A Flow-Based Approach for Variant Parametric Types

Wei-Ngan Chin Florin Craciun Siau-Cheng Khoo Corneliu Popeea

Department of Computer Science, National University of Singapore
{chinwn,craciunm,khoosc,corneliu} @comp.nus.edu.sg

Abstract instantiated or left as a type variable. Below are two classes whose

A promising approach for type-safe generic codes in the object- fields have been parameterised:

oriented paradigm igariant parametric typewhich allows covari- class Cell (A) {

ant and contravariant subtyping on fields where appropriate. Pre- a st ... }
vious approaches formalise variant type as a special case of the class Pair (AB) extends Cell (A) {
existential type system. In this paper, we present a new framework B snd; --- }

based orflow analysisasndmodular type checking provide a sim-
ple but accurate model for capturing generic types. Our scheme With such parameterised class declarations, we may then de-
stands to benefit from past (and future) advances in flow analysisfine specialised instances, such @sl (Int), Cell (Float) or
and subtyping constraints. Furthermore, it fully supports casting Pair (Int,Num), which contain more specific type information for
for variant types with a special reflection mechanism, catlast the fields of each class instance. Though parametric types can co-
capture to handle objects with unknown types. We have built a exist with class subtyping, pointwise matching of the respective
constraint-based type checker and have proven its soundness. Wéields is required. For example, the subtyping relation (denoted by
have also successfully annotated a suite of Java libraries and client<:) Pair (t1,t2) <:Cell (t3) is allowed only wherPair<:Cell
code with our flow-based variant type system. andt1=t3 . The latter condition is for pointwise matching of the

. . . . common field. SimilarlyPair (t1,t2)<:Pair (t3,t4) holds, pro-
Categories and Subject DescriptorsD.3.3 [Programming Lan- jdedt1=t3 andt2=t4 . Pointwise matching (invariant subtyping)
guage Language Constructs and Features—Classes and ob-js required because field reading and field writing are based on op-
jects; Polymorphism; Constraints; D.3.Prpgramming Lan- pqsite flows that change the directions of subtyping. This require-
guage Formal Definitions and Theory; D.3.2Pfogramming ment limits the reusability of programs based on parametric types.
Languagek Language Classifications—Object-oriented languages; 1q address this shortcoming, Igarashi and Viroli [17] developed
F.3.3 [Logics and Meanings of PrografsStudies of Program g new variant parametric type system (or variant type, in short) to
Constructs—Object-oriented constructs; Type structure improve the subtyping of generic structures, depending on how the
General Terms Design, Languages, Theory, Verification fields are being accessed. lcetienote a class with one type param-

eter. Leto denote an object of variant typeéa; ¢;) while v denotes

Keywords Genericity, Flow Analysis, Variant Parametric Types, a location of variant type (asts), into whicho is to pass. Each

Subtyping, Constraints variant typec («t) has a variance (see Section 3.1) attached to its
field to indicate how the field is to be accessed. A field that is sub-
1. Introduction jectto read-only access via reference ¢flenoted byv, = @) may

be supported by covariant subtyping. Thatdiy:t1)<:c (®ts) if
a1<: @ andt;<: to. Conversely, a field that is subject to write-only
' access via reference of(denoted by, = ©) may be supported

Software reuse is an important aspect of software engineering.
Traditionally, most mainstream object-oriented (OO) languages

such as Java, C++ a?”.d C#, h_ave relied on class _subtypin_g to .SUp'by contravariant subtyping. That is{a1t1)<ic (St2) if ax<i ©
port reuse (or genericity) via inclusion polymorphism. While this 54, < "Also, a field that is subject to both read and write ac-
mechanism allows the convenient storage of objects via safe upcast.osses via refer‘ence of(denoted byxs —) must be supported
into generic data structure, the converse process of retrieving ob-by invariant subtyping. That i; (a1t1)<:c (Ots) if a1<: ® and
jects from t_he same data structure requires downcast testing, WhICht1<: tanta<: 1. Lastly, if a field is not accessed via reference of
incurs runtime overheads an_d IS p03_5|bly l_msafe. . v (denoted byv, = ®), we can use bivariant subtyping. That is, we
To address the shortcomings of inclusion polymorphism, there UppOrtc (a1t)<ic (@t») for anyt; andis
have been several recent proposals (amongst the Java [3] and C& . y

19 ities) f - b 4 H h Variant types give a much richer subtyping hierarchy than pa-
[19] communities) for parametric types to be supported . Here, each , eterised types do. Figure 1 illustrates some variant types for
classc is allowed to carry a list of type parameters for its fields,

. ; Cell objects and their places in the subtyping hierarchy. Note
e.g.,c(tl,..tn), whereby the type of each field can either be that dtjanotes a subtypi?lg relation in the g?/gphg.]Alsau <®¥>,
Cell (®Object) andCell (o) are equivalent to each other while
Cell (®Num, Cell (®Float)andCell (®Int)are unrelated. Note
that L denotes the type ohull values which can be assigned
Permission to make digital or hard copies of all or part of this work for personal or into any class type. However, eackll (ot) is a subtype of both

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation Cell (&t) andcell {ot). Also, types of the fornCell (@) and

on the first page. To copy otherwise, to republish, to post on servers or to redistribute C€ll <9t) have a sut_)typlng hierarchy based on covariance and con-
to lists, requires prior specific permission and/or a fee. travariance, respectlvely.

OOPSLA06 October 22-26, 2006, Portland, Oregon, USA. The benefits of variant typing have been known for some time.
Copyright© 2006 ACM 1-59593-348-4/06/0010. . . $5.00. However, early proposals have attached access rights to the fields

Cell< @lnt>

Cell<¢Object>

Cell< @lnt>

Cell<®1>

Cell<@Num>

1
Figure 1. A Rich Subtyping Hierarchy

Object

Cell<@Object>

Cell< @GNum>

Cell< @Float

Cell<&1>

Cell< &Float>

Cell<Elnt>

Cell<&0bject>

Cell<GFloat> Cell<Object>

of each class declaration. This mechanism is knowaeataration-
site varianceand is shown in the following example:

class DSCell (A) {

BA fst;

A getFst() { return fst;

void setFst(A x) { fst=x; } }

The fieldfst is declared read only using the variameeConse-
quently, the methodetFst cannot be invoked. Using the concept
of structured virtual type, Thorup and Torgersen [35] were the first

[25, 32, 38, 15, 16, 34, 26]. In particular, to support modular type-
checking, we require non-structural subtype entailment of the form
vo(C1 = JwC3), WhereCy, Cy are subtyping constraints while
v, w are sets of type variables. These constraints are non-structural
as we usel <:t <: Object to support the OO class inheritance
mechanism. While the decidability of non-structural subtype entail-
ment remains an open problem, there exist sound approximations
that use constraint simplification and induction techniques [32, 38].
Our work is built on top of sound but practical solutions to subtyp-
ing (flow) constraints, and we have developed a systematic frame-

to link access rights and covariant subtyping to the fields of each work for the variant parametric type system with the following new

use of a classather than the class declaration itself. Thge-site
variancemechanism is much more flexible than previous mecha-
nisms based odeclaration-site varianceln the following exam-
ple, the access to the fiefet is governed by the variance vari-
ablea. A reference of typaJSCell (eInt) allows read-only ac-
cess, while a reference of typescCell (oInt) allows read-write
access to the fieltbt .

class USCell (aB) {

aB fst;

B getFst() { return fst;

void setFst(B x) { fst=x; } }

Later, lgarashi and Viroli extended this concept to support
contra- and bi-variance [17]. They formalised the variant type sys-
tem by mapping it into a correspondirexistential typesystem
[7, 21, 22]. A recent proposal by Sun Microsystems for generics
in Java 1.5 [37] supportwildcard typebased on an improvement
of Igarashi and Viroli's variant type system, but it is still viewed

as a special case of the existential type system with subtyping.
However, a more general version of existential type system, called

System k, has undecidable subtyping [28], while the decidabil-
ity of Igarashi and Viroli's variant type system, remains an open
problem [18].

In this paper, we propose a new approach for the variant para-
metric type system that is based on the mechanism of flow anal-

ysis. Our flow analysis captures value flows via subtyping con-

straints. A major benefit of this approach is the considerable knowl-

features:

e Our framework is based difow analysiswhich can concisely
and intuitively capture flow of values on a per method ba-
sis (Section 3). We use variance annotations primarily to predict
the flows of values, and not for access control. We also provide
special considerations for two type values. A valueofect
type can always flow out from any location while a null value
of L type can always flow into any location.

We augment our generic type system wiitkersection typeo

help capture information flow more accurately. An intersection
typeti&t2 denotes a type with both the propertiestbfand

t2 . Such types are important for languages with multiple in-
heritance (such as Java via its interface mechanism), and can
accurately capture the flow of objects with their expected field
accesses.

Our approach is based anodular type checkin¢Section 5).
Each method is specified with a flow constraint (and variant
types) that is used to predict the value flows that may occur in
the method’s body. We verify each method separately to ensure
that the predicted accesses, flow constraint and variant typings
are efficiently and safely checked.

¢ We advocate the support dbwncast to arbitrary variant types
(Section 6). With this mechanism is a nowzlst capturethat
uses a reflection technique to deal with values of unknown type.
Cast capture has helped improve the generic implementation of

edge in flow analysis that has been accumulated in the recent past several JDK 1.5 libraries.

e \We present a soundness theorem anchiant type checker cbl cb2 c » O @®B1) B2
We have successfully applied our prototype to a suite of Java li- | Cel(@B1) Cel(®B2) Cel(®A) | / v
braries and client codes (Section 8). On average, we are able to |_Cel{®Bl) Cel(®B2) Cel(al) N v

eliminate 87.9% of the casts from non-generic Java 1.4 applica-

tion COde, that means 12.9% more casts than Wildcard'generiCSecond’ both class®&l andB2 have Supertypes and! in com-
Java 1.5 application code. mon. To exploit this, we can use an intersection type parameter in
Cell (®(A&I)) to describe the variable. In a lattice of type val-
ues, an intersection type&l essentially defines the greatest lower
bound ofA and! . With this, all four casts can now be eliminated in
our new solution to genericity, as shown below:

Our goal is to strive for type-safe OO programs with better
genericity via a modular flow-based approach to variant parametric
type system. Next, we explain our approach with the help of some
examples.

o chl ch2 c A O B (B2
2. Better Genericity Cel(®B1) Cell(®B2) Cel(@®A&l) | v/ + Vi

The main goal of genericity is to support highly reusable software

components. To allow this to happen in a type-safe way, we should Note that the above example cannot be coded in Java 1.5 syntax.
strive to provide type descriptions that are concise, understandable,java 1.5 does not allow the use of intersection types for local
general and accurate. Specifically, each well-typed generic programyariable declaration, field declaration or method argument/return

we are able to track type information in a precise manner, allowing method type parameter.

redundant cast operations to be eliminated where possible. In this
section, we examine the key aspects for which our approach basec?.2 Modular Flow Specification
on flow analysis makes improvements over existing approaches

based on existential types. Some of these improvements may notAnOther important principle for better genericity is that type de-

; g scription should be designed imaodularfashion (on a per method
ggvgfoc;élg ;:;)rézg]flrgvr\T/] 2adsi?r2r2gf \r/ci):v?/hp,o?#tt they were gradually basis). Type annotations appearing in the method header should de-

pend only on the method body while each call site should be a
specific instance of the method'’s type declaration. This principle is
important for efficient type checking and ease of type annotation.
Parametric type systems use number of cast operations eliminatedSpecifically, for each instance method, we provide the following
as a measure of accuracy [10, 14]. As it turns out, there may be method declaration:

competing decisions on what types to use for certain cast operations

2.1 Intersection Type

to be eliminated. The following example from [10] illustrates: t | to mn(t1 vi,..., tn vp) where ¢ {.. }
class Bl extends A implements | {1} A separate annotationt “| ” is added at the beginning of each
class B2 extends A implements | {1} method’s declaration to capture the variance of the impiidst
void foo(Boolean b) { parameter. This separate annotation (omitted in previous works,
Cell cbl = new Cell(new B1()); such as [17, 37]) allows us to capture the behaviour of each method,
Cell cb2 = new Cell(new B2()); independent of its class declaration. Note thataptures the ex-

