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ABSTRACT 
This paper presents an implementation of the Ravenscar-Java 
profile. While most implementations of the profile are reference-
implementations showing that it is possible to implement the 
profile, our implementation is aimed at industrial applications. It 
uses a dedicated real-time Java processor, since we want to 
investigate if the Ravenscar-Java profile, implemented on a Java 
processor, is efficient for real applications. During the 
implementation some ambiguities and weaknesses of the profile 
were uncovered. However, test examples indicate that the profile 
is suitable for development of realistic real-time programs. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features; D.3.4 [Programming Languages]: Processors – Run-
time environments; D.4.1 [Operating Systems]: Process 
Management - Scheduling, Threads; J.7 [Computer 
Applications]: Computers in Other Systems – Real time. 

General Terms 
Design, Languages, Performance. 

Keywords 
Ravenscar-Java profile, Real-time Java, Java processor, Industrial 
application. 

1.  INTRODUCTION 
Java was originally developed as a programming language for 
embedded systems [11]; but it was the Internet that propelled Java 
into mainstream computing, because there was a need for a 
language that was portable and truly object-oriented, eliminating 
the error-prone programming of  memory allocation and pointer 
manipulation. However, precisely those features made it less 
suited for predictable, real-time embedded systems: The virtual 
machine, that gave portability, was considered inefficient both in 
terms of time and space. Furthermore, the automatic garbage 
collection and dynamic class loading made it impossible to 
analyse and predict execution time and memory consumption.  
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However, since its appearance in 1995, Java has spread 
tremendously as a software development language; it is used to 
program all kinds of software from servers to smart cards, and it is 
now the first (and often the only) language for young 
programmers joining the industry.  Concurrently, software for 
embedded systems has been a major growth area, because there is 
consumer demand for more and more sophisticated products 
based on embedded intelligence.  

Programming dependable, real-time systems is already hard for 
simple functionalities, and when more intelligence is added, it 
means functionality, which is very costly and error prone to code 
in assembler or C/C++. Embedded system development needs to 
benefit from the major advances in object-oriented programming 
technology that have emerged over the past decade, and one way 
of doing this is to bring Java back to the application domain for 
which it was developed.  

There is essentially only one way to get a more predictable 
language, namely to select a set of features which makes it 
controllable. A major step in that direction was the Real-Time 
Specification for Java (RTSJ) published in 2000 [18, 5]; many 
new features were introduced to make it suitable for real-time 
applications. However, RTSJ is complex, trying to address 
advanced dynamic scheduling techniques, new types of memory 
and has a difficult asynchronous transfer of control mechanism. 
RTSJ is thus targeted at larger systems, e.g. the RTSJ 
implementation from Sun requires a dual UltraSparc III or higher 
with 512 MB memory and the Solaris 10 operating system [23].  

We are interested in smaller systems, for example Java enabled 
mobile phones; in fact, there are already more Java-enabled 
phones than PCs [21]. In phones, the Java 2 Micro Edition 
(J2ME) is used. It has a virtual machine layer (with or without an 
OS), a configuration layer, e.g. CDC or CLDC, and a profile 
layer, e.g. MIDP, which defines the allowable features. Here, and 
in other small scale systems, the Ravenscar-Java profile [17] for 
Real-Time Java fits nicely. It defines a subset of RTSJ suitable for 
a J2ME implementation on top of a real-time virtual machine with 
the CLDC configuration layer.  The key aim of the profile is to 
define a subset of RTSJ “that meets the temporal requirements of 
high-integrity real-time systems” [17]. 

The Ravenscar-Java profile has been further refined and 
commented [14, 26, 13, 19], but it has been implemented a few 
times only [10], and the experience of using the Ravenscar-Java 
profile for the development of industrial embedded systems with 
real-time requirements is limited. 

Ravenscar-Java may not yet have been used for industrial cases, 
because it needs implementations on platforms that are suitable 



for the application area. In order to explore this thesis, we have 
implemented the Ravenscar–Java profile on a Java processor, the 
aJ-100, from aJile Systems [12, 1], which aims at such 
applications.  

The contributions of this paper are thus 
• an implementation of the Ravenscar-Java profile on the aJ-

100 platform,  
• a comparison of test examples using the Ravenscar-Java 

profile and the original aJile API, and 
• an assessment of the Ravenscar-Java profile itself, and its 

suitability for the aJ-100 processor.  

