
Adaptive Distributed Resource Allocation and Diagnostics
Using Cooperative Information-Sharing Strategies

Partha S. Dutta, Nicholas R. Jennings, and Luc Moreau
School of Electronics & Computer Science

University of Southampton
Highfield, Southampton SO 17 1BJ, U.K.�

psd,nrj,l.Moreau � @ecs.soton.ac.uk

ABSTRACT
A major challenge in efficiently solving distributed resource alloca-
tion problems is to cope with the dynamic state changes that char-
acterise such systems. An effective solution to this problem should
be able to detect state changes and determine why they occur (di-
agnosing the cause) in order to adapt to the prevailing situation.
Now, since agents typically have localised views and communica-
tion constraints that prohibit global instantaneous synchronisation,
we argue that cooperative information-sharing can provide them
with the necessary adaptiveness and diagnostics ability. To this
end, we develop a novel information-sharing algorithm for resource
allocation tasks by building upon the most effective algorithm cur-
rently available in this domain. Then, using empirical analyses on
a resource allocation application with dynamic state changes, net-
work call routing with network failures, we show that, compared to
the benchmark, our new algorithm achieves up to a 20% increase
in call throughput, up to 3.5 times faster throughput recovery af-
ter failures, and provides a novel mechanism for distributed failure
diagnosis without false positives and false negatives.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Experimentation, Theory

Keywords
Resource allocation, state diagnosis, information-sharing

1. INTRODUCTION
Resource allocation is a core functionality of many distributed sys-
tems [5, 8]. In such systems, multiple agents typically allocate
resources under a decentralised regime using their individual lo-
calised views of the system, in order to complete their tasks. To
do so, they use estimates of system states to ensure their individual
actions are coordinated [2]. Now, to do this effectively in complex

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

environments (where states change dynamically), such estimation
necessarily involves detecting where, when, and why changes oc-
cur. Thus, to maintain these estimates and to perform such diagnos-
tics, the agents need to share information. In particular, they need to
communicate their individual views of the system to one another.
Such information can then be used to generate robust local esti-
mates and allow the agents to adapt these when states change. To
this end, we develop and empirically evaluate a novel information-
sharing algorithm that allows distributed agents to adapt dynami-
cally to state changes and to perform distributed state diagnostics.

Given its importance, several strands of work on cooperative
MAS have focused on analysing how communication can generate
better solutions to distributed coordination [1, 6, 7]. However, in
these, several limitations exist. For example, in [7], the authors de-
velop a theoretical model for optimising information-sharing with
the assumption that the agents need to synchronise their views pe-
riodically. In a typical distributed application, however, the agents
should be able to act in a decentralised fashion without requiring
to synchronise. The work in [6] considers how communication can
improve the expected utility of an individual agent. We argue, how-
ever, that in cooperative systems, communication should be tar-
geted towards improving overall system performance. Finally, the
partial global planning algorithm in [1] allows the agents to com-
municate partial plans, representing their individual views of the
system, to ensure consistent global solutions. Nevertheless, this
work uses a set of pre-determined coordination mechanisms which
can be inadequate for the agents to adapt to all possible environ-
ment dynamics that cannot be predicted a priori.

In our previous work, we addressed these limitations by devel-
oping an information-sharing protocol (the post task-completion
(PTC) protocol) for distributed resource allocation [3]. Specif-
ically, we showed that such cooperative information-sharing can
generate highly effective distributed resource allocation. Our algo-
rithm outperformed a range of state-of-the-art algorithms (includ-
ing Littman’s Q-routing, Stone’s TPOT-RL, and a broadcast proto-
col) that have previously been shown to perform highly effective
distributed task processing in dynamic systems. In [3], we chose
an exemplar resource allocation application, that of call routing in
resource-constrained mesh networks, to verify the performance ad-
vantage of our solution in a real application and demonstrated that
our solution is more generally applicable to all such problems using
a formal analysis. However, PTC did not produce the adaptiveness
required in highly dynamic resource allocation problems by ensur-
ing effective state diagnostics. Thus, in this paper, we extend PTC
(to e-PTC) to remove these limitations. This necessarily implies an
improvement over the benchmarks used in [3].

In more detail, e-PTC allows the agents to share information both
when they successfully complete tasks and fail to do so. In contrast,
PTC only allows agents communicate state information after they
successfully complete tasks. In so doing, they are able to commu-
nicate their local states and build state estimates when the system is
functioning under “steady state”. However, unpredictable incidents
such as process failures, network node saturation, and hardware
crashes, can lead to subsequent failures in task processing. To adapt
under these conditions, which are common in many distributed sys-
tems [10], the agents need to maintain estimates of the dynamic
state changes and diagnose states for efficient recovery. Accord-
ingly, we argue that such capabilities can be incorporated by allow-
ing information-sharing after task failures. Indeed, by developing
e-PTC, this paper extends the current state-of-the-art in the follow-
ing significant ways: (1) It provides a simple but effective means
of providing highly adaptive behaviour among distributed agents in
dynamic environments. (2) It establishes, using empirical analyses,
the advantage of e-PTC in providing effective resource allocation
in a real application: call routing in mesh networks. Specifically,
e-PTC generates up to 20% higher call throughput than PTC when
network failures occur and allows up to 3.5 times faster recovery
of throughput after failures. (3) A novel state-diagnosis algorithm
is developed, based on e-PTC, that allows distributed agents with
localised views to diagnose network failures correctly (no false pos-
itives) and only when failures occur (no false negatives).

