skip to main content
10.1145/1166253.1166291acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
Article

Interactive environment-aware display bubbles

Published:15 October 2006Publication History

ABSTRACT

We present a novel display metaphor which extends traditional tabletop projections in collaborative environments by introducing freeform, environment-aware display representations and a matching set of interaction schemes. For that purpose, we map personalized widgets or ordinary computer applications that have been designed for a conventional, rectangular layout into space-efficient bubbles whose warping is performed with a potential-based physics approach. With a set of interaction operators based on laser pointer tracking, these freeform displays can be transformed and elastically deformed using focus and context visualization techniques. We also provide operations for intuitive instantiation of bubbles, cloning, cut & pasting, deletion and grouping in an interactive way, and we allow for user-drawn annotations and text entry using a projected keyboard. Additionally, an optional environment-aware adaptivity of the displays is achieved by imperceptible, realtime scanning of the projection geometry. Subsequently, collision-responses of the bubbles with non-optimal surface parts are computed in a rigid body simulation. The extraction of the projection surface properties runs concurrently with the main application of the system. Our approach is entirely based on off the-shelf, low-cost hardware including DLP-projectors and FireWire cameras.

Skip Supplemental Material Section

Supplemental Material

1166291.mp4

mp4

139.7 MB

References

  1. E. Arias, H. Eden, G. Fischer, A. Gorman, and E. Scharff. Transcending the individual human mind - creating shared understanding through collaborative design. ACM Trans. Comput.-Hum. Interact., 7(1):84--113, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Ashdown and P. Robinson. Experience with the Escritoire: A personal projected display. IEEE Multimedia, 12(1):34--42, January-March 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. D. Baraff and A. Witkin. Physically-based Modeling, Principles and Practice. In SIGGRAPH'97 Course Notes, Course 34, 1997.Google ScholarGoogle Scholar
  4. J. Barreto and K. Daniilidis. Wide area multiple camera calibration and estimation of radial distortion. In Proc. of OMNIVIS'04, 2004.Google ScholarGoogle Scholar
  5. T. Beier and S. Neely. Feature-based image metamorphosis. In Proc. of ACM SIGGRAPH'92, pages 35--42, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. S. Borkowski, O. Riff, and J. Crowley. Projecting rectified images in an augmented environment. In Proc. of PROCAMS'03, 2003.Google ScholarGoogle Scholar
  7. A. Butz, M. Schneider, and M. Spassova. SearchLight - A Lightweight Search Function for Pervasive Environments. In Proc. of PERVASIVE'04, pages 351--356, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  8. W. Buxton. Human Input to Computer Systems: Theories, Techniques and Technology (book manuscript). http://www.billbuxton.com/inputManuscript.html, 2002. Viewed: November 1, 2005.Google ScholarGoogle Scholar
  9. J. Callahan, D. Hopkins, M. Weiser, and B. Shneiderman. An empirical comparison of pie vs. linear menus. In Proc. of CHI'88, pages 95--100, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Y. Chen. Building a Scalable High-Resolution Display Wall. PhD thesis, Princeton University, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D. Cotting, M. Naef, M. Gross, and H. Fuchs. Embedding Imperceptible Patterns into Projected Images for Simultaneous Acquisition and Display. In Proc. of ISMAR'04, pages 100--109, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. D. Cotting, R. Ziegler, M. Gross, and H. Fuchs. Adaptive Instant Displays: Continuously Calibrated Projections Using Per-Pixel Light Control. In Proc. of Eurographics 2005, pages 705--714, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  13. J. D. Austin Henderson and S. Card. Rooms: the use of multiple virtual workspaces to reduce space contention in a window-based graphical user interface. ACM Trans. Graph., 5(3):211--243, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Davis and X. Chen. LumiPoint: Multi-User Laser-Based Interaction on Large Tiled Displays. In Displays 23:5, pages 205--211. Elsevier Science, 2002.Google ScholarGoogle Scholar
  15. P. Dietz and D. Leigh. DiamondTouch: a multi-user touch technology. In Proc. of UIST'01, pages 219--226, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Ehnes, K. Hirota, and M. Hirose. Projected Augmentation - Augmented Reality using Rotatable Video Projectors. In Proc. of ISMAR'04, pages 26--35, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Fjeld, F. Voorhorst, M. Bichsel, H. Krueger, and M. Rauterberg. Navigation methods for an augmented reality system. In Proc. of CHI'00, pages 8--9, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C. Forlines and C. Shen. DTLens: multi-user tabletop spatial data exploration. In Proc. of UIST'05, pages 119--122, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. G. W. Furnas. Generalized fisheye views. In Proc. of CHI'86, pages 16--23, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. D. Germans, H. Spoelder, T. Schaaf, and H. Bal. Realizing a Stereo Tiled Display Using Commodity Components. In Proc. of ASCI'03, 2003.Google ScholarGoogle Scholar
  21. D. Hopkins. The Design and Implementation of Pie Menus. Dr. Dobb's Journal, 16:16--26, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. T. Igarashi, T. Moscovich, and J. F. Hughes. As-Rigid-As-Possible Shape Manipulation. In Proc. of ACM SIGGRAPH'05, pages 1134--1141, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. N. Kadmon and E. Shlomi. A polyfocal projection for statistical surfaces. The Cartographic Journal, 15(1):36 --41, June 1978.Google ScholarGoogle ScholarCross RefCross Ref
