
Proximity Detection in Distributed Simulation
of Wireless Mobile Systems

Luciano Bononi Michele Bracuto Gabriele D’Angelo Lorenzo Donatiello

Dipartimento di Scienze dell’Informazione, Università degli Studi di Bologna
Mura Anteo Zamboni 7, 40127, Bologna, Italy

{bononi, bracuto, gdangelo, donat}@cs.unibo.it

ABSTRACT
The distributed and the Grid Computing architectures for the
simulation of massively populated wireless systems have recently
been considered of interest, mainly for cost reasons. Solutions for
generalized proximity detection for mobile objects is a relevant
problem, with a big impact on the design and the implementation
of parallel and distributed simulations of wireless mobile systems.
In this paper, a set of solutions based on tailored data structures,
new techniques and enhancements of the existing algorithms for
generalized proximity detection are proposed and analyzed, to
increase the efficiency of distributed simulations. The paper
includes the analysis of computation complexity of the proposed
solutions and the performance evaluation of a testbed distributed
simulation of ad hoc network models. Recent works have shown
that the performance of distributed simulation of dynamic
complex systems could benefit from a runtime migration
mechanism of model entities, which reduces the communication
overheads. Such migration mechanisms may interfere with the
generalized proximity detection implementations. The analysis
performed in this paper illustrates the effects of many possible
compositions of the proposed solutions, in a real testbed
simulation framework.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of Simulation – discrete
event, distributed.

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Proximity detection, wireless systems, distributed simulation, data
distribution management.

1. INTRODUCTION
The computer simulation is a powerful technique to model,
evaluate and predict the behavior of complex dynamic systems.
Many systems are composed by a great number of entities,
dynamically interacting in unpredictable way. The analysis
approach based on mathematical modeling is often inadequate to
express the fine details and complex interactions of such systems.
The simulation can be considered a viable solution in these cases.
A discrete event simulation mimics the behavior of a system
model at discrete points in time. The interactions between
simulated entities are represented by simulation events and the
processing of such events causes the evolution of the simulation
process [9].

A common problem of many simulations is to determine what
entities are involved in the notification and processing of a given
event. As an example, in a wireless simulation a new frame
transmission causes the creation of one transmission event-
message by the transmitter entity, that must be delivered in
chronological (causal) order to the whole set of potential receiver
entities. Due to the local broadcast nature of the wireless
transmission, wireless signals decay with distance depending on
propagation model assumptions [14]. For this reason, it makes
sense to distribute transmission event messages only to the subset
of neighbor hosts that will be reached by the transmission effects
[12, 13]. Since hosts may be mobile, such subset is dynamic. A
generalization of the subset definition problem is known in the
literature as generalized proximity detection for moving objects
[15]. Under the simulation viewpoint, the problem can be
translated in the dynamic identification of the recipient entities of
each event message. In a distributed simulation, this operation is
usually executed by the event distribution management
component. The conflict detection between moving objects is a
more specific case of the general proximity detection algorithm
[17]. A partially related field is given by physical particles’
simulation: to determine the evolution of a single simulated entity
it is necessary to take into account its interactions (forces) with all
other entities in the system [1].

In the following, we will focus on distributed simulation of
wireless models. Some work has been done in the past to address
the proximity detection problem over single processor
architectures [13], and multiprocessor architectures with shared
memory [10,12,16]. On the other hand, distributed and Grid
Computing architectures are gaining a lot of interest, mainly for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSWiM'06, October 2–6, 2006, Torremolinos, Malaga, Spain.
Copyright 2006 ACM 1-59593-477-4/06/0010...$5.00.

44

cost reasons, even if in this case no shared memory would be
available.

The paper structure is the following: section 2 introduces the
motivations and basic concepts about distributed simulation;
section 3 defines the basic assumptions about proximity detection
and the related literature; section 4 introduces a set of proposals to
enhance the proximity detection implementation in distributed
simulations; section 5 introduces ARTÌS, that is, the distributed
simulation framework adopted in the experimental evaluation of
the proposed solutions, reported in section 6. Finally, section 7
illustrates our conclusions and future work.

