
Towards Scalable and Robust Distributed Intrusion Alert
Fusion with Good Load Balancing

Zhichun Li, Yan Chen, Aaron Beach
Department of Electrical Engineering and Computer Science, Northwestern University

2145 Sheridan Road, Evanston, IL 60208, USA

{zli,ychen,a-beach}@northwestern.edu

ABSTRACT
Traffic anomalies and distributed attacks are commonplace in to-
day’s networks. Single point detection is often insufficient to de-
termine the causes, patterns and prevalence of such events. Most
existing distributed intrusion detection systems (DIDS) rely on cen-
tralized fusion, or distributed fusion with unscalable communica-
tion mechanisms. In this paper, we propose to build a DIDS based
on the emerging decentralized location and routing infrastructure:
distributed hash table (DHT). We embed the intrusion symptoms
into the DHT dimensions so that alarms related to the same intru-
sion (thus with similar symptoms) will be routed to the same sensor
fusion center (SFC) while evenly distributing unrelated alarms to
different SFCs. This is achieved through careful routing key design
based on: 1) analysis of essential characteristics of four common
types of intrusions: DoS attacks, port scanning ,virus/worm infec-
tion and botnets; and 2) distribution and stability analysis of the
popular port numbers and those of the popular source IP subnets in
scans. We further propose several schemes to distribute the alarms
more evenly across the SFCs, and improve the resiliency against
the failures or attacks. Evaluation based on one month of DShield
firewall logs (600 million scan records) collected from over 2200
worldwide providers show that the resulting system, termed Cyber
Disease DHT (CDDHT), can effectively fuse related alarms while
distributing unrelated ones evenly among the SFCs. It significantly
outperforms the traditional hierarchical approach when facing large
amounts of diverse intrusion alerts.

Keywords
Distributed intrusion detection systems, Alert fusion, Load balanc-
ing, Distributed hash tables, Scalability.

1. INTRODUCTION
Traffic anomalies and attacks are commonplace in today’s net-

works, and identifying them rapidly and accurately is critical for
large network/service operators. The current state of the art in
intrusion detection research is to use a combination of network-
based intrusion detection systems (NIDS) and host-based intrusion
detection systems (HIDS) to protect computer systems from com-
promise. However, many of these systems still suffer from high

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’06 Workshops September 11-15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-417-0/06/0009 ...$5.00.

false positive and false negative rates due to the quick emergence
of new attacks and the limited view of the local IDS. For instance,
single point detection is often insufficient to determine the presence
of a worm operating in the wild [32].
To this end, distributed IDS (DIDS) are purposed to leverage the

diversity and strengths of existing third-party IDS technology to
a distributed architecture in order to make global decisions about
attacks observed in disjoint locations throughout the world [27, 20,
12, 19, 35]. Each IDS generates the attack symptom report based
on its local detection, and sends to a global decision center, termed
as sensor fusion centers (SFC). The SFC will correlate and analyze
the prevalence, cause and patterns of the attack on a global scale.
Such DIDS can belong to a single security service provider. For

example, Symantec gathers security events from partner devices
around the world with more than 20,000 sensors monitored in 180
countries.Alternatively, multiple ISPs can have the following in-
centives to share a cooperative DIDS system.

• Today’s fast propagation of viruses/worms (e.g., Sapphire
worm) can infect most of the vulnerable machines in the
Internet within ten minutesor even less than 30 seconds with
some highly virulent techniques [29]. Thus it is crucial to
identify such outbreaks in their early phases by integrating
alerts from multiple sources.

• Such distributed monitoring is robust to various scan
techniques that worm propagations may employ.

• Alert integration can help locate the attacker and zombies of
spoofed denial-of-service (DOS) attack.

Furthermore, the ISPs can anonymize part of the symptom reports
without affecting the alert fusion. In fact, recent worm modeling
research has noted that distributed worm monitoring is much more
effective than a centralized one. For example, a distributed monitor
can detect the worm four times faster than a centralized monitor
with the same size of monitored IP address space [21].
Nowadays, there are huge numbers of diverse alerts issued from

the distributed IDS sensors. There are over 15 million intrusion
alerts reported to DShield, the largest Internet firewall log reposi-
tory, everyday. These alerts consist of many diverse variants. The
recent Symantec Internet security threat report highlights a sharp
rise in the number of Windows Virus/Worm variants: more than
7,360 new variants were documented from July 1 to Dec. 31, 2004,
representing a 332% increase over the same period last year. As of
Dec. 31, 2004, the total number of documented Win32 threats and
their variants was approaching 17,500 [31]. In addition, there are
over 18 thousands vulnerabilities found, according to CERT [5].
Such a trend demands the following features for a scalable DIDS

infrastructure: 1) efficient routing of alarms related to different in-
trusion events to different SFCs without consulting any central di-
rectory server or flooding mechanisms among peering points. This
is particularly important because although the existing hierarchical

115

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1162666.1162669&domain=pdf&date_stamp=2006-09-11

approach can effectively aggregate the attacks of the same type, it
still encounters severe scalability problem when facing many dif-
ferent types of attacks simultaneously. 2) distributed queries sup-
port over multiple SFCs to aggregate information at various levels,
e.g., IP address prefixes, port number ranges; 3) load balancing; 4)
robustness and fault-tolerance; and 5) attack resiliency.
Existing DIDSs fall in three categories: centralized/hierarchical

fusion, publish/subscribe model, and P2P querying. But none of
them can scale to the large number and various types of alerts as
discussed in Section 2.
To address these challenges, we propose to build a distributed

IDS fusion system based on emerging distributed hash table (DHT)
technologies [22, 30]. A recent DARPA research agenda calls for
building a Cyber Disease Control Center (CDCC) to defend against
worms [32]. Here we name our DHT-based distributed IDS fusion
system the Cyber Disease DHT (CDDHT), which embeds intrusion
symptoms into the DHT dimensions so that alarms related to the
same intrusion (thus with similar symptoms) will be routed to the
same SFC for a global view on the prevalence, cause, and patterns
of such attacks. To the best of our knowledge, we are among the
first to apply DHT to route various types of alarms for DIDS.
DHT provides some very nice properties as a decentralized rout-

ing and location infrastructure, such as scalability, fault-tolerance,
robustness [22, 30]. However, the following challenges remain for
building the CDDHT.