The remainder of this paper is structured as follows: A short 
overview of the Ravenscar-Java profile is given in Section 2. 
Section 3 identifies some of the most interesting properties of the 
processor and describes those properties in relation to the 
Ravenscar-Java profile implementation. Section 4 describes key 
aspects of the implementation. In Section 5 we compare 
Ravenscar-Java profile test examples with similar aJile API test 
examples. Section 6 assesses the Ravenscar-Java profile itself and 
its suitability for the aJ-100 processor. Conclusion and future 
work (Section 7) completes the paper. 

2.  THE RAVENSCAR-JAVA PROFILE 
This profile was first proposed in 2001 [17], inspired by the 
Ravenscar profile for Ada [6], and the profile is still evolving [14, 
26, 13]. It is essentially a subset of RTSJ. Where RTSJ has 68 
interfaces and classes, the Ravenscar-Java profile has only about 
30 interfaces and classes, including some classes not found in 
RTSJ. Besides making Ravenscar-Java smaller and simpler than 
RTSJ, a reason for introducing it was to make the programs 
predictable and analysable wrt. memory utilization and timing. 

2.1 The computational model 
A Ravenscar-Java application has two phases: an initialization 
phase and a mission phase, shown in Figure 1.  

 
Figure 1. The two execution phases (The figure is adapted 

from Kwon, Wellings, and King [14]) 

In the initialization phase all objects needed for the lifetime of the 
application are created and initialized in immortal memory, 
including all real-time threads. This phase is not time-critical and 
is executed by an Initializer thread with maximum priority. 

In the mission phase the real-time threads and event handlers are 
running concurrently. This phase is time critical and the priorities 
of the threads are less than the maximum priority which is 
reserved for the Initializer thread.  

A Ravenscar-Java Virtual Machine is not supposed to support 
garbage collection. In fact a Ravenscar-Java VM does not have to 
have heap memory. Instead the Ravenscar Java profile defines 
three types of memory areas: immortal memory, linear time 
scoped memory and raw memory. When the underlying VM has a 
heap area, the heap can be used as immortal memory if the 
garbage collector can be switched off.  

2.2 Overview of the Ravenscar-Java classes 
The classes in the profile fall into four groups: 
• real-time thread classes, which include 

o Initializer (for the initialization phase) 
o PeriodicThread (for periodic activities) 

• sporadic event handler classes, which include 
o SporadicEvent (for software triggered events) 
o SporadicInterrupt (for hardware triggered events) 
o SporadicEventHandler 

• memory classes, which include 
o ImmortalMemory (for objects with lifetime equal to the 

lifetime of the application) 
o LTMemory (linear time scoped memory for object 

allocation during the mission phase) 
o RawMemoryAccess (for raw memory access) 

• time classes, which include 
o AbsoluteTime, RelativeTime.  

We shall focus on the two first groups, since they are most 
dependent on the processor. 

3.  THE aJ-100 PROCESSOR 
The aJ-100 processor from aJile Systems [1] is based on the 32-bit 
JEM2 Java chip developed by Rockwell-Collins. It is a 100 MHz 
direct execution Java processor, “designed for real-time 
embedded applications that require high-performance” [2]. The 
aJ-100 is characterized by being: 
• a pure Java microcontroller that uses Java bytecode as its 

native instruction set, 
• a real-time processor with an embedded real-time multi-

threading kernel microcoded in hardware, including a priority 
pre-emptive scheduler with 32 priority levels, a priority ceiling 
protocol and periodic threads, 

• supporting two concurrent JVM units, and 
• having all common embedded peripherals: I/O Ports, Serial 

Interface, Timers, etc. 
The direct bytecode execution means that the performance of an 
application on aJ-100 is comparable to a C application for a 
similar 32-bit microcontroller. The microcoded kernel means that 
aJile does not require an extra RTOS software layer. Furthermore, 
the thread switch is very fast, less than 1 µs. 

In our implementation of the Ravenscar-Java profile we only use 
one of the two JVM units, together with its access to the global 
raw memory.  



 
Figure 2. The aJile architecture with use of one JVM 

When JVM0 is applied with real-time constraints, the garbage 
collector can be disabled.  

The aJile processor uses a runtime system based on J2ME, CLDC 
1.0 [3]. As a supplement to the CLDC library, the aJ-100 
processor has a special aJile Java API to access the processor; it 
includes about 85 interfaces and classes, e.g. PeriodicThread, 
rawJEM (low level access to physical memory), and GpioPin 
(controls general purpose IO pins). 

The processor must be mounted on a board providing the 
necessary hardware infrastructure. In our test setup we use the 
JStik board from Systronix [24], with 2MBytes SRAM. 

