
Modeling QoS characteristics in WSMO

Ioan Toma
Digital Enterprise Research
Institute (DERI Innsbruck)

Technikerstrasse 21a, 6020
Innsbruck, Austria

ioan.toma@deri.org

Douglas Foxvog
Digital Enterprise Research

Institute (DERI Galway)
National University of Ireland,

Galway, Ireland

doug.foxvog@deri.org

Michael C. Jaeger
TU Berlin, FG FLP, FR6-10,

Franklinstrasse 28/29,
D-10587 Berlin, Germany

mcj@cs.tu-berlin.de

ABSTRACT
Service oriented architectures (SOAs) are becoming widespread
solutions for realizing distributed applications. They promote a ser-
vice view of the world in which functionalities exposed as services
by different companies are assembled and reused in a standardized
manner. Services are the core building blocks of SOAs and there-
fore modeling various aspects of services becomes a fundamental
challenge. Among these aspects, quality-of-service (QoS) need to
be addressed given the high dynamism of any SOA-based system.
This paper introduces the basic steps of modeling QoS characteris-
tics of services with the Web Service Modeling Ontology (WSMO)
in order to provide a QoS-aware SOA. It discusses the current limi-
tations of modeling QoS characteristics with WSMO and proposes
a set of approaches towards a richer QoS modeling support. Each
approach is analyzed in terms of complexity and the advantages
and disadvantages of each approach are discussed.

Categories and Subject Descriptors
H.1 [Models and Principles]: Miscellaneous

General Terms
Design

Keywords
QoS, Non-Functional Properties, Modeling

1. INTRODUCTION
Electronic services and the service-oriented architecture (SOA)

are emerging paradigms for the IT infrastructure of today’s en-
terprises. An SOA meets special demands of businesses to re-
alise their processes, because services match the process orien-
tation of modern businesses. Basic cornerstones of today’s ser-
vices are standardised interface descriptions and standardised in-
vocation protocols. The standardisation enables the interoperation
between heterogeneous computer systems. Heterogeneity is the re-
ality in the IT-landscape of today’s business. The standardisation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4SOC ’06, November 27-December 1, 2006 Melbourne, Australia
Copyright 2006 ACM 1-59593-425-1/06/11 ...$5.00.

of interface and invocation descriptions allows the facilitation of an
implementation-independent infrastructure which is an economic
advantage for businesses. Thus, there is strong business interest for
an SOA to establish a common platform that integrates the different
systems (cf. Huhns and Singh [15]).

Along with the emerging use of SOAs, the need rises to consider
quality-of-service (QoS) when running business processes. The
volatility of the offered service quality is an inherent characteris-
tic of distributed systems. Services may appear or disappear, or the
underlying infrastructure may show volatile behaviour regarding
the connection quality. Thus for businesses, so-called service level
agreements (SLA) become important in order to preserve business
interests. The basic concern of an SLA is to negotiate a guaranteed
level of provided QoS. Such QoS could cover the cost of service
execution as well as the response time of a service invocation or
the availability of services.

This paper introduces the basic steps of modeling QoS char-
acteristics of services with the Web Service Modeling Ontology
(WSMO, [18]) in order to provide a QoS-aware SOA. WSMO,
along with its associated language, the Web Service Modeling Lan-
guage (WSML, [4]), provides the means to describe different char-
acteristics of SOA services in a machine understandable way. It
focusses on two aspects:

• Automated service mediation. Computers systems should
identify suitable services automatically. The approach pro-
posed by WSMO is to apply semantic descriptions and for-
mal modeling of services to let software systems automat-
ically decide whether a service is suitable to take part in a
business process or not. The concept of mediation includes
the transformation of functionality to translate between the
provider’s offerings and the requirements of a service re-
quester.

• Service execution infrastructure. Another main aspect of
WSMO is to provide an infrastructure that allows not only
the description and mediation of services but also facilitates
the provision of services. This infrastructure is called Web
Service Modeling Execution Environment (WSMX, [9]).

As mentioned above, business interests require facilities to guar-
antee a constant level of QoS. Our aim is to extend the WSMO
approach with capabilities to support and process QoS characteris-
tics. Processing the QoS has two main purposes:

• Matching Requirements. In the mediation phase, a QoS-
aware mediation environment can capture the requirements
of the service requester more precisely. These would be busi-
ness requirements requirements if the services were part of a
business process.