In the rest of this paper, section 2 briefly describes the distributed
resource allocation task in the context of our application domain
and reviews how information-sharing aids state estimation. Then,
section 3 describes e-PTC and how it generates effective adaptive-
ness in highly dynamic systems. The experimental setup is de-
scribed in section 4 and the results in section 5. Section 6 develops
the state-diagnosis algorithm using e-PTC and presents empirical
results on its performance. Section 7 concludes.

2. INFORMATION-SHARING IN RESOURCE
ALLOCATION TASKS

The task of decentralised routing in mesh networks requires in-
dividual agents to allocate node bandwidth (representing the re-
sources in the system) and forward a call to a neighbouring node
(the next hop along the call route) such that the call reaches the
destination when a set of end-to-end bandwidth is allocated. To
forward a call, an agent chooses that neighbour for which it esti-
mates that the call would be placed via the most efficient overall
route. Thus, each agent maintains an estimate of the bandwidth
availability along paths to any other node. This reflects its partial
view of the overall network. It attempts to keep these estimates
up-to-date as much as possible by using the information exchanged
between agents. The more up-to-date the estimates with respect
to the actual network states, the higher the quality of routing and,
thus, the better the network performance.

More specifically, each node
�

in a network of � nodes, main-
tains a routing table ����� , where each element �����	��

����� (
����
is the destination node, and ����� is a neighbour of

�
) represents�

’s estimate of the best end-to-end bandwidth availability in going
from � to
 . Node

�
chooses a neighbour � using a Boltzmann dis-

tribution over its neighbours based on the ����� values: ������� �"!$# % &(')
/ *$+�������� � !$#,% -.') , where / is the “temperature” parameter used to

set the skewness of the distribution. When a call forward request
reaches the destination, the latter sends “upstream” along the call
route an ack message indicating a successful call connection. Oth-
erwise, if a call forwarding fails before reaching the destination, the

node at which it fails sends a drop message “upstream”. As each
node

�
transmits the ack or drop, it appends its state value 01� to

the message. In this application, a node’s state is the bandwidth
available at that time expressed as a fraction of the maximum avail-
able bandwidth.1 Therefore, a node (say, 2) receiving an ack or
drop from the immediate “downstream” node (say, 3) gets the set
of state values that were appended by all “downstream” nodes on
this call route. These state values are then used by 2 to update its
RT as: ����45��

�	3��768�	9�:<;=�	����4>��

�	3��@?A;=B7�"01CD� EEEF�G0 H.� .2 Here, B7�"�
is an aggregation function on a set of node state values, and ; is a
discount factor (IAJ�;KJL9) that puts different weights on previous
and current information. In particular, we choose B as the minimum
of the set of node states since the node with the minimum available
bandwidth determines the maximum number of calls that can be
accommodated along a given route. Figure 1 presents a schematic
of the above description.

n
s
 n
d-2
 n
d
n
d-1

Sequence of requests to route a new call

Source
 Destination /

Fail point

 n
d
 sends s
 d
 to n
d-1
 n
d-1
 appends s
 d-1
 to

<s
d
>
 and sends n
 d-2

 n
d-2
 appends s
 d-2

to <s
d
,s
d-1
> and

sends n
 d-3

 Sequence of local state transmissions

along path of requests or ongoing call

 s
d
 s
d
 s3
 s
d-1
 s
d-2
 s
d
 s3
 s
d-1

Ongoing call

Figure 1: Call setup and information exchange

In this system, state information is exchanged between nodes
after every call connection and failure. This is the definition of e-
PTC (see [2] for more details of the design of e-PTC on this appli-
cation). Note, the original PTC allowed information-sharing only
after a call connection. Thus, e-PTC expands the set of events that
PTC uses for sharing information.

3. ADAPTIVENESS IN HIGHLY DYNAMIC
SYSTEMS

The e-PTC algorithm dictates that agents should share information
after both successful task completions and task failures. Sharing
information after task completion provides e-PTC with the same
advantage as that of PTC: effective resource allocation when the
system states are steady. However, when unforeseen events such
as network failures cause task processing to fail, e-PTC allows the
agents to share state information and thus allows for the estima-
tion of the state changes caused by such events and diagnosis of
the events. These capabilities cannot be achieved using PTC alone.
Thus, the e-PTC algorithm, together with the estimate-generation
mechanism discussed in section 2, provide effective adaptive be-
haviour in dynamic systems which is a significant improvement
over the current state-of-the-art. In the rest of this section, we first
describe the model we adopt to define network failures that cause
dynamic state changes and, then, describe the design of e-PTC in
the context of call routing with failures.

3.1 Model of Dynamic State Changes
Network failures cause dynamic state changes in our application.
In the failure model, there are the following components:

1As nodes route new calls or existing calls terminate, available
bandwidth (hence, node state) varies dynamically.
2This mechanism of computing a discounted running average is
used to learn estimates in environments where the dynamics are
not known a priori [11].

Failure Characterisation: Only stop failures are considered be-
cause these are the most commonly studied in distributed
systems [9] and, hence, form a good testbed for measuring
the performance of e-PTC. We assume that a failed node (1)
cannot run any processes, (2) cannot communicate with other
nodes, and (3) once failed, continues to remain so. Thus, af-
ter a failure, all ongoing calls on a node will be lost and it
will not be able to detect or acknowledge new call forward
requests. A failure would cause both bandwidth availabil-
ity (by removing existing calls) and the topology to change,
thereby, changing the network state.