Cell c = b ? cbl : cb2;

Aa= (A) cgell); pected value flows of each method’s body in terms of type of the pa-

rameters{,, .., t,), result ¢o), and receivert). We support modular

:31' El(l): c('gi;o;cbl get(): type checking by localising type variables which are not present in
B2 b2 = (B2) cbz:get()z } the type of parameters, result and receiver. A previous approach

[17] relies on the existential open/close mechanism for the receiver
This program contains four cast operations. With the help of para- Parameter to determine if the receiver parameter is of suitable vari-
metric types, Donovan et al. [10] suggested three sets of possible@nce while other parameters are checked via subtyping. In contrast,

types, each with a different subset of casts eliminated, as sum-Wwe achieve uniform treatment for all parameters. .
marised below: To illustrate the modular type annotation mechanism, consider

three method declarations for tRair class:

Types of Variables Casts Eliminated .
cbi cb2 C A) B B2 class Pair (A,B) extends Cell (A) {
Cel(BI) Cel(B2) Cell VARV B snd;
Cel(A) Cel(A) Cell(A) | / Pair (®, Y) | Y getSnd()
Cel(ly Celll) Cell(l) v {return this.snd;
Pair (®, &Y) | void setSnd(Y v)
L . {this.snd=v;
Note thatCell denotes a raw type where nothing is known of its Pair (®, ®)&W | Pair (oW,0W dup()
components. Hence, oniybject values are statically retrievable {return new Pair (W,W(this,this); 1}
from it. Raw type was originally proposed in [3] for backwards
compatibility, and it is the basis for generic typing through inclu- First, note thatetSnd will read the second field whilgetSnd

sion polymorphism. However, none of the three proposed solutions will write to it. Because of these effects, we may apply covariant
are able to eliminate all four casts. This indicates that parametric (&) and contravariant€) subtypings to the second component of
typing is not expressive enough to capture generic type for such the Pair object forgetSnd and setSnd , respectively. Second,
programs. There are two possible improvements. First, note thatbivariant (®) subtyping is allowed for the unaccessed component
the fields ofcb1, cb2 andc are subject to read-only accesses, and of thePair object for both methods. As a shorthand, we may write
not modified in the program fragment. We can therefore provide co- ® to denote®t since all bivariant types are equivalent. Note that
variant annotations to the fields of these variables, and obtain two from getSnd andY from setSnd denote different type variables
possible outcomes, each with three casts eliminated: treated independently by our modular type checker.

The third method is an interesting application of intersection
type. The method itself does not access the fields oftike pa-
rameter, which escapes into the two fields of the methbdis
result. To capture this value flow, we declare an intersection type
Pair (®, ®)&Wfor thethis parameter. The typRair (®, ®) is to
acknowledge that we haveRair object whose fields are not ac-
cessed by the curredtip method. A type variablgvhelps indicate
that this parameter will escape into the fields of the result with type
Pair (®W,oW. This flow allows the variant type afito flow into
the two fields of the outpupair . Hence, for a given receiver of
typet, we havet<:Pair (®, ®) andt<:w. Possible candidates for
the typet arePair (®X, ®Y) or Pair (®X, OY), etc. In contrast, if
we use the following type suggested in [17]:

Pair (©X, QY) | Pair (OPair (OX, ©Y), oPair (©X, ®Y)) dup()

we requiret=Pair (®X, ©Y) or ¢t=_L, which restricts the possible
uses of the method. One way to improve this situation is to dupli-
cate thedup method for different scenarios, as shown below:

Pair (®X, ®Y) | Pair
Pair (®X, ©Y) | Pair
Pair (©X, ©Y) | Pair

(OPair (®X, ®Y), OPair
(OPair (X, oY), oPair
(OPair (&X, 8Y), oPair

(@X, ®Y)) dup()
(®X, &Y)) dup()
(OX, ©Y)) dup()

However, such duplications go against the goal of genericity. On
the other hand, our solution with intersection types can improve
genericity by allowing value flows to be accurately captured.

2.3 Avoiding F-Bounds where Possible

interface Comparable A {
Comparable (®T) | int compareTo(T 0);

Based on this definition, we can write theax method, as follows:

class Collections {
static T max(Collection (@T) col)
where T<:Comparable (oT) { --- }

}

This alternative is equivalent to the earlier Java 1.5 definition.
We also support a simpler way, to expr&zsnparable inter-
face, as follows:

interface Comparable {
S & Comparable | int compareTo(T 0)
where T<:Comparable A T<:S ;

}

The use of this definition does not require any F-bound, but it is
more restrictive than Java 1.5 definition@dmparable interface.

Another potential use of F-bound occurs for recursive fields
of class declarations. An example is the following recursige
class:

class List (A,B) extends Object
where B<:List (AB) {

A val;

B next; ...

One feature that adds to the expressivity of bounded existential
type is the use of F-bounds [5] which effectively capture recursive This solution uses an F-bouBd:List (A,B) that makes constraint
constraints of the formr<:C(..,T,..) whereT is a type variable solving more complex [32]. However, in our system we may choose
andC is a class name. While the designers of Java 1.5 consider to avoid the recursive constraint from the invariant of the dliss
this feature to be significant and useful [37], it is also a source of by leaving the recursiveext field with an incomplete variance,
complication as reported recently in [20]. In particular, F-bound as follows:
together with existential type is a source of undecidability for
System k which caused an earlier implementation of Java 1.5 to
fail in accepting some programs with F-bounds that were actually
type-safe (as first reported in [20]). Subsequent improvements in }
Java 1.6 have removed the reported errors, but the decidability of
its type system remains an open problem. The variance of thenext field is incomplete at its declaration
While the flow-based approach that we advocate also supportssite and can be promoted to eitheror @, depending on how its
recursive flow constraints (if the inductive mechanism of [32, 38] underlying type parametéist (A) is being instantiated at the use
is used), our pragmatic philosophy is to avoid F-bounds whenever site. This type promotion process is elaborated later in Section 4.2,
it is possible to do so. and can be used to avoid F-bound, where possible.
As an example of F-bound, consider the following definition of
the Comparable interface for Java 1.5:

interface Comparable (T {
int compareTo(T o); }

class List
A val;
@List (A) next; ...

(A) extends Obiject {

2.4 Avoiding Existential Type Always

It has been generally acknowledged that existential type is use-
ful for describing data types whose implementation details can be
made abstract. This aspect is closely related to the use of bivari-

Here, class parametgis being used to capture the parameter of the
methodcompareTo . As this parameter is required to be a subtype
of Comparable itself, F-bound of the fornT<:Comparable (ST)

is usually needed whebomparable is used, as shown in the next
example:

class Collections {
(T extends Comparable (? super T)) static T max
(Collection (? extends T) col) { --- }

In our flow-based approach, the current philosophy is to cap-
ture the value flows of each method independently. Hence, we
have chosen to capture the value flow and subtyping relation di-
rectly for each method instead, as shown below for our definition
of Comparable :

ant type®t where the underlying typeis unknown and may be
assumed to be of any type. While no-access is one way to enforce
bivariant type, it is also possible to use the open/close mechanism
of existential type system to describe situations where implemen-
tation details can be made abstract. A typical example isdhg
operation on two elements of a vector that was highlighted in [18],
and reproduced below:

void copy(Vector
open x as [Y)y] in
y.setElementAt(y.elementAt(i),j)

(®) x, int i, int j) {

The above code opens the bivariant type af an object bound
to variabley with an abstract typ&. As all elements of each vec-
tor are of the sam# type, we may safely copy a value from one
position of the vector into another position, without knowing the

actual underlying type. The close correspondence between existen‘While this is so, we believe that there is still scope for automatic in-
tial type and bivariant type is a primary reason why lgarashi and sertion of safe casts to invariant type (in a spirit similar to automatic
Viroli considered existential type system as the underlying model type coercion) that is consistent with each user program.
for their variant parametric type system.
However, the designers of Java 1.5 considered the open/close3 \/griance via Flow Analysis
mechanism of existential type system to be somewhat restrictive)
[36]. They have therefore proposed a relaxation to open each ex-A céntral feature of our proposed approach is the focus on flow
pression as an existential type by associating it with a global type analysis. Variance annotations are used to support the anaIyS|s_of
variablewithouta corresponding close operation. This use is simi- Value flows to capture more accurate generic types, whereby suit-
lar to the flow-based approach where each parameter (or local vari-able field su_btyplngs (covariance and contravariance) are facilitated
able) is regarded as a location where values may flow in and/or out, Where possible. _ _
Nevertheless, in the context of existential type system, such relax- e highlight the expressiveness of variant types through some
ation might possibly be unsound since each existential type may in MOre examples in Figure 2. Apart from a generéctor (A) class.
fact correspond to contradicting type values. This is possibly why déclaration, we provide a number of static methods to highlight
correctness proof is yet to be completed (as of [36]), even though how flow analysis may assist in the formulation of generic types. In
a full-scale implementation for wildcard type system has already thecopyVec method, the elements from a first vectarctor (©X)
been released for public use. are copied into a second vectdector (SY), while a constraint
Furthermore, Java 1.5 relied on polymorphic (generic) type X<:Y captures the direction of the value flow.
system for selected methods to capture situations where invariant
type appears necessary, as shown by the following example:

. L class Vector (A) extends Collection A {
(Tr> tv0|d _docolpy(Vei;K;r_. (T) x, int i, int j) { Vector (®) | int size() {..
mp = x.element Ok Vector (&X) | X elementAt(int i) {.. }
x.setElementAt(tmp,j)
: | Vector (&X) | void setElementAt(X v, int i) {.. }

}

Through a wildcard capture mechanism, it is possible to provide | Void copyVec(Vector — (©X) v, Vector (SY) w,

; oo . int start) where X<iY
a method with bivariant parameter, as shown below: for(int i=0:i<v.size()&&H+start<w.size():i++)

void copy(Vector (?) x, int i, int j) { w.setElementAt(v.elementAt(i),i+start);

docopy(X,i,j);

} void copyNestVec(Vector (®Vector (®X))v,
Vector (©Y) w) where X<i¥ {

Note that wildcard type ok has been captured by the global int pos=0;

type variable. Again, the open/close mechanism is averted, even| for(int i=0; i<v.size();i++)

though the underlying system is still based on bounded existential Vector (©Z) s=v.elementAt(i);

type system. if (pos+s.size()<w.size()) ‘
{copyVec(s,w,pos); pos +=s.size(); }

Our current philosophy is to avoid existential type system alto-
gether. To capture the effect of an unknown abstract type, we have| ’ /. d clearVec(Vect 1
introduced a casting mechanism that is able to capture the underly- " forc(ii?ri:eoc.(if\f_soirzeo.ﬁi? A
ing type of an object via a fresh type variable. We refer to this as a v.setEIerﬁentAt(nuII,});
cast captureechnique which is elaborated in more details in Sec- |}
tion 6. The sameopy method can be re-written with a casting of | Vector (®Z) merge(Vector (®X) v, Vector (DY) w)

thex parameter from bivariant typéector (®) to an invariant type where X<:Z AY<Z
(Vector (©T)). In the processT is used to capture the unknown {3 _ o)
type, as shown below: Vector (GOPair (X, ®Z)) join(Vector (®Pair (dX, ®Y)) v,
Vector (@Pair (®Y, ®Z)) w)
void copy(Vector (®) x, int i, int j) { {. }
Vector (O©S) w; void swap(Pair (®X, @Y) p) where X<i¥Y AY<X {
{w = (Vector (OT)) x; T t=p.fst; p.fst=p.snd; p.snd=t;
w.setElementAt(w.elementAt(i),j) } }
}
While this cast capture construct may look like a syntactic Figure 2. Examples with Variant Types

sugar for the open/close mechanism, we stress that it is part of a
more general mechanism that can take an arbitrary type as source Method copyNestvec copies from a nested vector of type
(instead of a bivariant type) for casting into another arbitrary type as Vector (©Vector (£X)) into a second vectovector (8Y) with
target (instead of an invariant type). A cast fos;,aobject into an flow constraintx<:Y . This code remains highly generic as it uses
invariant type of the formez ((©t)*) wherec; <:c; is always safe covariant and contravariant subtypings. The next example shows
since every object is built using an invariant type. Furthermore, how we use a special type to indicate that null values will be
cast-capture is a runtime mechanism while open-close is a type-written into the vector. Given thatector (©.1) is high up in the
related operation to expose an obtained type at compile-time. Ourclass hierarchy, this method is rather generic as we can sapply
cast capture mechanism using reflection is more general as it canvector as its argument.
capture type values at runtime, and also support a mix of cast We also provide method headers faerge andjoin . From
capture and cast testing. In our formulation of variant parametric the type annotation afierge, we can tell that values from the first
type system, the flow-based approach with casting has thereforetwo vectors are retrieved, and then they flow into a new result vec-
avoided the need for existential type system altogether. tor. For thejoin method, we retrieve values from the two vec-
Some readers may contend that the casting mechanism is thetors Vector (@Pair (X, ®Y)) andVector (HPair (DY, BZ)) be-
prerogative of programmers and may be too burdensome to write. fore building a new vectovector (©Pair (®X, ®Z)) that is joined

on theY type. The result's invariant type offers a strong post-
condition with read/write capability.

