
Hardware-Based Text-To-Braille Translator
Xuan Zhang, Cesar Ortega-Sanchez and Iain Murray

Electrical and Computer Engineering Department
Curtin University of Technology

Kent Street, Bentley 6102, Western Australia
 i.murray@ece.curtin.edu.au

ABSTRACT
This paper describes the hardware implementation of a text to
Braille Translator using Field-Programmable Gate Arrays (FPGAs).
Different from most commercial software-based translators, the
circuit presented is able to carry out text-to-Braille translation in
hardware. The translator is based on the translating algorithm,
proposed by Paul Blenkhorn [1]. The Very high speed Hardware
Description Language (VHDL) was used to describe the chip in a
hierarchical way. The test results indicate that the hardware-based
translator achieves the same results as software-based commercial
translators.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles − advanced
technologies, algorithms implemented in hardware, gate arrays,
input/output circuits, memory technologies, VLSI (very large scale
integration).

General Terms: Algorithms, Design, Languages, Verification,
FPGA design.

Keywords: Braille translation, FPGAs, VHDL.
1. INTRODUCTION
In 1829 Louis Braille developed a system based on a 6-dot cell,
which allowed the blind to read and write. Useful as it was, the
original Braille system suffered from low throughput because text
had to be spelled letter by letter. To solve this problem, English and
other languages introduced the use of contractions [1, 3]. When
contractions are used, Braille is usually called "grade 2", in contrast
to "grade 1" transcriptions [2].
Since Braille became one of the most important ways for the blind
to learn and obtain information, translating normal text into Braille
became a necessity. Today, most Braille translators are computer-
based and use the American Standard Code for Information
Interchange (ASCII).
Paul Blenkhorn’s proposed a system to convert text into Standard
English Braille [1]. This method uses a decision table with input
lasses and states and a rule table with all rules for translation. The
format of each row in the table is:

Input class <TAB> Rule <TAB> New state

 Translator
Translating Block

Look-Up
Table

Output Translated Codes

Right
Context
Check

 Left
Context
Check

Output
Rule

Find
Entry

Load
Translated

Codes

Translating Controller Data
Controller

Braille
ASCII

Text
ASCII Focus

Check

Figure 1. Block diagram of text to Braille translator

The system presented in this paper only considers grade 2 Braille
translations; hence the table can be simplified by ignoring input
classes and states. Only rules are considered.
Every rule has the following format:

Left context [focus] Right context = input text
All rules are listed in ASCII alphabetical order. For rules whose
focuses start with the same character(s), the order in which they
appear in the table is related to their priority. Therefore, the rules
have to be checked in order.

2. ARCHITECTURE OF THE SYSTEM
Figure 1 shows a block diagram of the text to Braille translator
implemented in an FPGA.
Figure 1 shows that the translating block consists of 8 sub-blocks.
The translating-controller block gets feedback from the load-
translated-codes block and also receives and stores the text data in
registers. In this particular implementation, the translator carries
out the conversion five words at a time.
In Figure 1 the find-entry block receives one entry character from
the translating-controller block and outputs a particular address to
the output-rule block. The entry character is the first un-translated
character in the input text string. In this block, there is a look-up
table that stores all the entry addresses. If an address corresponds
to a particular entry character, it is sent to the output-rule block.
However, if no entry address can be found for a particular
character, it means the entry character is not in the list. Therefore,
a fail signal is issued and the character will be output without
translation.

Copyright is held by the author/owner(s).
ASSETS'06, October 22–25, 2006, Portland, Oregon, USA.
ACM 1-59593-290-9/06/0010.

