
On Information Hiding and Network Management∗

Kenneth L. Calvert and James Griffioen
Laboratory for Advanced Networking

University of Kentucky
{calvert,griff}@netlab.uky.edu

Keywords
network management, scalability, privacy, network ar-
chitecture.

ABSTRACT
No single administration controls the entire Internet. In-
stead, competing providers work together to enforce of
a wide variety of network management policies, includ-
ing policies that limit the flow of management informa-
tion itself. In many cases these policies are designed to
keep information about the state of the network from
“leaking” outside the network. In this position paper,
we consider the ramifications of such information-hiding
policies for network management. We discuss mecha-
nisms that might be used to enforce such policies, and
argue for an open access policy.

1. INTRODUCTION
For the purposes of this paper, network management is

about keeping the network in a desired state. This prob-
lem has two separable aspects: (i) gathering information
about the state of the network; and (ii) using that in-
formation to control the configuration of the individual
elements (routers, switches, hosts etc.) that make up
the network. The Simple Network Management Proto-
col (SNMP) [5] supports both aspects: the SNMP SET
message provides control, while other parts of the pro-
tocol all support information-gathering. In this paper
we focus on the former, i.e. aspect (i). We observe in
particular that access to information about the network
state is useful not only for network management, but

∗Work sponsored in part by the National Science Foun-
dation (EIA-0101242 and CNS-0435272), the Kentucky
Science and Engineering Foundation, Intel Corporation,
and Cisco Systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’06 Workshops September 11-15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-417-0/06/0009 ...$5.00.

also for other purposes such as enhancing application
performance end-to-end.

Presently no single administration controls the entire
Internet; instead, each service provider manages that
part of the network it controls, which we refer to as its
domain. Paradoxically, service providers must cooperate
to provide the basic end-to-end service of the Internet,
but at the same time they are competitors. As such,
each has little incentive to help others gather informa-
tion about the state of its domain; in fact, there are
well-known incentives to hide such information.

In this position paper we explore this “tussle” between
providers, who want to control or even prevent access to
their network management information, and others who
might make use of such information. Our position is
that allowing access to such information provides sig-
nificant benefits for management of the global Internet
as well as for other purposes, but that traditional ac-
cess control mechanisms are not a good solution for the
problem of hiding sensitive information. We therefore
propose an approach that grants access to those outside
the domain, but allows providers some control over what
information is revealed. The approach focuses on what
information is made available, and how, rather than on
who is allowed to access it.

The rest of this position paper is organized as fol-
lows. In the next section we describe a simple model
of the network management environment and briefly dis-
cuss motivations and mechanisms for hiding information.
In Section 3 we consider the other side of the tussle,
i.e. the benefits of making management-type informa-
tion available. Section 4 describes an approach that
makes management-type data available to all packets on
or near the fast path; hiding is implemented by apply-
ing transformations at domain boundaries. We discuss
some possible transformations and how they might be
implemented using Ephemeral State Processing [2] as
an example. Finally, Section 6 concludes the paper.

2. MODELS AND ASSUMPTIONS
The discussion that follows is shaped by the existing

Internet architecture, but our intent is that it should
apply in a more general context, such as the next gener-
ation network architecture.

We assume a model that distinguishes between the
part of the network being managed, which we refer to
as the domain, and the rest of the world. Each node in

35

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1162638.1162644&domain=pdf&date_stamp=2006-09-11

the network (router or end system) either belongs to the
domain or does not; links that connect a node belonging
to the domain to one or more that does not are border
links. A router that has is connected to one or more
border links is called a border router. The “perimeter”
of the domain is defined by its border links. We assume
that each border router knows which of its interfaces are
part of the perimeter.

We assume that each node in the domain maintains
a local store of information for management purposes
(e.g. MIB variables). Some of this information may be
associated with sub-components of the node (network
interfaces) while some is associated with the node as a
whole. By “information hiding” here we refer to restric-
tions on the ability of entities outside the perimeter of
the domain to read this information. (We do not con-
sider writing, i.e. configuration of nodes, in this paper.)