42

• Ensuring Continuous Level of QoS. Based on the agreed
level of QoS or SLA a service execution infrastructure mon-
itors QoS violations and can establish recovery activities if
required. Such activities keep the level of guaranteed QoS,
even if individual services fail. If services fail, they should be
dynamically substituted with the appropriate replacements.

To cover this overall goal, this paper presents a set of possible
approaches to express QoS characteristics of services in WSMO
and WSML. Although different approaches exist for modeling and
expressing QoS, none of these proposals are tailored for the use in
WSMO. The related efforts will be discussed further in Section 5.

The remainder of the paper is organised as follows: Section 2
will explain basic patterns of processing. Section 3 will introduce
the basic concepts of WSMO and WSML, with a focus on current
support for modeling QoS characteristics. Section 4 will discuss
possible extensions and integration approach for QoS support in
WSMO and WSML. After the related work in Section 5, our con-
clusions will be presented in Section 6.

2. QOS PROCESSING IN AN SOA
The current state-of-the-art proposes three main ways to process

the QoS in an SOA for the purpose of service mediation: a) using
a combined broker, b) using a dedicated broker or c) direct nego-
tiation between service importer and exporter. All these patterns
have in common that a service provider published its QoS offerings
while the submission of QoS requirements by the service requester
can be regarded as optional. In detail, the three main patterns are
as follows:

• Combined broker. By this pattern, a broker or a service
discovery is extended to process QoS information for trad-
ing services. OASIS has proposed a service discovery spec-
ification which can be used for this purpose named UDDI
(Universal Description Discovery and Integration, [22]). An
extended UDDI (cf. [1]) processes the QoS parameters pro-
vided by a service provider. When a service requester queries
the broker, QoS requirements can be processed for the iden-
tification of services.

• Separate QoS-broker. In the this pattern, a dedicated bro-
ker performs the QoS-based selection of the trading process
(cf. [13, 23]). A motivation for establishing a dedicated bro-
ker infrastructure exists, if monitoring during run-time is re-
quired. A service repository concentrates on the discovery
part of the trading process while a QoS-broker monitors the
provided QoS in order to apply dynamic adaptations.

• Direct negotiation. In this pattern, the QoS information is
processed individually and decentrally. A service requester
agrees with the provider on a service level agreement. A re-
quirement from the service requester can be considered op-
tional. Such proposals require a negotiation protocol and a
QoS specification language; so the requester negotiates an
SLA with the provider. Both parties define in this SLA the
QoS that the service exporter must provide. Examples for
SLA languages are the Web Service Level Agreement Lan-
guage by IBM (WSLA, [12]) and the Web Service Offerings
Language by Tosic et al. (WSOL, [21]).

These three patterns outline the basic arrangements in a QoS-
aware SOA. In the WSMX architecture, a dedicated software com-
ponent is specified that performs the QoS negotiation part. The
WSMX architecture provides a service discovery component for

the functional matchmaking of service descriptions. In addition, it
provides the component named service selection component (cf. [5,
Section 2]), which selects matched services by their non-functional
preferences which includes the QoS. The service selection compo-
nent will be the component that processes the QoS description as
proposed in this work. Additionally, a ranking mechanism for Web
services that uses QoS descriptions can be implemented as part of
this component.

Besides the different patterns for processing QoS, QoS char-
acteristics for the use with services are another important issue.
Menasce mentions response time, throughput, security and avail-
ability as relevant characteristics [14]. Zeng et al. present a frame-
work for the QoS-aware composition of Web services [25]; their
discussion covers the QoS characteristics price, duration, reputa-
tion, success rate, and availability. Patel et al. discuss the model-
ing of Web services and the creation of service descriptions which
involved different QoS characteristics [17]. Their selection is di-
vided into two main categories: The first category consists of the
latency(response time), throughput, reliability, and cost. The other
category is named internet-specific and consists of availability, se-
curity, accessibility. The contributions from Ludwig et al. (WSLA,
[12]) and Tosic et al. (WSOL, [21]) do not mention particular QoS
categories or characteristics.

Obviously, a basic set of QoS characteristics can be considered
relevant for the use in an SOA. The design of languages for QoS de-
scription can focus on these characteristics, should not be limited to
them. The QoS characteristics considered in WSMO are discussed
in Section 3.3. The set of QoS is extensible and the current exten-
sions proposed in this paper do not restrict the QoS characteristics
that can be described.