229

Two operations keep running in the output-rule block. One is
reading rules from the look-up-table block, and the other is
sending every single rule to focus-check, right-context-check, left-
context-check, and load-translated-codes blocks. The output-rule
block receives signals from the find-entry block obtaining
addresses, and signals from the load-translated-codes block that
indicate if the output rule can be used.
The output-rule block sends an address to the look-up-table to read
one rule at a time and sends it separately to focus-check, right-
context-check and left-context-check blocks. If the rule does not
find a match, then a signal is generated and the output-rule block
gets the next rule and sends it. This process continues until a match
is found and the focus is successfully translated.
The focus-check and right-context-check blocks receive not only
the rule from output-rule block, but also the whole group of words
to be translated from the translating controller because more than
one letter of focus and right context might need to be checked. The
left-context-check block checks one or two previously translated
characters according to the look up table. These three blocks
perform similar functions.
As shown in figure 1, the focus-check, right-context-check and
left-context-check blocks work concurrently, providing better
performance than sequential implementations. Each block
generates signals for the load-translated-codes block indicating if
the focus, the right context or the left context were successfully
matched. If one of the three fails, then a signal is sent back to the
output-rule block requesting the next rule. If the focus, right
context and left context match one of the rules, then the load-
translated-codes block sends the translated codes to the output-
translated-codes block, and informs to the translating-controller
block how many characters were translated. After one group of
characters has been translated, the output-translated-codes block
transmits the corresponding Braille ASCII characters one by one.
Then the translation of a new set of characters begins.

3. IMPLEMENTATION AND TEST
The translator has been implemented using a Top-Down design
methodology where high level functions are defined first, and the
lower level implementation details are filled in later [4, p.90]. The
system has been successfully implemented in a Xilinx’s Virtex-4
FPGA evaluation board [5].
The texts to be translated, as well as the results of the translation
were stored in a PC as text files and transmitted using an RS-232
serial connection. Figure 2 shows the setting used to test the
translator. The system works as follows:

1. The text to be translated is sent to the FPGA through a serial
link using Hyper Terminal.

2. Part of the FPGA implements a receiver that converts serial
data into bytes that are loaded into the translator.

3. The translator takes the new character and stores it in a
buffer. Characters are stored until a space is detected. At this
point the translation process described in section 2 takes
place.

4. The results of the translation are sent to a serial transmitter
so that they can be received and stored in a text file by the
computer.

For the implementation reported in this paper, the FPGA receives
the text file to be translated at 4,800 bauds and sends the translated
text back to the PC at 57,600 bauds.

FPGA

Serial
Receiver

Serial
Transmitter

T
ra

ns
la

to
r

Text
files

Figure 2. Test bench for Braille translator.

In this setting, the translator runs faster than the serial
communication channel because, even though the translation
process can be finished in the time required to transmit one bit of
information to the PC, the current implementation works on words,
hence; after a word has been translated it has to be sent to the
computer before the next word is received. Parallel
communications could be used to increase the throughput of the
system.
During testing, outputs of the hardware translator were compared
against the outputs of a commercial Braille translation program.
The results show that the hardware translator is able to perform
translations with the same accuracy as the commercial system.

4. CONCLUSIONS
The design and implementation of an FPGA-based, text-to-
Braille translator has been presented. In its current version,
the system can be used in embedded and high-performance
applications. However, there are several improvements
which will be incorporated in future versions of the hardware
translator. For example, the current system is a stand-alone
component. Its structure has to be changed for every
individual application. An improved version will incorporate
the hardware translator in a system on a chip for
multifunctional text-Braille translation. The system will
consist of a microcontroller for interface and control, and the
text-Braille translator, all integrated in one single chip. For
further improvement, a multi-language-Braille translator will
be considered. Look-up tables for different languages could
be stored in flash memory so that when translation of text in
a particular language is required, the microcontroller loads
the corresponding look-up table.
5. REFERENCES
[1] Blenkhorn, P. A System for Converting Print into Braille, IEEE

Transactions on Rehabilitation Engineering, vol. 5, No. 2, pp.
121-129, 1997.

[2] Jonathen, A. Recent Improvement in Braille Transcription,
Proceedings of the ACM annual Conference, vol. 1, Boston,
pp.208-218, 1972.

[3] Blenkhorn, P. A System for Converting Braille into Print, IEEE
transactions on Rehabilitation Engineering, vol. 3, no. 2,
pp.215-221, 1995.

[4] Zeidman, B. Designing with FPGAs and CPLDs, CMP books,
2002, ISBN: 1-57820-112-8.

[5] Memec Inc. Virtex-4(TM) FX12 LC Development Board User’s
Guide, electronic documentation, version 1.0, 2005.

230