2. THE DISTRIBUTED SIMULATION
ARCHITECTURE
The traditional approach for computer simulation is monolithic,
that is, a single CPU is running the whole simulation. In complex,
detailed models and massive simulated scenarios such approach is
less practical, both for the excessive time required to complete the
simulation runs and for the limitations due to the memory
constraints of one single processing unit [5]. A valid alternative is
given by distributed simulation: a set of Physical Execution Units
(PEU) is working together to run the simulation, whose
implementation is split in many building blocks. A common
execution architecture for distributed simulation is composed by a
set of multiprocessors interconnected by a network (LAN, WAN
or even Internet). By composing the PEUs architecture,
aggregation of memory and computation resources gives
advantages under the scalability viewpoint. If shared memory is
unavailable, the distributed system has to pay some
communication overheads to maintain a consistent and
synchronous state. As an example, the latency of a LAN is orders
of magnitude higher than the latency of a shared memory
communication. In a distributed execution architecture, the task of
dynamically determining the set of entities whose execution is
interested by a new event can have a high cost. Therefore, data
distribution techniques are required to propagate the relevant data,
by reducing the communication overhead. In a distributed
simulation, the communication cost can be so high that a
concurrent replication of the same computation over many PEUs
could be even more efficient than distributing and sharing the
result of a single computation.

A distributed simulation is composed by a set of Logical
Processes (LPs) executed over separated PEUs, and interacting
together by adopting a message passing communication paradigm.
Each LP manages the evolution of one or more model
components. Obviously, the monolithic and the distributed
execution of a given simulation model have to produce the same
results. In the case of a distributed architecture, each CPU works
at a different speed and the communication latency is usually
unpredictable. To obtain correct results, the LPs can not proceed
asynchronously at full speed: a synchronization mechanism is
required to maintain the event causality. Mechanisms for
distributed synchronization have been proposed by following
alternative classes of solutions. In this work we assume that all
the LPs will be synchronized under a time-stepped execution: the
simulated time is divided in constant time steps and the simulation
will proceed by executing events occurring step by step.

3. BACKGROUND AND RELATED WORK
Determining the proximity set of a wireless transmitter node can
be seen as a special case of the N-body problem [1,14]. The N-
body problem consists in determining the evolution of a set of N
bodies each one interacting with the forces exerted from each
body to any other body. The resulting force between two bodies is
a function of the bodies’ distance. The force becomes negligible
at large distances. Possible algorithms to solve the N-body
problem are the Burnes-Hut (BH), the Fast Multipole Method
(FMM) and the Parallel Multipole Tree Algorithm (PMTA) [1].
All the algorithms are based on a octree data structure for 3-D
modeling scenarios, and quadtree data structures in 2-D where the
simulated scenario is divided in a set of cells. The BH algorithm
is based on body-cell interactions. The FMM is based on cell-to-
cell interactions. The PMTA is a hybrid of the BH and the FMM
algorithms [1]. The BH algorithm has been applied to compute
the interferences in wireless cellular simulations [14]. Given a set
of wireless devices moving in a simulated scenario, at each
timestep, the simulator has to determine the whole set of hosts
affected by the ongoing transmissions. In a simplistic way this
problem can be solved by computing the distance between each
pair of nodes. This algorithm is usually referred to as “all-pairs”
(brute force) and has a complexity of O(n2) per timestep, both in
the average and in the worst case.

In the following section we will introduce enhancements and
alternative approaches for attempting to reduce the cost of the all-
pairs mechanism. Our work is based on some basic assumptions
of the wireless networks and on specifically designed data
structures. A given algorithm to partition the simulated entities
allocated on a set of LPs (and related PEUs) of a distributed
simulation execution may have effects on the cost of proximity
detection functions, as it will be shown in section 5. A parallel
proximity detection solution for moving objects has been
considered in [15], based on the Distribution List (DL) algorithm.
In the DL algorithm the simulated space is modeled as fuzzy grids
and a set of lists is used to detect proximity between movers and
sensors. Another grid-based approach is illustrated in [16]: the
space is divided into a grid of cells linked to a list of the nodes
belonging to each respective grid cell. In this approach, the
computation is staged to allow the reuse of previously computed
and reusable proximity detection results. The D-SPANNER
presented in [10] is another approach based on kinetic sparse
graph spanner that maintains a set of assertions about the state of
the system, and exploits knowledge or predictions about the node
mobility.