3. THE WSMO APPROACH TO SEMAN-
TIC WEB SERVICES

In this section we give a short overview of the Web Service Mod-
eling Ontology, the conceptual model for describing Semantic Web
services, and of the Web Service Modeling Language, the language
for describing services based on WSMO model.

3.1 WSMO
The Web Service Modeling Ontology is one of the major ini-

tiatives in Semantic Web services area. WSMO provides an overall
framework for Semantic Web services that aims at supporting au-
tomated Web service discovery, selection, composition, mediation,
execution, monitoring, etc. WSMO inherits a set of design prin-
ciples from the Web Service Modeling Framework (WSMF, [6]).
Among these principles, two have a major influence: (1) Princi-
ple of maximal de-coupling: all WSMO components are specified
autonomously, independent of connection or interoperability with
other components and (2) Principle of strong mediation: the con-
nection and interplay between different components is realized by
Mediators that resolve possible occurring heterogeneities between
the connected components. Additionally every WSMO component
description may include an extensible set of non-functional prop-
erties, based on the Dublin Core Metadata Set [8]. WSMO defines
four top-level notions related to Semantic Web services:

• Ontologies: are formal explicit specifications of shared con-
ceptualizations. They define a common agreed upon termi-
nology by providing concepts and relationships among the
set of concepts from a real world domain. Such terminolo-
gies are then used within all other WSMO elements.

• Goals: are descriptions of the objectives a client may have

43

when consulting a service in terms of functionality, behavior
and quality of service.

• Web services: are descriptions of services that are requested
by service requesters, provided by service providers, and
agreed between service providers and requesters.

• Mediators: address the heterogeneity problem that occurs
between descriptions at different levels: data level - differ-
ent terminologies, protocol level - different communication
behavior between services, and process level - different busi-
ness processes. WSMO defines four types of mediators: OO
Mediators connect and mediate heterogeneous ontologies,
GG Mediators connect Goals, WG Mediators link Web ser-
vices to Goals, and WW Mediators connect Web services re-
solving mismatches between them.

3.2 WSML
The Web Service Modeling Language is a formal language for

describing ontologies, goals, Web services and mediators. WSML
follows the WSMO conceptual model being based on a set of well-
known logical formalisms including: Description Logics [2], Logic
Programming [11], F-Logic [10] and First Order Logic. These for-
malisms are taken as starting points for the development of a num-
ber of WSML language variants. WSML has a set of five vari-
ants: WSML-Core, WSML-Flight, WSML-Rule, WSML-DL and
WSML-Full. WSML-Core is based on the intersection of Descrip-
tion Logics and Logic Programming, more precisely on Datalog
programs. It has the least expressive power but provides a low
formal complexity and is decidable. By extending WSML-Core
in the direction of Logic Programming with default negation, car-
dinality constraints, n-ary relations with arbitrary parameters and
meta-modeling features a new language, WSML-Flight, is defined.
A further extension in the same direction with function symbols
results in a new language variation called WSML-Rule. WSML-
Rule no longer requires safety of rules. The only differences be-
tween WSML-Rule and WSML-Flight are in the logical expression
syntax [4]. Extensions of WSML-Core extension to a full-fledged
description logic resulted in WSML-DL. WSML-Full is based on
First Order Logic and acts as umbrella language, unifying all the
above varieties.

3.3 Current support for QoS modeling in WS-
MO/WSML

Describing QoS characteristics of a service in WSMO, currently
relies on, Dublin Core Metadata Initiative [24], which provides
a wide range of non-functional properties. Such properties can
be attached to a service description or any other WSMO element.
WSMO recommends a set of non-functional properties for each
WSMO element of a service description. For example the rec-
ommended non-functional properties for services are: accuracy,
contributor, coverage, creator, date, description, financial, format,
identifier, language, network-related QoS, owner, performance, pub-
lisher, relation, reliability, rights, robustness, scalability, security,
source, subject, title, transactional, trust, type, and version.

A closer look at non-functional properties proposed by WSMO
revels that there are two categories of non-functional properties.
On one hand properties such as reliability, scalability and security,
mentioned in the previous section as typical QoS characteristics in
a SOA, relate strictly to a service and capture constraints over its
functional and behavior aspects [3]. QoS properties are part of this
category. On the other hand properties such as contributor, creator
and date are rather used to add extra information about the service
description itself and do not provid constraints over what a service

can do, nor how it can do it. The entire set of properties belonging
to this second category includes contributor, creator, date, identi-
fier, owner, publisher, subject, title, and version.