• How to design the routing key so that all related alarms are
fused to the same SFC, while reducing other irrelevant
alarms?

• Besides delegating fusion jobs to different SFCs, load
balancing is very crucial for scalability. How to achieve load
balancing among SFCs?

• How resilient is CDDHT against failures/attacks?

In this paper to address these questions, we make the following
contributions.

• We design the routing key for four common types of
intrusions: DoS attacks, port scanning, virus/worm
propagation and botnets, based on their essential
characteristics.

• With one-month of DShield firewall log data consisting of
over 600 million scan records from over 2200 worldwide
providers, we study the popularity dynamics of top port
numbers and top source IP subnets of scans, and leverage it
to design routing keys with good load balancing
characteristics.

• We propose several other dynamic load balancing schemes,
such as load-aware node bootstrapping, node migration,
virtual nodes, IDS alarm rate limitation and aggregation
tree to distribute the alarms more evenly across the SFCs.

• We show that CDDHT is much more resilient against
failures/attacks than the traditional hierarchial DIDS, and
propose some preliminary schemes to further enhance the
attack resiliency of CDDHT.

We build the CDDHT system on top of Chord [30], and eval-
uate it by simulation with daily DShield firewall scan logs. The
results show that we can effectively fuse the related alarms while
distributing unrelated reports evenly among the SFCs. Due to the
diverse alerts, CDDHT achieves much better balanced load when
compared with the hierarchical approach.

2. RELATED WORK
Existing work on DIDS alert routing can be classified into three

categories: hierarchical [27, 20], publish/subscribe models [12, 19,
35], and P2P querying [7, 4, 15].

Centralized/Hierarchical Model In the hierarchical model, the
IDS sensors form a hierarchical structure, where high-level sensors
receive the alerts from lower-level sensors [27, 20].
However, there are several drawbacks about this approach in

terms of scalability and reliability. First, this approach is good
to alleviate the load of root node by doing aggregation at each
level when there is a small number of intrusion types. However,
given that the number of different viruses/worms (different types
of alerts) is also increasing at exponential speed, many of the alerts
still have to be sent to the root node, which can be easily over-
loaded. The higher level the node is, the more load it tends to re-
ceive and thus more likely to become heavily loaded and crash. We
also compare the hierarchical approach with CDDHT in Section 6.
Second, the failure of any non-leaf node will isolate all the nodes
in its subtree from the rest1. Third, the hierarchical tree structure
faces the natural instability of a distributed network. The cost is
high for a node joining/leaving the tree.
Publish/subscribe Model DIDS based on the publish/subscribe

model include Indra [12], COSSACK [19], and DOMINO [35].
Basically, users sign on to different groups based on their in-
terests, and then they share the information within a group with
application-level multicast. For example, DOMINO is a hybrid of
hierarchical and publish/subscribe models [35]. It applies hierar-
chical model in each domain, and then uses publish/subscribe for
sharing among domain roots.
Though working well for small or moderate scale DIDS, the pub-

lish/subscribe model suffers O(ni
2) communication where ni is

the number of nodes in group i, if every member in the group is at-
tacked, i.e., they would thus send alerts to everyone else. Given to-
days global-scale attacks, a publish/subscribe group for an emerg-
ing attack may have hundreds of thousands of subscribers or even
more. In contrast, in our scheme, each node only sends alert to
one SFC. After fusion, that SFC sends the fusion report to all the
nodes which have sent related alerts in the past. Thus, the total
communication is only 2 × ni.
There are also some centralized publish/subscribe systems where

similarly a single node collects all published information before
disseminating them. However, it is hard to tell which node is re-
sponsible for which type of alerts, especially for unknown attacks.
If all alerts go to one collector or need to lookup a directory server
first, it becomes a centralized model as discussed before.
P2P Querying Recently, Netbait [7] is proposed as a P2P IDS

system on top of PIER [10], a DHT-based distributed rational
database which supports SQL-like queries. In Netbait, every node
maintains its local worm alarm database, and use the PIER-supported
distributed query to collect the desired information from all other
nodes. However, to understand the global-scale attacks like viruses/worm
propagation, Netbait has to query every node, and suffers the scal-
ability problem. In contrast, our CDDHT system proactively fuse
the alarms to a small set of SFCs. Thus, for query over any attack,
the request only needs to be routed to a few SFCs. WormShield
leverages DHT to collaboratively generate worm signatures [4]. By
re-implementing the EarlyBird [26] in a distributed manner, they
use the content block fingerprint to find popular contents, and then
use address dispersion to identify worms. However, such signa-
tures may not be accurate and cannot work against even simple
polymorhphic worms. And their approach is very specific to the
EarlyBird algorithms. In contrast, our CDDHT system is general
and can work with any worm signature generation approach.
More recently, Locasto et al.developed an interesting approach

to extract relevant information from alert streams and encode it

1This happens when each node only have single parent in the tree.
A multi-parent tree can be more resilient, but is obviously a tradeoff
to the complexity.

116

in Bloom Filters [15], which is complementary to our CDDHT
scheme.

3. CDDHT SYSTEM ARCHITECTURE
The architecture of the CDDHT system is shown in Figure 1.

There are two types of nodes in the DIDS system: multiple hetero-
geneous IDS sensors and SFCs. One strategy for selecting an SFC
is to choose a subset of IDSs, who have more resources (e.g., more
CPU and bandwidth) and better security measures as the SFCs. Al-
ternatively we can use some dedicated hosts to be the SFCs. In the
CDDHT system, we use some pre-defined rules to recognize SFCs,
e.g., we can use the first bit of the node ID, “1” for SFCs, and “0”
for normal IDSs.
All DHT systems provide two basic interfaces: insertion (put)

and retrieval (get). The interface for insertion, put(key,object),
causes the DHT to route the given object to the node with a
node identifier closest to the key. The interface for retrieval,
object=get(key), causes the DHT to obtain the object
from the node with a node identifier closest to the key. DHT sys-
tems can guarantee a deterministic routing in O(log n) hops for a
DIDS system of n nodes. This implies that the DIDS built on top
of the DHT can be scalable to very large networks. Recent research
also made DHT resilient to the node churn problem [24].

