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ABSTRACT
Equalizing the ratios between workloads and speeds of processing
elements provides the optimal speed allocation. Based on that prin-
ciple, this work describes a dynamic speed setting policy for multi-
processor systems-on-chip (MPSoCs) that relies on the estimation
of processor idle times specifically due to the synchronization work.
The policy provides two advantages: first, it does not rely on any
assumption about the communication pattern of the application ex-
ecuted by the system. Second, it is purely architectural; it automat-
ically detects changes in the system workload and sets processors
speeds accordingly by means of a custom hardware block.
Results on a parallel MPEG video decoding application show an
EDP saving above 55%, averaged over several datasets, corre-
sponding to an energy saving above 50%, and a corresponding
penalty in performance below 8%.

Categories and Subject Descriptors: C.1.2 [Computer Systems
Organization] : Multiprocessors; J.6 [Computer Applications]:
COMPUTER-AIDED ENGINEERING

General Terms: Algorithm, Design, Experimentation.

Keywords: Power Optimization, MPSoC, Dynamic Volt-
age/Frequency Scaling.

1. INTRODUCTION
The power crisis in current digital integrated systems is fueling
an architectural paradigm shift toward multi-core architectures:
Single-chip multi-core engines, that have first become widespread
in embedded computing, are now making deep inroads in general
purpose computing [1].
Energy-efficient multi-core design is getting an increasing level of
technology support. The concept of “voltage islands” [2] has gath-
ered momentum, and many recently announced SoC architectures
feature tens of power domains [3]. Multi-core architectures with
independently controllable supply voltage and clock frequency en-
able an unprecedented level of control on the performance vs.
power/energy tradeoff. Voltage and speed setting allows to vir-
tually eliminate all wasteful mismatches created by non-uniform
workloads allocated to cooperating cores.
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A tough challenge in this area is the accurate and timely detection
of workload mismatches at execution time. In many realistic use
cases, applications cannot be accurately pre-characterized, and effi-
cient run-time mechanisms are required to detect when one or more
cores are over-clocked with respect to their workload. To address
this challenge, several techniques have been proposed that require
modification in the applications ([6]–[8]), or impose a particular
inter-processor communication style that helps making speed mis-
matches more easily detectable [9, 10, 11, 12].
This paper moves towards the development of minimally-invasive
detection of workload mismatches. Instead of requiring additional
efforts from the programmer’s side, we augment the hardware ar-
chitecture with self-monitoring and autonomous control capabili-
ties. We monitor synchronization to detect non-constructive idle-
ness, which is a direct manifestation of non-optimal speed setting.
We infer the idleness by observing the memory accesses performed
by processors, and use such an information to drive a dynamic
speed setting policy.
Results on a MPEG decoder show that our approach can save more
than 50% of the energy spent with respect to a system running at
the maximum speed, also improving by 25% a static assignment of
speeds based on the off-line monitoring of the system workload.

2. PREVIOUS WORK
The problem of voltage/frequency selection is a quite mature re-
search topic: many techniques have been proposed in the literature,
requiring various levels of support by either hardware or software
(a survey of DVS/DFS techniques can be found in [4, 5]). All these
schemes, however, target single-processors systems.
In the multi-processor system domain, conversely, the spectrum of
solution is much more limited. Most approaches have focused on a
task-based model of the system, in which system behavior consists
of a set of tasks with well-defined execution times and deadlines.
The availability of an RTOS is usually assumed, and the issue of
speed selection is embedded into the task scheduling problem with
real-times constraints ([6]–[8]).
The approaches followed by [11, 12] introduce a control-theoretic
perspective of the speed assignment problem, which is solved by
modeling the system as a queue network. Characterizing embed-
ded applications in terms of service and arrival rates tends to be
difficult, however; these approaches thus tend to be more suitable
for an analytical exploration of workload allocation policies than
for detailed frequency assignments.
In [9], authors concentrate on the balance between computation and
communication, concurrently determining an optimal speed assign-
ment for both communication and computation tasks. This work is
explicitly targeted for network processors, for which communica-
tion power is significant.
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Our scheme shares with [9] the assumption that tasks are statically
mapped to processing elements: in this scenario, scheduling of the
tasks is immaterial, and only speed assignment is relevant. Our so-
lution differs from this approach in two main aspects: First, we do
not make any relevant assumptions about the application running
on the system, including its data-flow or communication patterns;
second, our method is purely architectural, in the sense that it au-
tomatically detects, through a custom hardware block, changes in
the system workload, and sets processors speeds accordingly.