Detection Characterisation: After a node fails, one of its neigh-
bours actually detects that it has failed after the latter makes
a forwarding request. The requesting node detects the failure
status since it does not receive any response to its request.
It then generates drop messages to inform its neighbouring
nodes to deallocate the reserved bandwidth for the calls that
were ongoing along this affected route.

3.2 Adaptiveness and Diagnostics with e-PTC
As identified in section 3.1, a failure causes network states to change
dynamically. The e-PTC algorithm, by distributing state informa-
tion after failures, allows the agents to assess these state changes.
This, in turn, lets the agents adapt their task processing to best re-
spond to state changes and to diagnose where in the system the
failure has occurred.

In more detail, figure 2 shows the schematic of a node failure and
the subsequent transmission of state information by its neighbour.
In this figure, node

�
is shown to have failed. One of its neighbours,�

, detects that
�

has failed after it attempts to forward a call request
to
�

and does not get a response. Thus, it deallocates its bandwidth
for all calls that were being routed through both

�
and
�

, and that
for the new call it was trying to set up. Also, it informs each �
(a neighbour of

�
that is also on the path of calls via

�
and
�

) by
sending a drop message to de-allocate bandwidth. Each such �
continues to propagate the drop message until the terminal node
on that path is reached. Note that, a similar process is undertaken by
each neighbour of

�
whenever they detect that

�
has failed. In the

above process, after receiving a drop message, a node updates its
estimate (see section 2 for the estimate-update mechanism) about
the affected network path from the node state values appended to
the message by each agent transmitting it. In this manner, the nodes
learn that the bandwidth availability along the affected path has
changed. Such information, therefore, allows them to adapt their
routing behaviour to best respond to the state dynamics.

i fj

Forward request1.

Create drop message

Append local state to drop message

2.

6.

4.

5.

No responseDeallocate3.

Send drop message

Figure 2: Network failure detection schematic

Importantly, using this information, a node can diagnose if a cer-
tain node in the network has failed. Note, when

�
transmits state

information with a drop message, it assigns a value of zero for�
’s state. Alternatively, when a node has no available bandwidth,

it rejects a forwarding request and, therefore, the call attempt fails.
Similar to a node failure, the state value transmitted with a drop

message in this case is also zero. Therefore, for correct failure diag-
nosis, an agent should be able to distinguish between the informa-
tion (zero) received from a node that has failed and that is saturated
(also zero). The key to do this is to observe a sequence of state
values. Note, to indicate a failure, a separate message (e.g., fail)
could be used instead of a zero state. However, the state values
are used to update the routing tables. Hence, a separate message to
explicitly indicate failure would not be useful for state estimation.
In fact, as shown in section 6, the zero state values can be used
for diagnosing failures in addition to state estimation. In section 6,
we develop an algorithm that computes the number of consecutive
state values an agent needs to monitor from another node to achieve
correct diagnosis. It is shown that this algorithm is both (i) without
false positives — a failure is diagnosed only if one has occurred,
and (ii) without false negatives — once a failure occurs, a positive
diagnosis is guaranteed.

4. EXPERIMENTAL SETUP
This section first outlines the simulation of a limited-bandwidth
mesh network application used for call routing with failures. This
system effectively emulates distributed resource allocation tasks
under highly dynamic environments (see [2] for additional justi-
fication). Then, we go on to present the criteria used to evaluate the
performance of e-PTC.

4.1 The Simulation Environment
Each node has a fixed maximum bandwidth (� units). This cap-
tures the limited bandwidth of mesh networks. Each call takes one
bandwidth unit. The probability (���) of a call originating at any
node is termed the “load”. Call destinations are selected uniformly.
A node reserves one bandwidth unit for a call after forwarding it
to a neighbour. The reservation is removed if the call fails to con-
nect or terminates after the duration � C , for which the call lasts,
measured since it is routed to its destination. Before forwarding,
an agent inserts its id to the call so that a call has a sequence of
ids used to transmit state information after a connection or failure.
If connected, an acknowledgement (ack) message is transmitted
from the destination up to the source. In case of a failure, the failed
node’s neighbour transmits a dropmessage along the call path and
bandwidth reserved for this call is de-allocated. Nodes share state
information by appending state values to an ack or dropmessage:
only ack is used by PTC, while e-PTC uses both. Numerically, a
node state is the bandwidth units available expressed as a fraction
of the maximum state estimate (�). Thus, if it has � units available,
its state is �� . The routing tables are initialised to 1.0, the maximum
availability. One simulation run consists of 	�
 9 I
� simulated time
steps (time is measured on a global clock) where in one step any
agent can send one message to one of its neighbours. Experiments
are run for a sufficient number of runs to ensure statistical signifi-
cance at the 95% confidence level. The following parameter values
are chosen: a network with a total of �����.I nodes (figure 3(a)),
and ��� 9 I I nodes (figure 3(b)), ��� 9@I , ;�� I5E I�� , /�� I>E$9 ,
� � �

� I>E$9 �GI5E 	>� I>E ��� I5E �>� I5E � � (to test the effect of different loads),
and �	C����.I for the 50-node network and � C�� 9 I I for the 100-
node network. Experiments have been conducted on several other
topologies and similar trends are observed in the results [2]. Here,
therefore, we report results from these sample topologies. Also, the
same general observations hold for other values of ; and / .