Internet

IDSIDS

IDS + SFCIDS + SFC

DIDS CoverageDIDS Coverage

Attack
Injected

Attack
Injected

Figure 1: Architecture of the CDDHT system.
In CDDHT, when an attack is launched, each IDS attempts to

locally detect the attack. Upon detection, it generates a symp-
tom report that will be forwarded to the appropriate SFC with
the put(key,object) operation. Thus, object is the attack
symptom report, and key is the the routing ID which is generated
from the report, and deterministically maps to a node on the DHT.
Since the key we used is to route different types of attacks to differ-
ent SFCs, we term the key as disease key. Similarly, for an attack
with a disease key, every IDS in the CDDHT can query its preva-
lence with the get(key) operation. The node ID of an SFC is
the concatenation of the SFC identifier (the first bit “1”) plus the
disease key, while the node ID of a IDS can be the concatenation
of the IDS identifier (the first bit “0”) plus some random hash (e.g.,
SHA-2) of their IP addresses.
For instance, as shown in Figure 1, there is an attack detected

by two IDSs, and both send alarms to the same SFC. The SFC will
fuse alarms together to better characterize the attack. Finally the
SFC can send the result back to the IDSs which have contributed to
the detected attack scenario.
Based on the deterministic nature of the disease key routing, we

can route the same types of attack reports to the same SFC. Trans-
mission of the alerts will naturally form a tree rooted at the SFC.
Though we have schemes in Section 5.1.3 to avoid congestion, the
main advantage of CDDHT is to fuse vast number of different at-
tacks because alerts will be distributed to many different SFCs with
each responsible for different types of attacks. Thus CDDHT is
highly scalable to large number of different attacks.

Instead of confining ourselves to specific algorithms for each
types of attacks, the CDDHT system is proposed as a general
framework which allows to plug in any fusion algorithm in any
SFC. For example, for worm detection, the Kalman filter based
worm trend detection [37] can be a good candidate. CDDHT sys-
tem also can help collect suspicious worm samples for worm sig-
nature generation.

4. DISEASE KEY DESIGN
As events are generated locally at each IDS node, the attack

symptoms must be reported and routed to one SFC which can then
perform data fusion and inferences about such an attack. In this
section, we design the routing keys to construct the CDDHT.
The challenge is: for a single intrusion, given the vast, diverse

symptoms perceived from many heterogeneous IDSs around the
world, how is the key effectively designed to fuse these events to
a single SFC? For instance, while a worm is propagating, a router-
based IDS may see much larger ranges of source/destination IPs
along with a higher scan rate than that seen at a host-based IDS.
For a distributed DoS attack, the network IDS (NIDS) for a zombie
subnet; the NIDS for a victim subnet; and the NIDS for a third-
party subnet have completely different views of attack and response
traffic at either ingress, egress, or both.
Such key should also immune from attack pattern changes, like

the number of zombies, the speed of attacks, the scope of victims,
etc.. Furthermore, the design should strive to achieve load balanc-
ing while ensuring aggregation of related symptoms. All of these
properties must be accomplished through key generation by each
peer IDS in a decentralized and deterministic manner.
Given the requirements above, to ensure that related event symp-

toms will be routed to the same SFCs, we only use the intrinsic
characteristics of each type of attacks, i.e., the information that
uniquely identifies related events, for the fields of the routing ID.
Extraneous identifiers that may have clarified routing in some cases
but confuse in others are thrown out. Since worms, DoS, botnets
and port scans are the largest percentage of large scale attacks on
the Internet, we focus on these four categories.
The disease key design is based on the following sources: 1)

survey of various attacks: worms [28, 33], denial of service at-
tacks [16, 17, 14] and port scans [13, 18]; and 2) study of the In-
ternet intrusion characterization based on one-month DShield [25]
data of over 600 million scan records.The format of disease keys
is shown in Figure 2. The first element of the routing ID is a 3 bit
identifier which can differentiate 8 types of intrusions for extensi-
bility. Currently we only use 4 of them as discussed below.

4.1 DoS Attacks
Ideally, the disease key for DoS attacks should properly distin-

guish and correlate millions of DoS attack events, but DoS attacks
are very hard to characterize.There may be one or many attack
agents sending attack traffic, and these agents often have spoofed
IP addresses, or may even be servers sending legitimate responses
(e.g., distributed reflection attacks). Other than application-specific
DoS attacks (e.g., DNS request attack), DoS attacks do not have a
fixed port number.
For most of DoS attacks which attack one targeted server or net-

work, the only invariant for a DoS attack is the victim, which is
used in our design of the disease key. For application or host based
attacks, the victim IP address is used as the key. For network at-
tacks, which consume the bandwidth of a target network subnet,
the key is the subnet (longest prefix) with all remaining bits set to
0. Note that the victim has to be recognized by each IDS, and the
”victim” IP address can be source or destination depending on the
situation. Take a TCP SYN flood attack for example. For the IDSs

117

Intrusion ID Characterization Field(s) Original
Length

DoS Attack 000 Victim IP (subnet) 35 bits
0 (for vertical &
block scan)

Source IP address 36 bits

Source IP (for horizontal scan)

Scans 001

1 (for horizontal &
coordinated scan)

Scan port
number 0 (for coordinated scan)

52 bits

0 (for known virus/worm) Worm ID (32bit) 36 bitsViruses/Worms 010
1 (for unknown virus/worm) Destination port number 20 bits
00 (for DDNS entry) Botnet ID (32bit) 37 bitsBotnets 011
01 (for URL entry) Botnet ID (32bit) 37 bits

Figure 2: Disease Key of CDDHT (left) and the visual representation for four types of scans (right)
closest to the attack agent or the victim machine, the victim is the
destination IP address. In IP Spoofing cases, while for the third
party IDSs which receives “backscatter” traffic [17], the victim is
the source IP address. In this way, we can correlate the alerts from
multiple sources to track the zombies, even when their IP addresses
are spoofed.