It is an observable fact that network operators are
sensitive about revealing data about their network and
its operation. Traffic traces, network topologies, and the
location and nature of network interconnections are all
considered confidential, and must be “sanitized” before
being made publicly available (e.g. to researchers), if
they are revealed at all [11, 13]. There are several reasons
for this:

• Competitive pressure: Most providers are in
business to make money; as such, they typically
try to reveal as little as possible to their competi-
tion about the way they operate and their relation-
ships with customers. For example, comparative
information about the internal performance of dif-
ferent networks might be exploited for marketing
purposes by the provider with better numbers.

• Customer Privacy: Providers worry about re-
vealing information about customers’ communica-
tions that might be considered sensitive. They do
not want outsiders to be able to infer traffic pat-
terns, for example, or even which customers are
talking to which.

• Safety and Security: Information about which
version of software runs on a network element might
help an attacker determine a way to compromise
the element. Such hints can be gleaned from sur-
prisingly innocent-seeming data—for example, the
contents of ICMP meessages.

The standard approach to restricting access to infor-
mation is to distinguish between those parties who are
allowed to obtain the information and those who are not.
This requires that a mechanism be put in place to medi-
ate all access to the information. This mechanism (i) de-
termines who is responsible for each request to access
restricted information (authentication); (ii) determines
whether the requester is allowed access according to the
relevant policy (authorization); and (iii) either allows or
denies the requested access to the information.

In the present architecture, SNMP plays this role.
SNMP provides for three methods of authentication: (1)
via packet labeling, in which a requesting packet is con-
sidered “authentic” (i.e. sent by an authorized party) if
it carries a recognized “community” string; (2) via source

IP address, in which a requesting packet is considered au-
thentic if its source address is on a list of “trusted” hosts;
and (3) via cryptography, where a packet is considered
authentic if it carries a token that can only be generated
with knowledge of a secret shared with the access control
mechanism. Obviously these mechanisms vary in terms
of the level of security they provide. Cryptography offers
the greatest security, but also brings with it additional
costs in two forms. One is computational cost: verify-
ing public-key signatures requires significant computing
resources, and gives rise to the possibility of a denial-
of-service attack by bombarding a network element with
bogus requests. Such an attack can prevent legitimate
work (e.g. management requests) from being processed.
Other cryptographic approaches may consume fewer re-
sources, but require the distribution of secret keys to
participating nodes. This represents a different cost, less
often considered but no less important, namely admin-
istrative overhead : someone has to specify, configure,
and maintain the policies and related information (e.g.
secret keys) on network elements and management sta-
tions. All three SNMP mechanisms have this cost.

3. BENEFITS OF NON-HIDING
Clearly, exposing information to nodes inside the peri-

meter is necessary for network management. In partic-
ular, network management stations within the domain
require access to local network statistics in order to de-
tect failures, diagnose and isolate configuration errors,
track link and server loads over time, identify intrusions
and attacks, monitor service levels, etc. Although local
network managers stand to gain the most by exposing
information within a domain, we note that distributed
services/applications within the domain may also uti-
lize this information to optimize performance (e.g., load
balancing requests across a server farm).

One might conclude that it is best to hide all manage-
ment statistics from nodes outside the domain perimeter,
while permitting all access from inside. However, we ar-
gue that this policy is more restrictive than necessary.
In many situations, some information can be “leaked”
without compromising privacy, safety/security, or com-
petitive advantage. Moreover, leaking non-sensitive in-
formation (i.e., not private information of customers) to
nodes outside of a domain can benefit the system as a
whole, allowing it to operate more efficiently or offer ser-
vices not possible with a “black box” network. In that
sense, it is in the best interest of a domain to be a good
network citizen, contributing information for the greater
good of all domains and benefitting from the information
exposed by other domains.

