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ABSTRACT 
The distributed and the Grid Computing architectures for the 
simulation of massively populated wireless systems have recently 
been considered of interest, mainly for cost reasons. Solutions for 
generalized proximity detection for mobile objects is a relevant 
problem, with a big impact on the design and the implementation 
of parallel and distributed simulations of wireless mobile systems. 
In this paper, a set of solutions based on tailored data structures, 
new techniques and enhancements of the existing algorithms for 
generalized proximity detection are proposed and analyzed, to 
increase the efficiency of distributed simulations. The paper 
includes the analysis of computation complexity of the proposed 
solutions and the performance evaluation of a testbed distributed 
simulation of ad hoc network models. Recent works have shown 
that  the performance of distributed simulation of dynamic 
complex systems could benefit from a runtime migration 
mechanism of model entities, which reduces the communication 
overheads. Such migration mechanisms may interfere with the 
generalized proximity detection implementations. The analysis 
performed in this paper illustrates the effects of many possible 
compositions of the proposed solutions, in a real testbed 
simulation framework. 

Categories and Subject Descriptors 
I.6.8 [Simulation and Modeling]: Types of Simulation – discrete 
event, distributed. 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Proximity detection, wireless systems, distributed simulation, data 
distribution management. 

1. INTRODUCTION 
The computer simulation is a powerful technique to model, 
evaluate and predict the behavior of complex dynamic systems. 
Many systems are composed by a great number of entities, 
dynamically interacting in unpredictable way. The analysis 
approach based on mathematical modeling is often inadequate to 
express the fine details and complex interactions of such systems. 
The simulation can be considered a viable solution in these cases. 
A discrete event simulation mimics the behavior of a system 
model at discrete points in time. The interactions between 
simulated entities are represented by simulation events and the 
processing of such events causes the evolution of the simulation 
process [9].  

A common problem of many simulations is to determine what 
entities are involved in the notification and processing of a given 
event. As an example, in a wireless simulation a new frame 
transmission causes the creation of one transmission event-
message by the transmitter entity, that must be delivered in 
chronological (causal) order to the whole set of potential receiver 
entities. Due to the local broadcast nature of the wireless 
transmission, wireless signals decay with distance depending on 
propagation model assumptions [14]. For this reason, it makes 
sense to distribute transmission event messages only to the subset 
of neighbor hosts that will be reached by the transmission effects 
[12, 13]. Since hosts may be mobile, such subset is dynamic. A 
generalization of the subset definition problem is known in the 
literature as generalized proximity detection for moving objects 
[15]. Under the simulation viewpoint, the problem can be 
translated in the dynamic identification of the recipient entities of 
each event message. In a distributed simulation, this operation is 
usually executed by the event distribution management 
component. The conflict detection between moving objects is a 
more specific case of the general proximity detection algorithm 
[17]. A partially related field is given by physical particles’ 
simulation: to determine the evolution of a single simulated entity 
it is necessary to take into account its interactions (forces) with all 
other entities in the system [1].  

In the following, we will focus on distributed simulation of 
wireless models. Some work has been done in the past to address 
the proximity detection problem over single processor 
architectures [13], and multiprocessor architectures with shared 
memory  [10,12,16]. On the other hand, distributed and Grid 
Computing architectures are gaining a lot of interest, mainly for 
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cost reasons, even if in this case no shared memory would be 
available. 

The paper structure is the following: section 2 introduces the 
motivations and basic concepts about distributed simulation; 
section 3 defines the basic assumptions about proximity detection 
and the related literature; section 4 introduces a set of proposals to 
enhance the proximity detection implementation in distributed 
simulations; section 5 introduces ARTÌS, that is, the distributed 
simulation framework adopted in the experimental evaluation of 
the proposed solutions, reported in section 6. Finally, section 7 
illustrates our conclusions and future work. 