4.2 Port Scan
Given the extreme fast propagation of worms nowadays, to mon-

itor and detect port scans in a timely manner is of crucial impor-
tance for early detection and prevention of worm outbreak. Based
on source/dest IP and the port number involved in the scans, there
are four well known types of scans: horizontal scan, vertical scan,
coordinated scan, and block scan as designated in Figure 2.
Horizontal port scans are the most common type of port scans.

Horizontal port scanning involves scanning a range of IP addresses
for hosts listening on a specific port. We indicate horizontal port
scans in our disease key with an identifier bit ”1” and include the
scan destination port number. The port number is unique because
it reflects the vulnerability the virus/worm or attackers try to ex-
ploit. Unlike DoS attacks, the attacker needs to use a real source
IP address, since he/she needs to see the result of the scan in order
to know what ports are actually open2. Thus, we use the source IP
address as the last field of the scan disease key. We can find the
amount of scans for each source IP. Moreover, with range queries
described in Section 5.4 we can aggregate some of the horizontal
scans to coordinated scans, and get a more comprehensive view of
attacks. In addition, we also can aggregate solely by port number,
to get the most popular scanning port.
Coordinated scans can be viewed as horizontal scans from mul-

tiple sources.We use the same disease key as the horizontal scan
except that the source IP address is set to zero because of its intrin-
sic variance in a coordinated attack.
A vertical scan is a scan of some or all ports on a single host,

with the rationale that the attacker is interested in this particular
host, and wishes to characterize its active services to find which
exploits to attempt.We represent this scan with the identifier bit 0,
and the source IP in the disease key. We do not include the port set
because such a set is not stable and is hard to represent accurately
within the small space in the disease key.
The fourth type of scan, a block scan, is a combination of hor-

izontal and vertical scans over numerous services on numerous
hosts. This scan can be regarded as a vertical scan without a fixed
destination. We use the same disease key as with vertical scans.
More complicated scans than these four are possible, but we have

2Although the ‘idle scan” allows completely blind scans, it is based
on predictable IP-ID sequence numbers. But recent versions of op-
erating systems, such as OpenBSD, Solaris and Linux, have made
the IP-ID sequences less predictable and rendered the attack obso-
lete [11].

not seen much in practice, and for now we leave them as subsets of
these major classifications.

4.3 Viruses/Worms
For existing ones, most IDSs use signature based approaches

to detect them. Since their standardized names can be unique
to distinguish them [2], we use an SHA-2 hash of the names of
viruses/worms as the disease key. Unknown viruses/worms can be
detected through scanning, or approaches like SDC [8]. But given
any virus/worm, the intrusion (destination) port number is normally
unique, and we use that as the disease key. We also consider other
alternatives. For example, the worm signature in the form of bit pat-
terns may not be unique due to the polymorphism. Recently, there
emerge many semantics based signature to deal with such problem,
such as the Turing test signature which captures the inherent vul-
nerability that a worm explores [3]. It is our future work to design
a standard format for such signatures and include it as part of the
disease key.

4.4 Botnets
A botnet is a network of compromised machines running pro-

grams (usually referred to as bot, zombie, or drone) under a com-
mon Command and Control (C&C) infrastructure [9]. Botnets are
frequently used as underlying facilities to recruit zombies for per-
forming DoS attacks [9]. Usually, when a machine is compro-
mised, it is injected with a bot program. Then the bot will try
to connect to a hard-coded C&C server via IRC or HTTP to re-
ceive commands from the hacker. To make the control over the
botnet more resilient, for IRC server based control, most hackers
choose to hard-code the dynamic DNS name into their code so that
they can change the C&C server by changing the DNS entry when
needed [9]. Another popular way to control a botnet is to put the
commands on a public web site and include the URL into the bot
code. This can better hide botnet traffic as normal web traffic. In
either way, the DNS entry or the URL is unique to distinguish dif-
ferent botnets.
We take two steps to generate the botnet ID for disease key. First,

we use a 128-bit SHA-2 hash of the DNS entry or URL because the
length of URLs vary and SHA-2 is good at hashing data of various
length. Such 128-bit SHA-2 digest is then fed to a 4-universal hash
function to get the 32 bit botnet ID. In addition, we use 2 bits to
represent the different types of botnets, e.g., 00 for the DDNS entry
(for the method other than URL) and 01 for the URL entry.
These carefully chosen characteristics form the heterogenous di-

mensions for the disease key. As shown in Figure 2, the keys have
different length for different symptoms: viruses/worms may only
need 20 bits, while the keys for horizontal scans can have up to 52
bits. For most DHT systems [30, 22] given an n-node DHT, in an
even node distribution, the effective key length is log n. Then even
a 106 node DHT can only have 20-bit effective keys. We can in-

118

crease the key length by a constant to accommodate all keys, but
the bigger the constant, the more virtual nodes one real DHT node
has to cover. To support the aggregate queries discussed in Sec-
tion 5.4, we cannot hash the key randomly to distribute the load. A
large key space can easily lead to unbalanced load distribution. In
following sections,we will address these problems.

5. FEATURES OF CDDHT
In this section, we discuss load balancing, and failure and attack

resilience of CDDHT.

5.1 Load Balancing
Internet attacks are increasing in frequency, severity and sophis-

tication. When a global attack occurs, many IDSs will detect it
and send alerts, which may easily overload some SFC(s). Further-
more, some characterization fields in the disease key have strongly
uneven popularity distribution, like port numbers 80 and 135 for
scans. We use as much essential characteristics of attacks as pos-
sible for the disease key to spread the alert loads among the SFCs.
In addition, we design the following techniques.