4.2 Performance Evaluation Criteria
The following criteria are used to compare the performance of e-
PTC against that of PTC to determine its adaptiveness in dynamic
resource allocation tasks.

(a) 50-node topology (b) 100-node topology

Figure 3: Network topologies

Call Success Rate (CSR): The advantage of having a highly adap-
tive solution in dynamic systems is to have a high rate of suc-
cessful task processing. In the call routing application, this
is measured in terms of the call success rate. Specifically, if,
in a given time interval,

�
calls originate out of which 2 are

successfully connected, the CSR within that period is: 2 /
�

.
The higher the CSR in a given system, the better the perfor-
mance of the information-sharing algorithm by maintaining
high-quality routing tables.

Recovery of Call Success Rate: Good adaptiveness in dynamic
systems should allow quick recovery of performance after
state changes occur. Now, in our application, after a failure,
the CSR will necessarily drop since a set of network paths
become unavailable. However, as the agents adapt their es-
timates and find alternative routes, the CSR should recover
from the initial drop. The efficiencies of e-PTC and PTC are
compared by measuring how fast the CSR recovers follow-
ing failures. Thus, we compare the CSR (denoted as ����� � C)
when a node fails in the simulation (termed the “test” case)
to the CSR (��� �	�
�) when the corresponding node is removed
from the topology from the start of the simulation (termed
the “baseline” case) keeping all other parameters identical.
In the baseline, the agents learn the routing tables based on
the topology that results after failure in the test simulation.
Now, if all agents had global information, then, after failure,
� ��� � C could recover and become equal to � � �	�
� . But, since
the agents do not have this, ����� � C is unlikely to be able to re-
cover to exactly � � �	�
� . Nevertheless, the closer and faster it
can get to ��� ���
� , the more efficient the system.

Message Size (MS): Any advantage of e-PTC over PTC in CSR
or CSR recovery is due to sharing more information. Al-
though one message is transmitted for a call success (ack)
and one for a call failure (drop) in both e-PTC and PTC,
these may not be of the same size. In both cases, the message
size is determined by the number of state values appended.
Thus, the average size of 2 messages is * 4�	
�� �D3 � ��� 2 , where
3 � is the size of the

�����
message. To assess if e-PTC has an

overhead over PTC, we compare the average size of mes-
sages generated in both.

5. RESULTS AND ANALYSIS
In this section, first, the CSR and MS of e-PTC and PTC are com-
pared in the absence of failures to test if e-PTC has any inherent
advantage (a higher CSR) or overhead (higher MS). The second

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10

%
 In

cr
ea

se
 o

f c
al

l s
uc

ce
ss

 ra
te

Time (x 200000)

load 0.2
load 0.4
load 0.8

(a) % CSR increase in 50-node topology

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

%
 In

cr
ea

se
 o

f c
al

l s
uc

ce
ss

 ra
te

Time (x 200000)

load 0.2
load 0.4
load 0.8

(b) % CSR increase in 100-node topology

Figure 4: CSR increase in e-PTC over PTC without failures

set of experiments then measure their performances when dynamic
state changes occur due to failures. Since it has already been shown
that PTC performs better than a range of benchmark algorithms
widely used for adaptive distributed resource allocation tasks [3],
any improvement in e-PTC over PTC necessarily indicates an im-
provement over the current state-of-the-art.

5.1 No State Change Dynamics (No Failures)
The time-variation of the network call success rates for e-PTC and
PTC are compared by calculating the percentage deviation of the e-
PTC CSR from that of PTC: ������� ��������� �7:������
������� � � / ����� ��� ��� � .
These values are plotted for different network load values in fig-
ure 4. Now, the motivation for designing e-PTC is to generate effec-
tive adaptation of the system in response to dynamic state changes.
However, the results in figure 4 show that even without such dy-
namic state changes, e-PTC has an advantage over PTC in terms of
generating higher CSR: in figure 4(b), at load 0.8, e-PTC achieves
a peak 11% increase in CSR compared to PTC. When no failures
occur in the network, the source of state-change dynamics is due to
network saturation when some nodes are unable to transmit further
calls. Now, this obviously happens more at higher loads. Thus,
the call success rates of both PTC and e-PTC decrease with in-
creasing load. Note, in e-PTC, nodes share information after call
failures. Thus, with increasing load and, hence, more call failures
due to network saturation, e-PTC allows more information-sharing
and ensures that the routing table estimates remain more up-to-date
with the actual bandwidth availability. This allows e-PTC to adapt
to the dynamics caused due to saturation better than PTC. The CSR
of e-PTC does not decrease as much as that of PTC with increasing
load; in figure 4, we observe the relative improvement of e-PTC
CSR over PTC CSR to increase with increasing load.

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

%
Inc

rea
se

in
me

ssa
ge

 siz
e

Time (x 200000)

load 0.2
load 0.4
load 0.8

(a) % MS increase in 50-node topology

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

%
Inc

rea
se

in
me

ssa
ge

 siz
e

Time (x 200000)

load 0.2
load 0.4
load 0.8

(b) % MS increase in 100-node topology

Figure 5: MS increase in e-PTC over PTC without failures

The average message size of e-PTC and PTC are compared in an
analogous manner in figure 5. These results show that e-PTC incurs
more message overhead than PTC and it increases with load. So,
in figure 5(a), the e-PTC MS is about 2.3 times of PTC MS at load
0.2, and it is about 3.9 times at load 0.8. Now, e-PTC communicates
state information when calls fail to keep the routing tables updated.
However, this causes the MS (of the drop messages) to increase.
This effect becomes more pronounced at higher loads when more
calls fail (as explained before). Therefore, e-PTC attains a higher
CSR at a cost of larger MS compared to PTC.