 

2. THE DISTRIBUTED SIMULATION 
ARCHITECTURE 
The traditional approach for computer simulation is monolithic, 
that is, a single CPU is running the whole simulation. In complex, 
detailed models and massive simulated scenarios such approach is 
less practical, both for the excessive time required to complete the 
simulation runs and for the limitations due to the memory 
constraints of one single processing unit [5]. A valid alternative is 
given by distributed simulation: a set of Physical Execution Units 
(PEU) is working together to run the simulation, whose 
implementation is split in many building blocks. A common 
execution architecture for distributed simulation is composed by a 
set of multiprocessors interconnected by a network (LAN, WAN 
or even Internet). By composing the PEUs architecture, 
aggregation of memory and computation resources gives 
advantages under the scalability viewpoint. If shared memory is 
unavailable, the distributed system has to pay some 
communication overheads to maintain a consistent and 
synchronous state. As an example, the latency of a LAN is orders 
of magnitude higher than the latency of a shared memory 
communication. In a distributed execution architecture, the task of 
dynamically determining the set of entities whose execution is 
interested by a new event can have a high cost. Therefore, data 
distribution techniques are required to propagate the relevant data, 
by reducing the communication overhead. In a distributed 
simulation, the communication cost can be so high that a 
concurrent replication of the same computation over many PEUs 
could be even more efficient than distributing and sharing the 
result of a single computation. 

A distributed simulation is composed by a set of Logical 
Processes (LPs) executed over separated PEUs, and interacting 
together by adopting a message passing communication paradigm. 
Each LP manages the evolution of one or more model 
components. Obviously, the monolithic and the distributed 
execution of a given simulation model have to produce the same 
results. In the case of a distributed architecture, each CPU works 
at a different speed and the communication latency is usually 
unpredictable. To obtain correct results, the LPs can not proceed 
asynchronously at full speed: a synchronization mechanism is 
required to maintain the event causality. Mechanisms for 
distributed synchronization have been proposed by following 
alternative classes of solutions. In this work we assume that all 
the LPs will be synchronized under a time-stepped execution: the 
simulated time is divided in constant time steps and the simulation 
will proceed by executing events occurring step by step.  

3. BACKGROUND AND RELATED WORK 
Determining the proximity set of a wireless transmitter node can 
be seen as a special case of the N-body problem [1,14]. The N-
body problem  consists in determining the evolution of a set of N 
bodies each one interacting with the forces exerted from each 
body to any other body. The resulting force between two bodies is 
a function of the bodies’ distance. The force becomes negligible 
at large distances. Possible algorithms to solve the N-body 
problem are the Burnes-Hut (BH), the Fast Multipole Method 
(FMM) and the Parallel Multipole Tree Algorithm (PMTA) [1]. 
All the algorithms are based on a octree data structure for 3-D 
modeling scenarios, and quadtree data structures in 2-D where the 
simulated scenario is divided in a set of cells. The BH algorithm 
is based on body-cell interactions. The FMM is based on cell-to-
cell interactions. The PMTA is a hybrid of the BH and the FMM 
algorithms [1]. The BH algorithm has been applied to compute 
the interferences in wireless cellular simulations [14]. Given a set 
of wireless devices moving in a simulated scenario, at each 
timestep, the simulator has to determine the whole set of hosts 
affected by the ongoing transmissions. In a simplistic way this 
problem can be solved by computing the distance between each 
pair of nodes. This algorithm is usually referred to as “all-pairs” 
(brute force) and has a complexity of O(n2) per timestep, both in 
the average and in the worst case. 

In the following section we will introduce enhancements and 
alternative approaches for attempting to reduce the cost of the all-
pairs mechanism. Our work is based on some basic assumptions 
of the wireless networks and on specifically designed data 
structures. A given algorithm to partition the simulated entities 
allocated on a set of LPs (and related PEUs) of a distributed 
simulation execution  may have effects on the cost of proximity 
detection functions, as it will be shown in section 5. A parallel 
proximity detection solution for moving objects has been 
considered in [15], based on the Distribution List (DL) algorithm. 
In the DL algorithm the simulated space is modeled as fuzzy grids 
and a set of lists is used to detect proximity between movers and 
sensors. Another grid-based approach is illustrated in [16]: the 
space is divided into a grid of cells linked to a list of the nodes 
belonging to each respective grid cell. In this approach, the 
computation is staged to allow the reuse of previously computed 
and reusable proximity detection results. The D-SPANNER 
presented in [10] is another approach based on kinetic sparse 
graph spanner that maintains a set of assertions about the state of 
the system, and exploits knowledge or predictions about the node 
mobility.  