In 2000, the IEEE 1516 High Level Architecture (HLA) [8,11]
standard for distributed simulation has been approved. The main
goal of this standard was to increase interoperability and reuse of
simulations. In the simulations compliant with the standard, the
proximity detection is demanded to the Data Distribution
Management (DDM) module [7]. The DDM is based on a
publish/subscribe mechanism. Expressions of interest are
explicitly used to keep track, to manage and to reduce the data
transmissions to the essential data notifications. In HLA, the
interest management can be realized based on regions and classes.
The region-based approach is used to express interest for the
events occurring within a subscribed area of the simulated-space.
The class-based approach allows subscribing objects, attributes
and classes under a hierarchical objects’ structure. The IEEE 1516

45

standard defines rules and interfaces for distributed simulation,
and does not impose any requirement about DDM and underlying
proximity set management implementations.

4. PROPOSED PROXIMITY
MANAGEMENT SOLUTIONS
The intensity of the wireless signals decays as a function of the
distance, depending on the considered propagation model. By
assuming that all the devices have homogeneous receiver
sensitivity, and all transmissions are isotropic in a wireless system
simulation, we can assume that transmissions have a
homogeneous maximum horizon distance limit for detection. In
other words, hosts out of a defined range (r) from the transmitter
are not subject to any significant transmission effect. Some
enhancements aiming to reduce the computation cost of the all-
pairs algorithm will be illustrated in the following, based on
previous assumptions. The first two enhancements we propose are
based on the horizon distance assumption. The third proposal is
based on the commutative property of the distance operator. The
computation complexity of the proposed methods will be
informally described. In section 6, performance evaluation results
of a wireless scenario will confirm the enhancements obtained.

In the following we assume a simulation model composed of a
high number of Simulated Mobile Hosts (SMH), each one
following a Random Mobility Motion model (RMM) (see section
6). The simulated space is modeled as a torus-shaped 2-D
topology and it is populated by a fixed number of SMHs. In
general the applied mechanisms could be extended to 3-D
topology models. In the following, we will refer to space-units
and time-units to generalize our analysis.

4.1 External and internal squares
Defining n as the number of simulated nodes (SMHs), the all-
pairs algorithm computes n(n-1) Euclidean distance values
between nodes coordinates. In a 2D plane, the Euclidean distance
between two points is given by

∑
=

−=−=
n

i
ii yxyxyxd

1

2),((1)

By exploiting the “homogeneous limited horizon distance”
assumption of wireless transmissions, it is possible to reduce the
effective cost of this algorithm. Given a static horizon range (r), it
is possible to define two squares around each transmitter SMH,
both centered on the SMH coordinates: the size of the external
square side is defined as 2r space-units and it defines the
maximum area where SMH transmission could be sensed. Hosts
allocated outside of the external square can be assumed to be out
of the reception range of the central SMH, and can be discarded
without any further evaluation. The internal square is inscribed in
the circle with radius r (the transmission range), and its side size
is r√2 (Figure 1). The transmission events originated by the SMH
can be delivered without any further examination to other SMHs
within the inner square. The space between the external and the
internal squares represents the area of uncertainty (the dashed
zone in Figure 1): all the SMH in this area can be inside or
outside the transmission range. In this case, to determine the
effect of a transmission, the distance has to be calculated SMH-

by-SMH for hosts in the dashed area, and the results compared to
r value.

By assuming a 2-D space, in the worst case four comparisons are
necessary to determine if a point falls within a square. In most
cases it is sufficient to check the external square to discriminate
an event: hence, in most cases, we can reduce the number of
required operations and their complexity.

Figure 1. The communication range of each SMH can be

bounded by an external and an internal square.

With respect of the classical all-pairs algorithm, the squares
method still requires n(n-1) comparisons between points but
drastically reduces the number (Cd) of costly Euclidean distances
to compute. The area of the external square is given by Aext = (2r)2
= 4r2, the area of the internal square is Aint = (r√2)2 = 2r2. By
assuming ρ = n/spaceunit2 as the homogeneous distribution of
SMHs:

() ρρ 222 224 rrrCd =−= (2)

Cd defines the average number of Euclidean distances to compute
per time-step for each SMH in the simulation.