  24. Y. Kakehi, M. Iida, T. Naemura, Y. Shirai, M. Matsushita, and T. Ohguro. Lumisight Table: An Interactive View-Dependent Tabletop Display. IEEE CG&A, 25(1):48--53, January/February 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Keahey. The Generalized Detail-In-Context Problem. In Proc. of INFOVIS'98, pages 44--51, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. T. A. Keahey and E. L. Robertson. Techniques for nonlinear magnification transformations. In Proc. of INFOVIS'96, pages 38--45, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. C. Kim, J. Park, J. Yi, and M. Turk. Structured light based depth edge detection for object shape recovery. In Proc. of PROCAMS'05, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Kolliopoulos. Visualizing trees with a hyperbolic projection in one dimension. J. Comput. Small Coll., 18(4):133--138, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. P.-O. Kristensson and S. Zhai. SHARK2: A Large Vocabulary Shorthand Writing System for Pen-based Computers. In Proc. of UIST'04, pages 43--52, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. G. Kurtenbach and W. Buxton. Issues in combining marking and direct manipulation techniques. In Proc. of UIST'91, pages 137--144, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based on hyperbolic geometry for visualizing large hierarchies. In Proc. of CHI'95, pages 401--408, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Y. K. Leung and M. D. Apperley. A review and taxonomy of distortion-oriented presentation techniques. ACMTrans. Comput.-Hum. Interact., 1(2):126--160, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. B. McCaul and A. Sutherland. Predictive Text Entry in Immersive Environments. In Proc. of IEEE VR'04, pages 241--242, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. T. Milliron, R. J. Jensen, R. Barzel, and A. Finkelstein. A framework for geometric warps and deformations. ACMTrans. Graph., 21(1):20--51, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. P. Ørbæk. A Multi-sided Tabletop Interface. Unpublished techreport, April 2004.Google ScholarGoogle Scholar
  36. A. Pavlovych and W. Stuerzlinger. Laser pointers as interaction devices for collaborative pervasive computing. In Advances in Pervasive Computing, pages 315--320, April 2004.Google ScholarGoogle Scholar
  37. C. Pinhanez. Using a Steerable Projector and a Camera to Transform Surfaces into Interactive Displays. In Proc. of CHI'01, pages 369--370, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.Flannery. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. A. Raij, G. Gill, A. Majumder, H. Towles, and H. Fuchs. PixelFlex2: A Comprehensive, Automatic, Casually-Aligned Multi-Projector Display. In Proc. of PROCAMS'03, 2003.Google ScholarGoogle Scholar
  40. R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and H. Fuchs. The Office of the Future: A Unified Approach to Image-Based Modeling and Spatially Immersive Displays. Proc. of ACM SIGGRAPH'98, pages 179--188, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. M. Rauterberg, T. Mauch, and R. Stebler. How to improve the quality of human performance with natural user interfaces as a case study for augmented reality. In Advances in Occupational Ergonomics and Safety I, pages 150--153, 1996.Google ScholarGoogle Scholar
  42. J. Rekimoto. SmartSkin: an infrastructure for freehand manipulation on interactive surfaces. In Proc. of CHI'02, pages 113--120, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. J. Rekimoto and N. Matsushita. Perceptual Surfaces: Towards a Human and Object Sensitive Interactive Display. In Proc. of PUI'97, 1997.Google ScholarGoogle Scholar
  44. J. Rekimoto and M. Saitoh. Augmented Surfaces: A Spatially Continuous Work Space for Hybrid Computing Environments. In Proc. of CHI'99, pages 378--385, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. Virtual Network Computing. IEEE Internet Computing, 2(1):33--38, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. W. Stuerzlinger, O. Chapuis, D. Phillips, and N. Roussel. User Interface Facades: Towards Fully Adaptable User Interfaces. In Proc. of UIST'06, to appear, October 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. M. Sugimoto, K. Hosoi, and H. Hashizume. Caretta: asystem for supporting face-to-face collaboration by integrating personal and shared spaces. In Proc. of CHI'04, pages 41--48, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. R. J. Surati. Scalable Self-Calibration Display Technology for Seamless Large-Scale Displays. PhD thesis, Massachusetts Institute of Technology, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. D. S. Tan, B. Meyers, and M. Czerwinski. WinCuts: manipulating arbitrary window regions for more effectiveuse of screen space. In Proc. of CHI'04, pages 1525--1528, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. C. Tappert. Cursive script recognition by elastic matching. IBM Journal of Research & Development, 26(6):756--771, 1982.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Y. Tokuda, S. Iwasaki, Y. Sato, Y. Nakanishi, and H. Koike. Ubiquitous display for dynamically changing environment. In Proc. of CHI'03, pages 976--977, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. F. Vernier, N. Lesh, and C. Shen. Visualization techniques for circular tabletop interfaces. In Proc. of Advanced Visual Interfaces'02, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. P. Vuylsteke and A. Oosterlinck. Range Image Acquisition with a Single Binary-Encoded Light Pattern. IEEETPAMI, 12(2):148--164, Feb 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. B. Watson, J. Kim, T. McEneany, T. Moher, C. Hindo, L. Gomez, and S. Fransen. StorySpace: technology supporting reflection, expression and discourse in classroom narrative. IEEE CG&A, pages 2--4, Jan-Feb 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. P. Wellner. Interacting with paper on the DigitalDesk. Communications of the ACM, 36(7):86--97, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. G. Wolberg and T. E. Boult. Separable image warping with spatial lookup tables. In Proc. of ACM SIGGRAPH'89, pages 369--378, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Interactive environment-aware display bubbles

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in
              • Published in

                cover image ACM Conferences
                UIST '06: Proceedings of the 19th annual ACM symposium on User interface software and technology
                October 2006
                354 pages
                ISBN:1595933131
                DOI:10.1145/1166253

                Copyright © 2006 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 15 October 2006

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • Article

                Acceptance Rates

                Overall Acceptance Rate842of3,967submissions,21%

                Upcoming Conference

                UIST '24

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader