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ABSTRACT 

In this paper, we propose an effective dynamic thermal 
management (DTM) scheme for MPEG-2 decoding by allowing 
some degree of spatiotemporal quality degradation. Given a target 
MPEG-2 decoding time, we dynamically select either an intra-
frame spatial degradation or an inter-frame temporal degradation 
strategy in order to make sure that the microprocessor chip will 
continue to stay in a thermally safe state of operation, albeit with 
certain amount of image/video quality loss. For our experiments, 
we use the MPEG-2 decoder program of MediaBench and 
modify/combine Wattch and HotSpot for the power and thermal 
simulations and measurements, respectively.  Our experimental 
results show that we achieve thermally safe state with spatial 
quality degradation of 0.12 Root Mean Square Error (RMSE) and 
with frame drop rate of 12.5% on average. 

Categories and Subject Descriptors 
B.7.2 [Hardware]: Design Aids 

General Terms 
Design, Reliability 

Keywords 

Thermal model, temperature-aware design, MPEG-2 decoding. 

1. INTRODUCTION 
Peak power dissipation and resulting temperature rise have 

become the dominant limiting factor to processor performance 

and a significant component of its cost. Expensive packaging and 

heat removal solutions are needed to achieve acceptable substrate 

and interconnect temperatures in high-performance 

microprocessors. The heat flux in state-of-the-art microprocessors 

chips is currently in the range of 10-20 W/cm2, which is al-ready 

exceeding the confines of air cooling. Current thermal solutions 

are designed to limit the peak processor power dissipation to 

ensure its reliable operation under worst-case scenarios. However, 

the peak processor power and ensuing peak temperature are 

hardly ever observed. Dynamic thermal management (DTM) has 

been proposed as a class of micro-architectural solutions and 

software strategies to achieve the highest processor performance 

under a peak temperature limit.  Furthermore, it is known that 

power density across the chip is non-uniform, resulting in 

localized hot spots. DTM solutions must address this phenomenon 

as much as they tackle system-wide temperature violations. When 

the chip approaches the thermal limit, a DTM controller initiates 

hardware reconfiguration, slow-down, or shutdown to lower the 

chip temperature.  

Traditionally, thermal issues within a chip have been handled 

at the package level. Chip manufacturers have devised 

sophisticated, albeit expensive, packaging and cooling assemblies, 

i.e., heat sinks and micro-fluidic conduits, to the processor chips 

so as to efficiently transfer heat generated within a chip to the 

ambient environment. However, packaging and cooling systems 

without knowledge about the resource utilization and power 

dissipation demands of a software program running on a micro-

processor chip have some major limitations. As such, micro-

architecture level solutions can result in changes to the dynamic 

temperature profile of a chip so as to avoid the worst-case power 

density and temperature conditions. 

In order to reduce chances of creating a major thermal 

problem at the architectural level, a number of DTM strategies 

have been proposed [1]-[9]. These techniques rely on two pre-

defined levels of thermal limits: a trigger temperature and an 

emergency temperature. The trigger temperature is a thermal limit 

over which a dynamic predictive/reactive thermal management 

schemes will be initiated whereas the emergency temperature is a 

thermal limit over which the chip may be damaged and hence 

must be avoided at all cost. Those DTM schemes include 

architectural adaptations such as fetch-toggling [1] (instruction 

fetching is stalled for next N cycles), instruction cache throttling 

[2] (throttle the instruction forwarding from the instruction cache 

to the instruction buffer), activity migration [3] (dispatching 

computations to different locations on the die) and dynamic 

voltage and frequency scaling [4] (DVFS). Those DTM schemes 

are application-independent schemes. On the contrary, in this 

paper we propose an application-specific DTM technique, 

specifically designed for an MPEG-2 decoding program running 

on a general purpose microprocessor chip. 