Both types of non-functional properties are important for ser-
vice and services descriptions and therefor they are both considered
in WSMO. However, the current support in WSMO to model, at-
tach and reason with QoS descriptions of a service is rather limited.
WSMO does not provide a model for non-functional properties in
general not for QoS in particular. Using WSML [4], the Web Ser-
vice Modeling Language, one can only assign simple values to the
non-functional properties of a WSMO elements. Such a value can
be any identifier in WSML and thus it can be an IRI, a data value,
an anonymous identifier or a list of any of these. To overcome these
limitations we propose in Section 4 a set of solutions that will al-
low non-functional properties in general and QoS characteristics in
particular to be better modelled.

4. EXTENDING WSMO/WSML WITH QOS
SUPPORT

Extending the Web Service Modeling Ontology (WSMO) and
its associated language Web Service Modeling Language (WSML)
with QoS support is the focus of our work. This overall goal gener-
ates two important challenges: (1) how to model QoS and (2) how
to attach QoS characteristics to services and goals.

For the first challenge one possible general solution is to define a
set of QoS ontologies that are used afterwards when the QoS char-
acteristics of services are specified. This approach does not require
any extensions of the WSML language. It is based only on the us-
age of ontologies that provide models for QoS. Furthermore, the
ontology can be imported and concepts referring to a specific QoS
can be instantiated and used in the service description. We have al-
ready started to define a set of QoS ontologies [20] in WSML based
on the models provided in [16]. These ontologies provide formal
conceptualization for Web service QoS like availability, security,
etc.

For the second challenge one possible general solution is to treat
QoS, and non-functional properties in general, as normal at-
tributes for services and goals. In this case QoS properties be-
come part of the logical model of WSML and thus reasoning over
these descriptions is possible. More precisely, if services or goals
can be seen as instances of concepts then following this extension
associated QoS characteristics will be modeled as attributes.

A set of concrete solutions for integrating QoS characteristics in
particular and non-functional properties in general in WSMO and
writing them in WSML are proposed below. These solutions are
concrete implementations that address the second challenge men-
tioned above. The term non-functional property of a service is be-
ing used in this section as a broader term than QoS, QoS properties
are a subclass of the general class non-functional properties defined
by WSMO.

• One method for defining non-functional properties for ser-
vices, goals, mediators and ontologies would be to specify
each property through the use of a relation. Relations in
WSML need not restrict their arguments to instances; they
can be defined with an arity and no restriction on their ar-
guments. The relation, nfpOf could be defined as follows to
relate the value of properties to such WSMO components:
� �

r e la t io n nfpOf /3
nfp
dc#desc r i p t i on hasValue

” nfpOf (WSMO Component , Property 1 ,
t h i s\ Value) means t h a t

44

the value of the Proper ty 1
proper ty of the spec i f i ed WSMO

component i s th isValue . ”
endnfp

� �

Using such a relation, one could state non-functional proper-
ties without constraint:
� �

nfpOf (Goal01 , serviceCharge ,
[hasAmount hasValue 0.02 ,

hasCurrency hasValue cur#Euro]
memberOf pr ice#Abso lu tePr ice)

nfpOf (OOMediator17 , usedMappingLanguage ,
lang#TRIPLE)

nfpOf (Choreography34 , usesMediator ,
OOMediator17)

� �

This approach has the following advantages:

– No need for adding vocabulary to WSML

– Any property may be used as a non-functional property

This approach has one major disadvantage. There are no re-
strictions on the value of arguments to nfpOf. Thus invalid
nfpOf relations cannot be detected in this manner. More pre-
cisely:

– The second argument is not restricted to being an at-
tribute.

– Values may be presented for the third argument which
violate argument restrictions on property specified in
second argument.

However, rules could be written to enforce some of these
restrictions.