5.2 With Dynamic State Changes (Failures)
State-change dynamics are incorporated in our simulator by way
of network failures. We allow one node to fail at a given time
and different failures to occur at equidistant points in an experi-
ment. More arbitrary failure patters (e.g., several failures occurring
at close intervals) have been used in our ongoing work that show
similar broad trends. The nodes that fail are pre-selected. However,
different combinations of nodes are selected to fail in different ex-
periments. Note, the failures are initiated by the simulator and no
agent knows when and where one would occur. The results reported
here use failures of (i) 3 nodes with the highest edge connectivity
(encircled in figure 3), and (ii) 3 randomly chosen nodes with av-
erage edge connectivity. The motivation for choosing (i) is that
the nodes with the most connectivity are critical points and heavily
used for routing. Thus, their failures cause a major disruption in
the network state which provides a “hard” test for the advantage, if
any, that e-PTC has over PTC. However, (ii) provides a more typ-
ical scenario. We report results using (i) since the results from (ii)
show identical trends.

5.2.1 Call Success Rate.
The percentage increase of call success rate of e-PTC over PTC
with the three most-connected nodes failing are shown in figure 6.
As explained in section 5.1, the CSRs of both e-PTC and PTC de-
crease with increasing load. There is an additional drop due to node

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

%
 In

cr
ea

se
 o

f c
al

l s
uc

ce
ss

 ra
te

Time (x 200000)

load 0.2
load 0.4
load 0.8

(a) % CSR increase in 50-node topology

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

%
 In

cr
ea

se
 o

f c
al

l s
uc

ce
ss

 ra
te

Time (x 200000)

load 0.2
load 0.4
load 0.8

(b) % CSR increase in 100-node topology

Figure 6: CSR increase in e-PTC over PTC with 3 most-
connected nodes failing

failure since it results in less bandwidth being available. However,
the CSR for e-PTC is always higher than that for PTC, confirming
the effectiveness of e-PTC over PTC. The difference in their per-
formances is, however, more pronounced at lighter loads because
at high loads the effects of both saturation and failures offset the
advantage achieved by e-PTC over PTC (unlike section 5.1 where
a higher relative improvement was observed at higher loads). Thus,
in figure 6(b), after all 3 nodes fail, the CSR of e-PTC is about 20%
higher than PTC at load 0.2 and about 14% at load 0.8. Moreover,
at a given load, the relative improvement in CSR of e-PTC over
PTC increases with the number of failures. Hence, although the
CSRs decrease with failures, the rate of deterioration in e-PTC is
lower than in PTC. These results indicate that our e-PTC algorithm
generates better adaptiveness in response to state changes caused
by failures. This is the reason for the networks to achieve higher
call success rates with e-PTC compared to PTC in such dynamic
conditions.

5.2.2 Recovery Rate.
To evaluate the efficiency with which e-PTC and PTC allow the
network call success rate to recover after failures occur, we com-
pare the CSRs of the e-PTC(test) and PTC(test) strategies against
that of the baseline strategy (see section 4.2 for the definitions of
these). Specifically, the percentage difference between the CSRs
of e-PTC(test) and the baseline, and that between the CSRs of
PTC(test) and the baseline are computed as:

� ��������������: ������	����
	 �
/

����� ������� . Figure 7 shows these results, generated when the highest-
connected node in the corresponding networks fail halfway through
the simulation and a load of 0.1 is used. Similar trends have been
observed with all other load values. Now, before the failure, e-

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10

%
 D

iff
er

en
ce

 o
f c

al
l s

uc
ce

ss
 ra

te
 fr

om
 b

as
el

in
e

Time (x 200000)

Node 28 fails

e-PTC
PTC

(a) CSR recovery in 50-node topology

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

%
 D

iff
er

en
ce

 o
f c

al
l s

uc
ce

ss
 ra

te
 fr

om
 b

as
el

in
e

Time (x 200000)

Node 70 fails

PTC
e-PTC

(b) CSR recovery in 100-node topology

Figure 7: Recovery of CSR after failure

PTC(test) has the highest CSR (similar to section 5.1). However,
after the failure in the test cases, the CSRs of both e-PTC(test) and
PTC(test) drop. However, in figure 7, the CSR of e-PTC(test) re-
covers at a faster rate towards the baseline than PTC(test). The
percentage deviation of the CSRs in both sets of graphs of figure 7
are observed to decrease faster for e-PTC than PTC. For exam-
ple, in figure 7(a), at the end of a simulation run, e-PTC(test) CSR
reaches within about 2.0% of the baseline CSR which is 3.5 times
(350%) better than that of PTC(test) which reaches within 7% of
the baseline. These results, therefore, confirm that e-PTC ensures
a superior efficiency in the recovery of system performance after
state-changes occur. Thus, better adaptiveness to dynamic envi-
ronments is indeed achieved by e-PTC than PTC.