Processor specific development tools are: JEM Builder, a 
graphical build tool for static linking and configuration and 
Charade, a tool for loading and starting the JVMs on aJ-100. 
Charade has various test facilities. These are the only tools that 
are aJile specific. In other words, any “standard” Java 
development tool, such as Eclipse or NetBeans, can be used for 
programming and generating Java bytecode. 

4.  IMPLEMENTATION OF RAVENSCAR-
JAVA PROFILE 
This section describes in more detail, how we implement the 
Ravenscar-Java profile on the aJ-100 processor using the aJile 
API. This API is also written in Java, but is often lower level. 

4.1  Implementation of the real-time threads 
The class hierarchies for the real-time threads are shown in 
Figure 3. The real-time threads in Ravenscar are subclasses 
of java.lang.Thread.  

 

Figure 3. The class hierarchies for the real-time threads 

As an example we show the implementation of the Initializer 
thread with max priority: 
package javax.ravenscar;  
public class Initializer extends RealtimeThread 

{  
  public Initializer() 
  { 
    super(new PriorityParameters ( 
      PriorityScheduler.getMaxPriority()),  
      null, ImmortalMemory.instance(), null); 
  } 
} 

4.1.1  Periodic threads on aJ-100 
Periodic threads have to be set up for periodic activation. For this 
aJ-100 has an internal cyclic data structure, called a piano roll. It 
keeps the activation information for the different periodic threads. 
The PianoRoll class from the aJile API initializes and starts 
executing the piano roll: 
package com.ajile.jem; 
public class PianoRoll 
{ 
 public PianoRoll(int duration, int beat); 
 public PianoRoll(long duration,int durationNanos, 
                  long beat, int beatNanos); 
 public static void start(); 
} 

The aJile API also has a PeriodicThread class: 
package com.ajile.jem; 
public class PeriodicThread extends 
java.lang.Thread 
{ 
  public PeriodicThread(); 
  public void makePeriodic(int period,  
    int initDelay, int priority, Thread userTCB); 
  public static void cycle();  
    // equivalent to waitForNextPeriod() in RTSJ 
} 

Here, the makePeriodic method sets up a periodic thread, before 
it is started. The parameter initDelay is the time delay between 
the cycle start of the piano roll and the first activation of the 
periodic thread. 

When all the periodic threads and the piano roll have been 
initialized with the correct values of beat, duration, periods, 
initDelays and priorities, and then started, the periodic threads are 
dispatched by the priority pre-emptive thread scheduler. Upon 
each tick of the beat timer, the periodic threads at the current 
index of the piano roll are activated, and the piano roll index is 
incremented to the next entry in the cyclic piano roll. 

Table 1. Example with three periodic threads 

Periodic thread Period Init  delay Priority 
a 3 0 max 
b 3 1 max 
c 4 0 max-1 

This is illustrated in Table 1 with three periodic threads, and 
Figure 4 shows the corresponding piano roll structure.  

  pianoroll-index      

 0 1 2 3 4 5 6 7 8 9 10 11
max a b  a b  a b  a b  
max-1 c    c    c    
..             
min             

 

Figure 4. The corresponding piano roll structure 
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Threads a and b have the same period of 3, thread c has a period 
of 4. The thread priorities are chosen to be rate monotonic. 

In each beat interval only one thread of each priority is activated. 
Hence, multiple periodic threads of different priorities can be 
readied simultaneously, but if there are multiple periodic threads 
of the same priority, only one of them will be chosen to run [4]. 
To overcome this problem, different periodic threads with the 
same priority (and period) are usually given different initial 
offsets. If the beat is chosen as the time unit (in msecs or 
nanosecs), then the following setup conditions must hold: 
(P1) 0 < beat ≤ 65 msec 
(P2) duration = n * beat, for some integer n 

These piano roll conditions reflect that the aJ-100 has a 16 bit 
timer register with a tick of 1µs, and the duration of the roll must 
be a multiple of the beat. 

For every periodic thread, the following must hold: 
(T1) beat ≤ period ≤ duration 
(T2) period * k = duration, for some integer k 

(T3) period = m * beat, for some integer m 

(T4) initDelay = p * beat, for some integer p 

(T5) 0 ≤ initDelay < period 
(T6) initDelay + period ≤ duration 

These conditions ensure that the piano roll gives correct periodic 
activation of the threads. 

Finally, for each pair of periodic threads with equal periods and 
equal priorities, we must have: 
(E1) initDelayi ≠ initDelayj 
This ensures that both threads are activated. 