In 2000, the IEEE 1516 High Level Architecture (HLA) [8,11] 
standard for distributed simulation has been approved. The main 
goal of this standard was to increase interoperability and reuse of 
simulations. In the simulations compliant with the standard, the 
proximity detection is demanded to the Data Distribution 
Management (DDM) module [7]. The DDM is based on a 
publish/subscribe mechanism. Expressions of interest are 
explicitly used to keep track, to manage and to reduce the data 
transmissions to the essential data notifications. In HLA, the 
interest management can be realized based on regions and classes. 
The region-based approach is used to express interest for the 
events occurring within a subscribed area of the simulated-space. 
The class-based approach allows subscribing objects, attributes 
and classes under a hierarchical objects’ structure. The IEEE 1516 
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standard defines rules and interfaces for distributed simulation, 
and does not impose any requirement about DDM and underlying 
proximity set management implementations.  

4. PROPOSED PROXIMITY 
MANAGEMENT SOLUTIONS 
The intensity of the wireless signals decays as a function of the 
distance, depending on the considered propagation model. By 
assuming that all the devices have homogeneous receiver 
sensitivity, and all transmissions are isotropic in a wireless system 
simulation, we can assume that transmissions have a 
homogeneous maximum horizon distance limit for detection. In 
other words, hosts out of a defined range (r) from the transmitter 
are not subject to any significant transmission effect. Some 
enhancements aiming to reduce the computation cost of the all-
pairs algorithm will be illustrated in the following, based on 
previous assumptions. The first two enhancements we propose are 
based on the horizon distance assumption. The third proposal is 
based on the commutative property of the distance operator. The 
computation complexity of the proposed methods will be 
informally described. In section 6, performance evaluation results 
of a wireless scenario will confirm the enhancements obtained. 

In the following we assume a simulation model composed of a 
high number of Simulated Mobile Hosts (SMH), each one 
following a Random Mobility Motion model (RMM) (see section 
6). The simulated space is modeled as a torus-shaped 2-D 
topology and it is populated by a fixed number of SMHs. In 
general the applied mechanisms could be extended to 3-D 
topology models. In the following, we will refer to space-units 
and time-units to generalize our analysis. 

4.1 External and internal squares 
Defining n as the number of simulated nodes (SMHs), the all-
pairs algorithm computes n(n-1) Euclidean distance values 
between nodes coordinates. In a 2D plane, the Euclidean distance 
between two points is given by 

∑
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−=−=
n

i
ii yxyxyxd
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2),(         (1) 

By exploiting the “homogeneous limited horizon distance” 
assumption of wireless transmissions, it is possible to reduce the 
effective cost of this algorithm. Given a static horizon range (r), it 
is possible to define two squares around each transmitter SMH, 
both centered on the SMH coordinates: the size of the external 
square side is defined as 2r space-units and it defines the 
maximum area where SMH transmission could be sensed. Hosts 
allocated outside of the external square can be assumed to be out 
of the reception range of the central SMH, and can be discarded 
without any further evaluation. The internal square is inscribed in 
the circle with radius r (the transmission range), and its side size 
is r√2 (Figure 1). The transmission events originated by the SMH 
can be delivered without any further examination to other SMHs 
within the inner square. The space between the external and the 
internal squares represents the area of uncertainty (the dashed 
zone in Figure 1): all the SMH in this area can be inside or 
outside the transmission range. In this case, to determine the 
effect of a transmission, the distance has to be calculated SMH-

by-SMH for hosts in the dashed area, and the results compared to 
r value. 

By assuming a 2-D space, in the worst case four comparisons are 
necessary to determine if a point falls within a square. In most 
cases it is sufficient to check the external square to discriminate 
an event: hence, in most cases, we can reduce the number of 
required operations and their complexity. 

 
Figure 1. The communication range of each SMH can be 

bounded by an external and an internal square.  
 

With respect of the classical all-pairs algorithm, the squares 
method still requires n(n-1) comparisons between points but 
drastically reduces the number (Cd) of costly Euclidean distances 
to compute. The area of the external square is given by Aext = (2r)2 
= 4r2, the area of the internal square is Aint = (r√2)2 = 2r2. By 
assuming ρ = n/spaceunit2 as the homogeneous distribution of 
SMHs: 

( ) ρρ 222 224 rrrCd =−=                     (2) 

Cd defines the average number of Euclidean distances to compute 
per time-step for each SMH in the simulation. 

