
Efficient Control Flow Quantification

Christoph Bockisch∗ Sebastian Kanthak∗ Michael Haupt∗,† Matthew Arnold‡ Mira Mezini∗
∗Software Technology Group

Darmstadt University of Technology, Germany
†Software Architecture Research Group

Hasso Plattner Institute for Software Systems Engineering, Potsdam, Germany
‡IBM T. J. Watson Research Center

Yorktown Heights, NY, USA

{bockisch,mezini}@informatik.tu-darmstadt.de
kanthak@st.informatik.tu-darmstadt.de

michael.haupt@hpi.uni-potsdam.de, marnold@us.ibm.com

Abstract
Aspect-oriented programming (AOP) is increasingly gaining in
popularity. However, the focus of aspect-oriented language re-
search has been mostly on language design issues; efficient im-
plementation techniques have been less popular. As a result, the
performance of certain AOP constructs is still poor. This is in par-
ticular true for constructs that rely on dynamic properties of the
execution (e. g., the cflow construct).

In this paper, we present efficient implementation techniques for
cflow that exploit direct access to internal structures of the virtual
machine running an application, such as the call stack, as well as
the integration of these techniques into the just-in-time compiler
code generation process.

Our results show that AOP has the potential to make programs
that need to define control flow-dependent behavior not only more
modular but also more efficient. By making means for control flow-
dependent behavior part of the language, AOP opens the possibility
of applying sophisticated compiler optimizations that are out of
reach for application programmers.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—run-time environments

General Terms Languages, Measurement, Performance

Keywords Aspect-oriented programming, virtual machine sup-
port, control flow

1. Introduction
The aspect-oriented programming (AOP) paradigm [23, 14] intro-
duces a new kind of modules called aspects that allow for cap-
turing crosscutting concerns in a localized way and with explicit
interfaces to the rest of the system. Aspect-oriented programming
languages introduce the following notions [22].

Crosscutting behavior encapsulated in aspects is seen as func-
tionality that is to be executed whenever the application it cuts

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-348-4/06/0010. . . $5.00

across reaches certain points in its execution. These points in the
execution graph of an application are called join points (e. g.,
method calls, field accesses, etc.). They are quantified over by
means of so-called pointcuts, which are queries over the execution
of a program. Whenever a pointcut matches, an advice associated
with the matching pointcut is executed. Advice are method-like
constructs.

The technique used to implement such a model is called weav-
ing, denoting that an application’s and its crosscutting concerns’
control flows are interwoven. Several approaches to implement
weaving have been devised [12]. The most common approach to-
day is bytecode weaving, where advice invocations are inserted into
application bytecode at locations called join point shadows [27].
Join point shadows are code structures (expressions, statements or
blocks) that possibly yield join points during execution, e. g., the
shadow of a method call is a call instruction. Join point shadows
are determined by statically evaluating pointcuts.

Pointcuts that quantify over dynamic properties of join points
cannot definitely be mapped to code locations. For example, in
AspectJ1 [22, 5], pointcuts exist that select join points depending
on the current control flow. The control flow can be quantified
over by means of the cflow dynamic pointcut. The efficiency of
implementations supporting this pointcut is in the focus of this
paper.

Researchers and programmers have already identified several
useful usage scenarios for cflow pointcuts. It can be used to only
execute advice the first time some code section is entered, but not
when it is entered recursively, e. g., to implement authentication.
Another use case is to restrict advice execution so that it does not
(or does only) take effect if some sub-system of the application is
currently acting.

For example, the Law of Demeter (LoD) aspect [25] advises,
among others, all base application method executions. In the ad-
vice, it stores objects captured from the application into a hash map,
which causes their hashcode() method to be executed. Normally,
this would recursively trigger another advice execution. To avoid
an endless recursion, the LoD aspect does not advise all method
executions, but only all executions for which no advice from the
LoD aspect is currently executing on the call stack. Note that the
hashcode() method is called indirectly through Java’s collection
library. Thus, it would not be sufficient to skip advice execution if
the direct caller of a method is the LoD aspect. Instead, if a method

1 An aspect-oriented extension to Java.

125

1 ����� A {
2 B b = ��� B();
3 �	
� m() { b.x(); }
4 �	
� n() { b.y(); }
5 �	
� o() { b.x(); b.y(); }
6 }
7

8 ����� B {
9 �	
� x() { ... �

�.k(); ... }

10 �	
� y() { ... �

�.k(); ... }
11 �	
� k() { ... }
12 }

Listing 1. Sample classes for ���	�.

execution is in the control flow of some LoD method directly or
indirectly, advice must not be executed.

Laddad [24] gives an extensive discussion of the cflow point-
cut. He presents transaction management, policy enforcement and
controlling tracing as examples. cflow is also used in industrial
projects that are implemented in AspectJ. The Glassbox Corpora-
tion’s Glassbox Inspector [15] (a trouble-shooting tool for enter-
prise applications), employs cflow to, among others, restrict ad-
vice to the top-level call of methods, excluding recursive calls.

For illustration of the possible implementations of the cflow
pointcut, consider the classes in Lst. 1. All three methods in A
invoke methods on an instance of B, and both these methods in turn
invoke, at some time during their execution, B.k(). Next, assume
that the call to k() is to be advised by some aspect, but only if k()
is called in the course of an execution of A.m(). The corresponding
pointcut, matching all calls to B.k() that occur in the control flow
of the execution of A.m(), looks as follows:

����(�	
� B.k()) &&
���	�(������
	�(�	
� A.m()))

It cannot be determined statically whether a particular call to
k() is inside a certain control flow. Hence, the weaver generates
pieces of conditional logic called residues that are woven into
application code at join point shadows for calls to B.k(). A residue
queries meta data to ensure that the advice is only invoked when the
dynamic condition is satisfied.

Different AOP implementations have different ways of imple-
menting these residues (details will be given in Sec. 2). The ma-
jority of existing AOP systems implement them as calls to the par-
ticular system’s AOP infrastructure, and these calls are woven into
the application at join point shadows. This has the effect that the
residues are executed by the virtual machine as part of the run-
ning application, which induces performance penalties due to the
overhead associated with maintaining, updating, and querying data
structures connected with residues [13].

There are several ways to reduce the overhead introduced by
these residues. The abc compiler [28, 8, 1] of the AspectJ language
employs static intra- and interprocedural analyses to reduce the
number of required residues. The abc compiler also optimizes code
that ensures thread-safety for cflow pointcuts. The code produced
by abc is considerably faster [8] than that of ajc, the standard
AspectJ compiler. The abc compiler performs an interprocedural
analysis only at its highest optimization level as it is very time- and
memory-intensive. It depends on a whole-program analysis that
needs to know all possible entry points and the class files for all
classes reachable from there. This places Java applications under
a closed-world assumption that contradicts Java’s dynamic class
loading capabilities.

The closed world assumption is particularly hard to bear in the
area of middleware containers, for which AOP has been recognized

as a great tool to reduce the complexity of transparent service
injection; such containers heavily rely on dynamic deployment of
business applications.

Our work on improving the efficiency of aspect-oriented pro-
grams has followed another path: integrating support for aspect-
oriented mechanisms directly at the execution layer, i. e., in the vir-
tual machine. The underlying rationale is as follows:

• The VM maintains some dynamic model of the execution as
it executes the code, over which we can potentially directly
quantify.

• When required information is not directly accessible and we
need to construct and maintain it, the supporting infrastructure
can be implemented more efficiently within the VM.

For the validation of our hypothesis, we have been working on
Steamloom [17, 9], a Java virtual machine with dedicated support
for AOP mechanisms, which is based on IBM’s Jikes Research
Virtual Machine (RVM) [3, 2, 21].

With Steamloom, we have already shown that supporting dy-
namic aspect weaving within the virtual machine is beneficial [17].
However, our previous work was limited with regard to its depth of
integrating aspect-oriented concepts into the virtual machine. This
is especially obvious regarding the treatment of residues for quan-
tifying over dynamic properties of join points. So far, Steamloom’s
treatment of residues is by weaving them as bytecodes into appli-
cation bytecodes; hence, it does not significantly differ from other
aspect-oriented implementations, except for the fact that the VM
weaves directly, rather than relying on a third-party bytecode ma-
nipulation tool.

This paper goes a significant step forward in deeper integration
of support for aspect-oriented mechanisms within the virtual ma-
chine. Specifically, this paper focuses on the efficient implemen-
tation of quantification over control flows by means of the cflow
pointcut.

The contributions of the paper are as follows:

1. We show how existing implementation strategies for cflow can
be made more efficient by exploiting direct access to internal
structures of the VM, such as the call stack.