4.1.2  Implementation of  Ravenscar-Java periodic 
threads 
To hide and control all this complexity, some auxiliary classes 
were developed, including some with methods for rate monotonic 
priority setup of periodic threads. This is carried out during the 
initialization phase. These classes are organized as shown on 
Figure 5.  

Class Setup is a singleton class. It sets up the piano roll, 
including the calculation of beat and duration. It attaches the 
periodic threads, including a calculation of init delays, to the 
piano roll. Class SetupInfo contains the necessary information 
about a periodic thread (or a sporadic event/interrupt). Class 
CheckCyclicSetup checks all the setup conditions, as described 
above, including a rate monotonic setup. The decision to use rate 
monotonic setup is discussed in Section 6.1. 

The Ravenscar-Java PeriodicThread class encapsulates the 
aJile periodic thread: 
package javax.ravenscar;  
public class PeriodicThread extends 
             NoHeapRealtimeThread 
{ 
  private com.ajile.jem.PeriodicThread aJileTh; 
  private SetupInfo info; 
  ... 
  private class aJilePeriodicThread extends 
                com.ajile.jem.PeriodicThread 
  { 
    public void run() 
    { 
      // run until start time: 
      for(long count = info.startTime/info.period; 
               count > 0; count--) { 
        PeriodicThread.waitForNextPeriod(); 
      } 
 
      // run from start time: 
      for (;;) { 
        logic.run(); 
        PeriodicThread.waitForNextPeriod(); 
      } 
    } 
  } 
 
  public PeriodicThread (PriorityParameters pp, 
    PeriodicParameters p, Runnable logic) 
  { 
    super (pp,p,ImmortalMemory.instance(),logic); 
    aJileTh = new aJilePeriodicThread(); 
  } 

 

 
Figure 5. Class diagram for auxiliary classes for setup 



  public final void run() 
  { 
    info = Setup.getInstance().getSetupInfo(this); 
    aJileTh.makePeriodic (period, priority, …); 
    aJileTh.start(); 
  } 
  static boolean waitForNextPeriod() 
  { 
    com.ajile.jem.PeriodicThread.cycle(); 
    return true; 
  } 
}  

A (somewhat controversial) decision is to let 
waitForNextPeriod always return true as suggested in [26]. 
We discuss this further in section 6.1  

4.2 Event and event handler implementation 
The Ravenscar-Java profile only specifies sporadic events, and 
distinguishes between  
• software-generated: class SporadicEvent 
• hardware-generated: class SporadicInterrupt. 
The class structure is shown in figure 6. 

Sporadic events and interrupts have a minimum interarrival time 
(MIT). The profile does not say anything about the latest 
permissible completion time (deadline) of the associated 
schedulable object. Therefore this latest permissible completion 
time is assumed to be equal to MIT. This is consistent with the 
periodic threads, where the deadline is assumed to be equal to the 
period. 

If MIT is interpreted in the same way as the period T, then the 
two types of schedulable objects can be assigned priorities using 
the rate monotonic priority assignment in both cases. However, 
should a deadline be added to sporadic events, a deadline 
monotonic priority assignment is feasible. Note, the sporadic 
event handlers do not enter into the piano roll structure. We return 
to this point in Section 6. 

4.2.1  Event and event handling on aJ-100 
To handle hardware-generated events Ravenscar-Java defines the 
notion of a happening. A happening is a string which has to be 
mapped to the underlying hardware events. 

aJ-100 has 40 General Purpose Input/Output (GPIO) pins. The 
aJile API provides the GpioPin class, an instance of which 
controls one pin [3] to support them. Each pin is identified by a 

predefined constant in the GpioPin class. This pin identifiier is 
converted to a string defining the happening for the 
SporadicInterrupt class. A GpioPin object has an attached 
eventhandler which implements the interface 
TriggerEventListener. Its triggerEvent metod is called 
when an external event occurs on the pin. This interface is as 
follows: 
package com.ajile.events; 
public interface TriggerEventListener 
{ 
  void triggerEvent(); 
} 

This aJile specific GPIO event and event handling have been 
hidden in two classes (also see Figure 7): 
class GpioPinInfo holds and sets up information about a 
GPIO pin, and 
class SetupGpioPin holds the information for up to 40 GPIO 
pins. 

The most interesting in the implementation is the addHandler 
method in class SetupGpioPin. This method creates and adds a 
TriggerEventListener object to a GPIO pin, see Figure 7, and 
it is called by the addHandler method in the 
SporadicInterrupt class. 