4.2 Grid-based data structure 
In this solution, an overlay grid divides the simulated space in 
cells. Each square of the grid (or cell) represents only a small 
portion of the simulated scenario and has a fixed size. This 
approach requires to order the SMHs of the grid structure in a 
way that allows to reduce the computational load. The data 
structure implementing the overlay grid has to efficiently support 
the insertion and deletion of entries, to manage the SMHs 
mobility. In our implementation the overlay grid is composed by 
a matrix of separate chaining hash tables (Figure 2). If the 
simulated area covered by a cell is empty then also the relative 
hash will be empty (and not allocated), otherwise the hash table 
will contain all the SMHs that are located within the grid cell. A 
data structure based on a matrix of lists would be unable to 
efficiently manage the dynamic evolution of the simulated 
scenario, with respect to a matrix of hash tables.  

The grid structure is useful to easily determine the neighbor set of 
each SMH: no need to inspect the whole simulated space. Only 
the grid squares whose area has non zero intersection with the 
transmission range circle have to be checked. In this way the 
number of checks can be drastically reduced, but the data 
structure management introduces some overhead. 
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Figure 2. The overlay grid is composed by a matrix of 
separate chaining hash tables. 

 

The grid-based mechanism works as a filter to reduce the number 
of checks, but it is worth noting that false positives can happen in 
cells overlapped by the transmission range circle (Figure 3). The 
reason is simple: the area covered by the grid squares is always 
equal or bigger than the transmission circle.  

In general, the proposed mechanisms can be combined to further 
reduce the number of Euclidean distances to calculate. As an 
example, the filtering given by current grid-based solution, can be 
followed by the internal and external squares filtering. Finally, 
only the nodes surviving the filtering mechanisms have to be 
checked by computing the Euclidean distance with formula (1).  

 

 
Figure 3. A set of cells is overlapped by the transmission 
range of each SMH. The cells at the borders can generate 

false positives.  
 

It is quite obvious that the performance of the grid-based 
approach is drastically influenced by many factors, including the 
cell size. Many small cells would be able to reduce the number of 
false positives at the cost of an increased overhead for the data 
structure management. Conversely, a small number of big cells 
would reduce the management cost but would originate a high 
number of false positives. As it will be shown in section 6, 
assuming a uniform distribution of SMHs, the density (ρ) 
becomes a key factor to determine the mechanism performance. 
Defining g as the measure of the cell side, we have that each 
SMH has to check at worst grid cells. The following 
formula for Cd defines the number of Euclidean distances to 
compute per time-step for each transmitting SMH: 
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The grid data structure has to be updated to reflect the SMHs 
mobility. Hence the cost of this approach also depends on the 
mobility model and on the cost to update the grid data structure. 

4.3 Results caching 
The Euclidean distance (as defined in section 4.1) is a 
commutative binary operator: given two points x and y we have 
that d(x,y) = d(y,x). The commutative property can be used to 
reduce the number of operations needed for the all-pairs 
algorithm. In a centralized simulation-execution architecture it 
would be possible to reduce the number of Euclidean distance 
operations to n(n-1)/2. In both cases, the computation complexity 
is O(n2) as the classical all-pairs approach, but in the latter case, 
the constant factor hidden in the asymptotic notation is quite 
different. Again, this enhancement can be combined with the 
previously ones introduced, to obtain a multi-staged filtering and 
incremental computation reduction. 

On the other hand, in a distributed simulation, each LP manages 
only a subset of the SMHs and a global knowledge of the 
simulated environment is missing. Moreover, in a distributed 
architecture, the communications needed to construct a global 
knowledge are costly and have to be controlled: each LP has a 
partial vision of the whole system and only the necessary 
information are propagated. 