5.1.1 Proactive Balancing with Stable Hot Spots

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 16 128 1024 8192 65536
Number of ports picked

Pe
rc
en
ta
ge
of
sc
an
s
co
ve
re
d

scans covered for 1/1/2004 itself
scans covered for 1/8/2004
scans covered for 1/15/2004
scans covered for 1/22/2004
scans covered for 1/29/2004

Figure 3: Scan coverage stability of the most popular ports cho-
sen at 1/1/2004

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 16 128 1024 8192 65536 277634
TOTAL

Number of top subnets picked

Pe
rc
en
ta
ge
of
sc
an
s
co
ve
re
d

scans covered for 1/1/2004 itself
scans covered for 1/8/2004
scans covered for 1/15/2004
scans covered for 1/22/2004
scans covered for 1/29/2004

Figure 4: Scan coverage stability of the most popular subnets
of 1/1/2004
Since the number of SFCs is much less than the size of disease

key space, for the characterization fields with hot spots, we want
to design the disease key so that each hot spot gets at least one
dedicated SFC because we have to somehow fuse all related alerts
to one SFC to obtain a global view. There are more mechanisms to
further alleviate the load of SFC as we will describe later.
However, this scheme is only useful when hot spots are stable.

Since port scanning is the most common type of Internet event
alarm, we study the popularity distribution and its stability of the
characterization fields as an example. Previous work suggests that
the popularity of scan port number and source IP address follows
heavy tail distribution, i.e., a small number of entities are responsi-
ble for a large number of scans [34]. They also found that popular
source IP can only remain hot within hours, but not even a day [35].
However, it remains unclear how stable the popular scan port num-
bers and the source IP prefixes are. The latter is important because

as discussed before, the key space of DHT is much smaller than
that of the disease key. Thus only the prefixes of the IP address are
indeed used to route the alarm for fusion.
To this end, we study the distribution stability of the popular

scanned ports, and those of top source IP subnets, based on the
stability of the scan record coverage from previous popular entities,
e.g., how many scan records from today are covered by the top
10 ports of 10 days before. Our analysis is based on one-month
(January 2004) of intrusion logs from DShield [25] consisting of
over 600 million scan records from over 2200 providers around the
world.
As shown in Figure 3, given a sufficient training time period (one

day in our example) the most popular ports will cover a large per-
centage of scans in the future. For instance, 64 popular ports remain
to cover 85% of the scan records for up to three weeks. We further
study the stability of the class C (/24) subnets of source IP as shown
in Figure 4. Unlike port numbers, the popular source IP subnets of
scans keep changing. That is, there is no steady blacklist. See [6]
for more results and analysis.
Leveraging stable ports for load balancing depends on the type

of underlying DHT. In Chord, we use 7 bits for the port number
with 128 buckets. We map each of the 64 popular ports into one
unique bucket, and map the other ports randomly into the remaining
buckets. This effectively improves the load balancing especially
when the SFC nodes are relatively few and thus sparse in the node
ID space.

5.1.2 Balancing Load of the Key Space
Since each SFC s is on the DHT routing paths to many other

SFCs, it can continuously collect the load information of other
SFCs (when there is an alert sending through s) as well as the load
of its neighbors. If s notices some SFC overloaded, it can migrate
to that region for load sharing under the following conditions: 1)
the load of s has been below a certain threshold for a certain period;
2) s can dump its load to its neighbors without overloading them.
Then s can leave, and rejoin the system using migration.
Alternatively, an SFC with low load can spawn a virtual node on

itself and have the virtual node join the CDDHT through the “load-
aware bootstraping” which happens only when we add an IDS node
or a new SFC node as an SFC. The new SFC first finds a bootstrap
node b in the CDDHT with approaches described in [22, 36], and
queries b for the SFC node with the heaviest load from the locally
maintained load table of b. It will then join and split the load with
the overloaded SFC.

5.1.3 Balancing Load of Single Hot Key
IDS Alarm Rate Limiting A router IDS may generate many

alarms for one specific attack. We can set some alarm rates for
the IDS so that it executes some temporal aggregation to combine
several alarms within one time interval to a single alarm.
Aggregation Tree for Large-Scale Attacks When a global-

scale attack occurs, the number of alerts sent to an SFC may be
overwhelming because all these alerts may have the same unique
disease key. For instance, in an intensive DoS attack or a large-
scale worm outbreak, all the keys are the same and thus all alerts
will be sent to a single SFC. To address this issue, we combine the
hierarchical approach with CDDHT – the IDSs and SFCs on the
routing path can fuse the alerts locally before passing it on when it
observes a big burst of alerts to the same destination. This will be
only triggered by very large burst of alerts.
Actually, by using this technique, the alarms will follow an ag-

gregation tree towards the final destination SFC. Each node in the
tree has O(log n) neighbors, where n is the total number of nodes
in the CDDHT system. Thus for any IDS/SFC, the amount of

119

alarms received per aggregation time interval (e.g., 10 seconds) for
each attack is bounded by O(log n).

5.2 Failure Resilience
Each DHT node periodically sends updated neighbor table to its

neighbors. When some node fails, its neighbors will detect it, and
update their routing tables to bypass the failed node. If a SFC s

fails, the SFC which has closest DHT node ID to s will automati-
cally takes over and receives the alerts. We further have each SFC
periodically send their recent fusion results to a few SFCs which
have close node IDs. Thus failure of a small portion of nodes has
little impact on the CDDHT.

5.3 Attack Resilience
In this section, we first compare the DoS attack resilience of CD-

DHT against hierarchial DIDS; then propose some mechanisms to
make the CDDHT more resilient.