3. SYNCHRONIZATION-DRIVEN SPEED
SCALING

The proposed speed scaling scheme is based on the idea of relating
the speed assignment of a given processor to the amount of time
spent waiting for synchronization.
In this work we consider applications that rely on a shared-memory
paradigm, and execute on a multi-core platform explicitly based on
shared-memory. We therefore assume that synchronization is based
on shared variables. Our “low-level” synchronization primitive is
therefore based on the polling of some shared variables.
We then assume that the system consists of n cores numbered
1, 2, . . . , n. Each core i can be set to a speed Si, which can take
values from a set of m possible speeds Sk, k = 1, ..., m. The i-
th core executes a workload Wi, measured in terms of the amount
of work (e.g., instructions) to be performed; its actual unit is irrel-
evant since our formulation relies on the ratio between workload
and speed Wi/Si, which yields a measure of time.
Finally, we denote by Ti and TSi , respectively, the time spent by
processor i executing its workload and busy waiting for some syn-
chronization variable to become available.

3.1 Energy, Workload and Synchronization
Time

The time spent for synchronization by one processor represents a
form of non-constructive idleness; unlike idleness due to other fac-
tors (e.g., I/O waiting), this idleness is caused by the interference
of other processors, making thus its nature (and thus the issue of
speed setting) quite different from the single-processor case.
Intuitively, time spent during synchronization wastes energy, since
a core busy-waits without performing useful computation. In order
to support this intuition, we ran an experiment to establish a relation
between the time spent for synchronization and energy, consisting
of an exhaustive exploration on a synthetic application.
The latter implements a prime number search on a shared vector,
implementing a parallel version of the Eratosthenes’ algorithm. By
allocating slices of the vector with different sizes to cores, it is pos-
sible to split the total amount of computational work as desired,
thus allowing explorations with different workload allocations.
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Figure 1: Relation Between EDP vs. Total Synchronization Time.

Figure 1 shows the energy-delay product versus the total synchro-
nization time TS,tot =

Pn
i=1 TSi (values of TSi have been mea-

sured through simulation on the platform described in Section 4).
The plot clearly supports the intuition and shows how execution
time and energy consumption are strongly impacted by the amount
of time spent in synchronization. Using these observations, we de-
rive a speed setting policy driven by the idle synchronization time.
Le us consider an arbitrary time window TW ; over this window,
the time spent by the application running on the system will con-
sists, in general, of three distinct components: the time for exe-
cuting “useful” instructions, the time spent for synchronizing with
other processors, and the time used to wait for the bus to access its
private memory. In formula: TW = Ti + TSi + TBWi . Without
a significant loss in accuracy, we can neglect TBWi , since caches
will filter out most of the memory accesses.
Reformulating, and by exposing processor speed, we get:

TW =
Wi

Si
+ TSi (1)

Notice that TW is an invariant, that is, it is the same for all cores.
Based on the results of Figure 1, the objective is to reduce TSi to
0; this can be achieved by either slowing down some processors,
or by speeding up some others. Consider for instance the situation
depicted in Figure 2, where processor P2 waits, for a time TS2 , pro-
cessor P1 to produce an event (e.g., unlock of a semaphore). This
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Figure 2: Alternative Speed Assignments: Speeding Up P1 (a)
or Slowing Down P2 (b).

time can be reduced to 0 by speeding up P1 of a quantity TS2/T
(a), or by slowing down P2 of the same quantity. The two alterna-
tives differ in the execution time, which is correlated to the speed
of the two processors. While from the point of view of EDP they
are both identical (because TS2 = 0), we should tend to privilege
the scheme where the overall execution time is smaller.
The example suggests a possible qualitative criterion for speed set-
ting: If a processor Pi waits, then slow it down if it is running at
the maximum speed, otherwise speed up the other cores.