4.2.2  Implementation of event handlers 
The thread permanently bound to BoundAsyncEventHandler, 
see Figure 6, is implemented as a private inner class 
NoHeapRealtimeThread: 
private class NoHeapRtThread extends 
              NoHeapRealtimeThread  
{ 
  NoHeapRtThread (PriorityParameters priority, 
                  Runnable logic) 
  {     
    super (priority, null, null, logic); 
  } 
   
  public void run () 
  {  
    for (;;) { 
      synchronized (handlerThread) { 
        try { wait(); } 
        catch (InterruptedException e) {  } 
      }             
      logic.run(); // the logic to run each time 
    }              // an event occurs 
  } 
} 

 
Figure 6. Class diagram for sporadic events and interrupts 



 
Figure 7. Class diagram for external events – linking up to aJile I/O. 

This thread is created and started by the constructor of the 
BoundAsyncEventHandler. The call of wait suspends the 
thread. 
When an external event occurs on the GPIO pin, the 
triggerEvent method in TriggerEventlistener calls 
handleAsyncEvent in class SporadicEventHandler, see 
Figure 7. This class, initialized with the minimum interarrival 
time between events, has the method handleAsyncEvent 
implemented as follows: 
public class SporadicEventHandler extends 
             BoundAsyncEventHandler 
{   
  private long oldTime, newTime, minArrivalTime, 
               deltaT; 
  ..  
  public final void handleAsyncEvent() 
  { 
    newTime = rawJEM.getTime(); 
    deltaT  = newTime - oldTime; 
    oldTime = newTime; 
    if (deltaT >= minArrivalTime) 
      super.handleAsyncEvent();     
  } 
} 

Just when minArrivalTime is less than or equal to deltaT, the 
handleAsyncEvent in BoundAsyncEventHandler notifies the 
handler thread: 
void handleAsyncEvent() 
{  
  synchronized (handlerThread) 
    handlerThread.notify(); 
} 

Note that we ignore events that occur too often. 

4.3  Implementation of memory classes 
Since Ravenscar-Java specifies no garbage collection and aJile 
allows the garbage collector to be switched off, the heap is used 
for immortal memory. This means that the implementation of 
class ImmortalMemory is empty. 

Linear time scoped memory, LTMemory, is intended for object 
allocation during the mission phase. However, because there is 

much uncertainty about the semantics of scoped memory, and 
especially uncertainty on how to use it [13, 19, 8], we only 
implement immortal memory and raw memory.  

To access the raw memory we implement the following two 
classes from RTSJ: 

RawMemoryAccess 
RawMemoryFloatAccess. 

The classes contain methods for accessing a raw memory area 
through simple types (and arrays thereof): byte, short, int, 
long, float and double. To implement the methods we use 
the rawJEM class from the aJile API [3]. We only show one 
example: 
public byte getByte(long offset) throws 
            OffsetOutOfBoundsException, 
            SizeOutOfBoundsException 
{ 
  check (offset, SIZE_OF_BYTE); 
  // atomic get: 
  return rawJEM.getByte((int)(base+offset));  
} 

As we see, the methods are nearly the same, but the 
rawJEM.getByte method from the aJile API is low level and has 
no bounds checks.  

4.4  Implementation of time classes 
The time classes are implemented in accordance with RTSJ. Time 
is measured from program start, because aJile has no real-time 
clock for absolute time with automatic switch to a battery backup 
supply.  

5.  COMPARISON OF TEST EXAMPLES 
In this section we compare test examples wrt. execution time, 
initialization and code size, using the Ravenscar-Java profile and 
the aJile API. 

Because periodic threads are central for real-time programs, and 
in the aJile API implemented with many low level settings [22], 
we focus on periodic threads. 

The loop in the periodic threads is implemented in nearly the 
same way: 



for (;;) {      // aJile 
  logic.run(); 
  com.ajile.jem.PeriodicThread.cycle();   
} 
 
for (;;) {      // Ravenscar 
  logic.run(); 
  PeriodicThread.waitForNextPeriod(); 
} 

They differ in their use of the method waitForNextPeriod, 
implemented by: 
static boolean waitForNextPeriod() 
{ 
  com.ajile.jem.PeriodicThread.cycle(); 
  return true; 
}  
In the test we let the method logic.run increment a counter. 
The tests are carried out by letting another periodic thread, with a 
lower priority and a period typically of 1000 ms, print the value 
of the counter.  

The result is that for a single periodic thread, the period should 
meet: 
• aJile API:  period ≥  9 µsec 
• Ravenscar-Java profile: period ≥ 11 µsec 

In the overhead of 2 µsec in the Ravenscar implementation, the 
extra method-call waitForNextPeriod takes 1 µsec. 

For multiple periodic threads the graphs in Figure 8 show a linear 
correlation between the number n of periodic threads and the 
minimum period of the threads, Tmin: 

Tmin ≈ n * 23 µsec 

The two graphs are overlapping and if n > 20 there is no 
measured difference between Ravenscar and aJile. 

0
200
400
600
800

1000
1200
1400
1600
1800
2000

5 10 20 40 80
n  ( # periodic threads )

T 
m

in
 ( 

µs
ec

 )

Linear

 
Figure 8. The minimum period, Tmin, for n periodic threads 

Next, we compare Ravenscar and aJile regarding initialization and 
code size. 

Using the raw aJile API can be error prone, when there are many 
periodic threads with different periods, because nothing checks 
whether the setup conditions in Section 4.1.1 are satisfied; the 
programmer has to define all the setup constants manually, and 
then each periodic thread is made periodic with the right constants 
by calling the makePeriodic method, and finally the piano roll 
has to be setup with the right constants in its constructor. 

In our Ravenscar implementation we hide all this, cf. section 
4.1.2. The only constants we define are the periods and the max 
priority. The calculation of the rest of the constants is done in the 
Setup class, together with a validation of their consistency. 

The difference in code size is negligible, whereas the difference in 
initialization is considerable. The aJile API is too low level and 
error prone. 

6.  ASSESSMENT 
This section contains an assessment of the Ravenscar-Java profile 
itself and its suitability for the aJ-100 processor. Here we discuss 
also some further experiments with the implementation. 

6.1  Assessment of the Ravenscar-Java profile 
Since Puschner and Wellings [17] first proposed the Ravenscar-
Java profile, there has been growing interest in evolving and 
refining the profile [14, 13]. Much of the work is analytical [16], 
but also critical work appears [20]. 

When implementing the Ravenscar-Java profile, our main 
references have been [15, 26, 13], besides the RTSJ [18]. In fact 
we have in the Java-doc for each class compared [15], [26], and 
[13] before deciding on an implementation. In [10] the code is 
documented in a similar manner, but it uses [15] as reference 
only. 

During our implementation of the Ravenscar-Java profile some 
uncertainties and weaknesses have been uncovered. For example 
the RealtimeThread class is specified as follows in [15]: 
public class RealtimeThread extends Thread  
                            implements Schedulable 
{ 
  RealtimeThread(PriorityParameters pp, 
                 PeriodicParameters p); 
  ...     
  static boolean waitForNextPeriod(); 
} 

and in [26]: 
public class RealtimeThread extends Thread  
                            implements Schedulable 
{     
  RealtimeThread(PriorityParameters pp, 
                 PeriodicParameters p, 
                 MemoryArea ma, Runnable logic); 
  ... 
  static boolean waitForNextPeriod(); 
} 

and in [13]: 
public class RealtimeThread extends Thread  
                            implements Schedulable 
{ 
  @HRTJProhibited 
  public RealtimeThread( 
    SchedulingParameters schedule,  
    ReleaseParameters release); 
  ... 
  @HRTJProhibited 
  public static boolean waitForNextRelease(); 
} 

We note that the three specifications are not compatible. In [15] 
and [26], waitForNextPeriod has no access modifier; but in 
RTSJ [18] the method is public. Note that in [13] the method is 



public, but called waitForNextRelease. We also note that 
one of the constructors has Runnable logic as a parameter.  

The semantics of the waitForNextPeriod method in the 
Ravenscar-Java profile is somewhat underdefined, whereas a very 
elaborate semantics is given for the method in RTSJ, pages 249-
251 in [26].  

The description of waitForNextPeriod for Ravenscar-Java on 
p. 358 in [26] suggests that the method always returns true. 
However, Kwon, Wellings, and King [14] suggest the following 
implementation of the PeriodicThread class: 
package ravenscar;  
public class PeriodicThread extends 
             NoHeapRealtimeThread  
{  
  public PeriodicThread(PriorityParameters pp,  
    PeriodicParameters p, Runnable logic)   
  {   
    super(pp, p, ImmortalMemory.instance());  
    applicationLogic = logic;  
  } 
    
  private java.lang.Runnable applicationLogic; 
  
  public void run()  
  {  
    boolean noProblems = true;  
    while(noProblems) {  
      applicationLogic.run();  
      noProblems = waitForNextPeriod();  
    }  
    // A deadline has been missed. If allowed, a  
    // recovery routine would be placed here  
  } 
  ... 
} 

This implementation suggests that a recovery procedure could be 
implemented if a deadline is missed, i.e. if the call to 
waitForNextPeriod returns false, but it does not allow such a 
procedure (e.g. an AsyncEventHandler) to be passed as a 
parameter and the procedure would thus have to be hard coded 
into the profile implementation - which we believe is not a very 
sensible thing to do, especially not in a hard real-time application 
where off-line analysis is supposed to ensure that deadlines are 
not missed.  