As computers become faster, absolute decoding time of a 

frame in MPEG-2 video stream becomes smaller. However, 

MPEG-2 standard prescribes a fixed frame rate of 

29.97framess/sec (NTSC) and 25frames/sec (PAL) [10]. The 

frame rate is determined in consideration of slow trace/pursuit 

nature of human visual system (HVS). A frame rate higher than 

this 25-30 does not effectively improve the perceived quality of 

image/video streams to human eyes. Hence this, frame rate and 

processor speed dependent, available residual time from the given 

frame decoding time can be used to achieve thermally safe state of 

the processor. 

This paper is organized as follows. In section 2, current state-

of-the-art in DTM is reviewed. Section 3 introduces the 

motivational example of our DTM for MPEG-2 decoding while 

section 4 covers the theoretical parts of our DTM scheme. Our 
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simulation environment, benchmark programs and 

implementation details will be followed in section 5. In section 6, 

we show the experimental results of our work and section 7 is the 

conclusions.  

2. PRIOR WORK 
Many of the requisite performance features of microprocessor 

such as real-time processing and mean-time to failure are 

significantly affected by the power dissipation and resulting 

temperature. Hence, dynamic thermal management (DTM) has 

been proposed as a class of micro-architectural solutions and 

software strategies to achieve the highest processor performance 

under a peak temperature limit. To this end, there have been a 

number of studies that address this problem as explained in the 

following discussion. 

Recently, a number of architectural adaptations based DTM 

solutions have been proposed. In [1]-[3], the authors propose 

fetch toggling, instruction cache throttling, and activity migration, 

respectively. In [4], the authors consider instruction window 

resizing and switching among active functional units as DTM 

techniques for multimedia applications. In [6]-[8], Skadron et al. 

introduce several DTM methods. In [6], they introduce 

temperature-tracking based frequency scaling, localized toggling 

and computation migration to spare hardware units. In [7], they 

propose a hybrid DTM technique that combines fetch gating and 

DVS. In [8], they propose a formal feedback control theory and 

use DTM as a test vehicle. DTM is invoked in response to the 

localized hotspot rather than chip-wide temperature. 

In [5], Mircea et al. propose HotSpot which is an accurate 

yet fast thermal model based on thermal resistance and thermal 

capacitance at micro-architectural functional block level as well as 

two dimensional grid levels. Their model is implemented and 

widely used as a popular thermal simulator [11] . In [9], Lee et al. 

propose a software solution for temperature sensing that utilizes 

the built-in performance monitoring unit (PMU) to generate 

performance related information such as I/D cache access, number 

of instructions, number of stalls, etc. They derive temperature 

behavior by associating these performance figures with power. 

Many power management (PM) schemes for MPEG have 

been proposed. In [12], Son et al. propose a dynamic voltage 

scaling (DVS) on MPEG decoding. Basically, they apply two 

dynamic voltage scaling schemes on MPEG decoding. One is 

based on delay and drop rate minimization algorithm and the 

other is based on predictive (per Group of Picture, GOP) decoding 

time algorithm. Their delay and drop rate minimization algorithm 

regulates the system voltage depending on the system clock speed 

and the current decoding status. The proposed algorithm assumes 

MPEG decoding in a low-performance machine in which the 

frame rate is less than 30frame/second. 

In [13][14], Choi et al. propose an off-chip latency driven 

dynamic voltage and frequency scaling (DVFS) for MPEG 

decoding. In designing their DVFS strategy, the authors utilize the 

frame dependent versus frame independent parts within MPEG 

decoding process in [13] and the on-chip versus off-chip (CPU 

versus memory) dependent workloads within the frame decoding 

process in [14]. Their schemes are effective in slow machine 

which has a frame rate of 10 ~ 15. 

All of the aforementioned schemes make use of the available, 

frame rate dependent, slack time to employ various low power 

strategies, but none of them make use of it for DTM. Since CPU 

speed and computational power are increasing rapidly, we have 

more slack time available during the decoding of an MPEG frame 

(with a fixed deadline of say 33ms). In this paper we propose to 

gather and distribute this available slack time to achieve thermally 

safe state of the microprocessor chip during MPEG-2 decoding. 