We have found that high-level, abstracted information
can be as useful as more detailed, fine-grained informa-
tion. Indeed, it is well known that information hiding
can improve scalability [3]. In many cases the requesting
entity is only interested in a summary of the informa-
tion collected from a set of nodes, or is only interested
in the answer to a very specific question. In such cases
exporting the information from all nodes requires more
bandwidth and actually hurts scalability. For example,
a sender transmitting simultaneously to a large group
may want to know the range of throughputs observed

36

across all receivers. In this case, the sender does not
need to see all values; rather, a small set of “distilled”
values (min, max, mean) suffices. As another example,
an application might seek the available capacity of the
bottleneck link along a path to a destination. Informa-
tion about the identity of the nodes on either end of the
link is extraneous, and nothing is lost by hiding it.

Finally, consider the problem of determining whether
two network paths intersect and the queue length at the
intersection (if any). Again, we are only interested in
the existence of an intersection point, and the ability
to query it for its queue length; this does not require
learning the identity or location of the intersection point.
Instead, the intersection, if it exists, can identify itself
with a unique id—something like a cookie issued by a
web server—which, when seen later in a request for the
queue length, will trigger a valid response.

Benefits that may accrue from sharing information of
this kind outside the domain include faster diagnosis
of global problems, improved/optimized application per-
formance, enhanced traffic engineering capabilities (e.g.,
routing/load balancing), and reduced loads at monitor-
ing stations (because the monitored information is pre-
processed, filtered, summarized, etc. before arriving at
the monitoring station).

Consider the well-known hot-potato routing strategy,
in which a domain hands off packets to a neighboring
domain as quickly as possible based on its own inter-
nal network costs, without knowledge or consideration
of the costs associated with the resulting path through
the neighboring domain. Given knowledge of the ap-
proximate costs between ingress and egress points of the
neighboring domain, a more intelligent selection can be
made, possibly resulting in improved end-to-end perfor-
mance for the customer.

As an example of improved application performance,
the canonical example is congestion control. The In-
ternet was not designed to provided explicit feedback
about congestion (e.g., where it is occuring or the level
of congestion). Given the importance of this problem,
a variety of (congestion control specific) network-level
approaches have been proposed [8, 6]—some providing
explicit feedback, others providing intentional, but im-
plicit, feedback. Through explicit but anonymized infor-
mation about a path’s congestion level—e.g., giving link
loss rate and the number of flows sharing the link, while
hiding the associated link IDS (or at most revealing code-
names/aliases of the associated link)—end systems can
react quickly and precisely to congestion anywhere in
the system without discovering the location responsible
for the congestion.

4. SCALABLE INFORMATION ACCESS
So far we have argued that traditional access control

methods, where each node individually authenticates re-
quests for information and implements a local policy,
fail to scale both in bandwidth and in administrative
costs. We have also observed that in many cases detailed
information, which a provider might consider sensitive,
can be rendered innocuous by transformations that pre-
serve and even enhance its utility. Elsewhere [2] we have
argued that summary transformations of this kind are

useful for network management, and partially address a
growing need—recently noted by the Internet Architec-
ture Board—for “scalable techniques for data aggrega-
tion and event correlation of network status data origi-
nating from numerous locations in the network” [1]. In
addition to network management, the ability to extract
such information from a domain would be useful in a
variety of ways to applications and other domains.

These considerations lead us to suggest a model with
the following characteristics:

• Any packet can potentially request information.
This implies that packet processing related to in-
formation retrieval must be handled on, or very
near, the fast path, in order to preclude denial-
of-service attacks. In other words, the mechanism
that provides access to network management infor-
mation must be extremely lightweight.

• Information can be processed, as well as read, on
the fly as packets pass through the network. This
enables the distributed computation of summary
information to improve scalability as well as im-
plement hiding.