5.2.3 Message Size.
Sections 5.2.1 and 5.2.2 have confirmed that using e-PTC, dis-
tributed agents with localised views can achieve significantly better
adaptiveness when states change dynamically. This advantage of e-
PTC is generated by sharing information about the state changes,
a feature lacking in PTC. Thus, the message overhead of e-PTC
exceeds that of PTC. Specifically, figure 8 shows the percentage in-
crease in message size of e-PTC compared with that of PTC, com-
puted in a way analogous to the results in figure 5. However, the
results in figure 8 are generated when the three highest-connected
nodes in the corresponding topologies fail. These results show that
���

of e-PTC is significantly higher than PTC. Also, they show
that the higher the load, the greater is the increase in the

���
of e-

PTC relative to PTC: in figure 8(a), at the end of a simulation run,
e-PTC

���
is about 2.8 times that of PTC at load 0.2, whereas it

is about 4.6 times at load 0.8. As mentioned earlier, e-PTC incurs
the extra overhead in message size since it uses drop messages

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

%
Inc

rea
se

of
me

ssa
ge

 siz
e

Time (x 200000)

load 0.2
load 0.4
load 0.8

(a) % MS increase in 50-node topology

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

%
Inc

rea
se

of
me

ssa
ge

 siz
e

Time (x 200000)

load 0.2
load 0.4
load 0.8

(b) % MS increase in 100-node topology

Figure 8: MS increase with 3 most-connected nodes failing

to communicate the state-change information. Such information-
sharing, while allowing the routing tables to be more up-to-date
compared to PTC, leads to larger messages in e-PTC. As the num-
ber of call failures increase with load and network failures, so does
the number of state-value transmissions in drop messages. One
way of reducing the message overhead of e-PTC is to selectively
communicate information. We are developing such a mechanism
in our ongoing work, where agents use their communication histo-
ries to judge how useful a certain information would be to a recip-
ient. Significant savings in message overhead are observed while
maintaining the advantages of e-PTC.

6. STATE DIAGNOSIS USING E-PTC
The results of section 5 indicate how e-PTC ensures that agents
adapt effectively to dynamic state changes caused by failures. In
this section, we elaborate on the additional benefit of e-PTC in di-
agnosing such state changes. In particular, we develop an algo-
rithm, based on the shared information generated by e-PTC, that
distributed agents can use to detect if a certain node has failed.
Such a capability would then be useful for automating distributed
diagnosis and recovery.

Here, failure diagnosis means that a node raises an alert when it
interprets, from the state values it receives along drop messages,
a fail condition of another node. The detecting node is termed the
“monitoring” node and the one interpreted is the “monitored” node.
Note, any node can take either of these roles because information
is distributed between all nodes in the network. This is because
calls can originate from and terminate at all nodes and, thus, e-
PTC would distribute information along call paths between all node
pairs. Our aim in this context is to ensure that failure diagnosis
using e-PTC is both truly indicative of a failure (no false positives),
and that all failures will be detected (no false negatives). To ensure
the first property, the monitoring node needs to observe a series of
state values of the monitored node (explained shortly). The second
property guarantees a detection.

To explain the diagnosis process, a node � � is considered to do
the monitoring of another node � � (the monitored node). Let �
be the average interval at which � � receives the state values of � � ,
distributed by e-PTC. The state values of � � can be transmitted
along ack and/or drop messages either when � � is saturated or
unsaturated, or when the latter has failed. Now, the state values
of a node that is saturated and that is failed are both zeros (sec-
tion 3.2). However, the difference is that a saturated node becomes
unsaturated when bandwidth becomes available, whereas a failed
node continues to remain so. Therefore, after receiving the first
zero state value of a saturated (not failed) � � , if � � continues to
observe the state values, then it will receive a non-zero state value
after a certain number of observations. This will happen when � �
becomes unsaturated. Against this background, note that if � � has
the information about the average durations for which � � remains
alternately saturated and unsaturated, then it can compute the num-
ber of such observations using its knowledge of � . We assume that� � remains alternately saturated for an average period of

�
�
� and

unsaturated for
�
��� � . To summarise, when � � receives a zero state

value of � � , it assumes � � is saturated. Then, using the knowledge
of � ,

�
� � , and

�
��� � , � � computes the minimum number of observa-

tions (termed as �) after which it would receive a non-zero state
value of � � . If the actual number of zero-state values of � � received
exceeds the computed value, then � � interprets a failure by reject-
ing its previous assumption of a saturated � � . The algorithm to
compute � is detailed in the following section. Now, out of � ,

�
� � ,

and
�
� � � , � � can estimate online the average interval (�) at which it

receives information from � � . However, it cannot estimate online�
� � and

�
��� � of � � since it does not have information about the overall

network load. But, � � can acquire these estimates from node traffic
statistics that are usually available for most networks [4].

6.1 The Failure Diagnosis Algorithm
After receiving the first zero state of � � , � � invokes the algorithm
assuming the state value to be from a

�
� � interval of � � (i.e., from a

saturated � � ; it may of course be from a failed � �). Now, knowing
that it would receive state values from � � after every � units and
that � � would remain alternately saturated for

�
�
� and unsaturated

for
�
��� � , � � determines whether the next reception should be from a�

� � or a
�
��� � interval of � � . This is done by comparing � against the

sum of
�
��� and

�
� � � . This process is repeated until the next projected

reception is from a
�
��� � interval; the total number of receptions be-

fore this happens is equal to � . In more detail, figure 9 shows the
algorithm. The algorithm’s inputs are � ,

�
� � , and

�
��� � and the output

is � , the minimum number of zero state values � � would observe
from � � . In figure 9, � � is the sum of

�
� � and

�
��� � . The algorithm

identifies the various possible relationships between � and
�
� � and�

� � � to decide how to compute � .