4.2 Grid-based data structure
In this solution, an overlay grid divides the simulated space in
cells. Each square of the grid (or cell) represents only a small
portion of the simulated scenario and has a fixed size. This
approach requires to order the SMHs of the grid structure in a
way that allows to reduce the computational load. The data
structure implementing the overlay grid has to efficiently support
the insertion and deletion of entries, to manage the SMHs
mobility. In our implementation the overlay grid is composed by
a matrix of separate chaining hash tables (Figure 2). If the
simulated area covered by a cell is empty then also the relative
hash will be empty (and not allocated), otherwise the hash table
will contain all the SMHs that are located within the grid cell. A
data structure based on a matrix of lists would be unable to
efficiently manage the dynamic evolution of the simulated
scenario, with respect to a matrix of hash tables.

The grid structure is useful to easily determine the neighbor set of
each SMH: no need to inspect the whole simulated space. Only
the grid squares whose area has non zero intersection with the
transmission range circle have to be checked. In this way the
number of checks can be drastically reduced, but the data
structure management introduces some overhead.

46

Figure 2. The overlay grid is composed by a matrix of
separate chaining hash tables.

The grid-based mechanism works as a filter to reduce the number
of checks, but it is worth noting that false positives can happen in
cells overlapped by the transmission range circle (Figure 3). The
reason is simple: the area covered by the grid squares is always
equal or bigger than the transmission circle.

In general, the proposed mechanisms can be combined to further
reduce the number of Euclidean distances to calculate. As an
example, the filtering given by current grid-based solution, can be
followed by the internal and external squares filtering. Finally,
only the nodes surviving the filtering mechanisms have to be
checked by computing the Euclidean distance with formula (1).

Figure 3. A set of cells is overlapped by the transmission
range of each SMH. The cells at the borders can generate

false positives.

It is quite obvious that the performance of the grid-based
approach is drastically influenced by many factors, including the
cell size. Many small cells would be able to reduce the number of
false positives at the cost of an increased overhead for the data
structure management. Conversely, a small number of big cells
would reduce the management cost but would originate a high
number of false positives. As it will be shown in section 6,
assuming a uniform distribution of SMHs, the density (ρ)
becomes a key factor to determine the mechanism performance.
Defining g as the measure of the cell side, we have that each
SMH has to check at worst grid cells. The following
formula for Cd defines the number of Euclidean distances to
compute per time-step for each transmitting SMH:

ρ2

2
2 g
g
rCd ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎥

⎤
⎢
⎢

⎡
= . (3)

The grid data structure has to be updated to reflect the SMHs
mobility. Hence the cost of this approach also depends on the
mobility model and on the cost to update the grid data structure.

4.3 Results caching
The Euclidean distance (as defined in section 4.1) is a
commutative binary operator: given two points x and y we have
that d(x,y) = d(y,x). The commutative property can be used to
reduce the number of operations needed for the all-pairs
algorithm. In a centralized simulation-execution architecture it
would be possible to reduce the number of Euclidean distance
operations to n(n-1)/2. In both cases, the computation complexity
is O(n2) as the classical all-pairs approach, but in the latter case,
the constant factor hidden in the asymptotic notation is quite
different. Again, this enhancement can be combined with the
previously ones introduced, to obtain a multi-staged filtering and
incremental computation reduction.

On the other hand, in a distributed simulation, each LP manages
only a subset of the SMHs and a global knowledge of the
simulated environment is missing. Moreover, in a distributed
architecture, the communications needed to construct a global
knowledge are costly and have to be controlled: each LP has a
partial vision of the whole system and only the necessary
information are propagated.

Assuming a homogeneous distribution of SMH entities over LPs,
we have #SMH = n/#LP allocated in each LP, where n is the total
number of simulated mobile hosts and #LP is the number of
logical processes in the simulation. A prerequisite to apply the
commutative optimization is that if in a pair (SMH1, SMH2) both
simulated nodes are allocated in the same LP, it would be possible
to reuse the results of the distance computation, since the result
can be already cached and available within the same LP. If the
SMHs are allocated on different LPs then the distance value has
to be computed by both the LPs (or transmitted between the two
different LPs).