• All retrieved information is (potentially) transformed
as it crosses the domain perimeter. This allows the
provider to control what is exposed.

Obviously this model is quite different from the exist-
ing SNMP-style model in which a single management
station queries nodes one at a time to gather informa-
tion. Where the traditional model focuses on who is
allowed to access what information, and either allows or
denies access altogether, our model allows universal ac-
cess, and relies on various transformations to implement
the information-hiding that providers require.

In this section we present three general information-
hiding techniques that can be used individually or in
combination by a domain to hide certain information
while exposing allowable information. In the next sec-
tion we shall describe a way of implementing these tech-
niques using a lightweight router-based primitive.

4.1 Aggregation
Aggregation involves hiding individual values collected

from a set of nodes, and returning instead a single value
that is the result of applying a request-specific function
(e.g., minimum, maximum, average, sum, etc.) to the
individual values. Although the function is applied to
internal domain values, the result that is returned is a
combination or aggregate of the original information.

Example uses of aggregation include monitoring (or
probing) the network to answer questions like “what is
the maximum loss rate among all multicast receivers?”
“how many receivers are in the multicast group?”, “how
many nodes are experiencing congestion?”, or “what is
the average server load?”

Note that aggregation serves multiple purposes. First
it hides the values stored at each of the contributing
nodes. In fact, it hides the number of nodes contributing
values to the computation. Clearly aggregation protects
hidden information from being exposed, but it has the
added benefit of simplifying the interface by which the

37

requester learns information about a (potentially) large
group. Second, it allows the required processing to be
distributed across nodes in the network, thereby offload-
ing work from the requester (much as multicast offloads
the task of packet duplication).

4.2 Anonymization
Anonymization refers to obscuring the identities of

individual nodes, while maintaining the ability to dif-
ferentiate among nodes. For example, a link along a
path might admit performance problems—a high loss
rate—by returning its loss rate and a “cookie” that is
meaningful to the lossy link, but meaningless elsewhere.
The cookie might be included in subsequent probes of
alternative paths to determine whether the bad link is
part of the alternate path. The scope of such a cookie
would be the domain in which it was generated; nodes
inside the domain would know the mapping (the particu-
lar transformation could be encoded in the cookie itself)
between nodes or addresses and cookies. At a minimum,
the anonymized value returned must be the same for all
packets that request the value over some (potentially
small) period of time. This requirement is necessary to
match up results from multiple packets. Beyond this re-
quirement nodes are free to reveal as little or as much
as they like. For example, a node may reveal that it is
at the University of Kentucky (in its IP range), but not
reveal which machine it is or which subnet it is on.

The normal case we envision would be for anonymiza-
tion to occur at border routers. However, if certain
values are not to be exposed within the domain—at
least not through the lightweight network management
mechanism—then the anonymized version of the value
would be returned by each node, even within the domain.
Of course, the non-anonymized version could still be ac-
cessed through heavyweight approaches such as SNMP.

4.3 Abstraction
Abstraction is useful when a set of nodes or links are

not only to be hidden, but should be treated/viewed
as a single (virtual) entity. How the virtual entity is
“constructed” from the actual component parts that it
represents is domain-dependent and must be defined by
the domain administrator.

Instead of revealing information about all the links on
the path from one of the domain’s ingress points to one
of its egress points, the domain administrator may want
to represent the path as a single (virtual) link whose
characteristics are derived from those of the individual
links. For example, the end-to-end delay of the virtual
link may be computed by summing the end-to-end delays
of the individual links. Similarly, the loss rate of the
virtual link could be the maximum of the rate of all
links on the path.

It should be noted that aggregation differs from ab-
straction in the sense that aggregation allows an outside
node to define a function to be applied to the actual
values within a domain. In the above example of the
maximum loss rate along a path, the same result could
be obtained by using aggregation. On the other hand,
abstraction takes a set of nodes and/or links and con-
verts them into a virtual entity by applying a transfor-

mation that is specific to the domain and to the type of
information requested.