Specifically, we consider two existing implementation strate-
gies for cflow: (a) the counter-based approach used by the
AspectJ compilers [22, 5, 28, 1], and (b) the stack walking
approach used by some other aspect-oriented languages and
frameworks, e. g., JAsCo [32, 19] and JBoss AOP [20].

2. We present a new approach to implement cflow, which inte-
grates support for it directly into the just-in-time (JIT) compil-
ers of the Jikes RVM that dynamically translate Java bytecodes
into efficient native machine code. This way, we offer the virtual
machine a better opportunity for optimizations.

3. Finally, we would like to draw the attention to another more
conceptual contribution of the paper. The efficiency improve-
ments that result from the integration of support for cflow into
the JIT compilers emphasize an advantage of aspect-oriented
quantification mechanisms that has been overlooked so far.

Hitherto, increased modularity has been the main argument for
AOP. While this is certainly the key benefit of AOP, this pa-
per shows that AOP also has the potential to make programs
that need to define control flow-dependent behavior more effi-
cient. The idea is that by making means for such control flow-
dependent behavior part of the language, AOP opens the possi-
bility of applying sophisticated compiler optimizations that are
out of reach for application programmers. Positive effects of
AOP adoption on performance have previously also been ob-
served in the setting of parallel applications [16].

126

The structure of this paper is as follows. In Sec. 2, we will first
abstractly outline common implementation strategies for cflow.
For each strategy, we will briefly present current AOP implementa-
tions adopting it, and show how it has been realized in Steamloom.
Sec. 3 covers our main contribution, a novel implementation strat-
egy for cflow. The performance of all approaches presented in this
paper is evaluated in Sec. 4. This section is also where the differ-
ent approaches are discussed. Sec. 5 presents a discussion of future
work and Sec. 6 concludes the paper.

2. Cflow Implementations
We start this discussion by a short introduction to the terminology
used in the remainder of the paper. The following subsections each
present a particular approach to addressing control flow matching.

Each of the approaches is described in generalized form, fol-
lowed by a brief description of concrete AOP implementations em-
ploying it. We do not claim to provide a complete overview of ex-
isting AOP implementations; the systems described are typical rep-
resentatives. The approaches will also not be described in depth;
for more detailed descriptions, we refer to particular literature, or
to a survey of AOP languages and their implementations [11]. For
each of the particular approaches, we also give a description of its
implementation in Steamloom.

2.1 Cflow Terminology
When cflow is used, the idiom cflow(pc1) && pc2 is frequently
met, denoting that the pointcut shall match join points pertaining
to pc2 only if they occur in the control flow of some join point
matched by pc1. In the following, join points matched by pc1
will be called control flow constituents. A control flow constituent’s
shadows mark entries and exits of control flows. Shadows pertain-
ing to join points matched by pc2 will be called dependent shad-
ows2.

In general, an implementation of cflow needs to address the
following two issues:

1. At constituent shadows, action needs to be taken to monitor the
state of the control flow, i. e., whether it is active or not.

2. At dependent shadows, it must be checked whether the control
flow is currently active. This is to determine whether the advice
attached to the join point shadow needs to be invoked.

It is usually possible in AOP implementations to access the con-
texts of constituent join points, and to use such context information
in advice attached to dependent join points, e. g., the object that was
active when the control flow was constituted. We do not provide an
implementation of this feature, but discuss a possible implementa-
tion in Sec. 5.1. Although some of the approaches we compare our
implementation with provide support for such context passing, they
all provide a more efficient infrastructure for cflow when no use is
made of context passing.

2.2 Counters
When this approach is adopted, residues that update counters are
attached to control flow entries and exits. When a control flow is
entered, the counter is incremented; it is decremented when the
control flow is left. At dependent shadows, residues check whether
the counter is greater than zero. If so, the control flow is active and
appendant advice can be executed.

Control flow counters exist once per control flow. Furthermore,
they must exist once per thread for this approach to work; other-

2 In [8], a terminology using the corresponding terms update and query
shadows has been introduced.

wise, different threads entering and leaving the same control flow
could easily corrupt control flow counter state.

Using counters imposes a constant overhead at control flow
entries and exits as well as at dependent shadows.

2.2.1 Adoption
AOP implementations employing the counter approach described
above are AspectJ [22, 5] and AspectWerkz [10, 7]. Both avail-
able AspectJ compilers (ajc and abc) compile AspectJ pro-
grams to Java bytecode, generating infrastructural code that uses
ThreadLocal instances to encapsulate cflow counters. In princi-
ple, AspectWerkz also follows the counters approach, but it always
uses a stack to monitor control flows. The stack is used by default to
allow for accessing state from the constituent join points. Control
flow checks are implemented by querying the stack’s size.

The abc compiler [28, 8, 1] largely adopts the counter-based
approach similar to ajc. However, it adds several optimizations.
Thread-local counters are optimized for the first application thread,
so that accessing the counter via a ThreadLocal instance is
avoided for this thread. This facilitates a very quick retrieval of
a counter object for single-threaded applications. Multi-threaded
applications still have to use a ThreadLocal instance for counter
management. Code generated by ajc always relies on ThreadLocal
instances.

Moreover, the abc compiler provides intra- and interprocedural
optimizations to improve the performance of code conjoined with
cflow pointcuts. Both optimization types are achieved using static
analysis [31]. The abc compiler performs the time- and memory-
intensive interprocedural analysis only at its highest optimization
level.

Of the intraprocedural optimizations abc applies, only one is
of further interest with regard to this paper. Others either deal with
binding parameters from constituent pointcuts, which is out of the
focus of this paper, or have been described above. In fact, the
counter approach used in recent versions of ajc was first intro-
duced in abc.

The remaining intraprocedural optimization employed in abc
is the reuse of counters in methods [8]. From the observation that
retrieving a counter from thread-local storage can be expensive,
the implementors of abc have derived the following optimization.
Whenever a control flow counter is required several times in a
method (e. g., in a loop or at constituent shadows for control flow
entry and exit) the counter is shared in a local variable and has to
be retrieved only once. Since local variables are implicitly thread-
local, this optimization is obviously correct.

As a result of interprocedural analysis, abc can completely
avoid weaving cflow infrastructure at some join point shadows: in-
terprocedural analysis [8] exploits a call graph of the entire applica-
tion, which is why all classes reachable from the application’s entry
points must be known at compile-time. In particular, if the virtual
machine dynamically loads classes that are not known at compile-
time, new execution paths may be possible due to late binding of
method calls in Java. If this happens, interprocedural analysis be-
comes unsound. In the following, we will give a brief overview of
how abc’s interprocedural analysis works.

For each pointcut expression containing a cflow designator,
analysis yields three sets of join point shadows that are then further
processed by the weaver. For the example cflow(pc1) && pc2,
the three computed sets are as follows (in the following, “residues”
and “advice invocations” mean those pertaining to the sample
pointcut only). The first set contains those shadows of pc2 that
may occur in a control flow constituted by a shadow of pc1. At the
shadows contained in this set, advice invocations must be guarded
by residues. At those shadows of pc2 that are not contained in the
first set, neither residues nor advice invocations need to be woven

127

because they are guaranteed to never be executed inside a control
flow pertaining to pc1.

The second set contains those shadows of pc2 that are guar-
anteed to occur only in a control flow constituted by a shadow of
pc1. At these shadows, the advice invocation can be woven without
being guarded by a residue. At those shadows of pc2 that are not
contained in the second set, residues are required.

In the third set, those shadows of pc1 are contained that may
influence the evaluation of residues at shadows of pc2. At these
shadows, residues for counter or stack maintenance must be woven.

2.2.2 Realization in Steamloom
Steamloom’s approach differs from other counter-based implemen-
tations in how residues are implemented, and how thread-local
counters are maintained. Residues woven at both constituent and
dependent shadows are calls to methods that are part of the virtual
machine rather than other application methods. Thus, Steamloom’s
cflow residues are not subject to execution by the VM, but they
are executed as a part of the VM’s inherent functionality.

Control flow counters are also not maintained at application
level. They are stored directly in arrays that are themselves stored
in the VM’s internal representation of Java threads. Storing con-
trol flow counters in an array allows for very fast access to them.
The array indices for a given cflow’s counters are fixed at the time
the corresponding aspect is woven into the application code and do
not change while the aspect is active. The arrays are resized dy-
namically and the handles are recycled so that the maximum array
size is bounded by the maximum number of control flow point-
cuts that are deployed at a given moment in time. Since a particular
thread’s array is only accessed by that thread, no synchronization
is needed, enabling a lock-free implementation of counter updating
and checking residues.

To reduce the cost of retrieving a counter even more, we have
implemented the counter sharing proposed by abc [8] in Steam-
loom as well.

2.3 Stack Walking
The stack walking approach does not require any residues at control
flow entries and exits. Instead, it gets hold of the current call stack
at dependent shadows and iterates over the methods on the stack to
check whether the control flow in question is currently active.