In the analyzed environment the probability that two SMHs are in
the same LP is given by

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛=

n
SMH

n
SMHyxP 1##),((4)

Since #SMH is inversely proportional to the number of LPs in the
system, in complex simulations we obtain that it is unlikely to
apply the commutative optimization, because the simulated
entities would be partitioned over a large set of LPs.

In the following section, we will show that a model entity
migration-based mechanism can reduce the communication
overhead, can support computation load balancing and increase
the positive effects of the results caching.

5. THE ARTIS MIDDLEWARE
The Advanced RTI System (ARTÌS) is a middleware for Parallel
and Distributed Simulation (PADS) supporting massively

⎡ ⎤()2/2 gr

47

populated models [5]. The design of the middleware is inspired by
the IEEE 1516 standard but new features have been introduced to
improve scalability and simulation speed. The PADS execution
speed is highly affected by the communication performance: the
approach followed by ARTÌS is adaptive and exploits the LPs
physical allocation. Specifically, a couple of LPs running on the
same PEU will communicate using the low latency shared
memory. In the case of LPs connected by LAN, WAN or Internet,
they will communicate using the R-UDP/IP or TCP/IP protocols.
The protocol choice is adaptive and based on the network
performances. Other important features of the middleware are the
multi-threading support, the implementation of data structures
specifically tailored for the event-list management, the capability
to detect and adapt to hyper-treading and multi-core CPUs, and
the support for the simulation cloning and concurrent replication
of independent runs [4].

In [6] it has been shown that the performances of a distributed
simulation can be increased by introducing the migration of the
simulated entities. A migration based middleware can adaptively
optimize the simulation execution by reallocating the simulated
entities over the LPs. The dynamic reallocation can reduce the
communication overhead and improves the computation load
balancing. This translates into a reduction of the Wall-Clock Time
(WCT) needed to complete the simulation runs. The Generic
Adaptive Interaction Architecture (GAIA) is a migration based
framework integrated in ARTÌS. The basic task of GAIA is to
check the communication pattern of each SMH during all the
simulation execution. A set of heuristics evaluates the
communication pattern and trigger the SMH reallocation to
reduce the communication costs [2] and to improve the load-
balancing of the execution architecture. GAIA clusters the highly
interacting SMHs within the same LP, reducing costly inter-LP
communication and increasing the rate of low cost intra-LP
communications. The cost of migrating the simulated entities is a
key factor to be evaluated in the migration heuristics. An analytic
evaluation of this cost is impossible due to the network
heterogeneity and the unpredictable behavior of the simulated
system. Furthermore the load balancing between the PEUs is a
strict requirement for the distributed simulation. Clustering all the
SMHs in the same LP would be optimal to reduce the
communication overhead, but would led to a monolithic
simulation and consequently to a worst case load-balancing [3].

The benefits of the migration based approach in the simulation of
wireless models have been evaluated in [2] and [3]. In this work
we are interested in: i) enhancing the all-pairs algorithm for
proximity detection mechanism, and ii) evaluating the effects of
the entities migration on the performance of the proximity
detection algorithms. To reuse the pre-computed distance values
(results caching), both the two SMHs must be allocated on the
same LP. According to formula (4), the probability that two
randomly allocated SMHs are found on the same LP is inversely
proportional to the number of LPs in the simulation. The
migration mechanism works by clustering together the highly
interacting SMHs. The direct consequence is that the migration
mechanism will allocate together the SMHs that are neighbors in
the simulated wireless topology. This would increase the
probability that two SMHs in proximity are allocated in the same
LP, resulting an effective pre-condition for the results caching.

6. TESTBED PERFORMANCE
EVALUATION OF A WIRELESS MODEL
In the following the results collected in the distributed simulation
of a testbed ad hoc network model will be presented to compare
and test the effectiveness of the proposed solutions for proximity
detection and entity migration of distributed simulation of
wireless system models.

6.1 Simulation system and simulation model
All the experiments and the analysis results shown in this section
are based on the distributed simulation of a wireless ad hoc
network model, running on the ARTÌS simulation middleware.
We performed multiple runs for each experiment, and the
confidence intervals obtained with a 95% confidence level (not
shown in the figures) are lower than 5% the average value of the
performance index.