For the swap method, the two fields of @air object are
swapped. Due to both reading and writing, we require the invari-
ant typePair (©X, ®Y) and the expected value flowz:y AY<:X.
Based on the flows from the three assignments of the swap body,
we may obtain the following constraintsix<: T, ®Y<: X and
OT<: &Y, whereT is a local type variable (using type rules in Sec-
tion 5.1). These constraints are simplified to obtain the following
collected flow for the method body<:T AY<:X AT<:Y . Theswap
method type checks as the expected flow implies the collected flow:

YXY.(X<Y AY<X = JT.X<T AY<IXAT<Y))

Note that the local type variabteis existentially quantified, while
type variablex,y from method parameters are universally quanti-
fied.

3.1

Variant parametric type consists of a variance and a type. Its
grammar is introduced in Figure 4. We use variance annotations
®,®,© and ®, which correspond to read-write access, read-only
access, write-only access, and no-access, respectively. These ann
tations are ordered by the following relation that is denoteehy

but abbreviated te:: below:

Improved Variant Subtyping

O O<Ki6 B<i® Oo<i®

a1<iagy a2<:ia3

a<ix
a]<iag

A type t is either a type variable,, a variant parametric class
c(r1,...,7), the bottom typel or an intersection types:t. The
bottom type is used to hold theill value.

We allow finite intersections of types through the type operator
&. Semantically,t,&t> denotes the set of objects satisfying the
interface specification of both andt.. In a lattice of type values
with partial order defined by class inheritance (throwghends)
and interface mechanism (throughplements), t1&t2 defines the
greatest lower bound ef andt,. Our intersection types are similar
to the compound types proposed in [4]. Specifically, they can be
of the form|t, &]t2&...&t, [&W], Wheret; is a classts, ..., t, are
interfaces, andv is a type variable.

In our system, variant parametric types are used to support flow
analysis rather than access controls. As we focus on value flows
at each method boundary, we apply variance annotations primarily
to fields. The outermost variance of local variables is always
For fields, variance annotations are used to support covariant or
contravariant subtyping where possible.

The subtyping relations are denoted hy- and <:;, both ab-
breviated to<: as follows:

Fr<imo= Ft1<ito=1

The resulting constraintg (see Figure 4 for their grammar) are
kept in a disjunctive normal form. Instead of proving each sub-
typing directly, we collect a set of subtyping constraigtsvia
T—subtyping andt—subtyping in Figure 3.

The first fourr-subtyping rules support contravariance, covari-
ance, invariance and bivariance, respectively. The invariant case
generates a constraint from the semantical equivalence of the two
types ¢ = t2). Unlike the subtyping rule of Igarashi and Viroli
[17], our improved mechanism handles two special values in the
subtyping hierarchy, namely (for type of null) andObject (for
top of class hierarchy). These two types are special in that it is al-
ways safe to write a null (of_ type) into any location (even if it has
been marked for read-only access), and it is safe to redbgect
value from any location (even if it has been marked for write-only

T—subtyping

a1<:6 Fto<iti=
Fajti1<:6te=y

a1<:® Fti<ito=
Fait1<: @ ta=1

Fti=to=
_ F 7<:®t=true
FOt1<: O ta=y

—(a1<:D) —(a1<:0)

Fajt1<: ® Objectrue F a1t1<: © L=true
t—subtyping
Ft<:Objects-true
- TZ-<:TZ./:>7,ZJ¢, i=1.n
Fe(ri)img <ee{r)) i = Nizy ¥

class c1(V;)i%, extends ...c2(7])

Fl<:it=true F t<:t=true

Ft1<:ta=1 Fta<itz=-12

Ft1<:itz=Y1A\ha

e ity PVl
c2(pT)i_1=p c2lpT{)iy

e (m)ily <ealpr)’)i_, =>true

D= i<ty = FE<ita=>1)o Fty<it=)1 Fta<it=1)
Ft<:(t1&t2)¢’¢11/\w2 F(tl&t2)<:t:>’¢)1\/’¢)2
t1=v¢Vta=v¢ Fti<ito=1 F ta<iti=2

Fhi<ito=t1<:tg Fti1=to=11 A2

Figure 3. Variant Subtyping

access). We may also cast any typte either@Objector © L as itis
always safe to read an object or write a null value. This mechanism
is implemented by the last twe-subtyping rules.

In the second part of Figure 3, the first two t-subtyping rules
handle the bottom and top of the hierarchy. Subtyping between
types of the same class is decomposed structurally by the fourth
rule. The next two rules describe transitivity and the class in-
heritance relation. The class inheritance rule uses type promotion
mechanism that is described later in Section 4.1 Intersection types
satisfy the subtyping relations as in [29]. Subtyping relations that
contain type variables are not simplified further and preserved in
the resulting constraint. Semantic equality=tt>) is given by the
last t-subtyping rule. In summary, from the subtyping relations be-
tween types, we generate a set of subtyping constraints (on type
variables). Note that in the following sections, we will use:r
as an abbreviation fap, where- 7 <:mo=1).

4. Core Language

We introduce a core language to ease the formulation of static
and dynamic semantics. This language can be viewed as a result
of translation from full Java language prior to type checking. For
ease of presentation, we omit features that are related to static
methods, exception handling, concurrency and inner classes. (Our
implementation handles all features of the Java language.)

Our core language is named Variant CoreJava, and summarised
in Figure 4. We use the suffix notatign to denote a list of (zero or
more) distinct syntactic terms that are suitably separated. Both class
and interface declarations are supported using the same syntactic
grammar termdef As with Java, the main difference is that inter-
face definitions do not have fields, and are defined using abstract
methods (without body). Furthermore, while we support multiple
inheritance, it is of the same restricted kind as that supported by
the Java language. Each class may extend from only a single su-
perclass but may implement multiple interfaces. In our language,
the declaratior1ass c(V*) extends gc;..gc, assumes thafe; is a

Programs
P ::= def*
def::= class c(V*) extends gci..gcn where Yin,
{(7 f)* meth‘}
gc:i=C(m1, .., Tn)
meth::= ¢ | ¢ mn((¢t v)*) (v}) where ¢ {e}
wu=v | u.f
ex=mnull | w| w=e | {tv=e1; e} | e1;e2
| new c(t*)(v*) | if v then e else ez
| whilevdoe | vo.mnv*)(t*)
| (o | {o1 = (o:)
Variant Parametric Types
To=oat
=wv | {11,..,mn) | t&t | L
ax=0] @& | 6 |®
Incomplete Variant Parametric Types
Tu=V | @s
su=c{my,.,mn) | s&s | L
Subtyping constraints
Y= t1<ita | YAY | true
Class Invariant
Yinw = V<ue(m*) | (7)<:i V| Yino Ainy | true
Figure 4. Syntax ofVARIANT COREJAVA

class whilegces..gc,, are essentially interfacesmplements is also
represented bygxtends for easy presentation). Each class decla-
ration captures a class invariant,, that is expected to hold for

all newly constructed objects of the class. This is being used to

specify suitable class lower and/or upper bounds for type variables.
Since our system is based on use-site variance, the class fields type

4.1 Class Parameterisation and Inheritance

For class declarations, an important decision is which fields are to
be parameterised and how the class inheritance mechanism is to be
supported. In general, each class declaration should be written in
the following manner:

class ¢l (V;..

m f1;

Vi) extends c2 (#1.. #s) where tin, {

Tm fm;

}

where eacH{V;}7_, originates either from the fields of the current
class{r;}™, or from the arguments of its superclags,}s_,.
{V;}7_, are variables corresponding to types with variance. For
instance, the following non-generic declaration€efl andPair
classes:

class Cell {
Object fst; .
class Pair extends Cell {
Object snd;
}
can be parameterized as:
class Cell (A) {
A fst; .
class Pair (A,B) extends Cell (A) {

B snd;
}

The variance of the field&st andsnd is governed by the vari-
ablesA andB. Given the typePair (@Int, oint), the fieldfst is
covariant and the fielend is contravariant.

4.2 Type Promotion

There are some situations where the variance of a class field cannot
be specified at use site. In the following example, the variance
of the fieldsndP does not have any correspondence in the class
parameters\,B,C and remains unknown after instantiation of these

and the arguments of class inheritance have incomplete variance aparameters.

declaration-site (denoted lyyandV'). Section 4.1 describes the an-

notations of class declarations with incomplete variant parametric

types.
Each method declaratiometh contains a constraing which

captures the expected value flows for its type variables. It also
specifies method type parametéss) in order to support modular
type checking. This set of type variables is automatically inserted
by our compiler.

class Triple (AB,C) extends Cell
Pair (B,C) sndP;

A

The compiler inserts a special variance marketo represent the
unknown variance of fieldndP:

class Triple (AB,C) extends Cell
@Pair (B,C) sndP;

GV

We use an expression-oriented language, where method body 3

is denoted bye. Local variable declaration is supported by block
structure of the form{t v = ej;es}, With e2 denoting its result.
Each object is always built with an invariant typéot*) via the
constructnew c(t*)(v*). Our core language also supports a full
casting mechanism vi&)v, wheret can be an arbitrary variant

Note that the source program does not contain any variance
markers. We use them to explain how incomplete (or unknown)
variance of variant parametric types are computed to either
®. This process is known agpe promotionand can be used for

type. In addition, we support a novel cast capture mechanism Viaincomplete variant parametric types from field declarations and

{v1 = (t)v; e}, wheret is an invariant type with unknown type
variables that may be captured at runtime and used ifihese
special features will be described in more detail in Section 6.

For simplicity of presentation, our core language represents
primitive types (such agid , bool) by their corresponding classes
(such asvoid , Bool). In our implementation, we handle primitive

arguments of class inheritance.
The type promotion is defined using the relations
pEm=pT pks=pt

wherep is a substitutioiV’ — 7] from class declaration parameters

types directly, as elaborated in Section 9. For soundness reasonsy to variant parametric types. The typesr ands may contain
we treat arrays in the same way as other classes (unlike Java 1.5unknown variance». The rules are described in Figure 5.

which assumes arrays to be covariant).
In the subtyping constraints, disjunction is supported internally

as it may be generated by subtyping relation for intersection types.

The second rule promotes the unknown variagcéo either
@ or ® depending on the predicaie/(t) wheret is the type ob-
tained after substitution. Predicaite/(t) returnstrue , when all

are the current variant types for the class fields. The relation
is defined in Figure 6. Note that this relation invokes the subtyping

pEs=pt a=ifinv(t)then © else ® relations defined in Figure 3.
pEV=ppV pEQs=pat
pEmi=pT i=1,n pbEsi=pt; 1=1,2
pbc(my, .mn)=pc(r1,..Tn) pE s1&so=p t1&ta F®L<iil1=cinvtrue 1 <:®t=>cinvtrue
. a= o ‘ [S] ‘@ . [. [. [. [.
inv(®t)=true ———~ ' inv(v;) = true t<ti=1 Ft1<it=1h <=1 Fti<it=o
Inv(aL)—false F®t<:it1:>(:invwlvw2 Ft1 <5i@t:>cinvwlvw2
inv(c(r,.m)) = /\ inv(r) inv(ti&ete) = J\ inv(t;) =00 F<h=y a=®|0 Fh<it=y
i=ln i=1,2 Fat<:it1=cino?® Ft1<sat=cinvy
inv(c()) = true inv(L) = true F ol = einot)?