This approach does not need to regard thread locality, because
the call stack that a residue accesses is always the one of the
currently executing thread.

There is no cost at control flow entries and exits connected with
stack walking. However, the cost imposed on dependent shadows
directly depends on the depth of the call stack. In the most inauspi-
cious case, the entire stack must be parsed only to determine that a
particular control flow is currently inactive.

2.3.1 Adoption
Depending on the language used, there are different approaches to
access the call stack. In Java, the call stack can be accessed by
creating an instance of Throwable, which can be queried for the
stack frames via its getStackTrace() method. JAsCo [32, 19],
an extension to Java, and JBoss AOP [20] follow this approach.

In Smalltalk, the call stack is immediately accessible due to the
reflective nature of the language. AspectS [18, 6], implemented in
Smalltalk, accesses the call stack by means of the thisContext
pseudo variable.

2.3.2 Realization in Steamloom
The residues employed by Steamloom for the stack walking ap-
proach are, as seen above with the counter approach, direct calls

into the virtual machine. A so-called “stack frame matcher” is cre-
ated for a cflow designator when the aspect containing a pointcut
with that designator is woven into the application. From the point-
cut designator, the matcher builds, internally, a stack pattern rep-
resenting the stack layout (in terms of methods on the call stack)
that must be met in order for the constituent pointcut to match. In
case of nested control flows3, the pattern contains the methods con-
stituting the nested control flow in the given order. Each entry of
the pattern can, if the corresponding constituent pointcut contains
wildcards, match multiple methods.

The matching process accesses VM-internal stack frames to
extract the signature of the method executed in each frame. The
method signatures retrieved from the stack frames are subsequently
matched against the elements of the stack pattern to check. As soon
as the pattern is safely identified, the process stops, and the advice
can be invoked.

As this algorithm operates directly on the call stack maintained
by the virtual machine, no additional memory has to be allocated
while traversing the stack. This reduces the overhead compared to
the standard Java solution, which has to construct its own represen-
tation of the call stack first by creating an instance of Throwable.

3. Control Flow Guards
This section presents a novel approach to implementing control
flow pointcuts in a virtual machine. Developing our solution inside
a VM has the advantage that dynamic optimization technology used
in today’s just-in-time (JIT) compilers can be adapted and applied
to dynamic aspect constructs.

Our technique for optimizing cflow is based on the concept of
guards that protect the execution of code via lightweight tests. Our
guarding approach is similar to that of thin guards [4], which uses
lightweight guards to reduce the performance penalty of dynamic
class loading in Java.

This section begins with background information on thin guards.
Sec. 3.2 presents a high-level overview of our approach, and
Sec. 3.3 describes our implementation in the Jikes RVM.

3.1 Background: Thin Guards
Thin guards [4] are a virtual machine optimization techique to
enable efficient speculative optimizations, i. e., optimizations that
rely on certain conditions being true. The primary application of
thin guards was to reduce the performance penalty of dynamic
class loading in Java. The VM would speculate that dynamic class
loading will not occur, and optimize accordingly. All speculative
optimizations are guarded by a lightweight check to ensure that
correct execution will occur if the assumptions change in the future.

The application of thin guards involved three primary steps.

1. Identify the optimistic assumptions. Optimistic assumptions are
facts about the currently executing program that, when true,
enable improved optimization.

2. Map the optimistic assumptions’ condition bits4, which are used
to record whether the assumption is currently true.

3. Insert guards, lightweight tests that check a condition bit, into
the compiled code. Any region of code with speculative opti-
mization applied is prepended with a guard; if the guard is false,
an unoptimized (but correct) region of code is executed.

3 E. g., method m() only constitutes a control flow if it is executed in the
control flow of o().
4 Although referred to throughout the paper as a condition bit, the notion
of a bit is abstract. The implementation of the condition could be any
representation that is convenient and efficient.

128

1 ����� Fib {
2 ������ �	
 test() {
3 ��
��	 fib (5);
4 }
5 ������ �	
 fib(�	
 n) {
6 �
 (n <= 1) ��
��	 1;
7 ��
��	 fib(n-1)+ fib(n-2);
8 }
9 }

10 �����
 Aspect {
11 ��
���() : ����(�	
 Fib.fib(�	
)) &&
12 �
���(�����
��	(�	
 Fib.fib(�	
))) {
13 // ...
14 }
15 }

Listing 2. Pointcut matching recursive calls to fib().

In the context of dynamic class loading, the optimistic assump-
tion is, “no class loading has occured since the given method has
been optimized.” If class loading does occur, the condition bit is set
to false to ensure that all speculative optimizations are disabled.

The performance advantage of thin guards relies on two key
observations. On the one hand, the overhead of a guard (checking
a bit) is cheap, and on the other, optimization can be performed
within a compiled method to remove redundant guards, thus creat-
ing large regions of highly optimized, guard-free code.

3.2 Introduction to Control Flow Guards
Our approach to optimizing conditional control flow is similar to
that of thin guards. Advice depending on cflow pointcuts must
execute only when certain conditions are met, i. e., when executed
in the calling context of a control flow constituent.

Condition bits are used to monitor whether a thread is currently
executing in the context of a cflow constituent. It is optimistically
assumed that cflow-dependent advice do not need to be executed,
and such advice are protected by guards to verify that assumption.
When the thread is executing in a context such that the advice need
to be executed, the guard will ensure they are executed.

In our approach, the VM maintains a guard bit for every relevant
control flow, and this bit is updated on entry/exit to that control
flow. Just like one distinct counter is used per control flow selected
by a pointcut in the counter based approaches (see Sec. 2.2), we use
one distinct bit per control flow in the guards approach. As a result,
there are as many control flow guard bits per thread as there are
different pointcuts using the cflow construct in the application. At
shadows dependent on control flow i, advice execution is guarded
by testing whether bit i is set.

When the control flow is left, the bit cannot simply be reset:
this would yield incorrect behavior for recursive control flows. To
cope with recursive control flows, each method activation record
stores its own copy of the word containing the control flow guard
bits: before setting the cflow bit at constituent shadows, the current
value is stored into local storage of the current method activation.
When leaving the control flow, the bit’s value is restored from local
storage. This ensures correct behavior in the presence of recursive
control flows.

For illustration, consider the code in Lst. 2, which recursively
computes the nth Fibonacci number, and includes a cflow aspect
that advises recursive calls to the fib() method, save the initial
call from inside the test() method. Lst. 3 shows the code for the
two methods test() and fib() where the control flow-dependent
pointcut has been mapped to a bit that is stored as the 0th bit in
a guard word. The execution of the fib() method constitutes the
control flow in question. Hence, at the beginning of this method,

1 �	
 test() {
2 �	
 result;
3 �
((thread.cflowState & 1) != 0)
4 advice ();
5 result = fib (5);
6 ��
��	 result;
7 }
8

9 �	
 fib(�	
 n) {
10 �	
 oldState = thread.cflowState;
11 thread.cflowState |= 1;
12 �	
 result;
13 �
 (n <= 1) {
14 result = 1;
15 } ���� {
16 result = 0;
17 �
 ((thread.cflowState & 1) != 0)
18 advice ();
19 result += fib(n-1);
20 �
 ((thread.cflowState & 1) != 0)
21 advice ();
22 result += fib(n-2);
23 }
24 thread.cflowState = oldState;
25 ��
��	 result;
26 }

Listing 3. Compiled pseudo-code Fibonacci.

the cflow state is saved in a local variable and the pointcut’s
cflow bit is set. At dependent shadows both in test() and fib(),
the same bit is tested to see whether advice should be executed.
Finally, before returning from the method, the value saved in the
local variable is restored into the thread’s cflow state. As a result,
only the outermost execution of fib() resets the cflow bit and
all recursive calls are correctly advised. When test() first invokes
fib(), the cflow bit has not yet been set, hence this call does not
lead to an execution of the advice.

Please note that the code shown is only pseudo-code: cflow
guard bits have no representation at bytecode level. Rather, our
implementation is integrated directly into the compilers of the
virtual machine. This allows for additional optimizations, as we
will show in Sec. 3.3.3.

The mapping of control flow-dependent pointcuts to bit posi-
tions is done as soon as the pointcut is deployed. Thus, when-
ever Java bytecode is translated into machine code, the bit position
needed at a particular join point shadow is constant and the required
bit masks can be computed at compile-time.

3.3 Implementation
We have implemented the approach in Steamloom [17, 9], an ex-
tension of the Jikes RVM that contains VM support for efficient
aspect execution.

The Jikes RVM has an adaptive optimization system that con-
tinuously monitors execution characteristics of the running appli-
cation. Initially, code is compiled by the baseline compiler. Since
Jikes does not contain a bytecode interpreter, it is important that
the baseline compiler is executed quickly to avoid delays when a
method is executed for the first time. To ensure efficiency, the base-
line compiler does not perform any optimizations, and the native
code it emits very closely emulates the stack-machine model used
by Java bytecode.