The experiments have been performed over 2 PEUs, each one
equipped by Dual Xeon Pentium IV, 2800 MHz, 3 GB RAM,
interconnected by a Fast-Ethernet (100 Mb/s) LAN. The
distributed simulation is composed by 2 LPs each one statically
allocated on a different PEU.

The model is composed by a high number (2000 up to 8000) of
simulated wireless mobiles hosts (SMHs), each one following a
Random Mobility Motion (RMM) with a maximum speed of 10
m/s. This mobility model is far from being real, but it is
characterized by the completely unpredictable and uncorrelated
mobility pattern of SMHs. In the following, the RMM model is
defined. SMHs swings between mobile and static epochs. At the
beginning of each epoch, every SMH decides to stay or to change
its mobile or static state, by following a geometric distribution
with parameter p=1/2. When entering a mobile state, new,
uncorrelated and uniformly-distributed direction and speed are
randomly selected and maintained up to a static epoch. The cycle
is repeated for the whole simulation by every SMH. The
simulated area is modeled as a torus-shaped bi-dimensional
topology, 10.000x10.000 space-units. The torus area, indeed
unrealistic, allows to simulate a closed system, populated by a
constant number of SMHs. The torus space assumption is
commonly used by modelers to prevent non-uniform SMHs
concentration in any sub-area. The simulated space is flat and
open, without obstacles. The modeled communication pattern
between SMHs is a constant flow of ping messages (i.e. constant
bit rate), transmitted by every SMH in broadcast to all neighbors
within a wireless communication range of 250 space-units.

6.2 Experimental Results
In this section, the simulated model is evaluated with different
proximity detection algorithms executed in background (that is,
all-pairs, all-pairs with squares enhancement, and grid), caching
strategies (on/off), and model entity migration (enabled/disabled).
We evaluate the Wall-Clock-Time (WCT) necessary to complete
a simulation run, as a function of the increasing number of SMHs.

The implementation of the algorithm based on squares does not
require any additional data structure and only a few modifications
in the source code. Figure 4 shows that the WCT obtained with
the squares algorithm decreases with respect of the all-pairs
algorithm, from 45% to 20%, when increasing the number of
SMHs.

48

Proximity Detection

0

1000

2000

3000

4000

5000

2000 4000 6000 8000

SMHs

W
al

l C
lo

ck
 T

im
e

(s
)

All-pairs Squares Grid

Figure 4. Proximity detection: evaluation of different
algorithms and enhancements

The percentage performance gain decreases when the number of
SMHs increases because the proximity detection algorithm has a
reduced percentage computation load with respect of the whole
simulation.

The grid-based approach has the best performances with respect
of the all-pairs and the squares mechanisms. The grid-based
approaches are really sensitive to the cell-size, the model density
and other model peculiarities. Moreover, an implementation of
the grid data structure for the simulation of wireless systems must
cope with SMH model dynamics and their mobility. As an
example, during a simulation run each SMH will roam a large
number of cells, hence causing a lot of insertion and deletion
operations in the grid data structure. This data structure is
implemented as matrix of separate chaining hash tables, that is,
efficient with respect to update costs, but has a significant
memory requirement. In figure 5, we present the influence of the
cell size (square side size) on the WCT of the simulated model:
the cell size has to be tuned with respect to the simulated model
(i.e. the transmission range of the wireless nodes and the motion
model). Such details of the simulated model are often unknown a
priori or may depend on runtime characteristics (i.e. the variable
transmission power).

Proximity Detection: Grid-based
(Variable cell side)

0

500

1000

1500

2000

2500

2000 4000 6000 8000

SMHs

W
al

l C
lo

ck
 T

im
e

(s
)

10 25 50 100 250 500 1000
Figure 5. Performance evaluation of the grid-based

approach, variable cell side (g=10..1000)

The mechanism based on results’ caching for the reuse of distance
computations, illustrated in section 4.3, has the results shown in
figure 6. The WCT required with the all-pairs algorithm can be
reduced, from 20% (2000 SMHs) to 33% (6000 SMHs).

Proximity Detection: All-pairs

0

1000

2000

3000

4000

5000

2000 4000 6000 8000

SMHs

W
al

l C
lo

ck
 T

im
e

(s
)

Caching OFF Caching ON
Figure 6. Performance evaluation of the All-pairs algorithm

with Caching ON/OFF

Figure 7 shows the WCT reduction when composing various
combinations of multistage filtering based on the previously
defined proximity detection mechanisms. Basically, the results
show that the incremental composition of multistage filtering
schemes gives advantages, more evident when under high node
density, as it would be expected.