A minor point to criticise about the above suggested 
implementation is the use of a while loop in the idiom: 
boolean noProblems = true;  
while(noProblems) {  
  applicationLogic.run();  
  noProblems = waitForNextPeriod();  
} 

A more elegant and efficient solution is a do-while loop: 
do {  

  applicationLogic.run();  

} while(waitForNextPeriod()); 

Not only would this save the use of a local variable, it would also 
lead to more efficient bytecode being emitted by the compiler. 

However, as off-line analysis is supposed to ensure that deadlines 
are not missed, the loop is in effect an infinite loop. Thus 
waitForNextPeriod ought to just return void, and the loop 
could be implemented even more efficient as: 

for(;;) {  

  applicationLogic.run();  

  waitForNextPeriod();  

} 

Next, we look at the sporadic event handling. It is often used to 
handle an external event caused by some error-state. The event 
does not happen very often, - but when it does, it is urgent and 
hence it has a short deadline D. 

The Ravenscar-Java profile has no deadline in the 
SporadicParameters class [14], but HIJA [13] gives the 
following specification: 
public class SporadicParameters extends 
             ReleaseParameters 
{ 
  public SporadicParameters(RelativeTime 
    minInterarrival, RelativeTime deadline, 
    AsyncEventHandler deadlineMissHandler); 
  public RelativeTime getMinInterarrival(); 
} 

In our implementation we follow the Ravenscar-Java profile. If 
the minimum interarrival time (MIT) is T, then the profile 
assumes that D = T. This implies that the rate monotonic setup 
can be used for setting up the NoHeapRealtimeThread 
belonging to the SporadicEventHandler, together with the 
setup of the periodic threads.  

However, in some situations it would be useful to define a 
deadline less than the MIT, D < T. In this case the rate monotonic 
setup could be replaced by a deadline monotonic setup [7, p. 484], 
defined by:  

Di < Dj ⇒ Pi > Pj , where P is the priority. 

Another uncertainty about the sporadic event handling is what 
should happen if the MIT is violated. The profile says nothing 
about this, even though the RTSJ allows the application to specify 
one of four possible MIT violation policies: EXCEPT, IGNORE, 
REPLACE or SAVE, see class SporadicParameters in [18]. We 
have implemented the IGNORE policy (Section 4.2.2) because it 
seems to be most in line with the Ravenscar-Java philosophy, as a 
violation should never occur due to off-line analysis. 

The Ravenscar Java profile follows the RTSJ philosophy of an 
application being defined as a set of classes with at least one class 
having a public static main method, i.e. following the Java 
application philosophy. However, as Ravenscar-Java is targeted 
towards smaller and embedded systems implemented on top of 
J2ME and CLDC, it would perhaps have been more natural to 
define a Ravenscar-Java application as a “-let”, e.g. a 
RAVENSCARlet, just as applications for mobile devices are 
defined as MIDlets. Following this idea a Ravenscar-Java 
application would extend a class RAVENSCARlet. The 
RAVENSCARlet class would have an InitializeApp method 
replace the initialize phase in Ravenscar-Java today. This method 
would set up the system resources and create the periodic threads. 
The RAVENSCARlet class would also have a startApp method to 
be called when the system is ready to run. It may also be useful to 
have a destroyApp method which could be used to take down 
the system gracefully. Although the Ravenscar-Java philosophy 
seems to be that the mission phase runs forever, practical systems, 
even embedded real-time systems may have to be shut down, e.g. 
for maintenance. 



A further argument for pursuing this approach is that the vision of 
extensive off-line analysis of Ravenscar-Java programs is very 
much in line with the off-line verification of security and resource 
properties already in use in J2ME/CLDC/MIDP development. It 
would be natural for developers already familiar with J2ME to use 
such tools as part of the software development environment 

6.2  Assessment of the aJ-100 processor 
It has been relatively straightforward to implement the Ravenscar-
Java profile on the aJ-100 processor, because aJ-100 has much of 
the functionality specified in RTSJ, - either in the microcoded 
real-time kernel or in its API.  