3.2 Speed Scaling Algorithm
We consider time to be split into a set of disjoint time windows of
the same size TW ; the speeds of the cores are determined upon ex-
piration of each time window, based on the quantities measured in
the previous window. This discretization relies on the assumption
that the workloads are slowly changing with respect to the obser-
vation window, which is quite reasonable if TW is much smaller
than the total execution time.
Computation of the optimal speeds requires the estimation of the
incoming workloads; from Equation 1, a workload can be espressed
as Wi = (TW−TSi)·Si . At the end of a time window, all the three
quantities on the right hand side of this equation are known (TW
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and Si), or can be measured (TSi ). This allows to compute Wi for
the just expired time slot; under the assumption that workload will
not change abruptly in the next slot, we use Wi as an estimate of
the incoming workload in the next slot.
In order to achieve the optimal speed assignment (TSi ≡ 0,∀i), we
must enforce that all workloads are executed in the same time, that
is, all the ratios Wi/Si are identical:

W1

S1
=

W2

S2
= . . . =

Wn

Sn
(2)

This condition implies that all processors will execute their work-
loads without synchronization idle time (e.g., as in Figure 2).
Formula 2 is a system of n−1 equations with n unknowns. In fact,
the time to which each Wi/Si evaluates to depends on the speed
assignments and it is not defined a priori.
Since we aim at obtaining the same performance of a full speed
system, still with a reduced energy consumption, we solve Equa-
tion 2 by forcing the processor with the maximum workload to run
at maximum speed. All the other speeds will thus be automatically
derived based on Equation 2.
More precisely, let j be the index corresponding to the processor
with maximum workload during the k-th time window:

j = index(max
1,...,n

Wi)

The speed setting for the k+1-th time window is thus defined asj
Sj,opt = Smax

Si,opt = Wi
Wj

· Smax
(3)

where Smax is the maximum available speed in the system.
Notice how this simple speed setting criterion is able to deal natu-
rally with the most critical difficulty for a DVS scheme, that is, the
problem of workloads that are variable over time.

4. EXPERIMENTAL RESULTS
To verify the effectiveness of the proposed policy, we first run a
set of parametric benchmarks that expose different workload allo-
cations and different kinds of parallelism. We have then applied it
to a real-life embedded application, (an MPEG video decoder), for
which some parametric exploration has also been carried out.
In both experiments, we compared our policy against (i) a full-
speed system (all cores running at the maximum speed), and (ii)
one static speed assignment. Since the only way to determine the
optimal static assignment would be by exhaustive exploration of
all possible frequency assignments, we determined a “reasonably
good” assignment, obtained by extracting some execution informa-
tion from the application code, and by a further exploration of other
points around this possible optimal value. This procedure is sup-
posed to emulate the choice of a designer that has to select a static
assignment for a target application.

4.1 The Multiprocessor Platform
We implemented our policy by augmenting a virtual multiproces-
sor platform ([13]), consisting of a configurable number of process-
ing elements, with their private memories, a shared memory, some
hardware device for basic interprocessor synchronization (a hard-
ware interrupt module, and a hardware device that provides test-
and-set features), a shared-bus interconnect, and a clock divider
that feeds the cores.
We augmented the platform by adding a speed setting device based
on the above scheme. The device estimates the TSi and updates the
processors’ frequencies accordingly. Synchronization is evaluated
by monitoring accesses performed by each core. We assume that

a processor is performing a busy wait when it repeatedly accesses
the same address with no accesses to other locations between them.
Accesses must be detected by inspecting the interface between each
core and its cache controller, since many accesses are filtered by the
data cache.

4.2 Application Kernels

• Eratost: A prime number search on a shared vector, imple-
menting a parallel version of the Eratosthenes’ algorithm. Each
processor scans a disjoint portion of the vector, and cores syn-
chronize using barriers.

• Mergesort: A parallel version of the mergesort algorithm; it
sorts a pool of randomly generated vectors stored in shared
memory. The application is parallelized in a barrier-based fash-
ion for the sorting phase, and in a pipeline style for the final
merging phase. Therefore, when the merging processor is work-
ing on the i-th vector, the other ones can sort the (i+1)-th. The
workload allocation among cores is not uniform and it varies
during the execution.