Proximity Detection: All-pairs

0

1000

2000

3000

4000

2000 4000 6000 8000

SMHs

W
al

l C
lo

ck
 T

im
e

(s
)

All-pairs
All-pairs + Squares
All-pairs + Cache
All-pairs + Squares + Cache

Figure 7. Performance evaluation of the All-pairs algorithm,
combining different enhancements

The results presented in Figure 8, confirm that a migration-based
approach can marginally increase the efficiency of the reuse-
mechanism of cached results. By enabling the migration of
SMHs, the highly interacting nodes are clustered together in the
same LP, therefore increasing the probability to exploit pre-

49

computed cache results. In this case the gain in terms of WCT
appears as marginal. This is due to caching mechanism that has to
be further optimized to reduce the runtime overhead, dissipating
most of the gain obtained by the reuse factor.

Proximity Detection: All-pairs with migration
(Caching ON/OFF)

0

1000

2000

3000

4000

2000 4000 6000 8000

SMHs

W
al

l C
lo

ck
 T

im
e

(s
)

Caching OFF Caching ON
Figure 8. Performance evaluation of the All-pairs algorithm,

Caching ON/OFF with migration enabled

As shown in [2,3] the migration based framework (GAIA) can
reduce the simulation WCT, optimizing the SMHs allocation to
reduce the amount of network communication. The performance
enhancements introduced by GAIA have been widely
investigated, but the interactions between a migration based
approach and the proximity detection algorithms need to be
carefully analyzed.

Proximity Detection with migration ON/OFF

0

1000

2000

3000

4000

2000 4000 6000 8000

SMHs

W
al

l C
lo

ck
 T

im
e

(s
)

All-pairs All-pairs+Migration Grid Grid+Migration
Figure 9. The impact of entities migration on the all-pairs

and grid mechanisms

In Figure 9, the all-pairs and the grid algorithm are analyzed
while turning ON and OFF the migration of simulated entities. As
usual the simulation runs are repeated by increasing the number
of SMHs. In this case both the squares and the results caching
mechanisms are turned OFF. The results confirm that the

migration of simulated entities reduces the WCT of both
algorithms (all-pairs and grid-based). When applied to the grid-
based, the migration mechanism can reduce the WCT up to 45%.
In the case of the all-pairs, the simulation is computation-
intensive, therefore the communication optimization, due to the
migration mechanism, is less evident than the grid-based
implementation.

Each migration is implemented as the transfer of some data, the
allocation of a new entry in the data structures of the receiving LP
and the de-allocation of the obsolete entry in the data structures of
the sender. Therefore, migrations increase the overhead due to
runtime insertion and deletion operations on the data structures
managing the LPs internal state. On the other hand, Figure 9
demonstrates that the hash data structure used to implement the
overlay grid is highly efficient and does not suffer relevant
overheads when introducing the model entity migration scheme.

7. CONCLUSIONS AND FUTURE WORK
The proximity detection algorithms are a key part of the
simulation of many mobile wireless systems. Many systems of
interest, are complex enough that a monolithic execution
architecture is unable to fulfill efficient and scalable simulation. A
viable alternative based on the distributed simulation
implemented on Grid Computing architectures is becoming
attractive for the performance evaluation of complex systems. In
this work we have analyzed some proposals for proximity
detection algorithms being executed in a distributed architecture,
with no shared memory support available. Some enhancements to
the classical algorithms, and specifically tailored data structures
have been proposed and evaluated. In addition, a model entity
migration support has been composed with the simulation
middleware to execute performance tests. Many interactions
between the migration mechanism and some proximity detection
algorithms have been investigated, resulting in guidelines about
the opportune composition of migration mechanisms and
enhanced proximity detection algorithms for distributed
simulations of wireless mobile system models.
Future works will include improvements of proposed
implementation, further investigation of proximity detection
schemes, like adaptive grid cell-sizes. A related topic, collision
detection, will be investigated as it could be seen as a special case
of the proximity detection.