Table 2 shows that the full implementation of the Ravenscar-Java 
profile requires only a total of 1550 lines of code (comments and 
brackets are not included). Of these, the utility classes for setup 
and check are about 900 lines. 

Table 2. #classes and #code-lines in Ravenscar-Java profile 

 # classes # code lines avg. code lines/class 

Ravenscar classes 35 650 19 

Utility classes 15 900 60 

Total 50 1550 31 

To hide the aJile-specific implementation details, two main 
strategies have been used: 
• the Singleton design pattern, ensuring that a class has only 

one instance, and providing access to the singleton object by a 
public static getInstance method. Examples are the 
Setup and CheckCyclicSetup classes (see Figure 5) and the 
SetupGpioPin class (see Figure 7), 

• private inner classes, ensuring both privacy of the class and 
access to data structures in the surrounding scope. An example 
is the aJile periodic thread in the Ravenscar PeriodicThread 
class (Section 4.1.2), another is the anonymous 
TriggerEventListener class (Figure 7). 

In other implementations, the processor-specific details are 
typically hidden in native functions, often written in C, and 
specified as native Java methods. In this case two different 
system development methodologies are necessary: structured 
system development for the C-part and object-oriented system 
development for the Java-part. In our implementation on the aJ-
100 processor everything is written in Java. Thus we only need to 
use one system development methodology: the object-oriented 
method.  

Initial experiments suggest that it is an efficient platform for real-
time systems using the Ravenscar-Java profile: 
• changing from thread-to-thread: < 1 µsec, 
• call of a method: 1.2 µsec, 
• up to 500 periodic threads, each with a stack size of 1000 

bytes, 
• execution time nearly the same as JOP (Java Optimized 

Processor) [19], 
• execution time comparable with C, because the bytecodes 

are executed directly [12].  

We have omitted implementing the scoped memory concepts of 
the Ravenscar-Java profile. Scoped memory is a controversial 

topic and hard to use, see [19, 8]. Furthermore, we have so far not 
seen any applications that could not be programmed using 
immortal memory instead. 

7.  CONCLUSION AND FUTURE WORK 
We have described our work of implementing the Ravenscar-Java 
profile on the aJ-100 processor. The implementation has been 
relatively straightforward as the aJ-100 processor has a rich API 
with much of the functionality specified in RTSJ. As this API is 
written in Java only, the object-oriented development method is 
supported, as opposed to other implementations where such APIs 
typically are implemented in C, thus calling for traditional 
structured development as well. 

Clearly one may ask: why implement the Ravenscar-Java profile 
on an (almost) RTSJ compliant processor in the first place? There 
are three arguments for doing it: 
1. The aJile API has a number of proprietary features that make 

portability of applications hard.  
2. RTSJ is complex and the aJile API is too low level, while the 

Ravenscar-Java profile is simpler and more amiable to off-line 
analysis, for instance with tools like UPPAAL [25].  

3. The programming model presented by the Ravenscar-Java 
profile will be relatively easy to use for developers familiar with 
applications for small devices using J2ME, CLDC, and profiles 
like MIDP. 

The last point could be further strengthened by introducing a 
RAVENSCARlet concept analogous to the MIDlet concept for 
mobile applications.  

During our implementation of the Ravenscar-Java profile some 
uncertainties, inconsistencies and weaknesses have been 
uncovered, especially the semantics of the waitForNextPeriod 
method is somewhat underdefined and could in our opinion 
beneficially be simplified to return void instead of a boolean 
value signalling a deadline miss, something that off-line analysis 
should prevent anyway. 

Preliminary benchmarks show that the implementation is fast 
enough to be competitive with similar implementations in C/C++. 
However, execution speed is not overly important for real-time 
systems as long as the implementation is fast enough to satisfy the 
real-time constraints that a given application demands. 
Predictability of the implementation is much more important and 
this is addressed very well by Ravenscar-Java. When these two 
issues have been resolved, the remaining issues are all software 
engineering issues: how easy is it to write application code, how 
easy is it to maintain the code, how reusable and how portable is 
the code? 

Our intial experiments indicate that applications written for the 
Ravenscar-Java profile will be easier to write, maintain and port. 
To further substantiate this belief we plan to use our 
implementation of the Ravenscar-Java profile in a larger industrial 
application scenario together with FOSS Analytical A/S, 
Denmark [9], who constructs advanced equipment for chemical 
and micro-biological analysis for use in the food industry and 
chemical industry. We plan to compare the Java implementation 
with a C/C++ implementation, in terms of functionality, 
reliability, analysability, maintainability and development time. 
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