If certain methods are observed to be executed frequently, based
on profile data, they will be recompiled by the optimizing compiler.
The optimizing compiler applies state-of-the-art optimization tech-
niques to produce efficient code, including profile-directed inlining.

129

Jikes RVM uses a mixture of preemptive and cooperative multi-
threading. A small number of operating system-level threads can
execute a large number of Java threads. Jikes RVM’s compilers
generate machine code containing yield points, which transfer con-
trol to another Java thread if the current thread’s time slot has
elapsed.

Every operating system-level thread is represented by an in-
stance of the VM_Processor class5, which holds a reference to the
object representing the thread that is currently executed on “this”
processor. A reference to the current processor object is always held
in a special register, the processor register.

The remainder of this section describes our storage of the cflow
condition bits, as well as our changes to Jikes RVM’s baseline and
optimizing compilers.

3.3.1 Condition Bits
One word of storage is allocated per thread to accommodate cflow
guard bits. This allows for monitoring 32 different control flow
pointcuts, which should be enough for most applications. The sys-
tem can fall back to a more conventional counter-based strategy if
more than 32 different control flow pointcuts are used6.

To store cflow state information thread-locally, the virtual ma-
chine’s multi-threading design is exploited. One word is added to
every thread object, and this word is used to store the thread’s
cflow state. To improve the performance of accessing this field, it
is added to the processor object as well. Upon every thread switch,
the value in the processor object is synchronized with the value in
the thread object.

Since the address of the processor object is always held in a
register and the position of the cflow state field in the processor
object is a constant offset known at compile-time, the cflow state
field can be accessed with as little overhead as a single memory
load or write operation.

3.3.2 Guards in the Baseline Compiler
For the baseline compiler, the operations described in 3.2 are im-
plemented in a straightforward way. For accessing the cflow state
word, a memory load or write operation is used. To test or modify a
single bit, standard bit operations (like bitwise and or or) are used.

At constituent shadows, an additional word is used in the
method’s stack frame. Before setting the cflow bit, the old value
is copied into this guard word. When the method is left, the guard
word is copied back into the processor object’s field to restore the
cflow state.

Machine code (for the x86 architecture) generated by the base-
line compiler for all control flow state related operations is shown
in Lst. 4. The esi register holds a reference to the processor ob-
ject, which contains the cflow state field at the offset given by
field_offset. A reference to the current method’s stack frame
is stored in the esp register by the baseline compiler. Jikes’ stack
frame layout for baseline-compiled methods can be seen in Fig. 1.
The old control flow state is stored in a special slot of the stack
frame, which is located at offset stack_offset.

Note that the code is fairly inefficient, particularly the part that
tests whether control flow 0 is active. First, the index of the control
flow to test (0) is pushed on the stack and then popped into a register
to produce a bit mask that can be AND-ed with the processor field.

5 Operating system-level threads are internally called virtual processors in
Jikes.
6 Guards can be used for the 32 most-used control flows, and the fallback
strategy for additional pointcuts. Furthermore, the number of bits used as
control flow guards could easily be increased if applications using a large
number of control flow pointcuts become common; of course, at the cost of
additional space per thread.

previous−frame pointer

local variables & stack

saved registers

compiled−method identifier

old cflow state

next method frame

current frame
pointer

next−instruction pointer

stack_offset

Figure 1. Stack frame layout for baseline-compiled methods.

1 ;; save cflow state in stack frame
2 ��� ��� [���]<field_offset >
3 ��� [��]<stack_offset > ���

4 ;; enter control flow 0
5
��
 0
6
�
 ���

7 ��� ��� 1
8 �
� ��� ���

9 �� [���]<field_offset > ���

10 ;; test whether control flow 0 is active
11
��
 0
12
�
 ���

13 ��� ��� 1
14 �
� ��� ���

15 ��� ��� <field_offset >[���]
16 ��� ��� ���

17
��
 ���

18 ;; restore cflow state from stack frame
19 ��� ��� [��]<stack_offset >
20 ��� [���]<stack_offset > ���

Listing 4. Machine code generated by the baseline compiler.

As the control flow index is already known at compile-time, these
instructions could be replaced by a single AND instruction. The code
is generated like this because of the way the weaver passes the
control flow index to the compiler (by pushing it on the Java stack)
and the stack-machine based model used by the baseline compiler.
We did not bother to optimize this further, as the baseline compiler
already produces fairly inefficient code.

3.3.3 Guards in the Optimizing Compiler
The implementation of the approach with the optimizing compiler
is different. Internally, Jikes’ optimizing compiler proceeds in sev-
eral phases that operate on decreasing levels of abstraction. In the
first phase, bytecode is translated into a high-level intermediate rep-
resentation; the last phase produces optimized machine code for the
target architecture. Support for cflow guards is implemented us-
ing the high-level intermediate representation generated in the first
phase.

At this stage, an unlimited number of virtual registers is avail-
able. In later phases, these registers are mapped to the (limited) set
of physical registers provided by the target architecture. If the num-
ber of physical registers is not sufficient to hold all virtual registers

130

used in the previous phase, they will automatically be stored to and
loaded from the method’s stack frame. During method calls, regis-
ters are stored in the stack frame as well, so that they can be used
in the called method’s native code.

We have modified the optimizing compiler to load control flow
state information into a virtual register, called the cflow register,
at the beginning of a method. When a control flow is entered at a
constituent shadow, three steps are performed: (a) the current value
of the cflow state is stored in a separate virtual register called
backup register, (b) the control flow state in the cflow register
is modified, and (c) the processor object field is updated with the
new value of the cflow register. On leaving the constituent join
point, the virtual register and the processor object field are restored
from the backup register. When control flow state has to be tested
at dependent shadows, it can be accessed directly from the virtual
register it has been stored into at method entry.

If the compiler decides to inline a method into another method,
the inlined method’s high-level intermediate representation is gen-
erated independently and then inserted into the outer method. This
implies that it uses separate cflow and backup registers for storing
control flow state. This is indeed necessary for correct behavior,
e. g., if the inlined method constitutes the control flow. In this case,
the cflow and backup registers of the outer and inlined methods
hold different values.

At first sight, this compilation strategy does not seem to differ
significantly from the one described for the baseline compiler. It
might even look less efficient, because control flow state is read
at the beginning of every method, although it is probably required
only in a small fraction of the methods executed. However, since
the approach operates on the high-level representation, the optimiz-
ing compiler will apply all its standard optimization techniques in
later phases. Some of the applying optimizations are listed below:

• If the virtual register holding control flow state is never read,
the compiler will detect this and eliminate the memory load
operation that initialized the register. Thus, methods that do not
access control flow state do not exhibit any overhead.

• If control flow state information is frequently required (e. g.,
when a dependent shadow appears in a tight loop), it has to
be loaded only once from main memory and can be kept in
a physical register. Basically, by using a virtual register for
storing control flow state, the decision on whether to keep the
value in a physical register or in the stack frame is left to the
optimizing compiler’s advanced algorithms.

• The same applies to the old control flow state value, which is
saved at constituent shadows. Again, the compiler can decide
whether to keep it in a physical register or to store it in the
method’s stack frame, based on how many registers are needed
by the method.

The intermediate representation generated by the optimizing
compiler is shown in Lst. 5. Here, PR denotes the processor register.
The old cflow state is loaded from the processor object and stored
into the backup register named t2psi. When entering the control
flow, bit 0 is set by an OR operation and the new value is stored
in register t28si, as well as in the processor object. At dependent
shadows, the control flow state is accessed directly from a virtual
register. Note how the bit mask is included as a constant and does
not have to be computed via a shift instruction anymore. Finally,
when the control flow is left, the processor object is updated from
the value stored in the backup register.

In addition to the optimizations performed by the compiler, our
implementation employs two custom optimizations:

• If a method is inlined, the virtual register holding the control
flow state is not initialized by loading it from the processor

1 ;; save cflow state in virtual register
2 �������� t2psi(I) = PR, <field_offset >
3 ;; enter control flow 0
4 �����	 t28si(I) = t2psi(I), 1
5 ����
��	� t28si(I), PR , <field_offset >
6 ;; test whether control flow 0 is active
7 ������� t7si(I) = t28si(I), 1
8 ������
�� t7si(I), 0, ==, SKIP_ADVICE
9 ;; restore cflow state

10 ����
��	� t2psi(I), PR , <field_offset >

Listing 5. Intermediate Representation generated by the optimiz-
ing compiler.

object (which would result in a memory load). Instead, the
value is copied from the outer method’s virtual register. In
addition to saving a memory load operation, this optimization
allows the compiler to eliminate some virtual registers if one
of the methods does not modify control flow state. In this case,
subsequent phases of the compiler can infer that both virtual
registers hold the same value and thus map them to the same
physical register.

• The test checking cflow state at dependent shadows is removed
if it is guaranteed to always succeed. This is determined by
checking whether the control flow is entered unconditionally
at the beginning of the method containing the test. If the code is
generated to be inlined into another method, the outer method
is checked for an unconditional control flow entry, too—as well
as its outer method if several levels of inlining are performed.

For the Fibonacci example from Lst. 3, this optimization would
remove the guards for advice executions inside the fib()
method, since they will always succeed.

This optimization can be seen as a somewhat weaker form of
abc’s interprocedural analysis. It does not perform a whole-
program analysis, which is not feasible in a virtual machine
due to time and memory requirements. Instead, it is restricted
to the set of methods inlined into the method currently being
compiled. This set will always be reasonably small, as the
compiler avoids creating large method bodies.

Both optimizations are particularly effective in the presence of
inlining. This complements nicely with the fact that Jikes performs
profile-directed inlining: inlining is focused on the most frequently
used methods (and trivial methods, like setters and getters). Thus,
the above optimizations apply to “hot” parts of the application,
where they matter most. Less frequently executed methods will be
compiled only by the baseline compiler, which quickly generates
less efficient code.

4. Evaluation
This section evaluates the cflow implementations presented in
Secs. 2 and 3. Three kinds of measurements were performed:

• A micro-measurement benchmark measures and compares the
overhead of two parts of the cflow implementations: (a) the
overhead for constituting a control flow, and (b) the overhead
for checking whether a dependent join point actually occurs
within a control flow.

• A modified version of the SPECjvm98 benchmarks measures
and compares the impact of the cflow infrastructures on differ-
ent approaches in real programs.

• Benchmarks collected by the abc group to measure the perfor-
mance of aspect-oriented programs.

131

Results of these benchmarks will be presented in Secs. 4.2, 4.3,
and 4.4, after a short introduction to the overall setting for the
evaluation in Sec. 4.1.

4.1 Evaluation Setting
When a VM begins executing an application, there is a number
of sources of overhead, such as class loading, verification, and
dynamic compilation. Once these activities have subsided, the VM
is often referred to be executing in steady state.

To ensure that different start-up behaviors of the presented envi-
ronments do not influence the measurements, the presented results
are steady-state results. For each benchmark, 30 iterations were ex-
ecuted and the median of the last 10 runs’ results constituted the
benchmark’s performance. In all cases, the last 10 runs were clearly
executed at steady state.

All measurements were made on a Dual Xeon workstation
(2x3 GHz) with 2 GB RAM running Linux 2.4.23.

HotSpot 1.5.0 (Sun’s standard JVM) was used to run the bench-
marks compiled with ajc 1.5.0 and abc 1.1.0, as well as to exe-
cute the benchmarks in the JAsCo 0.8.7 environment. For JAsCo,
the recommended HotSwap 2 implementation was used, with
the inlinecompiler switch enabled for improved performance.
For AspectWerkz 2.0, the benchmarks were executed on JRockit
1.4.2 08; Steamloom is an extension to Jikes RVM 2.3.1.

The programs compiled with ajc or abc compilers were not run
on the Jikes RVM, which would have given a direct comparison to
our implementations in Steamloom. This is because both AspectJ
compilers produce code which exploits special optimizations of
production Java virtual machines; such code is bound to execute
untypically slow on other VMs like Jikes RVM. AspectWerkz and
JAsCo even rely on features which are not provided by Jikes RVM.

Nevertheless, to produce comparable results, our measurements
were conducted relative to reference performances: as such, the
performances of running the benchmarks without deployed aspects
on a Java virtual machine without support for AOP were consid-
ered. For ajc, abc, and JAsCo, the reference system was HotSpot,
for AspectWerkz it was JRockit, and for Steamloom it was the Jikes
RVM, each in the previously mentioned versions.

Benchmark results will be presented as overheads of the bench-
marks with deployed aspects as compared to the performances of
the corresponding reference JVMs. Additionally, the absolute per-
formance numbers for each benchmark and each approach are pro-
vided. However, when comparing the absolute numbers, one should
keep in mind that underlying virtual machines exhibit significant
differences in their respective performance characteristics.

4.2 Simple Micro-Measurements
The cflow infrastructure consists of two parts: on the one hand,
bookkeeping which control flows are currently active and, on the
other, checking whether a join point occurs in a specific control
flow. The performances of these two parts are measured indepen-
dently of each other. As we will explain, the benchmark was con-
structed such that only the cflow infrastructure is executed, but no
advice.

4.2.1 Benchmark Setup
The micro-benchmarks, a small program presented in AspectJ syn-
tax in Lst. 6 was used. For the other environments, the example was
implemented in their respective syntax, or by using appropriate API
calls. The example makes use of method execution pointcut desig-
nators because they are supported by all AOP implementations in
focus. The actual implementation of the benchmark harness is not
shown in the listing and would have to be inserted at line 16.

For a single run of the benchmark, the total time used to
perform 100,000 iterations of each of the constituent() and
dependent() operations was measured:

• To measure the overhead of the control flow constitution in-
frastructure the method constituent() (line 9 of Lst. 6) was
called. This method constitutes the control flow and immedi-
ately returns. Hence, by executing it, only the bookkeeping in-
frastructure is executed.

• To measure the overhead of the infrastructure for checking
whether a join point occurs in a specific control flow, the
method dependent() (line 5) was called. A pointcut (lines
24 to 25) conditionally binds an advice to the execution of this
method; the pointcut only matches when dependent() is ex-
ecuted in the control flow of constituent(). This is not the
case in our benchmark harness, which is implemented com-
pletely in the method main(); hence, the advice will never be
executed during our measurement.

Under certain circumstances, abc can determine that, e. g., a
certain control flow will always or never be active when a given
join point shadow is executed; in such cases, the infrastructure
for constituting or checking a control flow can be omitted. The
goal of the micro-benchmark is to measure the impact of this
checking mechansim, thus the example program was written such
as to prevent the optimizations mentioned above; their effect on
efficiency will be measured by the macro-benchmarks.

If it was not possible to call dependent() from within the con-
trol flow of constituent(), the abc compiler would realize that
the pointcut has no join points and would not weave any infrastruc-
ture. Similarly, if dependent() was not called from outside the
control flow of constituent(), the abc compiler would realize
that the check would never fail at run-time and weave an uncon-
ditional call to the advice in dependent(). To prevent these opti-
mization, a call to dependent() was inserted outside the control
flow in line 15.

The executing virtual machine can also apply optimizations. For
example, when it can determine that a called method is empty,
it can optimize the call away. To prevent this from happening,
the method constituent() and the advice increment a counter
(lines 7 and 27).

For measuring the overhead of each implementation relative to
the version of the benchmark without the aspect, the class Base
was compiled with the standard javac compiler and executed on
the reference system as specified in this section’s introduction.

4.2.2 Results
Results for the micro-measurements are shown in Tab. 1. The
columns with the title constitution show the performance for the
cflow infrastructure inserted at constituent join point shadows;
the columns with the title check show the performance for the
cflow infrastructure at dependent shadows. In each case, the first
sub-column shows the absolute number of milliseconds needed for
100,000 runs. The second sub-column shows the factor by which
execution time was increased in the presence of the aspect as com-
pared to the reference system, i.e., lower numbers indicate better
performance.

The results for each approach are presented in one row. For abc,
the benchmark was executed with different settings. First, the op-
timizations of levels one and three were used, denoted by O1 and
O3 in the table. Second, a single- and a multi-threaded environment
were simulated, denoted by st and mt, respectively. As explained
in Sec. 2.2, abc applies a special optimization for single-threaded
applications. Single- and multi-threaded environments were simu-
lated by measuring the performance in the first and in the second

132

1 ����� Base {
2 ������ ��� counter;
3 ������ �		�
�� callDependent = ����
;
4

5 �	�
 dependent ()
6 {
7 counter ++;
8 }
9 �	�
 constituent ()

10 {
11 �� (callDependent) dependent ();
12 }
13 ������ ������ �	�
 main(String [] ����)
14 {
15 �
� Base (). dependent ();
16 /* execute benchmark */
17 }
18 }
19

20 ���
�� Aspect {
21 ������ ��� counter;
22

23 �
�	�
() :
24
�
����	�(�	�
 Base.dependent ()) &&
25 ���	�(
�
����	�(�	�
 Base.constituent ()))
26 {
27 counter ++;
28 }
29 }

Listing 6. Code for the first micro-measurement.

constitution check
ms overhead ms overhead

HotSpot (ref) 262 1.000 197 1.000
AspectJ 10321 39.393 2,915 14.797
abc-O1-st 1,586 6.053 1,550 7.868
abc-O3-st 1,566 5.977 1,583 8.036
abc-O1-mt 5,142 19.557 4,350 22.081
abc-O3-mt 5,196 19.832 4,436 22.518

JAsCo 613 2.340 1.1·107 56,751.269
JRockit (ref) 198 1.000 204 1.000
AspectWerkz 14783 74.700 8859 43.400
Jikes (ref) 197 1.000 197 1.000
SL-Stackw. 328 1.665 67967 345.010
SL-Counter 1049 5.325 721 3.660
SL-Guards 524 2.660 328 1.665

Table 1. Results of the micromeasurements

thread. It was ensured that only one thread was actually executing
and the other one was sleeping during the measurement.

The results of the Steamloom implementations are shown in the
lines SL-Stackw. for the stack walking-based implementation, SL-
Counter for the counter-based implementation, and SL-Guards
for the guards-based implementation. Rows that contain the perfor-
mance of the reference system are denoted by the suffix (ref).

The following observations follow from interpreting the num-
bers in the table:

• The stack walking approach, used by JAsCo and Steamloom
Stackwalking, does not produce overhead at points constitut-
ing a control flow. The small overhead observed is due to the
support of these approaches for run-time deployment of as-
pects. This support also contributes to the observed overhead
in JAsCo, AspectWerkz, and all Steamloom implementations.

Conversely, the check at dependent join points is extremely ex-
pensive. Integrating stackwalking directly into the virtual ma-
chine is several orders of magnitude faster than JAsCo’s ap-
proach of accessing the call stack. This was to be expected,
since Steamloom’s VM integration allows for a direct access
to the virtual machine’s call stack. However, even Steamloom’s
stackwalking implementation is significantly slower than the
counter-based approaches at dependent shadows.

• The abc compiler produces less overhead than ajc in the
single-threaded case. In the multi-threaded case, the code pro-
duced by both compilers performs badly. Since we imple-
mented the benchmark in a way that abc cannot apply opti-
mizations, the results for both optimization levels are about the
same.

• The numbers clearly show that Steamloom’s counter (SL-
Counter) and guards (SL-guards) implementations both outper-
form the abc compiler even in the single-threaded case, while
already ensuring thread-safety.

• Last but not least, the numbers show that constituting a control
flow and performing the corresponding check at dependent join
points with the guards-based approach is even absolutely faster
than respective operations with both the ajc and abc compilers,
although the latter execute on a production JVM.

4.3 Macro-Measurements
The benchmark presented in the previous section measures only
the overhead introduced by infrastructure needed by cflow imple-
mentations. Although the results revealed big differences between
the implementations, the overhead may be less significant in large-
scale applications where it is possible to optimize residues away. To
compare our approach against abc in a more realistic environment
that enables abc’s interprocedural analysis as well as Steamloom’s
optimizations, we present a more complex benchmark in this sec-
tion.

4.3.1 Benchmark Setup
The SPECjvm98 benchmarks were modified by adding 15 pointcut-
and-advice pairs to each benchmark. The pointcuts all have the
following form:

execution(pc1) && cflow(execution(pc2))

They have been picked to cover a wide range of different charac-
teristics. Properties of the pointcuts vary with respect to

• the rate of control flow constitutions,

• the ratio of dependent join point shadow executions inside to
outside of the control flow,

• and the ratio of dependent join point shadow occurrences di-
rectly in vs. outside the constituent method.

The advice attached to each pointcut only increments a counter,
so that the overhead introduced by additional functionality is mini-
mal.

The benchmarks were compiled including the corresponding
aspect with ajc and with abc at optimization levels O1 and O3.
The resulting code was executed on HotSpot. abc’s optimization
level O3 includes interprocedural optimizations and increases abc’s
compilation time to well over ten minutes. Compilation with ajc
or abc at optimization level O1 only took a few seconds at most.

For AspectWerkz, an aspect definition file was provided and
passed to the execution environment when starting the benchmark.
For Steamloom, the benchmark harness was extended to deploy the
aspect before starting the iterations.

133

It was verified that the advice are executed correctly in the vari-
ous environments by counting the advice executions and comparing
them to each other.

We do not present results for JAsCo in this section, since its
weak performance in the presence of cflow pointcuts prohibits the
execution of the macro-benchmark. The “mpegaudio” benchmark
is not included because it was only available as obfuscated class
files that could not be processed by most AOP implementations.
abc could not successfully compile the “javac” benchmark; hence,
this benchmark is also omitted7.

4.3.2 Results
The results of running this benchmark are presented in Tab. 2. Each
row shows the result of one implementation. For each benchmark,
two numbers are shown: the absolute running time in milliseconds
(ms) and the overhead compared to the respective reference imple-
mentation (ovhd), i. e., the reference virtual machine without sup-
port for aspect-oriented features as specified in section 4.1 execut-
ing the benchmark without any aspects deployed.

Although the primary goal is to measure the impact of the
cflow infrastructure, the presented numbers also include some ad-
ditional overhead. For each approach, not only the additional time
for executing the infrastructure, but also the time needed to execute
the advice added by the aspect is included in the presented mea-
surement times. For AspectWerkz and Steamloom, the overhead of
the dynamic deployment facility is also included in the presented
measurement times.

From the numbers presented in Tab. 2, we draw the following
conclusions.

• Our novel implementation based on control flow guards ex-
hibits the least overhead for all benchmarks, even if abc’s inter-
procedural analysis is used. Our counter-based implementation
is usually at the same level with abc-O1. The only exception to
both rules is the “jack” benchmark.

• For the mtrt benchmark, our Steamloom-Guards implementa-
tion is considerably faster than abc and all other approaches.
We would also like to draw the reader’s attention to the fact
that, with the exception of “mtrt”, all benchmarks are single-
threaded; hence, abc can benefit from its optimization for this
case. But, our implementation would exhibit the same perfor-
mance in multi-threaded environments, i. e., in contrast to num-
bers for abc compiled single-threaded benchmarks, the num-
bers for our approach characterize the most general, thread-safe
implementation.

• ajc and AspectWerkz provide cflow at a very unsatisfactory
performance. While ajc is faster than AspectWerkz, it still
inhibits a significant overhead (e. g., 14.7 % for jess or 31.4 %
for mtrt).

• An implementation based on stack inspection is not beneficial.
This becomes especially visible in the jess benchmark. It in-
cludes a recursive interpreter for a logic programming language
that yields particularly deep call stacks. Accordingly, the over-
head for Steamloom’s stack walking implementation is very
high for this benchmark.

• abc exhibits a considerably less overhead than ajc already at
the lower optimization level. The impact of the interprocedural
optimization introduced in O3 is large for the compress bench-
mark, which abc can analyze very effectively due to its small
size. For all other benchmarks, the higher optimization level
performs only slightly faster than O1.

7 We are in contact with abc’s implementors; but they could not fix the bug
prior to submission deadline of this paper.

1 �������� move ():
2 ��		(
��� FigureElement +. moveBy (...)) ||
3 ��		(
��� Point.setX(���)) ||
4 ��		(
��� Point.setY(���)) ||
5 ��		(
��� Line.setP1(Point)) ||
6 ��		(
��� Line.setP2(Point));
7

8 ���
�() �
�������:
9 move() && !��	���
	��(move ()) {

10 Display.needsRepaint ();
11 }

Listing 7. Aspect and advice for the figure benchmark.

• The overhead of abc is very close to that of ajc for the mtrt
benchmark, while it is significantly below that of ajc for all
other benchmarks. This benchmark is the only multi-threaded
benchmark of the SpecJVM98 suite. Thus, abc’s optimization
for single-threaded applications, explained in Sec. 2.2, does not
apply here.

4.4 Benchmarks from ��� Group
While the benchmarks presented in Sec. 4.3 used real applications
from the SPECjvm98 benchmark suite it was synthetic in the sense
that it used cflow pointcuts introduced only for the purpose of the
benchmark. These pointcuts did not add any useful functionality to
the application.

The abc team has gathered various benchmarks by collecting
AspectJ programs from public sources on the web [13, 8] some of
which also use cflow pointcuts. We were able to run the figure and
the quicksort benchmarks. However, both benchmarks are fairly
short, each benchmark consiting of approx. 150 lines of code. Un-
fortunately, we were not able to run the more complex benchmarks
Law of Demeter, Cona, and ants because they are using more
advanced constructs not currently supported by Steamloom8.

4.4.1 Benchmark Setup
The measurements in this section were performed against a refer-
ence version without deployed aspects. We only performed mea-
surements for ajc, abc and Steamloom’s control flow guards im-
plementation. The previous benchmarks have already shown that
the other implementations yield a considerably worse performance
so that an additional measurement would not add any value to the
results of this paper.

The cflow-dependent pointcuts used in both benchmarks are
very similar, having the form pc && !cflowbelow(pc) to cap-
ture non-recursive entry-points into certain parts of the program.
For the figure benchmark—which simulates a simple figure
editor—the pointcut shown in Lst. 7 is used. It causes a notifi-
cation to the display object whenever a figure element is changed.
However, calling a point’s moveBy method during the execution
of a line’s moveBy method does not result in a duplicate notifica-
tion because of the employment of the !cflowbelow(move())
pointcut.

The quicksort benchmark collects various statistics on the
sorting algorithm. It uses a similar cflow pointcut to select the
top-level call to the recursive quicksort method to initialize and
display the statistics (Lst. 8).

4.4.2 Results
The results for both benchmarks are presented in Tab. 3. Again,
our novel implementation using control flow guards performs very

8 Please note, that these unsupported constructs are independent from the
implementation of the cflow pointcut.

134

compress jess db javac mtrt jack
ms ovhd ms ovhd ms ovhd ms ovhd ms ovhd ms ovhd

HotSpot (ref) 5266 1.000 2045 1.000 13760 1.000 4131 1.000 1865 1.000 2679 1.000
AspectJ 35548 6.750 2346 1.147 13863 1.007 4289 1.038 2450 1.314 2698 1.007
abc-O1 14047 2.667 2079 1.017 13741 0.999 N/A N/A 2384 1.278 2691 1.004
abc-O3 6852 1.301 2075 1.015 13754 1.000 N/A N/A 2289 1.227 2702 1.009
JRockit (ref) 4345 1.000 1315 1.000 8812 1.000 3084 1.000 1748 1.000 2006 1.000
AspectWerkz 83340 19.181 2153 1.637 8868 1.006 3418 1.108 3007 1.720 2061 1.027
Jikes (ref) 4769 1.000 1790 1.000 10442 1.000 5900 1.000 2944 1.000 2982 1.000
SL-SW N/A N/A 28970 16.184 10444 1.000 12651 2.144 15520 5.272 3081 1.033
SL-Ctr 10623 2.228 1884 1.053 10451 1.001 5993 1.016 3366 1.143 3077 1.032
SL-Guards 6039 1.266 1779 0.994 10445 1.000 5939 1.007 3287 1.117 3044 1.021

Table 2. Results from running the spec benchmarks.

1 �������� sort ():
2 ��		(
��� QuickSort.quicksort (...));
3 pointcut entry ():
4 sort() && !��	�
��	�
(sort ());
5 ������() : entry() {
6 Stats.before_entry ();
7 }
8

9 �����() ���������: entry() {
10 Stats.after_entry ();
11 }

Listing 8. Aspect and advice for the quicksort benchmark.

figure quicksort
ms ovhd ms ovhd

HotSpot (ref) 10 1.000 9062 1.000
AspectJ 672 67.200 10303 1.137
abc-O1 102 10.200 9854 1.087
abc-O3 10 1.000 9984 1.102
abc-exec-O3 43 4.300 — —

Jikes (ref) 25 1.000 7895 1.000
SL-Guards 43 1.720 8291 1.038

Table 3. Results from running the figure and quicksort bench-
marks.

well. In fact, it exhibits the least overhead except for the figure
example when abc is run with the highest optimization level. A
closer inspection shows that abc is able to completely optimize
away all control flow-related residues in this benchmark. Since the
overhead for notifying the display is negligible, abc does not show
any overhead compared to the reference measurement in this case.

We argue that this was possible mainly due to the small size of
the benchmark and the particular pointcut. As we have shown in
Sec. 4.3, this does not happen as frequently, when applying a larger
variety of pointcuts on bigger programs.

Although the figure benchmark’s essentially being a micro-
benchmark, an interesting difference between the optimizations
performed by abc and Steamloom can be seen by modifying
the pointcut only slightly. When all call(...) expressions are
changed to execution(...) expressions, the semantics of the as-
pect does not change: the display is still notified everytime a figure
element is modified and duplicate notifications are avoided.

However, this slight modification already prevents some of
abc’s intra-procedural optimizations, as can be seen in the row
abc-exec-O3, displaying a highly increased overhead. The reason
for this behaviour is that when using call pointcuts, the whole

pointcut has more shadows in the program (at every call) com-
pared to the execution-based pointcut. With more shadows, abc
can reason about each shadow separately and—in the case of this
benchmark—determine statically whether it occurs inside or out-
side the control flow. If execution is used in the pointcut, how-
ever, there are less shadows in the program (only the method bod-
ies) and these shadows may be executed both inside and outside
the control flow, so that a dynamic check is necessary.

Steamloom’s control flow guard optimizations are not vulnera-
ble to such modifications. Jikes’ inlining optimization will generate
a separate (inlined) version of a method body at every hot call site,
so that our interprocedural optimizations can reason about these
join points in the same differentiated way as if call pointcuts had
been used.

This shows an advantage of delaying program optimizations
until run-time. They can exploit the VM’s dynamic optimizations,
e. g., inlining, to obtain additional information, for example about
the calling context, that enable more efficient optimizations. On
the other hand, offline optimizations allow more time-consuming
and memory-consuming optimizations which—in some cases—
can completely optimize away the overhead induced by cflow
pointcuts.

5. Future Work
There are three areas of future work. First, as further discussed in
the next subsection, we will provide support for context extraction
from the control flow. Next, we will investigate the usefulness of
our implementation to facilitate other program language features,
like context-oriented programming (see section 5.2). Finally, we
will include further optimization techniques to be applied by our
cflow implementation. Our current implementation does not per-
form sophisticated redundant guard elimination. A next step in re-
ducing guard overhead would be to perform more advanced path
splitting and redundant guard removal analysis, similar to that per-
formed in previous work [4].

5.1 Context Extraction
In Sec. 2.1, we have mentioned that our approach does not support
the extraction of context information from constituent join points.
Implementing such support is a subject of future work, and we
expect that context extraction can be implemented at excellent
performance when VM structures are exploited, as with control
flow guards.

As mentioned in Sec. 2.2, approaches adopting counters to im-
plement cflow matching usually use a stack when context infor-
mation from constituent join points needs to be made available to
advice. Our planned implementation of context extraction does not
require a stack, but will instead rely on extracting the required val-
ues from the corresponding stack frames directly. We are confident

135

that this is feasible, given that values from frames further up in the
call stack are always stored in a way that allows for efficient access
to them.

The required values are, in all cases, local state of the method
containing the constituent shadow. Depending on whether the
method that has to access them is inlined in the former method
or not, they can be accessed as follows:

• In the case of inlining, local state of the calling method is
available in the form of operands at high-level intermediate
representation, which makes their access obviously feasible.

• In all other cases, local state of the method containing the con-
stituent shadow is stored in its stack frame. Baseline-compiled
methods keep their state in stack frame slots anyway, and for
optimised methods, values stored in registers during execution
are saved to the stack frame in case another method is called.
From these locations, the respective values can be retrieved.

This approach requires that, for elements extracted from con-
stituent join point context, a set of references to their storage loca-
tions is maintained. In case of recursive control flow entries, the set
needs to be updated accordingly; otherwise, it can be passed on in
the same way as our approach does for control flow guards.

Adopting this solution will come at some cost, since maintain-
ing context references is an additional task that compiled applica-
tion code will have to fulfil. Yet, the cost of maintaining a complex
data structure – e. g., a stack, as used by current implementations –
is most likely much higher.

5.2 Context-Oriented Programming
Another subject of future work is to extend the guards-based cflow
implementation to programming approaches that allow for con-
trol flow-dependent behaviour but do not apply explicit quantifi-
cation over join points in terms of pointcuts. An example of such
an approach is context-oriented programming (COP), existing in
the form of the Lisp-based ContextL programming language [29].
COP allows for dynamically (de)activating layers that augment the
running application with additional behaviour. An important dif-
ference to the pointcut-and-advice flavour of AOP [26] is that in
COP, points where crosscutting behaviour applies are not defined
in terms of pointcuts, but implicitly in terms of the interfaces of
application classes. Hence, COP’s join point model is more coarse-
grained than that of, e. g., AspectJ, but no less powerful in the re-
spect of possible interaction with the base application.

Given that layers can be dynamically (de)activated, the possibil-
ity of applying control flow-dependent behaviour is given in COP:
in the control flow of a method that activates a layer, behaviour
applies that would not outside the so-defined context. The current
implementation of ContextL [30] relies on the dynamic definition
of classes representing layer combinations and on multiple dis-
patch to realise context-dependent behaviour. The implementation
utilises caching mechanisms to improve performance. The authors
plan to port COP to the Java platform [30]. We believe that the
still-remaining overhead due to caching costs could be eliminated
in such an implementation by exploiting guards-based control flow
matching.