The safe thermal state comes at the expense of image/video 

quality. 
 

Main Memory Latency 100 cycles/10 cycles 

L1 I/D Cache 
64KB 2-way 32Byte block 

1 cycle hit latency 

I/D-TLB 
Fully associate, 128 entries  

30 cycles miss latency 

Branch Predictor 4K Bimodal 

Functional Units 
4 IntegerALU,1 IntegerMULT/DIV 

2 FP ALU, 1 FP MULT/DIV 

RUU/LSQ size 64/32 

Instruction Fetch Queue 8 

In order Issue False 

Wrong Path Execution True 

Issue Width 6 instruction per cycles 

Table 1. Baseline Configuration of Simulated Processor 
 

Table 1 summarizes the architectural parameters that we use 

in our simulation. 
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Figure 1 Actual MPEG-2 Decoding Time 

3. MOTIVATIONAL OBSERVATION 
Figure 1 reports per-frame decoding time variation of a MPEG-2 

video stream decoded with MediaBench MPEG-2 decoder 

program [15]. The video stream has 60 frames and 704x480 

resolutions. We run the decoder with two different machines: An 

Intel Xeon 1.7GHz and an Intel Pentium IV 2.8GHz.  The OS is 

Linux-2.6.15. Note that the actual decoding time varies depending 

on the types of frame (I, P and B) Since I-frame is computation 

intensive compared to the other two frame types, its decoding time 

is longer than the others. In each machine, the average decoding 

times are 42.01msec and 24.01msec, respectively. Since the 

MPEG-2 standard specifies its frame rate as 29.97fps (which 

corresponds to approximately 33msec/frame), we clearly cannot 

finish the decoding of a frame with this frame rate in Intel Xeon 

chip. For this reason, MPEG standard has a frame discarding 

scheme [16] whereby it can drop B frame, P frame and I frame in 

stepwise manner, depending on the machine’s clock speed.  



In Pentium IV, on the contrary, the actual decoding time 

takes less than 33msec/frame. For such a case, MPEG standard 

has its frame rate control scheme that waits for some time to 

display the frame in a regular interval. For example, Berkeley 

MPEG-1 [17] uses ‘select’ function call to slow down displaying 

frames in a fixed rate of 29.97fps. Since the current state-of-the-

art processors are much faster, it is expected that more residual 

time will be available within the allowed frame decoding time. 
 

 

Figure 2 Thermal Variations & Violations in the Simulator 
 

In Figure 2, we simulate this ever-decreasing actual decoding 

time in our simulator. (Section 5 will explain the simulator in 

detail) Simply speaking, we assume some fixed number of cycles 

that correspond to the given decoding time deadline (33msec). If 

the actual decoding finishes earlier than these many cycles 

(deadline), we stall the processor inside the simulator for the rest 

of the cycles until the deadline is reached and only then, we start 

the decoding of the next frame. The corresponding results are 

shown in Figure 2 where the X-axis plots the simulation cycles in 

10K granularity and the Y-axis plots the temperature. As shown in 

the figure, the temperature starts to decrease when the actual 

decoding finishes any time earlier than the given frame decoding 

time. Note that the peak temperature goes up to 103�, which can 

invoke logical or timing error in the chip.  
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Figure 3 Overview of our DTM Scheme 
 

In order to avoid thermal violation (in Figure 2), we propose 

a new DTM scheme, especially for the MPEG-2 decoding. Figure 

3 shows the basic idea behind: Given a deadline for frame 

decoding, the conventional MPEG-2 decoder uses the first part of 

the decoding time to finish the decoding task while it rests in the 

second part. Unfortunately, the trigger temperature/emergency 

temperature of the chip may be exceeded in the first part. In our 

strategy, short periods of decoding are interleaved with short 

periods of processor stalls so that the chip temperature never 

exceeds the trigger temperature, yet the decoding task is 

completed before the deadline.  
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Figure 4 Detailed Analysis of Temperature Variation 

4. DTM METHODOLOGIES 

4.1. Thermal Models 
We use a thermal model developed by Skadron et al. in [8]. In this 

model, the temperature increase in the chip is represented by: 

( )old

th th th

TP
T t

C R C
∆ = − ⋅∆

⋅

 (1) 

where ∆t is a time interval, P is the average power dissipated in 

the interval, Rth is a thermal resistance, Cth is a thermal 

capacitance and Told is the initial temperature, respectively. After a 

time interval, the new temperature is:  

new oldT T T= + ∆  (2) 

Let tinitial and tfinal denote two instances of time (and their 

difference denoted by ∆t), respectively. Moreover, assume that the 

power dissipation is non-zero when the processor is running. Now, 

the thermal rising gradient with respect to time is calculated as:  

Rising: ( )oldr

th th th

TT P

t C R C

∆
= −

∆

 
(3) 

In contrast, when the processor is stalled (it is put in the 

standby mode) during the residual time, assume that the chip 

power dissipation is negligible compared to active power i.e., P=0. 

Then, the thermal falling gradient with respect to time is 

calculated as: 

Falling: ( )
f old

th th

T T

t R C

∆
= −

∆

 (4) 

In Figure 4, we model this thermal gradient over time as 

three piecewise linear functions. Since the amount of decoding 

workloads/steps within a MPEG-2 frame decoding is frame 

dependent yet more or less the same, we specify the temperature 

variation during MPEG-2 frame decoding on a DTM-ignorant 

machine as Tmax and Tmin peaks and valleys, respectively. Notice 

that Tmax and Tmin are mostly invariant when a program is in a 

steady-state but may slightly vary when a program behavior 

changes. Moreover, obtaining Tmax and Tmin is not always possible 

in the actual system but is always feasible in the thermal simulator, 

which is aimed at anticipating application’s real on-chip thermal 

behavior. Then, the thermal behaviors of MPEG-2 decoding 

program are divided into three regions: 

1. Super-linear Region: old

th th th

TP

C R C
>>

 In this region, 

rT

t

∆

∆

changes dramatically and the power term dominates 

the other temperature term in equation 1. Since the 

thermal gradient during the rising of the curve is higher 

than falling counterpart, a longer processor stall time is 

needed compared to the time it took for the temperature 



to rise to the same level. 

2. Linear Region: 
  old

th th th

TP

C R C
>

 In this region, rT

t

∆

∆

 

changes almost linearly and the power term is relatively 

larger than the temperature term in equation 1. The 

thermal gradients during the rising and the falling of the 

curve are comparable and both take almost same 

amount of time.  

3. Constant Region:
 old

th th th

TP

C R C
≈

 In this region, rT

t

∆

∆

 

becomes almost zero and the power term is comparable 

to the other temperature term in equation 1. Since the 

thermal gradient during the falling of the curve is higher 

than the rising counterpart, a shorter processor stall time 

is needed compared to the time it took for the 

temperature to rise to the same level. 

Unfortunately, those three regions are not sharply bounded in 

the thermal gradient curve. Moreover, the trigger temperature is a 

material/architectural parameters dependent value whereas 

Tmax/Tmin is MPEG-2 input file dependent one, the trigger 

temperature can be located at any level within the thermal 

gradient curve. Hence, we carry out the following steps in order to 

build our DTM framework for MPEG-2 decoding.  

1) Run a MPEG-2 video stream in MPEG-2 decoder 

program and get both Tmax and Tmin on the machine without any 

DTM policy applied.  

2) Check Ttrigger of the processor. If Ttrigger > Tmax, machine is 

thermally safe and no DTM policy is needed to be applied.  

3) If Ttrigger < Tmin, this means decoding workload is large and 

DTM policy must do significant quality degradation to achieve 

thermally safe state. 

4) If Tmin < Ttrigger < Tmax, which we show as a target trigger 

temperature range in Figure 4, then, if Ttrigger lies in the constant 

region, thermally safe state can be achieved with little or no 

quality degradation, whereas if it lies in the linear region some 

quality degradation must be accepted to achieve thermally safe 

state. Finally, if Ttrigger lies in the super-linear region, which is the 

worst case, then thermally safe state can be achieved only at the 

cost of significant image/video quality degradation. 

4.2. DTM Policy 
During the residual time, as shown in Figure 3 (top figure), 

the thermal gradient is high during its initial phase and slowly 

decreases afterwards. Even though significant amount of time is 

spent in ‘stalling the processor’, i.e. doing nothing but waiting for 

the arrival of frame display time, the drop in the temperature is 

relatively small. This leads us to the idea depicted in Figure 3 

(bottom figure): Stall the processor only for the duration of time 

till the thermal gradient remains steep. 

From the analysis presented in the previous section, high 

thermal gradient occurs only when the chip operates in either the 

linear or the constant regions. Our experiments with a set of input 

files with a trigger temperature of 81.8� show that the trigger 

temperature is positioned in the ‘linear region’ where thermal 

rising/falling gradients are comparable. Based on this simulation 

results and extensive experiments, we choose an empirical value 

of 1 million cycles to stall the processor every time we reach the 

triggering temperature. This gives us comparable rising and 

thermal falling gradients  

Note we may end up missing deadlines for frames unless we 

do have enough residual time. In order to reduce these deadline 

misses, we collect this slack time (actual decoding time subtracted 

from given decoding time) for the future use. This slack time 

saving is accomplished by having a buffer in the main memory 

which has the size of 3 frames. Every time we finish actual 

decoding before the given decoding time and the buffer has space 

for frames, we write the decoded frame to the buffer and claim the 

remaining slack time for the future use. If the buffer does not have 

space, we wait for the buffer to have a space. If we either miss or 

predict to miss the deadline for the frame being decoded, we 

resort to either spatial or temporal quality degradations to meet 

the deadlines. This deadline satisfaction and slack time collection 

continue over the whole execution time. 

Spatial quality degradation: After enough amount of frame 

decoding time, e.g. around 100msec, thermal behavior of MPEG-

2 decoding program becomes monotonous. Hence in decoding of 

all subsequent frames, we can predict how many times the thermal 

curve will reach to the trigger temperature for the following frame 

decoding. Since we allow stalling 1 million cycles every time we 

reach the trigger temperature, the total number of stall cycles can 

be easily predicted. If the predicted stall cycles are larger than the 

available slack time that we collected, deadline miss is expected 

hence activation of spatial quality degradation (as explained 

latter) is triggered. 

Temporal quality degradation: Note that spatial quality 

degradation does not guarantee the deadline satisfaction, i.e., we 

may run out of slack times to meet the deadline. If deadline miss 

occurs, we will drop the next frame. The rationale is that this 

frame has already missed its deadline and it is going to be 

displayed at the time when the next frame is supposed to be 

displayed. In other words, instead of delaying the display of the 

whole sequence of frames, we decide to drop the next frame so 

that the second to the next frame can be decoded before its 

deadline. 

4.3. Spatiotemporal Quality Degradation 
In our definition, spatial quality degradation is the ratio of 

how the modified frame differs from the original frame. We use 

root mean square error (RMSE) as a measurement metric of the 

spatial image quality degradation. The temporal quality 

degradation, in our definition, is the ratio of how the modified 

video stream differs from the original video stream. We use the 

number of skipped/dropped frames as a measurement metric of 

the temporal video quality degradation. Clearly, the spatial quality 

degradation is an intra-frame level image distortion whereas the 

temporal quality degradation is an inter-frame level video 

distortion. Note that the time saved due to spatial quality 

degradation is smaller than the temporal quality degradation.  