5.3.1 DoS Resilience Comparison with Hierarchical
Model

We consider two scenarios, with or without connectivity/topology
knowledge, for comparison. In each scenario, we assume that at-
tackers can only attack one (or a small number of) node in the sys-
tem.
With the DIDS connectivity knowledge, it is straight forward to

attack the root node of the tree, or all the nodes of a high level in
the tree (e.g., level 2 or 3, so the total number is still small). Such
attack can render all other nodes to be disconnected from SFC.
However, in CDDHT, even with the full connectivity knowledge,

the best target is just to attack certain SFC. However, all other SFCs
still function well. Furthermore, the functionality of attacked SFC
will be shifted to other nodes with the load balancing scheme in
Section 5.1.2.
In the case that the attacker is not topology aware we want to

compare the average case performance of hierarchical DIDS and
that of the CDDHT. More specifically, assume that the attacker
bring down a random node, we compute the average number of
nodes get disconnected, i.e., the number of nodes which cannot
connect to the root SFC in the hierarchical DIDS or the number
of nodes which cannot connect to the corresponding SFCs for the
alerts they have in CDDHT.
Consider a perfect k-way tree network, the loss of one node will

result in one (itself) or more (children) nodes disconnected from the
root. When taking all nodes into account, we have the following
theorem.

THEOREM 1. The average number of nodes disconnected, given
one node loss in a k-way hierarchical DIDS, is O(log n) where n

is total number of nodes.

PROOF. A loss at the top level (root) will result in n nodes being
lost. Then at a depth of x from the top there are k

x nodes, each

loss case at depth of x result in m =
n−

Px−1
y=0 ky

kx =
n−

kx
−1

k−1
kx

disconnected nodes. Therefore, the sum of all loss cases at a given

depth of the tree is k
x
×

n−
kx

−1
k−1

kx = n −
kx−1
k−1
, and a perfect k-

way tree has a depth of l in O(log n). The sum of all loss cases
is ln + n−l

k−1
, giving a loss case mean of (l − 1

k−1
) + l

(k−1)n
≈ l

disconnected nodes, which is O(log n).

In contrast, in CDDHT, each node has O(log n) neighbors, and
any one of them fail will not affect the report delivery unless the
failure node is the destination itself. When it happens, the follow-
ing theorem shows that CDDHT has better resilience even when
ignoring the self-healing of CDDHT.

THEOREM 2. The average number of nodes disconnected, given
one node loss in CDDHT, is O(1).

PROOF. Suppose there are m SFCs out of a total of n nodes in
CDDHT, the probability of having a SFC failure is m

n
. When a

node has a report, there is a probability of 1
m
that it should be sent

to the failed SFC. Thus the total average number of disconnected
nodes is O(m

n
×

1
m

× n) = O(1).

5.3.2 Authenticity of Alarms
To enforce the authenticity of alarms, when each IDS joins the

CDDHT, we will validate its request by querying whois servers
and checking the BGP tables from multiple vantage points. The
purpose is to check whether the origin of the IDS is correct, and
whether the range of the IP addresses it covers is the same as it
claims. Furthermore, we may contact the administrator of that do-
main to further validate the authenticity of the request. With such
validation, when an IDS reports attacks, we can check whether the
involved IP addresses belong to the domain of the IDS.
Moreover, when every node (including both SFC and IDS) joins

CDDHT, we will generate their public-private key pair based on
DSA [1] algorithms. The trusted certification authority (CA) of
the CDDHT will generate the certificate for the public key of each
node. When an IDS d sends a symptom report, it appends its digital
signature and its public key certificate to the symptom report. The
receiver SFC will check d’s public key with the CA, and then uses
it to verify the signature of the report. When a IDS/SFC on the path
needs to do aggregation when it receives bursty alarms that need to
be forwarded, it will sign such changes and append its own public
key certificate to the aggregated report.
With such mechanisms, unless an IDS or SFC is compromised,

we can always detect the bogus alarms.

5.3.3 Dealing with Compromised Nodes
Sometimes an IDS can be compromised by attackers. They can

use these nodes to send bogus symptom reports or make up aggre-
gated reports for the alarms routed through the CDDHT system. To
minimize their influence to the overall CDDHT system, we eval-
uate the severity of one global attack, not only by the total num-
ber of alarms, but also by the range of IP addresses influenced by
the attack, and the number of IDSs reporting that attack. For ag-
gregated reports, the SFC which is responsible for the attack will
randomly check some IDSs which have attack reports aggregated.
Each IDS/SFC will keep the original alarm reports received (from
which the aggregation reports are generated) for certain period of
time. Thus once cheating is detected, we can trace back to find the
compromised node. Then we can update the routing table of all
its neighbors to remove it from CDDHT. This is much easier to fix
than that of the hierarchical based approach.
When a SFC is compromised, it is a more severe problem be-

cause we cannot obtain correct results from it before it is removed
from the CDDHT system. But usually a SFC is much better secured
than an IDS. And in contrast to hierarchical approaches, each SFC
is only responsible for a small set of attacks, the remaining CDDHT
system still function well.
We apply the “trust but verify” principle to detect compromised

SFCs. We envision that there is a centralized authority which pe-
riodically checks the fusion results from each SFC. When dissemi-
nating the fusion results, each SFC also needs to send results to the
authority along with a list of IDSs which reported related alerts and
the number of such alerts from each IDS. The authority will ran-
domly choose a subset of such IDSs for verification. If the result
is inconsistent, the authority will verify with more IDSs. If many
IDSs report inconsistency, most likely the SFC is compromised.
Otherwise, the authority check other SFCs for any reports from the

120

inconsistent IDSs to see if these IDSs often cause inconsistency. If
so, most likely the IDSs are compromised.

5.4 Querying on CDDHT
CDDHT can support two types of queries for fusion results,

queries with a given disease key or aggregate queries. The former
is easy, simply call get(disease key). The latter can answer
queries like “show me all the horizontal and coordinated scans with
port number x”. This is particularly useful to detect a complicated
worm propagation where some nodes perceive it as a horizontal
scan while other nodes perceive it as a coordinated scan. The query
is issued to the SFC which is responsible for the coordinated scan.
That SFC will serve as a collector, and query all other nodes in the
“zone” which have the same node ID as the collector except the last
few bits for source IP addresses. We also plan to leverage “range
queries” over DHT [23] for more complicated query requests.