Input: � , ��
	 , ��
��	 ; Output:
 .

0. �
��� ���	�� �����	 ;
 ��� ;

1. if(� � �
�

and � � ��
)
2.
 ��� ; //2nd msg in unsaturation
3. else if (� � �

�
) //next msg in a subsequent �

�
zone

4. � � �
�
�
�
; //modulus

5. while(! � � ���	 ' ���)6.
 �
 � � ;
7. � � !$� ��!$�

�
� � ' '

�
�
�
; //offset from start of next interval

8. else if(�
� ��
) //next msg in a saturation zone

9. � � � ;
10. do

11.
 �
 � �� 	 � ��
� �

; //integer division

12. � � ��! �
� 	 � ��

� � ' ��!$�
�
� � ' ; //offset from end of current interval

13. while(� � �);
14.else
15.
 ��! ; //to observe infinite zero-state messages; diagnosis inconclusive

Figure 9: Failure diagnosis algorithm

’T

Low

High

ustst

TSt
at

e
va

lu
e

Time

(a) Condition: � J � �
and �#" �� �

Time

St
at

e
va

lu
e

ts tus

High

Low

T

T’

(b) Condition: �#"�� �

Time

St
at

e
va

lu
e

ts

High

Low

T T

t us

T’

(c) Condition: �%$ ���� �

T

’T

Low

High

ustst

St
at

e
va

lu
e

Time

(d) Condition: � ��� �

Figure 10: Relationships between � ,
�
��� , and

�
� � � of figure 9

First, if � JL� � and �&" �
��� (line 1), the next state value of � �

(after an interval of � since the first reception) would be from its�
� � � interval and, hence, ��� 	 . Figure 10(a) shows this condition
in schematic. Here, the saturated and unsaturated states of � � are
shown as a pulse wave: the “high” value represents the

�
�
� interval

and “low” the
�
��� � interval. Along the x-axis is time and the y-axis

represents state value. Thus, from the start of the first
�
��� interval

(corresponding to the first zero state value � � received from � �),
the end of a period equal to � (which is when � � would receive the
next message from � �) falls within the

�
� � � interval; which is when� � will receive a non-zero state value. Thus, � � would receive a

non-zero state value on the message after the first zero it received
from � � . Hence, � ��	 .

Second, if �'" � � (line 3), first, it is computed by how much
(() the next reception is within the next � � of � � (line 4). Then,
this offset is recomputed (line 7) for successive observations (the
loop at line 5) until it is greater than

�
�
� of the next � � (line 5),

which indicates a non-zero state. Until this happens, in each itera-
tion one more zero state value needs to be observed by � � (line 6).
Figure 10(b) shows the schematic.

Third, if �)$ ���� (line 8), a similar calculation is done as above.
Specifically, in line 12, � �+*� 	-,/.0 ?�9@� gives the total duration of the
consecutive observations made within an offset-adjusted

�
��� inter-

val, and � � � :�(� gives the effective (offset-adjusted) � � in which
the above calculation is done. Thus, the new offset from the end of
the current � � is the difference of the above two values (line 12).
The process is repeated until the next observation is in the

�
� � � of the

current � � which is when the offset is less than zero (line 13) and
indicates a non-zero state. As an example, consider � � �� � . Then,
(at the end of iteration 1 is (line 12): (� � � *� 	 ,/10 ? 9@�5: � � � : I � ,
��	1� : � � . If 	@� J�� � , then (J�I (line 13 violated) and, thus, the
third message after the first zero state that � � received will be from
a
�
� � � interval of � � ; so, in this example, � � � . Figure 10(c) shows

this example in schematic. If 	1�2" � � , then line 13 holds. So, in
the next iteration, an offset-adjusted

�
�
� and � � are used (where the

offset is the (of the previous iteration) to re-compute a new (.
Lastly, when � ��� � (line 14), the next state from � � always co-

incides with a
�
� � interval (see the schematic of figure 10(d)). There-

fore, � � receives an endless sequence of zero states from � � and,
hence, cannot distinguish between a saturated and a failed � � .

The above algorithm can be invoked when � � receives a zero
state of a saturated � � . However, assuming � � has the correct es-
timates of � ,

�
� � , and

�
��� � , it will eventually receive a non-zero state

of � � on the � ���
instance since the first zero. This is when � � has

become unsaturated. So, � � would not signal a failure which is the
correct diagnosis. Hence, the diagnosis has no false positive. Al-
ternatively, if � � had indeed failed when � � received the first zero,
it would continue to be failed indefinitely. Therefore, � � would
eventually receive more than � zero state values from � � and then
signal a failure — the correct diagnosis (no false negatives).

6.2 Empirical Evaluation
The algorithm of figure 9 is evaluated empirically using the same
experimental setup as in section 5. In a given network, one node
(� �) is selected as the monitoring node and then, in turn, all other
nodes are selected to fail (� �), each in a differect simulation with all
parameters the same as before. Selecting one node to fail does not
limit our conclusions about our diagnosis algorithm which is the-
oretically capable of detecting arbitrary number of failures. How-
ever, multiple failures can cause a practical difficulty of state in-
formation not reaching the monitoring node due to a disconnected
network. Now, for every other node, � � estimates � and the sim-
ulator estimates

�
��� and

�
� � � , which are fed to � � using which, it

can invoke the algorithm of figure 9 to compute � as described
before. In these experiments, node 8 in figure 3(a) and node 13
in figure 3(b) are used as the monitoring nodes. With a different
node (the monitored node) failing in each experiment, the average
values of � and � over the monitored nodes that are at a given
distance from � � , are computed. Hence, a summary assessment of
how many consecutive observations � � requires to diagnose failure
at a given distance is obtained.

