learning, SAS+ search, and
no drama management.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

F
re

qu
en

cy

Evaluation

TD+SASCE
SAS+

No DM

Figure 5: Story-quality distributions on Anchorhead

with synthetic actions (see text) for SASCE-trained
TD learning, SAS+ search, and no drama manage-
ment.

and the disagreements themselves were mostly between a
few pairs of conflicting actions. That suggests that there
are likely several key decision points directing stories into
one of the three major classes in the trimodal story-quality
histogram, and these decision points are where the policies
differed most noticeably.

4.2 Anchorhead
On the larger portion of the Anchorhead story, which in-

cludes two subplots that may interleave leading to two pos-
sible endings, none of the policies do particularly well, as
illustrated in Figure 4.

In order to determine whether the policies were perform-
ing poorly because of their inability to find a good policy, or
because the available DM actions in this state space simply
did not permit for a very good policy, we ran a “synthetic”
test in which there was a causing, hinting, temp-denying,
and reenabling DM action for every plot point (“synthetic”
because many of these DM actions could not plausibly be
implemented in the real story). This ought to give the drama
manager complete control, and indeed as shown in Figure 5,

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

F
re

qu
en

cy

Evaluation

TD+SASCE
TD

Figure 6: Story-quality distributions on Anchorhead

for TD learning with and without SASCE.

the TD-learned policy is now consistently very good; SAS+
search, however, still does rather poorly, as it is unable to
navigate the now even larger state space to make effective
use of the added actions. While this does not prove that
the poor performance without these added actions is due to
a lack of sufficient actions, rather than inability to learn a
good policy, it does lend some support to that hypothesis,
and suggest that the drama manager should be given more
actions to work with.

The shape of Figure 5 illustrates a further issue: Although
the goal as specified is to maximize story quality, it is not
clear that this type of narrow distribution is the sort we
actually want, especially since when we examined the plots
produced, we found them to be nearly all identical: the
drama manager found a very small range of good stories, and
used DM actions to cause those stories to always happen.
However, we would prefer there be a range of possible stories
that could emerge during gameplay, especially if replay value
is important. In non-synthetic examples this may turn out
to not be an issue most of the time, but it does suggest that
perhaps we should extend the evaluation function so that
it takes into account the diversity of possible stories as an
explicit goal, rather than rating each story in isolation.

Interestingly, SASCE still noticeably improved the perfor-
mance of TD learning in this case, as illustrated in Figure 6.
Furthermore, mixed-strategy training in particular is what
improved performance: the completely adversarial version of
SASCE did poorly, as shown in Figure 7. These consistent
results across all the stories we tested lend some support to
our hypotheses that SASCE forces the right type of explo-
ration for this domain, and that a mixed-strategy version of
SASCE in particular balances forcing exploration with an
adversarial player without learning a policy optimized only
for the adversarial case.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a declarative optimization-

based drama manager. This style of drama management
centrally coordinates the behavior of agents in a game by
making requests of them (DM actions) in a manner that
maximizes story quality according to some author-specified
evaluation function. We demonstrated the use of reinforce-
ment learning to learn, ahead of time, policies for taking

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

F
re

qu
en

cy

Evaluation

Mixed
Adversarial

Figure 7: Story-quality distributions on Anchorhead

for TD learning with mixed-strategy SASCE train-
ing (q = 0.6 in this case) and completely adversarial
SASCE training (q = 1.0).

these actions, rather than performing online search in the
time-constrained environment of a real game. We showed
that reinforcement learning performs on par with search in
simple domains, and far outperforms search in more complex
domains. Furthermore, we presented a training method,
SASCE, that trains on player models that use the drama
manager’s current value estimates in such a way as to force
exploration useful for this domain; we demonstrated that it
improves learning performance in all cases we examined.

One avenue of future work involves a more complete un-
derstanding of why training on the sort of player model
presented here yields improved performance over training
on the same player used for evaluation (a “known correct”
player model).