In particular, with aggregation, ESP packets carry
only summary information. Abstraction, on the other
hand, requires that the detailed information in a packet
be modified before leaving the domain. Thus, border
routers are key to the abstraction mechanism and repre-
sent the point at which abstraction policies (defined by
the local domain administrator) are enforced. In partic-
ular, border routers are responsible for converting infor-
mation requests into an internal request that will gen-
erate the information needed to represent the abstract
object (node or link). We discuss this in more detail in
the next section.

5. IMPLEMENTING HIDING
We argue that the mechanisms needed to support the

three approaches presented above should be built into
routers, and in particular, should be implemented on
port cards (as opposed to in a centralized processor).
Several router-based data collection/aggregation proto-
cols have been proposed in the context of multicast and
data collection [3, 4, 10, 7, 12]. Although these may work
well for aggregation, they are not necessarily capable
of supporting the other information hiding approaches
we propose. Moreover, they are not generally designed
to process packets at line speeds and thus may be sus-
ceptible to Denial-of-Service attacks. In this section we
describe a mechanism that is capable of supporting all
three information hiding techniques and is designed to
be impervious to DoS attacks (i.e., can be executed on
every packet at line-speeds).

5.1 ESP-NM
In earlier work, we proposed Ephemeral State Pro-

cessing (ESP) [4] as a lightweight and scalable way for
end systems to perform distributed processing inside the
network. ESP provides the ability for packets to store
and compute with small, fixed-size chunks of short-lived
information on router interface cards. The information
is kept in an associative store of (tag, value) pairs refer-
enced by the tag field. The basic idea is as follows: as
packets travel through the network, they create, modify,
or retrieve these chunks at interfaces of routers along the
path from source to destination. This information, once
created, exists only for a short time (say 10 seconds) and
can only be used by subsequent packets within that time
interval. Each packet carries a single, short, instruction
code that indicates the operation to be performed on the
stored state and/or the values carried in the packet. Ex-
ample instructions include the count instruction, which
increments the value stored with a tag carried in the
packet; and the find instruction, which can be used to
find the maximum or minimum value bound to a tag
carried in the packet at the nodes along the path, as
well as the address of the node (interface) at which it
was stored. Approximately a dozen different instruc-
tions have been defined to date and the instruction set
continues to evolve.

All ESP packets are either forwarded straight through
to their destination or are silently discarded based on
the outcome of their processing. The computation initi-

38

ated by any ESP packet is simple and requires strictly
bounded resources (including the space-time product of
state storage); this enables it to be implemented on or
near the fast path. ESP processing never modifies any
field of the network header of the packet. The power
of the service comes from the ability to sequence these
computations in time and space, by sending packets con-
taining different instruction codes.

In follow-on work [2], we proposed enhancements to
the basic ESP service that enabled its use for network
monitoring and management; we call the resulting ser-
vice ESP-NM. The primary enhancement enables access
to the network management information base (MIB) at
each node in the network. That is, in addition to pro-
viding access to ephemeral state values at a node, ESP
instructions can reference MIB variables at a node. (We
restrict MIB information accessed through ESP to be
read-only; to maintain efficient processing, any centrally-
defined values would be duplicated at each line card and
updated upon every change.)

To understand how the service might be used, con-
sider the problem of determining whether two paths go
through any common router interfaces (i.e., intersect).
Initially an ESP packet is sent along the first path de-
positing a value in the incoming and outgoing interfaces
of every router. Shortly thereafter (within the state life-
time), an ESP find packet is sent along the second path
looking for the maximum value bound to the tag used
by the first packet. If the paths intersect, the second
packet will arrive at its destination containing the value
and the address of the interface at which they intersect.
If there is no intersection, the packet will arrive at its
destination containing no value and no address.

5.2 Implementing Transformations
The following briefly describes how ESP-NM could be

used both as the query protocol and to implement all
three information hiding techniques.