6. Conclusion
The most important result of the work presented in this paper is
that our novel implementation based on control flow guards dis-
plays the best performance among all approaches. It performs even
better than abc at its highest optimization level, which provides one
of the most efficient implementations available today. However, a
whole-program analysis as performed by abc comes at the cost of
(a) a significant increase of the compilation time and (b) placing

Java applications under a closed-world assumption that contradicts
Java’s dynamic class loading capabilities. Our approach has neither
of these disadvantages. If abc is used without the whole-program
analysis, benchmark results are even more favorable for our ap-
proach. The same is true for multi-threaded applications, as our
strategy is thread-safe by default and does not need any special op-
timizations for the single-threaded case.

If there are more control flow-based pointcuts deployed in a sys-
tem than the number of control flow guards we have reserved9, we
have to use the counter strategy for the additional pointcuts. Even
though this strategy is slower than our counter-based implemen-
tation, it is still at the same level with abc. Thus, we expect all
applications that are making use of cflow pointcuts to benefit from
our approach, even if they are using a large number of pointcuts.

By implementing several approaches to the best of our knowl-
edge within the same environment, we have been able to directly
compare their relative performance. Stack walking, although hav-
ing no overhead at constituent shadows, does not seem to be an
alternative since its complexity depends on the stack depth met at
dependent shadows. Counter-based strategies, exhibiting constant
cost at control flow entries and exits as well as at dependent shad-
ows, perform significantly better in all real-word benchmarks. This
performance is topped only by our novel guards-based strategy.

From the results presented in Sec. 4.3, it is obvious that interpro-
cedural optimizations can lead to considerable performance gains.
However, due to time and memory constraints, a whole-program
analysis is infeasible inside a virtual machine. We believe that, by
applying these optimizations on a smaller scale, e. g., to the code
that is produced from a method and all methods that are inlined
into it, they could become feasible. As described in Sec. 3.3.3, we
have already successfully applied some of abc’s interprocedural
optimizations to remove redundant control flow checks. Since this
analysis works across method boundaries only in the presence of
inlining, it is guaranteed to execute quickly and is always focused
on the hot parts of the application. It seems very promising to in-
clude more static analyses for predicting the control flow into Jikes
RVM’s optimizing compiler.

Acknowledgements
This work was supported by the AOSD-Europe Network of Excel-
lence, European Union grant no. FP6-2003-IST-2-004349.

References
[1] abc (AspectBench Compiler) Home Page. http://aspectbench.

org/.

[2] B. Alpern, D. Attanasio, J. J. Barton, A. Cocchi, S. F. Hummel,
D. Lieber, M. Mergen, T. Ngo, J. Shepherd, and S. Smith. Imple-
menting Jalapeño in Java. In 1999 ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’99). ACM Press, 1999.

[3] B. Alpern et al. The Jalapeño Virtual Machine. IBM Systems Journal,
39(1):211–238, February 2000.

[4] Matthew Arnold and Barbara G. Ryder. Thin guards: A simple and
effective technique for reducing the penalty of dynamic class loading.
In ECOOP ’02: Proceedings of the 16th European Conference on
Object-Oriented Programming, pages 498–524, London, UK, 2002.
Springer-Verlag.

[5] AspectJ Home Page. http://www.eclipse.org/aspectj/.

[6] AspectS Home Page. http://www-ia.tu-ilmenau.de/

~hirsch/Projects/Squeak/AspectS/.

9 Although the number of guard bits cannot be increased at runtime, an
arbitratry number of bits can be reserved.

136

[7] AspectWerkz Home Page. http://aspectwerkz.codehaus.
org/.

[8] P. Avgustinov et al. Optimising AspectJ. In PLDI ’05: Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 117–128. ACM Press, 2005.

[9] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann. Virtual
Machine Support for Dynamic Join Points. In Proc. AOSD 2004.
ACM Press, 2004.

[10] J. Bonér. What Are the Key Issues for Commercial AOP Use: how
Does AspectWerkz Address Them? In Proc. AOSD 2004, pages 5–6.
ACM Press, 2004.

[11] J. Brichau, M. Haupt, N. Leidenfrost, A. Rashid, L. Bergmans,
T. Staijen, A. Charfi, C. Bockisch, I. Aracic, V. Gasiunas, K. Os-
termann, L. Seinturier, R. Pawlak, M. Südholt, J. Noyé, D. Suvée,
M. D’Hondt, P. Ebraert, W. Vanderperren, M. Pinto, L. Fuentes,
E. Truyen, A. Moors, M. Bynens, W. Joosen, S. Katz, A. Coyler,
H. Hawkins, A. Clement, and O. Spinczyk. Report describing survey
of aspect languages and models. Technical Report AOSD-Europe
Deliverable D12, AOSD-Europe-VUB-01, Vrije Universiteit Brussel,
17 May 2005 2005.

[12] T. Dinkelaker, M. Haupt, R. Pawlak, L. D. Benavides Navarro,
and V. Gasiunas. Inventory of aspect-oriented execution models.
Technical Report AOSD-Europe Deliverable D40, AOSD-Europe-
TUD-4, Darmstadt University of Technology, 28 February 2006
2006.

[13] B. Dufour, C. Goard, L. Hendren, C. Verbrugge, O. de Moor, and
G. Sittampalam. Measuring the Dynamic Behaviour of AspectJ
Programs. In Proc. OOPSLA 2004, 2004.

[14] R. E. Filman, T. Elrad, S. Clarke, and M. Akşit, editors. Aspect-
Oriented Software Development. Addison-Wesley, 2005.

[15] Glassbox-Inspector Home Page. https://glassbox-inspector.
dev.java.net/.

[16] B. Harbulot and J. R. Gurd. Using aspectj to separate concerns in
parallel scientific java code. In AOSD ’04: Proceedings of the 3rd
international conference on Aspect-oriented software development,
pages 122–131. ACM Press, 2004.

[17] M. Haupt, M. Mezini, C. Bockisch, T. Dinkelaker, M. Eichberg, and
M. Krebs. An Execution Layer for Aspect-Oriented Programming
Languages. In Proc. VEE 2005. ACM Press, June 2005.

[18] R. Hirschfeld. AspectS - Aspect-Oriented Programming with Squeak.
In M. Aksit, M. Mezini, and R. Unland, editors, Objects, Components,
Architectures, Services, and Applications for a Networked World,
volume 2591 of LNCS, pages 216–232. Springer, 2003.

[19] JAsCo Home Page. http://ssel.vub.ac.be/jasco/.

[20] JBoss AOP Home Page. http://www.jboss.com/products/aop.

[21] The Jikes Research Virtual Machine. http://jikesrvm.
sourceforge.net/.

[22] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An Overview of AspectJ. In J. Lindskov Knudsen, editor,
Proc. ECOOP 2001, volume 2072 of LNCS, pages 327–353. Springer,
2001.

[23] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-Oriented Programming. In
M. Aksit and S. Matsuoka, editors, ECOOP ’97: Object-Oriented
Programming, volume 1241 of Lecture Notes in Computer Science,
pages 220–242. Springer, 1997.

[24] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning Publications Co., Greenwich, CT, USA,
2003.

[25] Karl Lieberherr, David H. Lorenz, and Pengcheng Wu. A case for
statically executable advice: checking the law of demeter with aspectj.
In AOSD ’03: Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 40–49, New York, NY,
USA, 2003. ACM Press.

[26] H. Masuhara and G. Kiczales. Modeling Crosscutting in Aspect-
Oriented Mechanisms. In Proc. ECOOP 2003, 2003.

[27] H. Masuhara, G. Kiczales, and C. Dutchyn. A Compilation and
Optimization Model for Aspect-Oriented Programs. In G. Hedin,
editor, Proc. CC 2003, volume 2622 of LNCS, pages 46–60. Springer,
2003.

[28] P. Avgustinov and others. abc: an Extensible AspectJ Compiler. In
Proc. AOSD’05, pages 87–98. ACM Press, 2005.

[29] P. Costanza and R. Hirschfeld. Language Constructs for Context-
Oriented Programming: an Overview of ContextL. In Dynamic
Languages Symposium (DLS) ’05, co-organized with OOPSLA’05.
ACM Press, 2005.

[30] P. Costanza and R. Hirschfeld and W. de Meuter. Efficient Layer
Activation for Switching Context-Dependent Behavior. In Joint
Modular Languages Conference 2006 (JMLC2006). Springer, 2006.

[31] D. Sereni and O. de Moor. Static analysis of aspects. In AOSD ’03:
Proceedings of the 2nd international conference on Aspect-oriented
software development, pages 30–39. ACM Press, 2003.

[32] D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo: an Aspect-
Oriented Approach Tailored for Component Based Software Devel-
opment. In Proc. AOSD 2003, pages 21–29, 2003.

137