H /\ '¢%n1,:>cirw /\ '¢l
Figure 6. Class Invariant

Figure 5. Type Promotion

To illustrate the use of these bounded invariants, consider a
class declaration fo€ell (X) with an upper boun&<:Num. For
declarations of the forncell (Int) andCell (ST), the relation
=inv generates thet<:Num andT<:Num, respectively. The first
constraint reduces tioue , while the second constraint contains a
type variable and will be checked later for satisfiability. As another
example, forCell (©Object) the relation=;,., fails as the upper
bound is violated. Correspondingly, for read access, we support
Cell (@Int) andCell (®Object), but notCell (pString) since
noString objects can be read from tiembounded field.

The class invariant is accumulated recursively from all the su-

variances fromt (if any) are ® andfalse otherwise. Given
Triple (@Int, @Int, @Int), the type of fieldsndP is com-
puted as followsp + @Pair (B,C)=-,®Pair (®Int, Int) where
p=[A+— @Int B+~ @Int ,C+— @Int]. As another example,
givenTriple (®Int, @Int, @Int), the type of fieldsndP is com-
puted as followsp - @Pair (B,C)=,®Pair (®Int, ©Int) where
p= [A»—» ®Int .B— @Int ,C+— GInt]

Another application of type promotion is for recursive fields of a
class. The recursive fieltext of the clasgist has anincomplete
variancep as follows:

class List (A) extends Object { perclasses, as shown below:

A val;

@List (A) next; ... [cINV]

} class c(V;)[" extends(cy (mik) ;<)i _ where ¢in, {..}EP

p=[Viemilty phei(min)ili=pt - phinv=cinot
cinv(cy (13) 1%,)=t Acinv(t)

The variance of the fielshext is incomplete at its declaration
site and can be promoted to eitheror &, depending on how
its underlying type parameteist (A) is being instantiated at the
use site. For example, whenis instantiated taX, the variance

of the next field will be promoted tod via p - @List (A) =, 5. Variant Type System

oList (6X), wherep = [A — ©X]. On the other hand, ifA is Variance annotations of programs are used to support flow analysis
instantiated tooX, thenp = [A — ©X] and the variance of the for more accurate generic types. We verify the flow of values
next fields is instantiated t®X as follows:p - oList (A) =, through the following typing relation:
GList (OX).

Our type promotion is a refinement of that proposed in [17]. QFe:aty

First, we allow promotion t@> whenever possible while Igarashi

and Viroli considered mainly the promotion of nested types with The relation is for type checking, and assumes thétype envi-
_Seco_nd, we consider type promption fpr only field access and f_3|aSSronment),Q (type variables in scope) ang (type with expected
inheritance where the outer variance is dependent on the varianceariance) are given whilg is the collected flow constraint. Syntax-

of the underlying type. In contrast, Igarashi and Viroli focused (directed rules for various language constructs are given in Figure 7.
on the promotion of nested types of arguments/result for method Qur type system is flow-insensitive as every location (variable,
declarations, which need not be handled in our approach as thesgyarameter and field) is given a type that never changes. In our type
types are fully specified in our method declarations. system, each object of type can be placed in a location of type

to, providedt; <:to. The type of a location is therefore a particular
type viewof its object. This type view of an object may be changed
The class invariant;,,, is used to capture the lower and upper by upcasting (via assignment or parameter passing) or by downcast
bounds for the parameterised fields of each newly created objectoperation that is checkable at runtime. The following rule shows

4.3 Class Invariant

of the class. These bounds are of the foxmay (1) <:; V <:;ca (7). how to type check an assignment expression:
Class invariant may also support F-bounds when varigtbecurs

in the parameters of classes andc.. If unspecified, the default [ASSIGN]

lower and upper bounds ateandobject, respectively. An upper at=GetTypél',w) a<:© [;QFe:dty
bound invariant on a write-only field restricts the class of the object T;QF w=e: &Void, ¢

that can be written to the field to be subclasses of the bound, and a

lower bound invariant on a read-only field restricts the class of the Flow-in or write-onlyo is mandated on the left-hand side) (vhile

object that can be read from the field to be superclass of the bound.flow-out or read-only® is mandated on the right-hand sidé. (
We use the relations.;,, to reduce bounds from the class To highlight how these flows are enforced, we present the rule for

invariant to a constraint form: [V; — 7;]%ine=cinv®, Wherer; variable and field access (stands for eithes or v. f):

[NULL] [LocAL] [SEQ]
V=T+{v:0t} T;QFe1:®t, 1 I';QF exuT, 2 QFern®t, 1 TQF ezt o
IQ+Fnull : @ l<iT T;QF {tv=e1; ea} :: 7,01 A2 Q¢ er;exnt, 1 Aha
[conD] [WHILE] [PROG]
I'(v)<: ® Bool I'(v)<: @ Bool Fdes InheritanceOKdef,), i = 1..n
QFer o7 T5QF ez 7,12 QFet Faer def, i =1.n

I';QF if v theneg else eg :: T, Y1 AY2

[cAaLL)
o= Wie il T,
to ‘ t mr((ti vi)g:1)<vl,‘1{> where TZJ‘.GT(/)
1 = Ny Tl <ip(@t) Ap(@t) <o

I'; Q F while v do e :: BVoid,

vars{m; }1_ u(varsUy_q {&i k) C{X

Fprg def_;

[cLAsS]

c1Fmernmeth,i=1..q

F; Q = ’U(,)'mr(vll PRRT] ’U(,l)<t1k> T 1/11 /\Pd’

[INHC]
def= classc1(V;)?_, extends cp(7f;)]_,..where..{fd* meth ,}
(3meth- methe ca(7;){_; .. A name(meth) = name(meth))

= I—Overrid?sOI(meth,metﬁ i€l.p

Faep classci(X;);~, extends (ék(frzkﬂl:kl)];:l where Yin, {(m; fi)l_, meth—1 4}

[OVERRIDE]
meth = to | ¢t mn((t; v;)t_;)(V*) where ¢1 {e1}
methy = £o | £ mn((¢; v;)5_,)(V*) where ¢ {e2}
VL:vars(fo)—vars(t()) = t0<:£(]:>1ﬁ HVL~(’¢1/\’¢)2 — 1[11)

t InheritanceOKdef)

[FIELDS|
class c1 (V)i extends co(7;);_q..{(m} fi)i™ ..}
p=[Vin]l, prkrl=pr/i€l.m pk fty=p7] i€l

 OverridesOKmeth , meth)

[GetTypel] [GetTypeZ]
at=GetTyp¢l', v)
7=I'(v) t=c(mi)i_, (7f)efieldsd () ;)

fields(c1 (7i);—q) = [(7] fi)]{2, HieldSca(7])i_)

Figure 7. Variant Type Rules

T=GetTypél', v) T=GetTypél’, v.f)

[VAR—FIELD

T1=CetTypél’, w) F m<iT=
QFw: 7,9

5.1 Modular Flow Verification

We design a variant type system that can be verified in a modular
fashion. Each method declaration is given suitable variant type
annotations for its parameters, result and receiver. A “may” flow
constraintp is specified at the header of each method declaration.

To retrieve the types of the variables and class fields, we use the This may-flowspecification captures all possible flows that may

auxiliary [GetType]rules from Figure 7. The current type of w

is retrieved from the type environment Further, the rule checks
thatr; is a subtype of the expected variant typeThis supports a
flow-out from the variablev.

For object creation, we ensure that each object is constructed

with an invariant type using (ot;){_; . A type is said to bénvari-
antif each variance on its immediate fields is marked witiNote
that the views of nested fields, namely .., ¢, from ¢ (©t;)7_;,
may still be of variant types. Note that the variance of all class
fields (including those which require type promotion) returned by
fieldsis ©.

INEW]
vars{ti}legQ to=c<@t¢>3:1 (@t; fi)lezﬁeldqto)
Fdto<it=Y0 I;QF v, i @t;ﬂ/)i i=1.p
I;Q Fnewce(ts)!_ (v, ..,vp) = 7, AL i Acinu(to)

occur in the method'’s body. The type checking rule for a method
is formalised as follows:

[METHOD)]
chkRecv(en,tg) T={v;: & t;}r_;+{this: @ to}
1=\ \P_, cinv(t;)Acinv(t) 11 #false
Q={V*} vardy)CQ vargI,t)CQ
DiQFEe: @ty Vi=varg(ye)—Q ¢ = Vi
cn Frneth to | t mr((tl Ui)f:1)<V*> where 7/) {6}

We first construct an initial assumed flow constraintthat is de-
rived from the declared may-flow specificatign class invariants
for each parameter, and resplf_ cinv(t;) Acinv(¢), The initial as-
sumed flow constraint must be satisfiable, thatjis¢false. Fur-
thermore, we collect the flow constraint of the method body using
T;Q + e : ®t, 2, Whereys captures all flows that may occur in

For the purpose of constructing invariant types, the type variables the method body. To prove the correctness of each declared flow

in {t;}7_, must be instantiated from. The class invariantinv(to)

constraint, we perform a subtype entailment on the flow constraint

captures the specified upper/lower bounds on fields that must bewith V; as local type variables using; = 3V;-». If this entail-
satisfied for every object of the class. When such fields are updated,ment holds, we have successfully verified the flow specification of
we statically ensure that their bounds are never violated. Given ana given method declaration. We also checkifthe given type of

instantiated class type, the rulEIELDS] returns the variant types
of the class fields using type promotion if necessary.

Local variable declaration is marked for read-write access via
v Ot as shown in the ruleLfOCAL. The rule for method call
[Call] collects the flow-in for receiver and arguments, flow-out
for the result and the method precondition.

this , is compatible (no stupid cast) with the current class via the
predicatechk Recv(cn, tg) = cn{Ot*)<:to.

Method overriding is checked by th®©Yerride] rule. For
safe function subtyping, we require each overriding method to have
weaker or equaflow specification compared to the overwritten
method.

5.2 Soundness castif—(Fto<:t vV Ft<:to). However, in the presence of multiple in-
heritance with interfaces, a class and an interface may be unrelated
but a valid downcast is still possible if the actual type is a subtype
of the two. Though it is possible to identify stupid cast with a more
complex test, namely(3X - X#£A 1L AX <tAX<:tp), we avoid it for
simplicity. Instead, we only check to ensure that the type variables

. . used int have come fron@. Our type rule to support a variant cast
where TT and - denote runtime stack and heap, respectively. gperation is given below:

This evaluation may yield three possible runtime errors, namely

E = Error-Null | Error-Cast | Error-Type . The second error is due to [cAST]

cast operations guarded by runtime checks inserted by the compiler. ato=T'(v) a<:® varst)CQ
The third error is due to an object of the wrong type being writ- TQF (o = 7 dt<ir
ten into a location with some expected static type. For well-typed ’ T ’
programs, this last error can never happen. The progress theoremwhile casting is used to check a specific type for an object, we
states thaError-Type cannot occur while the type preservation the- often have to deal with objects of unknown types. For example,
orem shows that the type of an expression is preserved with eachwe may have an object with a static typiet (©A), and we may
reduction step. We outline the two theorems below; details of proof be interested to know its actual invariant tyiget (©T), whereT
may be found in Appendices A, B and C. is an unknown type. To help identify the invariant type of a given
object, we introduce a&ast captureconstruct based on reflection
mechanismi{v; = (t)v ; e} The following rule shows how to type
check the capture construct:

The soundness of our type system can be proven by relating to
dynamic evaluation semantics of the form:

(I, @) [e] = (IT', ') [€]

THEOREM1 (Progress)Let I" be the environment mapping pro-
gram variables to ground types.If =, Q + e :: 7,4 and
I;3;Q; 4 |= I, =, then either:

e cis avalue, or [CAPTURE]
e (II, w) [e] — Error-Null | Error-Cast, or ac(ri)iy =T () a<® t=c(OVy)i—, {Vi}, NnQ={}
e there existl’, @', ¢’ such that(IL,) [e] — (I, ') [¢/]. DQFw ot Q=QU{Vi}iL, T;QiFe:x¢n

Note that the type rules are extended to include store typing D@ F vy = (vse} s 7,01/

I'; 334 |= 11, = denotes a consistency relation that relates static and Note that: is an invariant type of the form(@V;): ¢ should have
dynamic semantics. The following theorem states the preservationine same class type aswhile thecaptured type variables; stand

of type during dynamic evaluation. for unknown types. Each; can be used in the expressiewith its
THEOREM2 (Preservation)Let I’ be an environment mapping flow captured by the collected flow(Av2). _
program variables to ground types. If The flow of captured type variables should not cause addi-

LY Ok e tional restriction or generalization at the method boundary. We next
i5;QFenT present how the type system ensures the correct use of captured
0@y EILw type variables.
(IL, @) [e] — (11, &) [¢] The actual typet obtained via reflection is guaranteed to be
Coa e A more precise tham’s static type,I'(v). We call this guarantere-
then there exists, and@ such that flection assumptiar-or each method, a relatiah- e =¢ Ve, vc

I — diff(e, &) = I — diff(¢, e) collects captured type variableig;, and their reflection assump-
$O% tions, v ¢ as follows:
f‘;f);@ Fé:: 7,121
N A N ato=I'(v) Ht<:ito=1
IS0 Ay =1L . X=varst) T'Fe=cV,¢1
Functiondiff(e, ') returns a list of local variables that appeatein Ik {v1 = @t)v;e} =¢c VUX, YpAY1
but note’ .