To this end, tables 1 and 2 show the average estimates of � , � ,
and the delay between the time a node fails and � � actually making
a diagnosis for figure 3(a) and 3(b), respectively. In each experi-
ment, � � has diagnosed only after the chosen � � has failed. Thus,
the properties of no false positives and no false negatives of the
diagnosis algorithm are corroborated by these empirical results.
Thus, not only does e-PTC yield highly effective adaptive response
in distributed dynamic environments, but also using the information
exchanged by e-PTC, accurate state diagnosis can be achieved.

Note the diagnosis delay increases with increasing distance of
the failures because of the increasing delay (�) in receiving infor-
mation from distant nodes. The value of � is determined by the
topology, load, call pattern, and the information-sharing protocol
used. By reducing � , such as by distributing information more
frequently and along multiple paths, the detection delay can be re-
duced; this is part of our future work. The delay is also due to using
a single monitoring node. By choosing multiple such nodes, the
maximum distance of any node and at least one monitoring node
can be restricted such that the delay is within tolerable limits. Nev-
ertheless, we verified the theoretical properties of the diagnosis al-
gorithm using a single monitoring node which actually provides a
“harder” test than using multiple ones.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we develop a new information-sharing algorithm, e-
PTC, for distributed resource allocation problems that can generate
highly effective adaptive behaviour in dynamic environments and
achieve distributed diagnosis of state changes. Empirical evalua-
tion of e-PTC in a simulated call routing application confirms its

Table 1: Diagnosis performance on the topology of figure 3(a)

Min dist of target
� �

Detection delayavg stdev avg stdev
1 420 50.7 2.8 1.2 756
2 1559 562.4 2.9 1.4 2962.1
3 7402 5339.3 2.3 1.2 9622.6
4 28616 15895.0 2 0 28616

Table 2: Diagnosis performance on the topology of figure 3(b)

Min dist of target
� �

Detection delayavg stdev avg stdev
1 372 11.2 2.2 0.3 446.4
2 4148 491.1 2.0 0.1 4148.0
3 10807 658.9 2.0 0.2 10807.0
4 20265 1870.5 2.1 0.4 22291.5
5 33336 4668.6 2.5 1.3 50004.0
6 44569 15631.4 2.0 0.0 44569.0
7 63416 8510.4 2.1 0.6 69757.6
8 132917 15006.6 1.85 0.3 112979.4
9 464743 13766.6 2.0 0.1 464743.0
10 425047 21690.3 2.0 0.1 425047.0

advantages over the previous state-of-the-art in this area. Specif-
ically, with dynamic state changes caused by network failures, e-
PTC achieves up to 20% higher call throughput, up to 3.5 times
faster recovery of throughput after failures, and provides a novel
algorithm for diagnosing failures without false positives and false
negatives. These improvements are earned by e-PTC at the cost
of sending more messages than PTC. However, to address this, we
plan to investigate ways of limiting the message overhead of e-PTC
by using selective communication in which the agents can use a no-
tion of information redundancy to decide when to communicate.

8. REFERENCES
[1] E. H. Durfee and V. R. Lesser. Partial Global Planning: A

coordination framework for distributed hypothesis formation. IEEE
Transactions on Systems, Man, and Cybernetics, 21(5):1167–1183,
1991.

[2] P. S. Dutta. Adaptive Distributed Resource Allocation Using
Cooperative Information-Sharing. PhD thesis, University of
Southampton, 2005.

[3] P. S. Dutta, N. R. Jennings, and L. Moreau. Cooperative information
sharing to improve distributed learning in multi-agent systems. JAIR,
24:407–463, 2005.

[4] Floodnet: Pervasive computing in the environment, 2004.
http://envisense.org/floodnet/floodnet.htm.

[5] I. Foster and C. Kesselman. The Grid 2: Blueprint for a New
Computing Infrastructure. Morgan Kaugmann, 2003.

[6] P. J. Gmytrasiewicz and E. H. Durfee. Rational communication in
multi-agent environments. Autonomous Agents and Multi-Agent
Systems, 2001.

[7] C. V. Goldman and S. Zilberstein. Optimizing information exchange
in cooperative multi-agent systems. In Proceedings of AAMAS 2003,
pages 137–144, 2003.

[8] M. Lemaitre, G. Verfaillie, H. Fargier, J. Lang, N. Bataille, and J. M.
Lachiver. Equitable allocation of earth observing satellites resources.
In Proc. of the 5th ONERA-DLR Aerosapce Symposium, 2003.

[9] N. Lynch. Distributed Algorithms. Morgan Kauffman, 1996.
[10] V. Tamarapalli and S. Srinivasan. Survivability in WDM networks

under multiple link failures. In Proceeding of Optical
Communications Systems and Networks, 2004.

[11] C. J. C. H. Watkins and P. Dayan. Technical note: Q-learning.
Machine Learning, 8:279–292, 1992.