Aggregation. As described in [2], a two-phase com-
putation can be used to apply any associative and
commutative operation to the values stored at a
set of nodes. In the first phase, the nodes all
send count instructions toward the collecting node.
This sets up a virtual tree structure by establish-
ing “child counts” at each intermediate node. In
the second phase, each node transmits a collect in-
struction carrying its value toward the receiver;
at each intermediate node, each incoming collect
packet’s value is added to the sum and the child
count is decremented; when a node’s child count
reaches zero, its sum value is written into the col-
lect packet, which is forwarded on toward the re-
ceiver. When the receiver’s child count reaches
zero, its sum contains the total for the group.

Anonymization. Implementing anonymization with
ESP requires that certain requested information
carried in ESP packets be rewritten by border routers
according to a well-defined transformation. For ex-
ample, an ESP packet carrying the identifier (IP
address) of the bottleneck router along a path would
be rewritten at the edge of the domain to return a

transformed version of the router’s identifier. Sim-
ilarly, incoming packets that carry anonymized IDs
have to be rewritten at the border so they have the
actual address. In this case, border routers must
know the mapping between the non-anonymized
value and the anonymized value. To avoid anal-
ysis of the mapping by outsiders, the ID can be
time-dependent and continually changing since it
only needs to be valid long enough for subseuquent
ESP packet (transmitted soon after the first one)
to find the same anonymized ID and obtain the
desired information.

Abstraction. Like anonymization, abstraction involves
modifying ESP at border routers. In this case,
however, the border router transforms an instruc-
tion that might reveal sensitive information about
a domain into one that casts the information in
a less sensitive form. One possibility is to use an
ESP instruction stack, where ESP instructions are
pushed on entry to a domain and popped on exit.
The basic idea is that each ESP packet is checked
at the input interface of a border router, and if
it would reveal sensitive information, the router
pushes a new ESP-instruction onto the ESP in-
struction stack; the new instruction is designed to
compute the desired value, but over a virtual en-
tity. When the packet arrives at a border router
on the way out of the domain, the top instruction
is “popped” along with its result, which is then
used in processing the original instruction, and the
packet is forwarded normally.

As an example, consider an ESP instruction de-
signed to find the loss rate of the lossiest link along
a path. At each hop, the number of packets dropped
is divided by the number of packets forwarded and
the result compared to the current value in the
packet; if it is greater, it is written into the packet.
If a domain administration does not wish to reveal
loss rates for individual links, at the border it can
push a new instruction that sums up the number
of dropped packets and the number of transmitted
packets on each link. At the egress router, the in-
struction is popped, the sums are divided and the
resulting value is used as the loss rate for a virtual
link that corresponds to the entire domain.

Application of this transformation may be trig-
gered by lookup of incoming ESP instructions in
an abstraction policy table. The pushing and pop-
ping conversion at the border can be done quickly
and efficiently (similar in many ways to tag stacks
in MPLS [9]).

In the case of anonymization and abstraction, border
routers need to process ESP packets that cross the do-
main perimeter differently from those that do not. In
the next subsection we describe how this capability can
be implemented.

5.3 Perimeter-Crossing Packets
ESP processing may be handled differently on a packet

depending upon whether it is crossing a domain perime-
ter or not. In particular, in case of abstraction a new

39

instruction must be pushed on ingress and popped on
egress from the domain. Since a router may have multi-
ple border links as well as multiple “inside” links, some
means is required to determine, prior to the ESP pro-
cessing on the input interface, whether the packet will
traverse the domain perimeter. One possibility would be
to examine the destination address and recognize those
addresses inside the domain. That approach, however,
requires that a list of internal addresses be maintained
and compared to each ESP packet.