The method judgement is modified to exclude captured type
variablesV from the local type variable¥;. Additionally, the

6. Casting and Cast Capture expected flowy, is strengthened with reflection assumptiens
While a key goal of a generic type system is to provide precise

information to eliminate unnecessary downcasts, there remains al- [METHOD-WITH-CAPTURE]

ways the need for cast operations to support the class subtyping chkRecv(en,to) T={v;:: @ t;}_ +{this: @ to}
mechanism. Furthermore, the introduction of generics and vari- LFe=cVo, o pi=ypA AL, cinv(t;) Acinv(t) Ao
ance has complicated type casting as these operations must handle Q={V*} varfy)CQ varI,t)CQ 1#false

type variables and nested variant types. For example, cast opera- IiQFen @t Vi=varsye)-Q—Vo 1 = 3V
tions may target nested types, suchvastor (®Vector (BNum), en Fmetn to | £ MN((E; vi)i_;)(V*) where ¢ {e}

or those with type variables, such¥ector (®X). .)
However, existing solutions that support casting in Java 1.5 The proper flow of captured type variables is then ensured by the
are restricted in that they use cast checks on the outermost typentailment from the above rule.
constructor only [37], and rely on unchecked warnings that may
cause runtime errorg(g, when a cast to type variable occurs). The
only system that supports cast operations fully (but for parametric
types) was proposed by Viroli and Natali [39]. Their technique can The cast capture mechanism can also be viewed as a downcast to
be adapted to handle arbitrary variant types. the object’s invariant type. Unknown types that are captured (via
In the presence of single inheritance, we can classify each cast-reflection) may be used in the program code, as shown in the ex-
ing relation fromt, to ¢ into three categories: (1) safe upcast if ample below:
Fto<:t, (2) downcast with runtime check fift<:to, and (3) stupid

6.1 Cast Capture Examples

void addNode(List (©A) y, B z) where B<:A { 2. The resulting entailmentVg-(v1 = AL, X;<:Y;) is equiv-

List (©S) v; List (©S) w; _ alent to A" ; (VVe-(¢1 = X;<:Y;)). Each entailment can
{v = (List (©T)) y; w = new List (T)(); be proven by contradiction using the falsity of the formula
wval =z ; wnext = v.next ; v.next = w; I VVg- (31 Anotsut{X;, Y;)), wherenotsulft: , ¢2) represents nega-

Though we do not know the exact type pf we can use a cast tion of subtyping relation.

_capl)turﬁ Or("fifK. ©T>) to obtain its |n\\//\?r|ant t);]pe. Corresdpond- Our constraint solver implements the variant subtyping rules
'ng y’bt .Iedre ection assun;ptlon AT . We ulse t edcaFture YPe (from Figure 3). Its deduction mechanism detects falsity based on
T to build aList (©T) node, writez to w.val , and also recon- 4 o constraints of the form <:t, andnotsult , t2). Our algo-

struct pointers for the linked list in a type-safe and yet generic way. rjthm is a sound approximation of the subtype entailment problem.

Fc;]r th's exgmplef, the 'S'“‘;"ll assume_g flqusz:A _/\A;:T) ’ The deduction mechanism can be further extended by the tech-
wherebyB<A Is from the flow specification ana<T Is the re- niques ofcase analysigndinductive proving However, from our
flection assumption. This initial assumed flow implies the collected experience working with large sets of Java library and application
rovg clonstrq]lvntals-wzk,] vl\:jhefre ¢?];(S<:T /\r<:s AB<:S) . Hence, codes that have been annotated and checked with variant paramet-
modular verification holds for this example. ric types, we have yet to encounter real examples which require

The same cast capture mechanism may also be used to captur
an unknown invariant type, enabling a swap of elements within the
same collection — without knowledge of its type. Consider:

Such extensions.

8. Experimental Results

V‘\’,'Sctffr”a?g’g(\ﬁcm’ (®) vint i, int] { To test the utility of our flow-based variant type system, we eval-
{w = (Vector (OT)) v; uated our prototype on a set of Java applicafias used in [10,
S vl = w.elementAt(i); 14]. These applications make use of library classes from pack-
S v2 = w.elementAt(); agejava.util , which we annotated with our variant paramet-
w.setElementAt(v2,i); w.setElementAt(vl,j); }} ric types. We counted each method declaration with flow specifi-

cation, each class declaration with type parameters and each cast
capture as a line of annotation. On average, these annotations con-
stituted about 5.5% of the source code, which may be considered a
reasonable price to pay for better reuse of type safe generic code.
Due to modular type checking, the time needed to verify type-safe
generic code was less than one second for each library code and less
than 30 seconds for each application code. We expect that the time

Note that input parameter uses a bivariant typ&ector< &>,
which can be used to support an argument of an arbitvacyor
object. The initial assumed flow ig; =true , while the collected
flow is 3S-92, Whereyo=(S<:T AT<:S) . Hence, the entailment
P = ISY2 holds.

An example of a method that does not type check is presented

below: can be reduced by using a specialised constraint solver. Currently,
Vector (@Y) fool(Vector (®) v) { our prototype is based on a meta constraint handling system writ-
Vector (®S) w; {w = (Vector (OT)) v; w } } ten in CHR (which compiled to a Prolog program under IC-Parc’s

. . . i ECLiPSe system [2]).
The initial assumed flow ig;=true while the collected flow is

o=T<:Y . Note that neitheT (captured type variable) nar(global

type variable) are existentially quantified frap. The entailment Library Prog. | Java 1.4 Javals VPT
1 = 3S-1po does not hold, since the captured type variabie- Lines | Casts | Casts [Warnings Casts [Warnings
troduces an additional flow at method boundary. As another exam-| AbstractList | 909 1 1 0 0 0
ple, the following definition type checks as the collected flow from | AbstractSet | 162 1 1 0 0 0
the method’s body (after elimination of the local type variad)lés ArrayList 623 2 8 9 1 0
bo=true HashMap | 1103 7 9 20 3 0
HashSet 231 2 4 3 1 0
Vector (®) foo2(Vector (®) v) { Hashtable 1154 10 14 31 7 0
Vector (©S) w; {w = (Vector (OT)) v; w } } LinkedList 814 2 4 5 2 0
Properties 925 8 8 1 0 0
. Vector 1062 2 9 9 0 0
7. Implementation Total 6983 | 35 58 | 78 | 14 0
We built a prototype for our variant parametric type system and
carried out initial experiments to validate its feasibility. Our system Figure 8. Results for Library Code

was built using the Glasgow Haskell compiler [27], with a con-
straint solver (for handling subtyping constraints) implemented us- Figures 8 and 9 show the experimental results for representative

ing Constraint Handling Rules (CHR) [13]. _ classes from thgava.util package and application code (in
Our constraint solver employs a two-step algorithm to prove the terms of remaining casts). We counted the number of casts in Java
non-structural subtype entailment of the forir; - (1 = 3Vr-42). 1.4 code (non-generic), Java 1.5 (annotated with wildcards) and our

Note thatyy, 1) are conjunctions of subtyping constraints , while system (VPT - annotated with variant parametric types). The Java

Ve andV; are sets of type variables. Even though the entailment 15 compiler could not statically check some operations (especially

from the METHODrule may contain disjunctions, it can be re- those related to raw types and casts to type variables), and issued
duced to entailments of the above form. unchecked warnings since these operations cannot be verified by
JVM runtime. Therefore, it is the programmer’s responsibility to

1. We eliminate the local type variables (based on their upper ensure that all unchecked operations are in fact safe.

and lower bounds) fromp, to obtainy,=A"_, X;<:Y; using

techniques similar to [32, 38]. 1 - — .
. . . For more detailswww.junit.org, www.cs.princeton.edu/
To support the language’s semantics a local type inference sim- ~appel/modern/jjava/iLex/, www.cs.princeton.edu/

ilar to [30, 23] is employed to identify appropriate instantiated ~appel/modern/java/CUP/, www.spec.org/osg/jvm98/,
types for local type variables or type parameters. vpoker.sourceforge.net, telnetd.sourceforge.net

9. Extensions

Application | Prog. | Java l.4 Java 1.5 VPT

Lines [Casts | Casts Warnings Casts \Warnings In this section, we present some features omitted in the main pre-
DB 842 19 1 0 0 0 sentation for brevity.
JUnit 5886 54 30 1 15 0 The hierarchy of primitive types forms a separate lattice from
VPoker 6792 36 8 0 6 0 reference types. Furthermore, itrist the case that <:p<:Object
JLex 7260 69 12 3 0 0 for each primitive typep. Due to such differences, primitives are
Jess 10639 | 95 34 0 12 0 excluded from use as type arguments for generic classes in Java
TelnetD 11314 46 8 0 6 0 1.5. Furthermore, the type erasure algorithm for the parametric
_Jri‘t’;C“p é}lgg? ggg 1951 g 16054 8 program will transform each parametric field into @hject type

for backwards compatibility. This is invalid if primitive types are

. - used as type arguments.
Figure 9. Results for Application Code We now show how primitive types can be used as type argu-
ments for generic classes in our system. First, we need to add two
constraints to distinguish reference and primitive types, as shown

To summarize, our method can eliminate a significant portion P€lOW:

(on average 87.9%) of the casts from non-generic Java 1.4 applica-
tion code and 45.5% of the casts from wildcard-generic Java 1.5 ap- ¢u=--- |ref(t) |prin(t)

plication code. We have also made improvements for library code as these two families of types are disjoint, we add the following
by eliminating about 60% casts from non-generic Java 1.4 code CHR irrevocable rule:

and about 75.8% casts from the wildcard-generic Java 1.5 code.

Since our system fully supports casting for variant types, we can ref(t) Aprim(t) < false

verify the unsafe operations for which the Java 1.5 compiler gener-
ates unchecked warnings. Note that Java 1.5 libraries contain more

casts than Java 1.4 libraries do, since Java 1.4 containers are basegub?eci%ndrhvgshgi?grﬁoﬁﬂ?ﬁ%’gmvﬁr:ypﬁzrlgrthe n;;’gt\g e;nant
on Object type instead of generic types. As expected, Java 1.4 yping : yping clnyd

application code requires more downcasts compared to Java 1.58 type (reference or prlmm\{e) Wh'.@ObJeCIand@L d?“"te only
code. reference types (that are still equivalent, namel@bjec=c_1).

The subtyping relation is changed accordinghObject:®¢ still
holds while ®t<: & Object does not hold anymore. Furthermore,
we allow L <:t andt<:Objectif and only if ¢ is not a primitive type.