4.3.1. Spatial Quality Degradation 
In order to find the best decoding steps to minimally distort the 

frame image quality, we analyze the typical MPEG-2 decoding 

sequence shown in Figure 5. Frame decoding in MPEG-2 has 

several major steps: Variable Length Decoding (VLD), Inverse 

Quantization (IQ), motion compensation, Inverse Discrete Cosine 

Transformation (IDCT), dither, display, etc. Among those steps, 

we observe the SNR scalability and the saturation control, since 

they are employed to enhance the image quality. SNR scalability 



provides the enhancement of video quality by means of 

enhancement layer. Basically, it has two levels of layers: a base 

layer and an enhancement layer. Base layer includes the coarse 

level of DCT coefficients and the enhancement layer includes the 

finer level of DCT coefficients. On the contrary, the saturation 

control is clipping the results of IQ. Those two fine granularity 

scalability (FGS) techniques in MPEG-2 are initially introduced 

to cope with the time-varying bandwidth for the smooth image 

quality degradation. Our experiments show that these two steps 

consume approximately 10% of the total frame decoding time. 

Since they are spatial quality related metrics and relatively easy to 

be divided from MPEG-2 decoding steps, we choose them to do 

the spatial quality degradation in our DTM framework. 
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Figure 5 Typical MPEG-2 Decoding Steps 
 

4.3.2. Temporal Quality Degradation 
As mentioned earlier, temporal quality degradation is done by 

dropping the frames when deadline miss occurs. Note that not all 

the frames can be dropped arbitrarily. If a P frame is dropped, 

then all the subsequent P frames must be dropped till the next I 

frame. Whereas a B frame can be dropped arbitrarily since the 

next B frame does not depend on the B frame currently being 

dropped. In this paper hence we decide to drop only B frames so 

if the next frame to be dropped is not B then we keep decoding 

other I and P frames till we get the B frame. 
 

Input files No. of 
frame 

Frame 
resolution 

I: P: B frame 
distribution 

gitape.m2v 14 720 x 480 1:      4:     9 

mei60f.m2v 50 704 x 480 5:     13:   32 

hhilong.m2v 45 720 x 576 3:      8:   34 

time_015.m2v 50 704 x 480 5:    12:   33 

soccer_015.m2v 51 640 x 480 4:    14:   33 

tens_015.m2v 47 352 x 192 5:    12:   30 

cact_015.m2v 50 352 x 192 5:    12:   33 

Table 2 MPEG-2 Input Files Used in the Experiments 

5. SIMULATION ENVIRONMENT 
For our experiments, we modify and combine Simplescalar 

[18] Wattch [19] and HotSpot [11]. The simulated micro-

processor model is based on ALPHA 21364, which is has the 

feature size of 0.18µ, Vdd of 1.6V and a clock speed of 1GHz. The 

power model used in the simulation does not model leakage 

power. In order to avoid modifying the default floor-plan in 

HotSpot, we use the same feature size and linearly scale both Vdd 

to 1.8V and a clock speed to 1.2GHz. The trigger and emergency 

temperature are set to 81.8 and 85.0�, respectively [6], whereas 

the ambient and initial temperatures are set to 40.0 and 60.0� 

respectively. Our combined simulator generates thermal results of 

each functional unit every 10K cycles. 

For the application programs, we use MPEG-2 decoder 

program of MediaBench benchmark suite [15]. Table 2 

summarizes the MPEG-2 input files used in our experiments, 

which we mostly obtained from [20]. We add a few custom made 

files for the better comparison and limit the total number of frame 

to 51 in all experiments. Since 0.1� rise/fall of temperature may 

take 100K cycles [6], our profile of thermal behavior of a program 

has long enough time. Our DTM policy is implemented in the 

MPEG-2 decoder program such that it interacts with our 

combined simulator.  
 