• DES: A DES algorithm parallelized in a master-workers-slave
fashion. The master core sends the stream to two workers that
encode it and send the encoded data to the slave core. The re-
sulting workload is not uniform among cores (workers bear the
heavier computational load) but it is static, since the amount of
computation does not depend on data streams.

• FFT: a variant from the SPLASH-2 [15] suite, modified to per-
form two concurrent FFTs on two distinct vectors of different
sizes. Half of processors are in charge to perform the computa-
tion of the first vector, while the other cores handle the second
vector. The computation is repeated several times and the role
of processing elements is changed after each iteration, in order
to obtain a non-uniform and non-static workload allocation.
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Figure 3: Results for Application Kernels.

Results of those experiments are shown in Figure 3. For each
benchmark, we compare execution time, energy consumption,
energy-delay product, and power, all normalized to the full-speed
case. We can observe that our policy outperforms the static pol-
icy whenever the workload is variable in time (as usually happens
in real complex applications). Conversely, when the workload is
static (as in DES), the dynamic policy provides results comparable
to the “optimal” static policy.
For the FFT application, since the best static allocation is the one
with all cores at full speed, no savings can be obtained. Conversely,
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our dynamic policy, following the workload variations, can achieve
appreciable benefits even in such a condition.
Notice also that, in some cases, a good speed setting policy can
provide, as a side effect, a small improvement in terms of execution
time. This happens because slowing down some processor reduces
the traffic on the shared medium, hence allowing faster accesses to
cores that execute at higher speeds.

4.3 Case Study
The application used in our case study decodes an MPEG video
stream. One core is in charge of decoding the frame headers, and
performs the entropic decompression of the data stream (Huffman
and RLE decoding). The other 2 cores perform the de-quantization
and the inverse-DCT (for I-frames), or they apply the motion com-
pensation (for P- and B-frames). The last processor collects de-
coded data and sends them to the output buffer. The workload is
not static, because different kinds of frames in a MPEG stream re-
quire different amounts of computation to be decoded.
Figure 4 shows how our policy outperforms the static policy in de-
coding a video stream where 20% of frames are I-frames. We re-
ported data for execution time, energy spent, energy-delay product,
and average power, all normalized with respect to the full-speed
case (as a quantitative measure, the full-speed execution requires
472 million cycles and 293 mJ).
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Figure 4: Comparison of Different Policies.

Since the workload behavior depends on the ratio between the vari-
ous frame types, we used streams with different features to test our
policy, varying the (Bframes + Pframes)/Iframes ratio. Figure 5
shows results of this exploration: we can observe how savings and
penalties are just marginally affected by the input characteristics
(time penalties do not exceed 8%, while the energy saving ranges
between 56% and 64% with respect to full speed execution).
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Figure 5: Dependency on the input features.

Last, we explored the dependency of our policy on TW (the size
of the sampling window). Figure 6 shows how execution time and
energy vary for window sizes between 2 and 64 KCycles: it is ev-
ident from the plot how the behavior of our policy is substantially
independent of the window size.

5. CONCLUSIONS
We presented a purely architectural solution for the reduction of dy-
namic energy in MPSoCs, based on the principle of the equalization
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Figure 6: Dependency on the size of the sampling window.

of the normalized workload of the cores. Balancing is driven by
the idleness due to synchronization, and provides relevant benefits
in terms of energy consumption, with marginal impact on perfor-
mance. The dynamic speed allocation policy does not require any
software support, since it can infer the time spent in synchroniza-
tion by examining the behavior of the processors on-line.
Results on a real life application (a parallel MPEG decoder) show
that our policy outperforms other static policies, and it does not
suffer from relevant performance penalties. We reduce energy by
more than 40% with respect to a static assignment, and about 60%
with respect to the full-speed system. Performance penalties re-
main below 8% with respect to the system with all cores running at
the maximum speed, thus leading to savings in energy-delay prod-
uct larger than 50% with respect to a full-speed execution.
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