DB To support these changes, we modify the main variant subtyping
' rules from Figure 3 to the following:
——T——
Junit a%@ a#t®
F at<: ®Objecteref(t) F at<:ol=ref(t)
|
Vpoker = a1 ® —(a1<:®) a1Z ® —(a1<:0)
ot 4 F Objeck:ta=) Fio<il=
EEaasss———— " ; : :
Jlex (cc::;'s) F oty <.@t2:>d)/\ref(t1) = a1t1<.@t2:>w/\ref(t1)
! Java 1.5 FLl<:t=ref(t) Ft<:Objectref (t)
e — .)
Jess (costs left) Ft<:l=t<:1Aref(t) FObjeck:t=-Objeck tAref(t)
=] uVPT
Tl I (casts lefr) Programmers often make use of tinetanceof test on the
=] runtime type of an object prior to some operations. Due to flow
EE— and path insensitivity, the type system is currently unable to take
JavaCup — advantage of such runtime testing of types. To help eliminate more
cast operations, our compiler translates each program fragment of
0 50 100 the form:
) N o if v.instanceof(t) then el else e2
Figure 10. Remaining Casts for Application Code

to use a special program construct with freghvariable:

. . . if v.instanceof(t) then let v oit=v in [v —Voplel
Figure 10 shows a chart that visualises the percentage of re- glse e2
maining casts in each benchmark written in Java 1.4, Java 1.5 and
our VPT. Java 1.4 which contains the casts from the original appli- This construct is part of our core intermediate language, and it is
cation code serves as reference. generated prior to type checking. It is valid on the proviso that any
Note that the casts eliminated using our type system measureassignment inte is a subtype of the more specitic A type rule
the improvement in program safety. Current Java implementation corresponding to the new language construct is shown below:
(which translates parametric programs sjipe erasurgwould re-

introduce casts at the bytecode level. While such re-admitted casts [LET-INSTANCEOF]

may cause runtime overheads, they are known to be type safe and e1 = (letwvp ::t=vine)

will never fail at runtime. Obviously, a better solution is to support IV=T+{vo:0t} T;QFeur, 1 T;QF exuiT, b2
variant parametric type at the bytecode level and we look forward [;Q b if v.instanceoft) then ejelse ey :: 7,1 Athy

to this scenario.

Flow-sensitivity may also cause some loss in type precision simple types, it is coNP-complete [15] and for recursive types it
(such that some downcasts cannot be statically verified) when theis PSPACE-complete [16]. Furthermore, they showed that non-
same local variable is used for objects with different variant para- structural subtype entailment is PSPACE-hard and is conjectured
metric types. To rectify this, we could use Static Single Assignment PSPACE-complete [16]. Su et al. [34] show the decidability of the
(SSA) intermediate form [8] which is known to give better flow- first-order theory of non-structural subtyping with unary function
sensitive analysis results. Conversion of programs to SSA form can symbols. Algorithms for non-structural subtype entailment (sound,

be handled in a preprocessing step, prior to type checking. butincomplete) were developed in Pottier [32], Trifonov and Smith
These techniques for incorporating path and flow sensitivity are [38]. While the decidability of non-structural subtype entailment
quite standard, and were also explored in [41]. remains an open problem, we use sound techniques based on these
previous algorithms.
10. Conclusion Our new approach is practically driven and can give better

eneric types. We have also augmented it with intersection types to
upport Java-like multiple (interface) inheritance. We have built a
prototype system based on a set of syntax-directed type rules. This

Software reuse has received much research interest for its boosg
to software development and maintenance productivities. Recently,

generic type has become a main thrust in supporting software reuseprototype is supported by a constraint-solver for variant subtyp-

In reusing Java code, _several works have proposed for refactorlnging’ customised using CHR. Furthermore, our system supports full
legacy Java programs into those that use generic versions of popular

) casting for variant types. Through a new cast capture mechanism,
container classes [10, 11,14, 40]'. . . we can use reflection to handle objects with unknown types in a
Other works try to achieve precise Java type inference results in

. ; > 7 type-safe way. Experimental evaluation indicates that more down-
the presence of parametric polymorphism and data polymorphism a4 can be eliminated by our approach, even when it is compared
in order to reduce the redundant cast operations [31, 1, 41]. The '

ey - . .~ against the state-of-the-art type system from Java 1.5. Our flow-
precision typically comes at the price of a whole program analysis. 5qeq approach to variant parametric type system is another step
Every time when an application code is analysed, the reaChabletowards better genericity for type-safe OO programs.
library code must also be re-analysed.

Variant parametric types attempt to increase language expres-Acknowledgments
sivity and code reuse by introducing another subtyping scheme,

based on the notion of variance. This idea originated from the struc- regarding the variant type system. We also thank Alex Aiken, Greg
tured virtual types proposed by Thorup and Torgersen [35]. Their Morrisett and Martin Rinard for providing useful feedback on this

work is the first to link access rights and covariant subtyping to work. Shenachao provided useful technical comments on the paper
the fields of each use of a class rather than the class itself. Igarashi : 9 P pap

and Viroli extended this concept to support contra- and bi-variance While Hong Yaw |mp|t_emented the_ Java-to-CoreJa_/a tr_anslator and
[17]. They also formalised the variant type system by mapping it hand-annotated_ a suite of Java libraries an_d application _code. We
into a correspondingxistential typesystem [17, 18] for Feather- ia;ISS?Jth%TtIZ g\lbe X'?elgggrr::% forramakgc;c;—(;ggﬂré%if{%rt;hggls i\f/[\ICerr cl)(m
weight Java. While Igarashi and Viroli's design faithfully models PP Y 9 9

the existential type system, it has been found to be too restrictive Microsoft Singapore.

by the designers of Java 1.5. One improvement made in Java 1.5 is

to allow each wildcard type to be opened without a corresponding References

close operation. This provides more flexibility for writing generic [1] Ole Agesen. The cartesian product algorithm: Simple and precise type
code, but weakens the link to the traditional pack/unpack mech- inference of parametric polymorphism. BECOOP ’'95: Proceedings
anism of the existential type system. Hence, even though a full- of the 9th European Conference on Object-Oriented Programming
scale language system has been implemented, the soundness of the ~ Pages 2-26, London, UK, 1995. Springer-Verlag.

wildcard type system is still under development (as of [36]). Other [2] IC-Parc at Imperial College. ECLiPSe Constraint Logic Program-

We are grateful to Atsushi lgarashi for clarifying many questions

than Java, a recently developed language Scala [24] supports vari- ming. http://www.icparc.ic.ac.uk/eclipse/.

ance for parametric polymorphism. In contrast with our approach, [3] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler.

Scala uses variance dclaration-site However, an earlier version Making the future safe for the past: adding genericity to the Java

of Scala has experimented with the use-site variance mechanism programming language. I@OPSLA '98: Proceedings of the

that is consistent with the original system of Igarashi and Viroli but 13th ACM SIGPLAN conference on Object-oriented programming,

without the flexibility of the wildcard capture. This was considered systems, languages, and applicatiopages 183-200, New York, NY,

to be too restrictive before the authors abandoned the approach. ~ USA, 1998. ACM Press.

Recently, generic types of C# [12] were extended wiblaration- [4] Martin Buchi and Wolfgang Weck. Compound types for Java. In

sitevariance following the design adopted for the language Scala. OOPSLA '98: Proceedings of the 13th ACM SIGPLAN conference on
Theoretical foundations of the variance have also been stud- Object-oriented programming, systems, languages, and applications

ied in the context of typed\-calculi, where type operators are pages 362-373, New York, NY, USA, 1998. ACM Press.

equipped with a polarity property [6, 33, 9]. These foundations have [5] Peter S. Canning, William R. Cook, Walter L. Hill, Walter G. Olthoff,
even been extended to handle higher-order functions, but are closer and John C. Mitchell. F-Bounded polymorphism for object-oriented

in nature to declaration-site variance, and have mostly been for- programming. IrConference on Functional Programming Languages
malised in only a theoretical setting, without practical implementa- and Computer Architecturpages 273-280, 1989.
tions. [6] Luca Cardelli. Notes about?.. 1994. Available at

In our paper, we have proposed a new approach based on flow http://research.microsoft.com/Users/luca/Notes/FwSub.ps.
analysis to support the variant parametric type system. We lever- [7] Luca Cardelli and Peter Wegner. On understanding types, data

age prior knowledge that has been accumulated for flow analy- abstraction, and polymorphisACM Comput. Sury17(4):471-522,

sis and entailment for non-structural subtyping constraints. Pals- 1985.

berg and O’Keefe [25] show the equivalence of flow analysis (g Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
and non-structural subtyping. Subtype entailment is known to be F. Kenneth Zadeck. Efficiently computing static single assignment
hard even for simple subtyping constraints. Rehof and Henglein form and the control dependence grapitM Trans. Program. Lang.

determined the complexity of structural subtype entailment: for Syst, 13(4):451-490, 1991.

[9] Adriana Compagnoni Dominic Duggan. Subtyping for object type
constructors. IfFoundations of Object-Oriented Languages (FOOL
1999) 1999.

[10] Alan Donovan, Adam Kiezun, Matthew S. Tschantz, and Michael D.
Ernst. Converting Java programs to use generic librarie@QRSLA
'04: Proceedings of the 19th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications
pages 15-34, New York, NY, USA, 2004. ACM Press.

Dominic Duggan. Modular type-based reverse engineering of
parameterized types in Java code.Pioceedings of the 1999 ACM
SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA '9pages 97-113, 1999.

Burak Emir, Andrew J. Kennedy, Claudio Russo, and Dachuan Yu.
Variance and generalized constraints for C# genericBrdgeedings

of the 20th European Conference on Object-Oriented Programming
(ECOOP) July 2006.

[13] Thom Fruhwirth and et al. Constraint Handling Rules.
http://www.cs.kuleuven.ac.begdtai/projects/CHR/.

[14] Robert Fuhrer, Frank Tip, Adam Kiezun, Julian Dolby, and Markus
Keller. Efficiently refactoring Java applications to use generic
libraries. InECOOP ’'05: Proceedings of the 19th European
Conference on Object-Oriented Programmidgly 2005.

[15] Fritz Henglein and Jakob Rehof. The complexity of subtype
entailment for simple types. IRroceedings of 12th Symposium
on Logic in Computer Science (LICS '9fages 352-361, June
1997.

[16] Fritz Henglein and Jakob Rehof. Constraint automata and the com-
plexity of recursive subtype entailment for simple type. Auo-
tomata, Languages and Programming, 25th International Collo-
quium, ICALP’'98 pages 616-627, 1998.

[17] Atsushi Igarashi and Mirko Viroli. On variance-based subtyping for
parametric types. IECOOP '02: Proceedings of the 16th European
Conference on Object-Oriented Programmipgges 441-469, 2002.

(11]

(12]

[18] Atsushi Igarashi and Mirko Viroli. Variant parametric types: A
flexible subtyping scheme for generid&CM Trans. Program. Lang.
Syst, 2006.

[19] Andrew Kennedy and Don Syme. Design and implementation of
generics for the .NET common language runtime.Pmceedings
of the 2001 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDpages 1-12, 2001.

[20] Karl Mazurak and Steve Zdancewic. Type inference for Java 5:
Wildcards, F-Bounds, and Undecidability. 2006. A note available at
http://www.cis.upenn.edt/stevez/note.html.

[21] John C. Mitchell and Gordon D. Plotkin. Abstract types have
existential type.ACM Trans. Program. Lang. Sysf.0(3):470-502,
1988.

[22] Bengt Nordstrom, Kent Petersson, and Jan M. Snittegramming
in Martin-Lof’s Type TheoryOxford University Press, 1990.

[23] Martin Odersky, Christoph Zenger, and Matthias Zenger. Colored
local type inference. Iithe 28th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languagesages 41-53, 2001.

[24] Martin Odersky and Matthias Zenger. Scalable component abstrac-
tions. InProceedings of the 20th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 20Q%ages 41-57, 2005.

[25] Jens Palsberg and Patrick O’Keefe. A type system equivalent to flow
analysis. Ii22nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languagepages 367—-378, 1995.

[26] Jens Palsberg and Christina Pavlopoulou. From polyvariant flow
information to intersection and union types. Tie 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languagespages 197—208, 1998.

[27] Simon Peyton-Jones and et al. Glasgow Haskell Compiler.
http://www.haskell.org/ghc.

[28] Benjamin C. Pierce. Bounded quantification is undecidable.
Information and Computatiqri12(1):131-165, July 1994.

[29] Benjamin C. PierceTypes and Programming Languagekhe MIT
Press, 2002.