Assuming a homogeneous distribution of SMH entities over LPs, 
we have #SMH = n/#LP allocated in each LP, where n is the total 
number of simulated mobile hosts and #LP is the number of 
logical processes in the simulation. A prerequisite to apply the 
commutative optimization is that if in a pair (SMH1, SMH2) both 
simulated nodes are allocated in the same LP, it would be possible 
to reuse the results of the distance computation, since the result 
can be already cached and available within the same LP. If the 
SMHs are allocated on different LPs then the distance value has 
to be computed by both the LPs (or transmitted between the two 
different LPs). 

In the analyzed environment the probability that two SMHs are in 
the same LP is given by 

⎟
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Since #SMH is inversely proportional to the number of LPs in the 
system, in complex simulations we obtain that it is unlikely to 
apply the commutative optimization, because the simulated 
entities would be partitioned over a large set of LPs.  

In the following section, we will show that a model entity 
migration-based mechanism can reduce the communication 
overhead, can support computation load balancing and increase 
the positive effects of the results caching. 

5. THE ARTIS MIDDLEWARE 
The Advanced RTI System (ARTÌS) is a middleware for Parallel 
and Distributed Simulation (PADS) supporting massively 
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populated models [5]. The design of the middleware is inspired by 
the IEEE 1516 standard but new features have been introduced to 
improve scalability and simulation speed. The PADS execution 
speed is highly affected by the communication performance: the 
approach followed by ARTÌS is adaptive and exploits the LPs 
physical allocation. Specifically, a couple of LPs running on the 
same PEU will communicate using the low latency shared 
memory. In the case of LPs connected by LAN, WAN or Internet, 
they will communicate using the R-UDP/IP or TCP/IP protocols. 
The protocol choice is adaptive and based on the network 
performances. Other important features of the middleware are the 
multi-threading support, the implementation of data structures 
specifically tailored for the event-list management, the capability 
to detect and adapt to hyper-treading and multi-core CPUs, and 
the support for the simulation cloning and concurrent replication 
of independent runs [4]. 

In [6] it has been shown that the performances of a distributed 
simulation can be increased by introducing the migration of the 
simulated entities. A migration based middleware can adaptively 
optimize the simulation execution by reallocating the simulated 
entities over the LPs. The dynamic reallocation can reduce the 
communication overhead and improves the computation load 
balancing. This translates into a reduction of the Wall-Clock Time 
(WCT) needed to complete the simulation runs. The Generic 
Adaptive Interaction Architecture (GAIA) is a migration based 
framework integrated in ARTÌS. The basic task of GAIA is to 
check the communication pattern of each SMH during all the 
simulation execution. A set of heuristics evaluates the 
communication pattern and trigger the SMH reallocation to 
reduce the communication costs [2] and to improve the load-
balancing of the execution architecture. GAIA clusters the highly 
interacting SMHs within the same LP, reducing costly inter-LP 
communication and increasing the rate of low cost intra-LP 
communications. The cost of migrating the simulated entities is a 
key factor to be evaluated in the migration heuristics. An analytic 
evaluation of this cost is impossible due to the network 
heterogeneity and the unpredictable behavior of the simulated 
system. Furthermore the load balancing between the PEUs is a 
strict requirement for the distributed simulation. Clustering all the 
SMHs in the same LP would be optimal to reduce the 
communication overhead, but would led to a monolithic 
simulation and consequently to a worst case load-balancing [3].  

The benefits of the migration based approach in the simulation of 
wireless models have been evaluated in [2] and [3]. In this work 
we are interested in: i) enhancing the all-pairs algorithm for 
proximity detection mechanism, and ii) evaluating  the effects of 
the entities migration on the performance of the proximity 
detection algorithms. To reuse the pre-computed distance values 
(results caching), both the two SMHs must be allocated on the 
same LP. According to formula (4), the probability that two 
randomly allocated SMHs are found on the same LP is inversely 
proportional to the number of LPs in the simulation. The 
migration mechanism works by clustering together the highly 
interacting SMHs. The direct consequence is that the migration 
mechanism will allocate together the SMHs that are neighbors in 
the simulated wireless topology. This would increase the 
probability that two SMHs in proximity are allocated in the same 
LP, resulting an effective pre-condition for the results caching. 

6. TESTBED PERFORMANCE 
EVALUATION OF A WIRELESS MODEL  
In the following the results collected in the distributed simulation 
of a testbed ad hoc network model will be presented to compare 
and test the effectiveness of the proposed solutions for proximity 
detection and entity migration of distributed simulation of 
wireless system models. 