• A second approach for defining non-functional properties for
services, goals, mediators, ontologies, or any other WSMO
element would be to define a concept NfpSet with an attribute
isAbout that once instanced will point to a WSMO element
instance. Non-functional properties are attached to a WSMO
element by refining the NfpSet concept. Axioms can be used
to restrict instances of non-functional properties. An exam-
ple of how this approach can be implemented is provided
below:
� �

concept NfpSet
isAbout ofType i r i

concept WebServicePriceNFPs subConceptOf
NfpSet

nfp
dc# re l a t i on hasValue EuroWebServiceOnly

endnfp
hasPrice ofType pr i ce#P r i ce

axiom EuroWebServiceOnly
definedBy

?x memberOf WebServicePriceNFPs
equivalent

?x [hasPrice hasValue # [hasCurrency
hasValue cur#Euro]] memberOf

pr i ce#P r i ce .

instance MyServiceNFPs memberOf
WebServicePriceNFPs

isAbout hasValue MyService / / a Web
Service

hasPrice hasVslue # [hasAmount hasValue
0.02 , hasCurrency hasValue cur#Euro
]

memberOf pr ice#Abso lu tePr i ce
� �

Constraints over the non-functional properties instances can
be defined using axioms. Ontologists are advised to include
the relation between the concept and the axioms related to the
concept in the non-functional properties through the property
dc#relation.

This approach has the following advantages:

– No need for adding vocabulary to WSML.

– Logical expressions can be define for non-functional
properties and can be attached to a WSMO element
(service, goal, etc.). This is done by using the non-
functional property dc#relation.

– The set of non-functional properties is not an explicit,
finite set. An open set of non-functional properties can
be attached to a WSMO service or goal as attributes of
NfpSet sub-concepts.

This approach has the following disadvantages:

– Attaching non-functional properties to WSMO elements
by defining concepts as WebServicePriceNFPs and Nf-
pSet seams a bit artificial. A better way to model is by
using a relation.

– The dc#relation which appears to connect the defini-
tional axiom to the instance of NfpSet is actually a mere
comment. This can lead to version control problems
if the axiom is renamed or new definitional axioms are
added without new dc#relation statements being added.

• The third approach for integrating non-functional properties
in WSMO/WSML is to model non-functional descriptions
of services or goals in a way similar to which capabilities
are currently modelled in WSMO/WSML. A service is an
entity which provides a functionality (e.g. given a date, a
start location, a destination and information about a client
a service can book a ticket for the desired trip), but in the
same time a service can be seen as an entity which provides
one or more non-functional properties (e.g. given a partic-
ular type of client a service charges a particular price, etc.).
Non-functional properties are defined using logical expres-
sions same as pre/post-conditions, assumptions and effects
are being defined in a capability. A simplified model of a
WSMO service following this approach is:
� �

webService
capabi l i ty i d C a p a b i l i t y

precondition definedBy axiom1
postcondition definedBy axiom2
assumption definedBy axiom3
ef fec t definedBy axiom4

nonFunctionalProperty idNFP
d e f i n i t i o n definedBy axiom5

� �

This approach has the following advantages:

– The set of non-functional properties is not an explicit,
finite set. Users of WSMO/WSML can define and at-
tached an open set of non-functional properties to a
goal or a service.

– Non-functional properties models are attached to ser-
vices and goals in the same way as capabilities are.

This approach has the following disadvantages:

– A major disadvantage of this approach is that the WSML
syntax has to be extended.

45

5. RELATED WORK
Another approach for the semantic description of Web service

is the OWL Services ontology(OWL-S, [19]) which uses the Web
Ontology Language (OWL). The authors of this language propose
expressing QoS parameters or constraints, depending on whether a
service request or an offer is described, in two main ways: First,
a concept that covers the notion of resource consumption is pro-
posed. This concept allows the description of QoS characteristics
such as cost and response time, but hardly matches availability or
security. To cope with QoS characteristics that do not match the
notion of resources, a property of the so-called service profile is
provided. In this way, attributes of a service can be defined that
express QoS statements. Because the use of quality rating state-
ments is not specified, machine-based reasoning can only be pro-
vided with proprietary conventions.

Besides the area of semantic web services, a couple of approaches
cover QoS description for other reasons: The WSLA by Ludwig et
al. [12] has already been mentioned; its purpose is to provide de-
scriptions for facilitating an SLA negotiation. The language pro-
vides the basic concept of a service, which relates to the concept of
a Web service in WSMO. WLSA also offers concepts to model the
role of different parties involved within a particular SLA. WSMO
provides more concrete definition with the concepts of goals, Web
services and mediators in the setup of an SOA. As its main goal, the
language allows the definition of (QoS) guarantees. WSMO has a
broader focus, it also includes basic concepts of service descrip-
tions and description about involved parties. Concepts of WSMO
allow the description of general non-functional and behavior char-
acteristics.