6. PRELIMINARY EVALUATION

6.1 Methodology
We implemented a preliminary CDDHT system based on the

Chord [30] simulator with proactive balancing with stable hot ports
and virtual nodes, and simulated the scan alert fusion with DShield
firewall logs. The data only contain scan records, which arguably
represent the largest number of intrusions in the Internet. It is our
future work to collect data on other attacks for a more comprehen-
sive evaluation of the system.
To compare with the hierarchical approach, and to examine

closely at the instantaneous load distribution, we also implemented
an event-driven simulator where each alert is treated as an event
that is originated from certain IDS based on its timestamp. Such
event is forwarded to its parent or to a certain SFC through CD-
DHT routing. For both hierarchical and CDDHT approaches, each
SFC fuses the alerts with the same disease key at the end of every
minute interval. For hierarchical DIDS, each SFC passes the fused
alert to its parent, which will be fused at the next time interval. For
CDDHT, we assume that the symptom report transmission delay is
much smaller than the time interval and is ignored.
We evaluated our work using one-month daily DShield data, and

found that the results from each day are similar. For this reason,
we will show the results for that of January 2nd, 2004. It contains
over 25 million scan logs from 1417 providers. These scan logs are
classified into the events in Table 1.
The CDDHT consists of 2,200 nodes as the number of providers

from one-month DShield data. We randomly choose 10% of them
as SFC. Similarly, we set the fanout of each node in the hierarchical
tree to be 10 so that the number of non-leaf nodes (which work as
SFC to fuse alerts) is about 10% of the total number of IDS nodes.
In fact, we found that the load balancing results for the hierarchical
approach are not sensitive to the fanout of the tree. We then used
these classified scan events to generate the disease keys. See [6] for
the details on simulation set up.

scan type Vertical Horizontal Block Coordinated
of scans 3364 8486 22 25711

Table 1: Number of scans and their types in the attacks
The metrics to evaluate our work include the effectiveness of fu-

sion, and the variation of load among the SFCs. It is our future
work to evaluate the failure/attack resilience of CDDHT. The fu-
sion effectiveness is the percentage of related alarms (defined by
the disease key) fused in the corresponding SFC. Because Chord
has deterministic routing, if given the same disease key, it always
routes to the same SFC node. Therefore, we can get 100% effec-
tiveness of fusion in CDDHT. For each SFC, the load is denoted

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

16 7 7* 7** 6* 6** 5* 5**
Number of bits used for port field

* trained with popular port distribution from the day before
** trained with popular port distribution from the same day

Co
ef
fic
ie
nt
of
va
ria
tio
n
(C
V)

0

5

10

15

20

25

30

35

40

M
ax
vs
.m
ea
n
ra
tio
(M
M
R)

coefficient of variation (CV)
max vs mean (MMR)

Figure 5: Load balancing results with stable hot ports.

 0

 10

 20

 30

 40

 50

 60

M
ax

 v
s.

 m
ea

n
ra

tio
 (M

M
R

)

CDDHT
CDDHT w/ PB

CDDHT w/ PB+VN
Hierarchical

 0

 1

 2

 3

 4

 5

 6

 7

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n
(C

V)

CDDHT
CDDHT w/ PB

CDDHT w/ PB+VN
Hierarchical

Figure 6: Load variation comparison between hierarchial
scheme and CDDHT: MMR (left) and CV (right). PB means
proactive balancing with stable hot ports. VN stands for vir-
tual nodes.

by the number of symptom reports received. The load variation
is measured in terms of the coefficient of variation, CV (x) =
standard deviation(x)

mean(x)
, and the maximum vs. mean ratio (MMR),

as shown in Figure 5. The CV is a standard metric for measuring
inequality of x, while the MMR checks if there is any single node
whose load is significantly higher than the average load.

6.2 Results
The stability study in Section 5.1.1 suggests we map the top 64

most popular ports to the half buckets of 7 bits of port evenly, and
hash other ports to the remaining half. In practice, we found that
it can significantly improve the load balancing: it reduces the CV
by more than 60%, and reduce the MMR by about 40%, compared
with using the entire 16 bit port number, as shown in Figure 5.
There are still certain hot spots because some scan events are much
more popular than the rest, as indicated in the MMR ratio.
Since the popular ports remain very stable, there is little differ-

ence between training the hashing function with the history or with
the current dataset (like the oracle case). We also tried training the
hashing function with older datasets (up to a month old), which
gave similar results. See [6] for more detailed results.

 0

 10

 20

 30

 40

 50

 60

 70

0 4 8 12 16 20 24

M
ax

 v
s.

 m
ea

n
ra

tio
 (M

M
R

)

time (in hours)

Hierarchical MMR
CDDHT MMR

MMR

 0

 2

 4

 6

 8

 10

0 4 8 12 16 20 24

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n
(C

V)

time (in hours)

Hierarchical CV
CDDHT CV

CV
Figure 7: Dynamics of load variation simulated with data of
1/2/2004.
We further applied virtual nodes to alleviate the hot spots. The

effect of node migration is similar. As described in Section 5.1.2,
each SFC computes the average load based on the load information
piggybacked with the alerts. If its load is more than four times the
average for more than 10 minutes, it will choose the SFC with the

121

smallest load and spawn a virtual node on it. Such virtual node will
be released with the load is less than the average for more than 10
minutes. For each setting, we ran the experiment for 10 times and
show the median, 10 percentile and 90 percentile in Figure 6. The
virtual nodes further reduce the MMR by about 50% and reduce the
CV by 30%. Compared with the hierarchical approach, we reduced
the MMR by a factor of 5.5, and reduce the CV by a factor of 5.2.
Note that aggregation tree is not applied to CDDHT yet.
The dynamics of load variation is shown in Figure 7, where the

three peaks in MMR correspond to the three peak time intervals
when large amount of scans are received. The MMR for CDDHT
is much smaller and smoother than those of hierarchical approach.
The difference for CV is less dramatic, but has similar trend. Note
that the CDDHT system gradually adds virtual nodes to evenly dis-
tribute the load, so the CV is getting smaller.

7. CONCLUSION AND FUTUREWORK
In this paper, we propose to build a distributed IDS based on

distributed hash table (DHT). We embed the intrusion symptoms
into the DHT dimensions so that alarms related to the same intru-
sion will be routed to the same SFC with good load balancing. For
future work, we will evaluate other load balancing schemes we de-
signed and investigate further on the attack-resilience and querying
of CDDHT.