6.1 Simulation system and simulation model 
All the experiments and the analysis results shown in this section 
are based on the distributed simulation of a wireless ad hoc 
network model, running on the ARTÌS simulation middleware. 
We performed multiple runs for each experiment, and the 
confidence intervals obtained with a 95% confidence level (not 
shown in the figures) are lower than 5% the average value of the 
performance index. 

The experiments have been performed over 2 PEUs, each one 
equipped by Dual Xeon Pentium IV, 2800 MHz, 3 GB RAM, 
interconnected by a Fast-Ethernet (100 Mb/s) LAN. The 
distributed simulation is composed by 2 LPs each one statically 
allocated on a different PEU. 

The model is composed by a high number (2000 up to 8000) of 
simulated wireless mobiles hosts (SMHs), each one following a 
Random Mobility Motion (RMM) with a maximum speed of 10 
m/s. This mobility model is far from being real, but it is 
characterized by the completely unpredictable and uncorrelated 
mobility pattern of SMHs. In the following, the RMM model is 
defined. SMHs swings between mobile and static epochs. At the 
beginning of each epoch, every SMH decides to stay or to change 
its mobile or static state, by following a geometric distribution 
with parameter p=1/2. When entering a mobile state, new, 
uncorrelated and uniformly-distributed direction and speed are 
randomly selected and maintained up to a static epoch. The cycle 
is repeated for the whole simulation by every SMH. The 
simulated area is modeled as a torus-shaped bi-dimensional 
topology, 10.000x10.000 space-units. The torus area, indeed 
unrealistic, allows to simulate a closed system, populated by a 
constant number of SMHs. The torus space assumption is 
commonly used by modelers to prevent non-uniform SMHs 
concentration in any sub-area. The simulated space is flat and 
open, without obstacles. The modeled communication pattern 
between SMHs is a constant flow of ping messages (i.e. constant 
bit rate), transmitted by every SMH in broadcast to all neighbors 
within a wireless communication range of 250 space-units. 

6.2 Experimental Results 
In this section, the simulated model is evaluated with different 
proximity detection algorithms executed in background (that is, 
all-pairs, all-pairs with squares enhancement, and grid), caching 
strategies (on/off), and model entity migration (enabled/disabled). 
We evaluate the Wall-Clock-Time (WCT) necessary to complete 
a simulation run, as a function of the increasing number of SMHs.  

The implementation of the algorithm based on squares does not 
require any additional data structure and only a few modifications 
in the source code.  Figure 4 shows that the WCT obtained with 
the squares algorithm decreases with respect of the all-pairs 
algorithm, from 45% to 20%, when increasing the number of 
SMHs. 
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Figure 4. Proximity detection: evaluation of different 
algorithms and enhancements 

 

The percentage performance gain decreases when the number of 
SMHs increases because the proximity detection algorithm has a 
reduced percentage computation load with respect of the whole 
simulation.  

The grid-based approach has the best performances with respect 
of the all-pairs and the squares mechanisms. The grid-based 
approaches are really sensitive to the cell-size, the model density 
and other model peculiarities. Moreover, an implementation of 
the grid data structure for the simulation of wireless systems must 
cope with SMH model dynamics and their mobility. As an 
example, during a simulation run each SMH will roam a large 
number of cells, hence causing a lot of insertion and deletion 
operations in the grid data structure. This data structure is 
implemented as matrix of separate chaining hash tables, that is, 
efficient with respect to update costs, but has a significant 
memory requirement. In figure 5, we present the influence of the 
cell size (square side size) on the WCT of the simulated model: 
the cell size has to be tuned with respect to the simulated model 
(i.e. the transmission range of the wireless nodes and the motion 
model). Such details of the simulated model are often unknown a 
priori or may depend on runtime characteristics (i.e. the variable 
transmission power). 
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Figure 5. Performance evaluation of the grid-based 

approach,  variable cell side (g=10..1000) 

The mechanism based on results’ caching for the reuse of distance 
computations, illustrated in section 4.3, has the results shown in 
figure 6. The WCT required with the all-pairs algorithm can be 
reduced, from 20% (2000 SMHs) to 33% (6000 SMHs).  