[30] Benjamin C. Pierce and David N. Turner. Local type inference.
In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languaggsages 252—265, 1998.

[31] John Plevyak and Andrew A. Chien. Precise concrete type inference
for object-oriented languages. @OPSLA pages 324-340, 1994.

[32] Francois Pottier. Simplifying subtyping constraints.FAroceedings
of the 1996 ACM SIGPLAN International Conference on Functional
Programming (ICFP '96) pages 122-133, 1996.

[33] Martin Steffen. Polarized Higher-Order SubtypingPhD thesis,
Universitat Erlangen-Nurnberg, 1997.

[34] Zhendong Su, Alexander Aiken, Joachim Niehren, Tim Priesnitz, and
Ralf Treinen. The first-order theory of subtyping constraintsTtie
29th SIGPLAN-SIGACT Symposium on Principles of Programming
Languagespages 203-216, 2002.

[35] Kresten Krab Thorup and Mads Torgersen. Unifying genericity -
combining the benefits of virtual types and parameterized classes.
In ECOOP’99 - Object-Oriented Programming, 13th European

Conferencepages 186-204, 1999.

Mads Torgersen, Erik Ernst, and Christian Plesner Hansen. Wild FJ.
In Foundations of Object-Oriented Languages (FOOL 20Q%ng
Beach, CA, January 2005.

Mads Torgersen, Erik Ernst, Christian Plesner Hansen, Peter von der
Ahg, Gilad Bracha, and Neal M. Gafter. Adding Wildcards to the Java
programming languagdournal of Object Technolog®(11):97-116,
2004.

[38] Valery Trifonov and Scott F. Smith. Subtyping constrained types.
In Static Analysis, Third International Symposium, SAS{ges
349-365, 1996.

[39] Mirko Viroli and Antonio Natali. Parametric polymorphism in
java: an approach to translation based on reflective features. In
Proceedings of the 2000 ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applications
(OOPSLA 200Q)pages 146-165, 2000.

[40] Daniel von Dincklage and Amer Diwan. Converting Java classes
to use generics. IRroceedings of the 19th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applicationspages 1-14, 2004.

(36]

(37]

[41] Tiejun Wang and Scott F. Smith. Precise constraint-based type
inference for java. IlECOOP '01: Proceedings of the 15th European
Conference on Object-Oriented Programmipgges 99-117, 2001.

A. Dynamic Semantics

The dynamic operational semantics of Variant CoreJava is de-
scribed in small steps. Notations used are defined as follows.

Locations: . € Location

Primitives: k € prim= intWboolW float
Wnull Wvoid

Values: d,v € Value= (TyPrimx prim) & Location

Subs: u,p € Subs= TVar —4, Type

Store: w € Store= Location—, ObjVal

Variable Env: II € VEnv= Var —j, Value

Object values n € ObjVal= Typex (Fd—fpValue)

Type: t € Type

TyPrim consists of primitive types. A typemaintained at run-

time does not contain any variant information. If need be, it will be
treated as one with invariant annotationA runtime environment
11 is a finite map from program variables to their associated values.

A value can be a location referencing an object or a pair containing
a primitive value and a primitive type.

A runtime storew is a finite map from locations to object values. [ELFm]
An object value is comprised of its type and its field values. We v* CdomI) Q' CQ
write n. f to denote the value of the fieltlof an object;. When the ENQFenty Frlm=i
object is referred by its location we also write.. f to refer to the [;5;Q F rety(Q/,v*, T,€) it T, A

value of its fieldy.

We overload the functiotypeto accept (1) primitive value and [ELF] [Loc]
return the primitive type; (2) location and return the type of the I3%QFexrd T=3(0) Fr<m=y
dereferenced object; (3) object and return the object type; and (4) I3 Q k- reta(v*, e) i 7,0 LEQF T,y
object field and return the field type.

The variable environmert is such a stackable mapping. We [oBJ] [vALUE]
write TI[v/v] to denote an update of the value of the latest variable (O =n Fotr=y Fot<T=Yy
v in II to v. We writeTI + {v — v} to denote an extension of 3% QEnuTt9 [i5QF (t,6) =79
to include a binding ot to v, while IT — {v*} removes a subset
of the mappings. Similar notations are used for the update and en- Figure 13. Type Rules for Intermediates
hancement of object values and stores. In the case of store, we also
provide an abbreviated notaties{v /.. f] =4 1let (¢,£) = w(¢) in
w|(t,&[v/f])/¢]. Given an object value; = (¢, ¢), we haverlds(n) The static semantics for these intermediate expressions is shown in

=4 & Figure 13. _ _ _ _
We require some intermediate expressions for the dynamic se- The soundness of our static semantics relies on the following
mantics to follow through. Our syntax is thus extended from the consistency relationship between the static and dynamic semantics,

original expression syntax as follows: defined as follows:
dom(II) = domI') domw) =domX) Vi =varsy) —Q
ex=---|n|t|v]|reta(v',e) | retn(Q,v*, 1, €) Vv € dom(II) - Vp1 € Subs Jpr, € Subs
(domlpr) =V Ap=piroprL A (p(¥) =
The expressiottetq(v*, €) is used to capture the result of eval- (II(v) € prim = typgII(v))<:p(T'(v)))A
uating a local block, andet,(Q,v*,r,e) captures the result of (TI(v) € Location=
method invocation. The set of variablesoccurring in both result type(eo (I1(v))) <:p(L())))))

structures contain the local names and method parameters when en- o5 Qo =11,
tering local body and method body respectively. They are dropped T ’
at the end of the local/method body's evaluatiencaptures the | the above relationy;, is a ground substitution of local type
type of the result of method invocation, whereasaptures the set yariables occurring in the constraint and the composition of
of type variables declared in the method heagés an instrument substitutions is recursively defined ag; o p2)(v) = if (v € dom)
used to facilitate our soundness proof. . thenpz (v) elseps (v).
The dynamic evaluation rules are of the following form. The following theorem states the progress of well-typed expres-
sions.
(I, @) [e] — (I, @") [¢/]
THEOREM 1 (PROGRESS LetT" be an environment mapping pro-
We shall formulate the rules using an exception-style semantics gram variables to ground types. 3 Q - e :: 7,4 and
with three possible errors, namely I;%;Q;¢ = 11, w, then either
E = Error-Null | Error-Cast | Error-Type .
Whenever one such error is raised, the evaluation aborts. This
error occurrence can be stated usffige) [e] — E. The small-step ® (II, @) [e] — Error-Null | Error-Cast, or
dynamic call-by-name semantics is formalised in Fig 11, together o there exist’, =, ¢’ such that(IT, @) [¢] — (I, ') [¢/].
with some auxiliary functions in Fig 12.

e cisavalue, or

A proof of Theorem 1 can be found in Appendix C.1.

B. Soundness of Type System The next theorem states that each well-typed expression pre-
Before formulating the soundness, we extend the static semanticsServes its type under reduction with a runtime environment and a
of the language to include those intermediate expressions given instore which are consistent with the compile-time counterparts.

Sec A. In the process, we require introduction o$tare typing) .

to describe the type of each location. This ensures that objects | HEOREM 2 (PRESERVATION) LetI" be an environment mapping
created in the store during run-time are type-wise consistent with program variables to ground types. If

that captured by the static semantics. Store typing is conventionally ;S QrFent,v
used to link static and dynamic semantics. In our case, it is denoted Y@ =L w
by: (I,) [e] = (11, &) [¢]
¥ € StoreType= Location—sn Type then there exist§, 3 andQ such that
_ _ o) I — diff(e, &) = I’ — diff(¢, e)
Judgements in the static semantics will be extended with store SO

typing, as follows: B 0FesT o

EQFenTv DS Qi Ay =10, 5.

[D-Const] D-Var-FD [D-If-true

k has typet w=vlv.f v =readIl, w, w) II(v) = (Bool, true)
(I, @) [k] — (II, @) [(t, k)] (I, @) [w] — (I, @) [v] (II, @) [if v then ey else ez] — (II, w) [e1]
[D-Assign-1] [D-Assign-2 [D-If-false]
(I, w) [e] — (I, ") [€'] (', =@’) = upd(I1, @, w, v) II(v) = (Bool, false)
(I, @) [w =e] — (II', @) [w = €’] (I, w) [w = v] — (II’, w’) [(void, ())] (I1, w) [if v then e1 else e2] — (II, @) [e2]
[D-Blk-1] D-Blk-2]
(I1, @) [e1] — (I, ') [¢}] subTypétype(v), t) =0+ {v+— v}
(II,w)[{tv=-e1; ea}] — (', =’ {tv= e’l; e2}] (II,w) [{t v =v; ea}] — (I, @) [retq(v, e2)]
D-While-true D-While-false]
II(v) = (Bool, true) II(v) = (Bool, false)
(IT, w) [while v do €] —— (II, w) [e ; while v do €] (I1, w) [while v do €] — (II, w) [(void, ())]
[D-Ret-d-1] [D-Ret-d-2]
(11, @) [e] — (I, =') [e] ' =11 — (v")
(I1, @) [retq(v*,)] — (II', @) [retq(v*,e’)] (IT, w) [retq (v, v)] — (II’, w) [v]
D-Ret-m-1] D-Ret-m-2] [D-Seq-1
(I, @) [e] = (', @’) [¢/] subTypétype(v), t) TI' =TI — (v") (11, @) [e1] — (I, @) [¢]]
(I, @) [retn (Q, v*, t, e)] — (II', ') [reta(Q, v*, t, e")] (I1, w) [rety (Q, v*, t,v)] — (I, w) [v] (I1, @) [e1; e2] — (I, w’) [e]; e2]
D-Casf [D-Capture] [D-Seq-2
(I, @) [v] — (II, @) [v] (I, @) [v] = (AL @)] to = type(v)
chkCasftype(v), t) p = match(t, to) (I, ') = updIl, @, v1,v)
(I, @) [(t) v] — (I, @) [v] (I, @) [{vr = (8) v;e}] — (I, @) [p(e)] (IT, @) [6; e2] — (IL, @) [e2]
D-New] D-Call]
class ¢(X;)?_, -+ whereyp{ ---} € P v = fresh() v, =(v)) Vie {0..q} c(th)™ = type(vo)
wo=[ti/Xi]]_; v; =read(Il, @, v;) Vi€ {l..p} to |t mn((¢; vi)i=1..q){V") where) eb € mtdgc)
chk(u()) t; = type(vi) Vi€ {1.p} p=[t"/V"] chku(yp)) T =TI+ [vo/this][v:/vi]{_,
subTypéc(t;)d_,, e(ts)i_;) subTypétype(v;), u(t:)) Vi € {0..q}
n={(c(t)i_ {fim vt) @ =w+{t—mn} V' = {this} U{vi}{_, e=reta(V", V', u(t), u(ed))
(I, @) [mew c(t){_; (v1.p)] — (I, @) [1] (IT, @) [vg-mn(vy, .., vg) ()] = (I, @) [e]

Figure 11. Dynamic Semantics

read(I1, o, v) = II(v); upd(I1, @, v, vs) = subTypét, t2) =
read(IT, @, v.f) = v =TII(v); if =(F t1<:tz) throwError-Type ;
= I(v); if —(F type(vs) <:type(v)) true;
if w(t) = null throwError-Null ; throw Error-Type ;
@ (o). f; (I[vs /0], w); match(t, , t) = [t/t.];
Upd(IT, @, v. f, va) = match(c(t}), c(t)) = [t*/t}];
chk(¢) = v = TII(v); match(t’, t) = throw Error-Type ;
if =(F ¢) throwError-Type ; if @ (t) = null throwError-Null ;
true; vy =w().f;
it —(F type(vs) <:typgvy)) throwError-Type ;
chkCasfty, t2) = (IT, w(vs /(). f1);
if =(F t1<:t2) throwError-Cast;
true;

Figure 12. Dynamic Semantics:Auxiliary Definitions

Functiondiff(e, e’) returns a list of local variables that appears in
but note’ :

diff(e, e’) =4qf let Ist local(e)
Istl local(e’)
n = length(Ist) — length(Ist1)
in (take(n,lst) 9n > 0> [])
([l «n < 01> [headlst)] ++taken — 1, tail(Ist)))
if b thenz elsey

take(n,Ist) =gf
rb>y =df

Functionlocal(e) returns a list of sets of local variables. It is defined
as follows:
local(e) =g4¢ casee of
retm(Qv U*v T, 6)
retq(v*,e)

local(e) ++ [{v*}]
local(e) ++ [{v*}]

Ll

w=e local(e)
(tv=-ei;e) local(e1)
otherwise 0
Note that” — [] =4 ', T’ — ([s] ++ S) =4 (I' — s) — S. The proof

is simple: by induction over the depth of type derivation of expres-

sione. A proof of Theorem 2 can be found in Appendix C.2.