There are other player types in addition to the ones we
have explored here. For example, there are players who
really want to move through the story quickly, and players
who are simply trying to delay ending the game (while an
explorer, this type of player is not quite captured by our
model). Initial experiments on other players suggest results
similar to those presented here, but further investigation is
warranted.

Ultimately, we would like to test our learned policies on
dozens of actual human players interacting in the concrete
world of our chosen stories, and see what distribution this
induces in the abstract world of plot point sequences. Unsur-
prisingly, because players are experiencing concrete events
in the story world, what seems like a logical model of player
behavior in the abstract world has the potential to be in-
accurate. For example, it is reasonable to expect a player
to unlock a door shortly after finding a key; however, if the
door is in a dark corner of the room, the player may not
see it. In the future we plan to build an agent that rep-
resents the player in the concrete world rather than in our
abstract plot point world so that we can model these types
of influences.

In any case, developing and using a wider range of player
models for evaluation would allow us to better understand
the relationship between the player model used for training
and that used for evaluation. In particular, we are inter-
ested in how robust policies are when used with different

sorts of players. For example, if we determine that policies
trained under varying player models perform better or worse
against different player models used for evaluation, we hope
to develop techniques to identify in real-time the best policy
to use to optimize a given player’s experience.

Finally, we are interested in further evaluating the autho-
rial affordances offered by this style of drama management,
both in easing the design of large games and in offering pos-
sibilities for new types of games difficult or impossible to
design without a system of this sort.

Acknowledgments
Work on this project has been supported in part by a Na-
tional Science Foundation Graduate Research Fellowship and
a grant from the Intel Foundation. We also wish to thank
Victor Bigio for his help coding and running experiments.

6. REFERENCES
[1] J. Bates. Virtual reality, art, and entertainment.

Presence: The Journal of Teleoperators and Virtual
Environments, 2(1):133–138, 1992.

[2] A. Lamstein and M. Mateas. A search-based drama
manager. In Proceedings of the AAAI-04 Workshop on
Challenges in Game AI, 2004.

[3] B. Laurel. Toward the Design of a Computer-Based
Interactive Fantasy System. PhD thesis, Drama
department, Ohio State University, 1986.

[4] B. Magerko. Story representation and interactive
drama. In Proceedings of the First Annual Conference
on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE-05), 2005.

[5] M. Mateas. An Oz-centric review of interactive drama
and believable agents. In M. Woodridge and
M. Veloso, editors, AI Today: Recent Trends and
Developments. Lecture Notes in AI 1600. Springer,
Berlin, NY, 1999. First appeared in 1997 as Technical
Report CMU-CS-97-156, Computer Science
Department, Carnegie Mellon University.

[6] M. Mateas and A. Stern. Integrating plot, character,
and natural language processing in the interactive
drama Façade. In Proceedings of the 1st International
Conference on Technologies for Interactive Digital
Storytelling and Entertainment (TIDSE-03), 2003.

[7] M. J. Nelson and M. Mateas. Search-based drama
management in the interactive fiction Anchorhead. In
Proceedings of the First Annual Conference on
Artificial Intelligence and Interactive Digital
Entertainment (AIIDE-05), 2005.

[8] J. B. Pollack and A. D. Blair. Why did TD-Gammon
work? Advances in Neural Information Processing
Systems, 9:10–16, 1997.

[9] R. S. Sutton. Learning to predict by the methods of
temporal differences. Machine Learning, 3:9–44, 1988.

[10] G. Tesauro. Practical issues in temporal difference
learning. Machine Learning, 8:257–277, 1992.

[11] G. Tesauro. Temporal difference learning and
TD-Gammon. Communications of the ACM,
38(3):58–68, 1995.

[12] P. Weyhrauch. Guiding Interactive Drama. PhD
thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, 1997. Technical Report
CMU-CS-97-109.

[13] R. M. Young, M. O. Riedl, M. Branly, A. Jhala, R. J.
Martin, and C. J. Saretto. An architecture for
integrating plan-based behavior generation with
interactive game environments. Journal of Game
Development, 1(1), 2004.