Proximity Detection: All-pairs 
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Figure 6. Performance evaluation of the All-pairs algorithm 

with Caching ON/OFF 
 

Figure 7 shows the WCT reduction when composing various 
combinations of multistage filtering based on the previously 
defined proximity detection mechanisms. Basically, the results 
show that the incremental composition of multistage filtering 
schemes gives advantages, more evident when under high node 
density, as it would be expected. 

 

Proximity Detection: All-pairs 

0

1000

2000

3000

4000

2000 4000 6000 8000

SMHs

W
al

l C
lo

ck
 T

im
e 

(s
)

All-pairs
All-pairs + Squares
All-pairs + Cache
All-pairs + Squares + Cache  

Figure 7. Performance evaluation of the All-pairs algorithm, 
combining different enhancements 

 

The results presented in Figure 8, confirm that a migration-based 
approach can marginally increase the efficiency of the reuse-
mechanism of cached results. By enabling the migration of 
SMHs, the highly interacting nodes are clustered together in the 
same LP, therefore increasing the probability to exploit pre-
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computed cache results. In this case the gain in terms of WCT 
appears as marginal. This is due to caching mechanism that has to 
be further optimized to reduce the runtime overhead, dissipating 
most of the gain obtained by the reuse factor. 
 

Proximity Detection: All-pairs with migration
(Caching ON/OFF)
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Figure 8. Performance evaluation of the All-pairs algorithm, 

Caching ON/OFF with migration enabled 
 

As shown in [2,3] the migration based framework (GAIA) can 
reduce the simulation WCT, optimizing the SMHs allocation to 
reduce the amount of network communication. The performance 
enhancements introduced by GAIA have been widely 
investigated, but the interactions between a migration based 
approach and the proximity detection algorithms need to be 
carefully analyzed.  
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Figure 9. The impact of entities migration on the all-pairs 

and grid mechanisms 
 

In Figure 9, the all-pairs and the grid algorithm are analyzed 
while turning ON and OFF the migration of simulated entities. As 
usual the simulation runs are repeated by increasing the number 
of SMHs. In this case both the squares and the results caching 
mechanisms are turned OFF. The results confirm that the 

migration of simulated entities reduces the WCT of both 
algorithms (all-pairs and grid-based). When applied to the grid-
based, the migration mechanism can reduce the WCT up to 45%. 
In the case of the all-pairs, the simulation is computation-
intensive, therefore the communication optimization, due to the 
migration mechanism, is less evident than the grid-based 
implementation.  

Each migration is implemented as the transfer of some data, the 
allocation of a new entry in the data structures of the receiving LP 
and the de-allocation of the obsolete entry in the data structures of 
the sender. Therefore, migrations increase the overhead due to 
runtime insertion and deletion operations on the data structures 
managing the LPs internal state. On the other hand, Figure 9 
demonstrates that the hash data structure used to implement the 
overlay grid is highly efficient and does not suffer relevant 
overheads when introducing the model entity migration scheme. 

7. CONCLUSIONS AND FUTURE WORK  
The proximity detection algorithms are a key part of the 
simulation of many mobile wireless systems. Many systems of 
interest, are complex enough that a monolithic execution 
architecture is unable to fulfill efficient and scalable simulation. A 
viable alternative based on the distributed simulation 
implemented on Grid Computing architectures is becoming 
attractive for the performance evaluation of complex systems. In 
this work we have analyzed some proposals for proximity 
detection algorithms being executed in a distributed architecture, 
with no shared memory support available. Some enhancements to 
the classical algorithms, and specifically tailored data structures 
have been proposed and evaluated. In addition, a model entity 
migration support has been composed with the simulation 
middleware to execute performance tests. Many interactions 
between the migration mechanism and some proximity detection 
algorithms have been investigated, resulting in guidelines about 
the opportune composition of migration mechanisms and 
enhanced proximity detection algorithms for distributed 
simulations of wireless mobile system models. 
Future works will include improvements of proposed 
implementation, further investigation of proximity detection 
schemes, like adaptive grid cell-sizes. A related topic, collision 
detection, will be investigated as it could be seen as a special case 
of the proximity detection. 
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