C. Proofs of Theorems
C.1 Proof of Theorem 1 (Progress)
By induction over the depth of type derivation for expression

Cases|NULL, VOID, VALUE, LOC, OoBJ]. Trivial.

Case[var-rIELD]. We deal with expression. Asw = v | v.f
is well-typed, the evaluation rulép-var-FD] is followed, the
evaluation either reports darror-Null or advances one ste
yielding a value.

Case[assieN]. We deal with expression = e. From type rule,
we havel;2;Q F e :: & t,¢. By induction hypothesis,
either (i) e is a valuev, or (ii) (I, w)[e] — Error, or (iii)
(I, @) [e] — (IT', =) [€'].

Subcase (i): Let the runtime type nfbet, and that ofw bet;.
Then, we have i<: @ t and® t;<: © t, which implies
t<: t <: t1. Hence, theupd function at [D-Assign-4 will not

throwError-Type exception, and proceed to update the runtime

environmentl or the runtime store, as describedirassign-3.

Subcase (ii): This will result in the execution @i, w) [w = €]
aborted withError.

Subcase (iii): This will result in the execution of the assignmen
to reach(Il, @) [w = €], via [D-Assign-1.

Case[seqQ]. We havel'; 3; Q + e1 :: ® t,1. By induction hypoth-
esis, either (i1 is a valuev, or (i) (I1, w)[e1] — Error, or
(i) (I1, @) [e1] — (II', ") [¢}).

Subcase (i): The execution proceeds to reddhew) [e2] un-
conditionally, according t¢p-seq-3.

Subcase (ii): The execution will be aborted wihror excep-
tion.

Subcase (iii): The execution proceeds to reddh ') [e]; e2],
according tdb-Seq-1.

Case[LocaL]. Giventhatl; 3;Q F {tv = e1; ea} it 7,91 Ao,
We havel’; Z;Q + e1 :: @ t,¢1. By induction hypothesis,
either (i) e1 is a valuev, or (ii) (I1, w)[e1] < Error, or (iii)

<H7 w) [61] — <H/> w,> [ell]

Subcase (i): Let the runtime type ofbe to and the runtime
type of v bet. As the consistency relation holds between the

static and the dynamic semantics, we have for all ground sub-

stitutionp, - p(11) = £ = p(t). Sincel p(Y1) = Olo<: P t,
subTypétype(v), £) = subTypéfo, £) = true. Hence, the execu-

Case[NEw]. GivenT; X;Q F new c(ts)L (v1,..,vp) =

Case[conD]. GivenI; ¥; @ if v then e; else eg

Case[wHILE|. GivenI';2;Q + while v do e

P Case[ELF4, ELF,,]. We havel’; 3;Q + e ::

Case[carTurg|. We havel; 3; Q F {v1 = (¢)v; e}

Case[caLrr]. GivenT;3;Q F vy.mn(vl, ..

tion will proceed to the statd1’,
[D-Blk-2].

Subcase (ii). The execution will throw the correspondingpr
exception.

Subcase (iii). The execution will proceed (@’,
el; e2}] according tgp-Bik-1].

w) [reta(v, e2)] according to

@)[{tv =

7,1, let

t; (for all i = 1..q) andi,, (for all i = 1..p) be the runtime
types of type arguments and value argumentseta Then we
have, for all ground substitution, - p(y) = AL, (fi=p(t:))
andk p(y) = AL, (£, <:p(T'(v;))). Furthermorel- p(z)) =
p(T'(v:))<:t;, for all i. Hence, both calls tehk and subType

at runtime do not fail, and the execution proceeds to the state
(I1, @' [¢], where is the location referencing the new object.

= 7,7 and
I'(v)<: & Bool, the runtime value ob will either be true,
false, or null (). In the first two subcases, the execution pro-
ceeds to next state according to the rytes-true | and[D-If-false]
respectively. In the last subcase, there is no corresponding dy-
namic rule, and exceptidarror-Null will be thrown.

7,1 and
I'(v)<: & Bool, the runtime value ob will either be true,
false, or null (). In the first two subcases, the execution pro-
ceeds to next state according to the ruleswhile-true] and
[D-while-false] respectively. In the last subcase, there is no cor-
responding dynamic rule, and excepti@nror-Null will be
thrown.

7,1 as the premise of
the static semantics. By induction hypothesis, eithee (8 a
valuev, or (i) (II, w) [e] produce<Error, or (jii) (I, @) [e] —
(I, ') [€']

Subcase (i): Let the runtime type ofbet, and that of return
value bef then for all ground substitutiopwe have- p(vy) =
p(t) = Of. Also, we have- p(y)) = i,<:p(7). Hence,
the call tosubTypein the rule[Db-Ret-2] returnstrue, and the
execution proceeds tdl’,) [v] accordingly.

Subcase (ii): The execution will throw the correspondirgor
exception, as no rule applies.

Subcase (iii): The execution step to the new state following rule
[D-Ret-1].

E:ase [casT]. Any type mismatch during cast will be captured by

chkCastandError-Cast exception will be thrown. Otherwise,
casting will succeeds and the execution proceeds to the next
state(Il, @) [(¢, ¢)]-

7,1 A 2.
From its premise, we have = ¢(® V;)i—;. Executing the
expression either yields arError exception or returns a value
v. We consider the case wherds returned. Let, be the type

of v as declared in the runtime environment. The use of flow
symbol® in ¢ implies thatmatcH¢, to) succeeds and produces
ponlywhenp(t) = to. Hence, by rulép-capture], the execution
proceeds to the stafél’, @’) [pe]. Updating ofv; does not fail,
similar with [assiGN].

,Ug) (") ¢+ T, 9. Let
the runtime type arguments Hé*) and the value arguments
have typeivg for i = 0..q. Also, the ground substitutiop
in [D-call] is an instance op in [caLr], which makes) true.
Thus, we havel () = fv;<:M(T{), i = 0..q, and
to<:u(to). Hence, the call tsubTypein [p-call] yields true,

and the execution proceeds to the stdlew) [e¢] according to
[D-call]. O

C.2 Proof of Theorem 2 (Preservation)
The proof for Theorem 2 requires several lemmas.

LEMMA 3 (Type Substitution)If T'; X; Q + e :: 7,4, then for all
substitutionp such that- p(v), we havep(I'); p(2); Q F p(e) ::
p(7), p().

The proof is by induction on a derivation bt X; Q e :: 7, .

The next lemma, calledssumption weakening lemmstates
that the static judgment remains valid despite a variation of its
assumption. This assumes the store typeéo have unbounded
mapping of locations to types. However, the type environment
takes the form of stackable mapping between variables and types,
and is allowed to grow (by pushing in new mappings) and shrink
(by popping out mappings from stack). The lemma states that such

Case[var—¥p]. This can be proven by settiig andQ to T, &

andQ respectively.

Case[assieN]. There are two rules by which one-step derivation

can be applied:

Subcaségp-Assign-1: By induction hypothesis, there exisis,
¥ and @’ such thatl";¥"; Q" + € = @ t',¢’ and which
satisfies the premise of the theorem. Siac€<: @ ¢, we thus
havel"; ¥, Q' e’ = @ t, ' A", where- &t <:Dt = ",
The desired result can then be proven by setfingf andQ to
I, ¥ andQ’ respectively.

Subcas€b-assign-3: Consider the assignment to a variable
Given thatupd(I1, w, w, v) returns successfullyIl’, "), it
must be the case thgipgv) <:typeg(IT’(v)). The desired result
can then be proven by settifig, = andQ to ', & and Q
respectively. Similar argument applies to the assignment to a
field.

change to type environment preserves the type judgment, if th@ase[seq). There are two rules by which one-step derivation can be

change are properly constrained.

LEMMA 4 (Assumption Weakening).
judgment holds:

Given that the following
;3 QbFentvp
LetT, S and@ be such that:
vars(e) C dom(I") N dom(T")
RERVACQ
vars(yh) — Q = vary) — Q
Jo* - (T —{v*}=D) v ([= {v*} =T)
$O%
Then, there exist$ such that-) < v and
f;i;@ Fe:: T,’(&
The call varg(e) returns all program variables occurring ir,
whereasvarg(v) returns all (type) variables occurring ig.

Proof of Lemma 4: By structural induction on the static semantics
of the formT; 2; Q I- e :: 7, 4. For anyl’, 3> and@, we say that they
satisfy the premises of the Lemma if the following holds:

varg(e) C dom(T") N dom(I")
QcQv@cq
vars(y) — Q = vars(y)) —
F* - (C—{w*}=0)v (I —{v*}=0)
20%
Cases[NULL, VOID, LOC, OBJ, VALUE]. Trivial.

Case[var-rI1ELD|. We deal with expressiom, wherew = v | v.f.
Foranyl’, ¥ and@ satisfyingAthg premise of the lemma, we see
thatl'(v) = I'(v). HenceI'; 3, Q - w : 7, 4.

Case[assian]. We deal with expressiom = e. We havel’; 3; Q +

e:: &t, 1) for at=GetTypél’, w)=GetTypél’, w). The desired Case

result is then derived by induction hypothesis.

Cases[LOCAL, SEQ, COND, WHILE, CAST, CAPTURE, ELF 4, ELFy,].
By induction hypothesis.

Case[New]. The result holds becausgwv;) = I'(v;), for all i
1..p.

Cases|caLt]. The result holds becaudgv;) = I'(v}) for all i =
1l..q. O

Proof of Theorem 2 This can be proven by induction over the
depth of type derivation of expressien

Cases[NULL, VOID, LOC, OBJ, VALUE]. Vacuously true.

applied:

Subcaséb-seq-1: By induction hypothesis, there exidté,
andQ’ that establishes the consistency relation at the hypoth-
esis. We elect’, 3 andQ to beI”, ¥’ andQ’ respectively to
obtain the desired result.

Subcas€p-seq-4: By settingl’, ¥ and Q to beT’, & and Q
respectively.

Case[conD]. There are two rules by which one-step derivation can

be applied{p-If-True], [D-If-Faise]. Both can be proven by setting
T, ¥ andQ@ to T, ¥ and@ respectively.

Case[wHILE]. Similar as the argument for cageonD].
Case[LocaL]. There are two rules to consider:

Subcasép-Bik-1]: By induction hypothesis.

Subcaséb-Bik-2]: SincesubTypétype(v),t), I andX used in
[LocaL] remain consistent withl” andc in this subcase. We
setl’, ¥ andQ to I, ¥ andQ respectively.

Case[casT]. This can be proven by settiig andQ to T', & and

Q respectively.

Case[capTURE]. The argument for one-step derivatifmcapture]

is similar to that for cas-Assign-4, except for the assignment

of runtime type information of to the type variables occurring

in ¢t. This assignment proceeds successfully because of the
premise of[capTurg]. We setl’, & and Q to I', & and

Q respectively. It suffices to show that 3 Q + p(e) =

7,%. This is true by applying Type Substitution Lemma to the
following premise ofcapTureg]: I; 2; Q F e :: 7, 1a.

Case[new]. We setl =T, 2 = 4 {1 — © ¢(® ;)2 ,} and

Q=0

[caLL]. The fact that, as obtained fronfeLr..], is a subtype
of 7 obtained from[caLi], is established from the result of
[ELF.,] and the constrainp(é t) <:7 occurred iny in the
premise oficarL]. Finally, by assumption weakening rule, we
setl” = I' + {vi = @fi};.’zl + {this = Db, & = ¥,
Q=QuU{Vv"}.

Case[ELFq4, ELF.,]. There are two subcases for consideration:

Subcaséb-Ret-d-1, D-Ret-m-1]: By induction hypothesis.

Subcasgb-Ret-d-2, D-Ret-m-2]: By induction hypothesis and the
Assumption Weakening Lemma. O