Acknowledgments
This work is partially supported by MIUR FIRB funds, under the
project: “Performance Evaluation of Complex Systems:
Techniques, Methodologies and Tools”

8. REFERENCES
[1] Blelloch, G., Narlikar, G. A practical comparison of N-body

algorithms. Parallel Algorithms. Series in Discrete
Mathematics and Theoretical Computer Science, Volume 30,
1997.

[2] Bononi, L., Bracuto, M., D'Angelo, G., Donatiello, L.
Performance Analysis of a Parallel and Distributed
Framework for Large Scale Wireless Systems' Simulation.
MsWIM 04: Proceedings of the 7-th ACM/IEEE

50

International Symposium on Modeling, Analysis and
Simulation of Wireless and Mobile Systems.

[3] Bononi, L., Bracuto, M., D'Angelo, G., Donatiello, L. A
New Adaptive Middleware for Parallel and Distributed
Simulation of Dynamically Interacting Systems. DSRT '04:
Proceedings of the 8-th IEEE International Symposium on
Distributed Simulation and Real Time Applications.

[4] Bononi, L., Bracuto, M., D'Angelo, G., Donatiello, L.
Analysis of High Performance Communication and
Computation Solutions for Parallel and Distributed
Simulation. HPCC '05: Springer LNCS Proceedings of the
2005 International Conference on High Performance
Computing and Communications.

[5] Bononi, L., Bracuto, M., D'Angelo, G., Donatiello, L.
Scalable and Efficient Parallel and Distributed Simulation of
Complex, Dynamic and Mobile Systems. PERF '05:
Proceedings of the IEEE FIRB-Perf Workshop on
Techniques Methodologies and Tools for Performance
Evaluation of Complex Systems.

[6] Bononi, L., D'Angelo, G., Donatiello, L. HLA-based
adaptive distributed simulation of wireless mobile systems.
PADS '03: Proceedings of the 17th ACM/IEEE/SCS
Workshop on Parallel and Distributed Simulation.

[7] Boukerche, A., Roy, A.J., Thomas, N. Dynamic Grid-Based
Multicast Group Assignment in Data Distribution
Management. DS-RT '00: Proceedings of the Fourth IEEE
International Workshop on Distributed Simulation and Real-
Time Applications.

[8] DMSO: Defense Modeling and Simulation Office. High
Level Architecture RTI Interface Specification, Vers. 1.3,
1988

[9] Fujimoto, R.M. Parallel and Distributed Simulation Systems.
John Wiley and Sons, 2000.

[10] Gao, J., Guibas, L.J., Nguyen, A. Distributed Proximity
Maintenance in Ad Hoc Mobile Networks. DCOSS '05:
Proceedings of First IEEE International Conference on
Distributed Computing in Sensor Systems.

[11] IEEE STD 1516-2000. Standard for modeling and
simulation, High Level Architecture (HLA).

[12] Ji, Z., Zhou, J., Takai, M., Martin, J., Bagrodia, R.
Optimizing parallel execution of detailed wireless network
simulation. PADS '04: Proceedings of the eighteenth
workshop on Parallel and distributed simulation.

[13] Naoumov, V., Gross, T. Simulation of Large Scale Ad Hoc
Networks. MsWIM 04: Proceedings of the 5-th ACM/IEEE
International Symposium on Modeling, Analysis and
Simulation of Wireless and Mobile Systems.

[14] Perrone, L.F., Nicol, D.M. Using N-body Algorithm for
Interference Computation of Wireless Cellular Simulations.
MASCOTS '00: Proceedings of the 8th International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems.

[15] Steinman, J.S., Wieland, F. Parallel proximity detection and
the distribution list algorithm. PADS '94: Proceedings of the
eighth workshop on Parallel and Distributed Simulation.

[16] Walsh, K., Sirer, E.G. Staged Simulation: A General
Technique for Improving Simulation Scale and Performance.
ACM Transactions on Modeling and Computer Simulation
(TOMACS), Special Issue on Scalable Network Modeling
and Simulation, 2004.

[17] Wieland, F., Carnes, D., Schultz, G. Using quad trees for
parallelizing conflict detection in a sequential simulation.
PADS '01: Proceedings of the fifteenth workshop on Parallel
and distributed simulation.

51

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