The same consideration applies to QML by Frohlund and Koisti-
nen [7] when compared with WSMO and its extensions. QML of-
fers a comprehensive set of description elements which allow the
description of QoS to establish SLAs, which are called “contracts”
in their work. In contrast to WSLA, the QML provides a concrete
set of QoS characteristics and elements for more detailed defini-
tions of QoS parameters, e.g. the percentile statement. Contrary
to WSLA, which directly proposes an XML notation, Frolund and
Koistinen provide an abstract syntax which would allow different
notations besides XML. The QML proposal includes an extension
for UML which indicates that QML has its primarily focus on mod-
eling QoS, and can be used in various ways: to express QoS in
software models and to provide the foundation for the negotiation
about QoS in order to form contracts.

The proposed WSMO extensions of this paper are influenced by
WSLA and QML. However, they were not fully considered as ba-
sis for WSMO extensions. The language syntax and the interpre-
tation of the main concepts of those proposals are different than in
WSMO and WSML. Thus, this paper proposes extensions specifi-
cally tailored for WSMO.

6. CONCLUSIONS AND FUTURE WORK
This paper has introduced the basic steps of modeling QoS char-

acteristics of services with the Web Service Modeling Ontology.
An analysis of current support for this task has shown that WSMO
currently provides limited support for describing QoS characteris-
tics of services. Furthermore the constructs used (key-value pair
attributes) are pure syntactic constructs without any formal seman-
tics captured in the framework. Motivated by this analysis, a set of
approaches for modeling QoS characteristics of services in WSMO,
were proposed. The first two approaches advance the QoS model-
ing support, without any changes to the conceptual model (WSMO)
or to the language (WSML). However the supported expressivity,

in this case, is rather limited and expressing QoS characteristics
in this way seams quite artificial. The third approach, promotes a
more natural way to deal with QoS characteristics of services by
considering QoS characteristics of services at the same level as ser-
vice capabilities. However this approach requires more extensions
to WSMO/WSML.

As the modeling of QoS characteristics of services in WSMO is
in the early phase, additional points have to be investigated. Firstly,
the three approaches have to be further investigate. For a full sup-
port of QoS modeling in WSMO the third approach seams the most
promising. Secondly, a clear syntax for constructs supporting the
third approach has to be defined. Finally, formal semantics has to
be defined for the constructs introduced in the language, which will
enable reasoning on QoS characteristics of services and thus the
provision of a certain degree of automation for all service related
tasks that consider QoS characteristics (e.g. selection, negotiation,
ranking).

7. ACKNOWLEDGMENTS
This work is partially funded by the European Commission un-

der the projects ASG, DIP, enIRaF, InfraWebs, Knowledge Web,
Musing, Salero, SEKT, Seemp, SemanticGOV, Super, SWING and
TripCom; by Science Foundation Ireland under the DERI-Lion Grant
No.SFI/02/CE1/I13; by the FIT-IT (Forschung, Innovation, Tech-
nologie - Informationstechnologie) under the projects Grisino, RW2,
SemNetMan, SeNSE and TSC. The editors would like to thank to
all the members of the WSMO and WSML working groups for their
advice and input to this document.

8. ADDITIONAL AUTHORS
Additional authors: Dumitru Roman (DERI Innsbruck, email:

dumitru.roman@deri.org) and Thomas Strang (DERI Inns-
bruck, email: thomas.strang@deri.org) and Dieter Fensel
(DERI Innsbruck, email: dieter.fensel@deri.org).

9. REFERENCES
[1] A. S. Ali, O. F. Rana, R. Al-Ali, and D. W. Walker. UDDIe:

An Extended Registry for Web Services. In Proceedings of
the 2003 Symposium on Applications and the Internet
Workshops (SAINT’03 Workshops), page 85, Orlando,
Florida, USA, January 2003. IEEE Press.

[2] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and
P. F. Patel-Schneider, editors. The Description Logic
Handbook. Cambridge University Press, 2003.

[3] L. Chung. Non-Functional Requirements for Information
Systems Design. In Proceedings of the 3rd International
Conference on Advanced Information Systems Engineering -
CAiSE’91, April 7-11, 1991 Trodheim, Norway, LNCS,
pages 5–30. Springer-Verlag, 1991.

[4] J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres,
L. Predoiu, M. Kifer, and D. Fensel. The Web Service
Modeling Language WSML. Technical report, DERI, 2005.
WSML Final Draft D16.1v0.21.
http://www.wsmo.org/TR/d16/d16.1/v0.21/.