A better method is to compare the links on which the
packet is received and transmitted; if one is a border link
and the other is not, the packet is crossing the perimeter
of the domain. Of course, the outgoing link is not known
until after the forwarding lookup is completed. This
implies that ESP processing in incoming packets should
occur after the forwarding lookup. More precisely, for
input ports, processing should occur as follows:

(packet arrives on link l)
validate packet;
lookup destination to obtain outgoing link e;
if (l is border and e is not)

〈ingress ESP processing〉;
else if (e is border and l is not)

〈egress ESP processing〉;
else

〈normal ESP processing〉;

Here “ingress ESP processing” means un-anonymizing
values and pushing an instruction for a virtualizing com-
putation on the ESP instruction stack as necessary. Sim-
ilarly “egress ESP processing” includes anonymizing sen-
sitive values like node identifiers, and popping the ESP
instruction stack and completing the virtualizing com-
putation, if any.

6. CONCLUSION
In prior work we have dealt with network scalability

mechanisms that support access to group information in
a distilled or abstracted form [3, 2]. We have observed
that information commonly related to network manage-
ment can be useful outside its domain of origin; however,
providers have incentives to restrict access to such infor-
mation. We argue that traditional heavyweight access
control mechanisms, which might allay concerns about
revealing sensitive information, are inappropriate due to
high costs. Based on our experience with other scala-
bility mechanisms, we prefer an approach featuring uni-
versal access and hiding sensitive information through
network-based transformations. We have sketched a few
brief examples of such transformations, and mechanisms
through which they might be implemented. Our ongo-
ing work considers the details of how such mechanisms
might be deployed in existing and future networks.

7. REFERENCES
[1] R. Atkinson and S. Floyd. IAB Concerns and

Recommendations Regarding Internet Research
and Evolution, August 2004. RFC 3869.

[2] K. Calvert and J. Griffioen. Scalable network
management using lightweight programmable
network services. Journal of Network and Systems
Management, 14(1), March 2006. (Special issue on
management of active and programmable
networks.).

[3] K. Calvert, J. Griffioen, B. Mullins, A. Sehgal, and
S. Wen. Concast: Design and implementation of
an active network service. IEEE Journal on
Selected Areas of Communications, 19(3):426–437,
March 2001.

[4] K. Calvert, J. Griffioen, and S. Wen. Lightweight
network support for scalable end-to-end services.
In ACM SIGCOMM 2002, pages 265–278, August
2002.

[5] J.D. Case, M. Fedor, M.L. Schoffstall, and
C. Davin. Simple Network Management Protocol
(snmp), May 1990. RFC 1157.

[6] D. Katabi, M. Handley, and C. Rhors. Congestion
control for high bandwidth-delay product
networks. In SIGCOMM 2002, pages 89–102,
August 2002. Pittsburgh, USA.

[7] John C. Lin and Sanjoy Paul. RMTP: a reliable
multicast transport protocol. In Proceedings of
IEEE Infocom, March 1996.

[8] K. K. Ramakrishnan, S. Floyd, and D. Black. The
addition of explicit congestion notification (ecn) to
tcp, September 2001. RFC 3168.

[9] E. Rosen et al. MPLS label stack encoding, 2001.

[10] T. Speakman et al. PGM Reliable Transport
Protocol specification, December 2001. RFC 3208.

[11] N. Spring, R. Mahajan, and D. Wetherall.
Measuring ISP topologies with with Rocketfuel. In
SIGCOMM 2002, pages 133–145, August 2002.
Pittsburgh, USA.

[12] R. van Renesse, K. P. Birman, and W. Vogels.
Astrolabe: A robust and scalable technology for
distributed system monitoring, management, and
data mining. ACM Transactions on Computer
Systems, 21(2):164–206, May 2003.

[13] J. Xu, J. Fan, M. Ammar, and S. Moon.
Prefix-preserving IP address anonymization:
Measurement-based security evaluation and a new
cryptography-based scheme. In 2002 International
Conference on Network Protocols (ICNP ’02),
pages 280–289, November 2002.

40