Max/Min temperature (�) Input files real decoding 
time (msec) DTM-ignorant DTM 

gitape 21.5 101.5 / 85.5 81.8 / 80.5 

mei60f 19.6 99.6 / 83.8 81.8 / 80.5 

hhilong 17.2 97.2 / 81.9 81.8 / 80.5 

time_015 11.8 91.5 / 76.2 81.8 / 80.5 

soccer_015 8.5 82.5 / 70.5 81.8 / 72.4 

tens_015 4.0 73.4 / 63.2 N/A 

cact_015 4.0 73.4 / 64.1 N/A 

Table 3 Thermal Behaviors in the Hottest Functional Unit 

6. EXPERIMENTAL RESULTS 
In Table 3, we summarize the experimental results. The left 

column shows the actually measured decoding time and right two 

columns compare the maximum/minimum temperatures before 

and after DTM scheme. As you see, maximum temperature in 

DTM-ignorant system shows that thermal crisis can occur in some 

cases. Note that the maximum-minimum temperatures for the 

input files with similar resolution are the same since they have 

approximately the same decoding workload. When the resolution 

becomes smaller, the maximum-minimum temperatures are both 

decreased. The N/A parts mean that no DTM scheme is necessary 

for those input files. 
 

Image/Video Quality Degradation 

Spatial Temporal Input files 
Scaled 
frames 

RMSE Dropped 
frames 

Drop ratio (%) 

gitape 5 0.119 5 35.7 

mei60f 8 0.125 15 30.0 

hhilong 0 N/A 8 8.8 

time_015 0 N/A 0 0 

soccer_015 0 N/A 0 0 

tens_015 0 N/A 0 0 

cact_015 0 N/A 0 0 

Table 4 Spatial/Temporal Quality Degradation 
 

In Table 4, we summarize the experimental results for the 

image quality degradation. For the measurement of spatial quality 

degradation, we use root mean square error (RMSE) of the 

luminance (Y) values of frames. Note that this RMSE values are 



not calculated among all frames but for the spatially scaled frames 

only. For the temporal quality degradation, we show the number 

of frames dropped. As shown, when the resolution of a frame 

becomes smaller, number of dropped frames reduces since we 

have enough amount of residual time and become non-aggressive, 

i.e., scale frame frequently instead. Clearly, frames with large 

resolution will have more number of dropped frames.  
 

 

Figure 6 Comparison of the Thermal Variations 
 

 In Figure 6, we show the run time thermal behavior during 
the simulation. For simplicity, we use three input files which have 
different resolutions: gitape, soccer_015 and cact_015. Each point 
in the X-axis is the measurement step in 10K cycles and Y-axis is 
the temperature and all measurements are made when a program 
reaches to the thermally steady state. We categorize files into 
three groups based on their workload, i.e. actual decoding time: 
Files with heavy workload execute DTM aggressively (top graph), 
files with medium workload execute DTM non-aggressively 
(middle graph), and files with light workload never execute DTM 
(bottom graph). Clearly, actual decoding time (in turn, the 
residual time) has strong relationship with the necessity of DTM 
scheme and our scheme shows that we achieve thermally safe state 
with different image/video quality degradation, i.e., number of 
dropped frame and the number of scaled frames are smaller in 
soccer_015 than frame dropped/scaled in gitape. 

7. CONCLUSIONS 
In this paper, we propose an effective DTM scheme for MPEG-2 

decoding with the spatiotemporal quality degradation. Our DTM 

algorithm makes use of the ever-decreasing actual frame decoding 

time and utilizes the residual time within a frame decoding by 

distributing it to achieve thermally safe state. As a consequence, 

quality degradation is observed. Our experimental results show 

that we achieve thermally safe state with spatial quality 

degradation of 0.12 in terms of RMSE value and with a frame 

drop rate of 12% on average. Our future research will carry out 

the analysis of the other steps of MPEG decoding in order to do 

more stepwise quality degradation with respect to decoding time. 
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