[5] C. B. et al. Web Service Execution Environment (WSMX).
Technical report, W3C, 2005. W3C Member Submission,
http://www.w3.org/Submission/WSMX/.

[6] D. Fensel and C. Bussler. The Web Service Modeling
Framework WSMF. Electronic Commerce Research and
Applications, 1(2):113–137, 2002.

46

[7] S. Frølund and J. Koistinen. Quality of Service Specification
in Distributed Object Systems Design. Distributed Systems
Engineering Journal, 5(4), December 1998.

[8] T. R. Gruber. A translation approach to portable ontology
specifications. Knowl. Acquis., 5(2):199–220, 1993.

[9] A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler.
WSMX - A Semantic Service-Oriented Architecture. In
Proceedings of International Conference on Web Services
(ICWS 2005), 2005, Orlando, Florida, USA., 2005.

[10] M. Kifer, G. Lausen, and J. Wu. Logical foundations of
object-oriented and frame-based languages. JACM,
42(4):741–843, 1995.

[11] J. W. Lloyd. Foundations of Logic Programming (2nd
edition). Springer-Verlag, 1987.

[12] H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck.
Web Service Level Agreement (WSLA) Language
Specification. http://www.research.ibm.com/wsla/WSL
ASpecV1-20030128.pdf, January 2003.

[13] E. M. Maximilien and M. P. Singh. A Framework and
Ontology for Dynamic Web Services Selection. In IEEE
Internet Computing, pages 84–93. IEEE Press,
September-October 2004.

[14] D. A. Menasce. QoS Issues in Web Services. In IEEE
Internet Computing, pages 72–75. IEEE Press,
November-December 2002.

[15] M. N.Huhns and M. P.Singh. Service-oriented computing:
Key concepts and principles. IEEE Internet Computing,
January and February:75–81, 2005.

[16] J. O’Sullivan, D. Edmond, and A. H. ter Hofstede. Formal
description of non-functional service properties. Technical
report, Queensland University of Technology, Brisbane,
2005. Available from http://www.service-description.com/.

[17] C. Patel, K. Supekar, and Y. Lee. Provisioning Resilient,
Adaptive Web Services-based Workflow: A Semantic
Modeling Approach. In Proceedings of the IEEE
International Conference on Web Services (ICWS’04), pages
480–487, San Diego, California, USA, July 2004. IEEE CS
Press.

[18] D. Roman, U. Keller, H. Lausen, R. L. J. de Bruijn,
M. Stollberg, A. Polleres, C. Feier, C. Bussler, and D. Fensel.
Web service modeling ontology. Applied Ontology,
1(1):77–106, 2005.

[19] The OWL Services Coalition. OWL-S: Semantic Markup for
Web Services. Technical report, The DARPA Agent Markup
Language (DAML) Program, http://www.daml.org/services/,
2004.

[20] I. Toma and D. Foxvog. Non-functional properties in Web
services. Working draft, Digital Enterprise Research Insitute
(DERI), August 2006. Available from
http://www.wsmo.org/TR/d28/d28.4/v0.1/.

[21] V. Tosic, K. Patel, and B. Pagurek. WSOL – Web Service
Offerings Language. In Proceedings of the Workshop on Web
Services, e-Business, and the Semantic Web - WES (at
CAiSE’02), volume 2512 of LNCS, pages 57–67, Toronto,
Canada, May 2002. Springer Press.

[22] UDDI Spec Technical Committee. UDDI Version 3.0.1.
http://uddi.org/pubs/uddi-v3.0.1-20031014.pdf, 2003.

[23] G. Wang, A. Chen, C. Wang, C. Fung, and S. Uczekaj.
Integrated Quality of Service (QoS) Management in
Service-Oriented Enterprise Architectures. In Proceedings of
the 8th International Enterprise Distributed Object

Computing Conference (EDOC’04), pages 21–32, Monterey,
California, USA, September 2004. IEEE Press.

[24] S. Weibel, J. Kunze, C. Lagoze, and M. Wolf. RFC 2413 -
Dublin Core Metadata for Resource Discovery. Technical
report, Internet Engineering Task Force (IETF), 1998.

[25] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-Aware Middleware for
Web Services Composition. IEEE Transactions on Software
Transactions, 30(5):311–327, May 2004.

47