8. REFERENCES
[1] DIGITAL SIGNATURE STANDARD (DSS), 1994. FIPS PUB
186.

[2] Virus names could be standardized, 2004. Computer
Business Review Online, http://www.cbronline.
com/article_news.asp?guid=
11D11704-DE5B-45BD-AF4B-%45D8F44E055C.

[3] BRUMLEY, D., NEWSOME, J., SONG, D., WANG, H., AND
JHA, S. Towards automatic generation of vulnerability
signatures. In Proc. of the IEEE Symposium on Security and
Privacy (2006).

[4] CAI, M., ET AL. Collaborative internet worm containment.
In IEEE Security and Privacy Magazine (May/June 2005).

[5] CERT CC. Statistics 1988-2005. http:
//www.cert.org/stats/cert_stats.html.

[6] CHEN, Y., BEACH, A., AND SKICEWICZ, J. Cyber disease
monitoring with distributed hash tables: A global
peer-to-peer intrusion detection system. Tech. Rep.
NWU-CS-04-040, Northwestern University, 2004.

[7] CHUN, B. N., ET AL. Netbait: a distributed worm detection
service. Tech. Rep. IRB-TR-03-033, Intel Research
Berkeley, 2003.

[8] DAGON, D., ET AL. Honeystat: Local worm detection using
honeypots. In RAID (2004).

[9] FREILING, F., HOLZ, T., ET AL. Botnet tracking: Exploring
a root-cause methodology to prevent distributed
denial-of-service attacks. Tech. Rep. ISSN-0935-3232,
RWTH Aachen, 2005.

[10] HUEBSCH, R., ET AL. The architecture of PIER: an
internet-scale query processor. In Conference on Innovative
Data Systems Research (CIDR) (2005).

[11] INSECURE.ORG. Idle scanning and related ipid games, 2004.
http:
//www.insecure.org/nmap/idlescan.html.

[12] JANAKIRAMAN, R., ET AL. Indra: A peer-to-peer approach
to network intrusion detection and prevention. In IEEE
WETICE Workshop on Enterprise Security (2003).

[13] JUNG, J., ET AL. Fast portscan detection using sequential
hypothesis testing. In IEEE Symposium on Security and
Privacy (2004).

[14] JUNG, J., KRISHNAMURTHY, B., AND RABINOVICH, M.
Flash crowds and denial of service attacks: Characterization
and implications for cdns and web sites. In WWW (2002).

[15] LOCASTO, M. E., PAREKH, J., KEROMYTIS, A. D., AND
STOLFO, S. J. Towards collaborative security and p2p
intrusion detection. In Proc. of the IEEE Information
Assurance Workshop (IAW) (2005).

[16] MIRKOVIC, J., AND REIHER, P. A taxonomy of DDoS
attack and defense mechanisms. ACM CCR 34 (2004).

[17] MOORE, D., ET AL. Inferring Internet denial-of-service
activity. In USENIX Security Symposium (2001).

[18] MOORE, D., ET AL. Internet quarantine: Requirements for
containing self-propagating code. In IEEE Infocom (2003).

[19] PAPADOPOULOS, C., ET AL. Coordinated suppression of
simultaneous attacks. In DARPA Information Survivability
Conference and Exposition (DISCEX) (2003).

[20] PORRAS, P. A., AND NEUMANN, P. G. Emerald: Event
monitoring enabling responses to anomalous live
disturbances. In the 20th NIS Security Conference (1997).

[21] RAJAB, M., ET AL. On the effectiveness of distributed worm
monitoring. In Proc. of USENIX Security Symposium (2005).

[22] RATNASAMY, S., ET AL. A scalable content-addressable
network. In ACM SIGCOMM (2001).

[23] RATNASAMY, S., ET AL. Range queries over DHTs. Tech.
Rep. IRB-TR-03-011, Intel Research, 2003.

[24] RHEA, S., GEELS, D., ROSCOE, T., AND KUBIATOWICZ,
J. Handling churn in a dht. In Proc. of USENIX (2004).

[25] SANS INSTITUTE. Dshield.org: Distributed intrusion
detection system. http://www.dshield.org/.

[26] SINGH, S., ESTAN, C., VARGHESE, G., AND SAVAGE, S.
Automated worm fingerprinting. In Proceedings of the
Symposium on Operating Systems Design and
Implementation (OSDI) (2004).

[27] SNAPP, S. R., ET AL. DIDS (distributed intrusion detection
system) - motivation, architecture and an early prototype. In
the 14th National Computer Security Conference (1991).

[28] STANIFORD, S., ET AL. How to own the Internet in your
spare time. In the 11th USENIX Security Symposium (2002).

[29] STANIFORD, S., ET AL. The top speed of flash worms. In
Proc. of ACM CCS WORM Workshop (2004).

[30] STOICA, I., ET AL. Chord: A scalable peer-to-peer lookup
service for Internet applications. In ACM SIGCOMM (2001).

[31] SYMANTEC INC. Symantec internet security threat report,
March 2005. http://enterprisesecurity.
symantec.com/content.cfm?articleid=1539.

[32] WEAVER, N., ET AL. Large scale malicious code: A
research agenda. Tech. rep., DARPA Sponsored Report,
2003.

[33] WEAVER, N., ET AL. A taxonomy of computer worms. In
the First Workshop on Rapid Malcode (WORM) (2003).

[34] YEGNESWARAN, V., ET AL. Internet intrusions: Global
characteristics and prevalence. In ACM SIGMETRICS
(2003).

[35] YEGNESWARAN, V., ET AL. Global intrusion detecction in
the DOMINO overlay system. In Proc. of NDSS (2004).

[36] ZHAO, B. Y., ET AL. Tapestry: A resilient global-scale
overlay for service deployment. IEEE JSAC 22, 1 (2004).

[37] ZOU, C. C., ET AL. Monitoring and early warning for
internet worms. In Prof. of ACM CCS (2003).

122

