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ABSTRACT

Retargetable C compilers are nowadays widely used to quickly ob-
tain compiler support for new embedded processors and to perform
early processor architecture exploration. One frequent concern about
retargetable compilers, though, is their lack of machine-specific code
optimization techniques in order to achieve highest code quality.
While this problem is partially inherent to the retargetable compi-
lation approach, it can be circumvented by designing flexible, con-
figurable code optimization techniques that apply to a certain range
of target architectures. This paper focuses on target machines with
SIMD instruction support which is widespread in embedded proces-
sors for multimedia applications. We present an efficient and quickly
retargetable SIMD code optimization technique that is integrated
into an industrial retargetable C compiler. Experimental results for
the Philips Trimedia processor demonstrate that the proposed tech-
nique applies to real-life target machines and that it produces code
quality improvements close to the theoretical limit.

Categories and Subject Descriptors

C.1.1 [Single Data Stream Architectures]: RISC/CISC, VLIW ar-
chitectures; C.1.2 [Multiple Data Stream Architectures]: Single-
instruction-stream, multiple-data-stream processors (SIMD); D.3.4
[Processors]: Retargetable compilers, optimization

General Terms

Performance, Algorithms

Keywords

SIMD, vectorization, subword parallelism, retargetable compilers

1. INTRODUCTION

With the increasing acceptance of application specific instruction
set processors (ASIPs) [1, 2, 3] as efficient and flexible implemen-
tation vehicles in embedded system-on-chip SoC design, more and
more commercial platforms (e.g. LISATek or Tensilica) are avail-
able for ASIP architecture exploration and design. These platforms
comprise retargetable software development tools, including C com-
piler, instruction set simulator, debugger, and (dis)assembler, en-
abling the designer to quickly explore ASIP architectural alternatives
for a given range of embedded applications. A key component of
many of these platforms is the retargetable C compiler, which can,
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automatically or semi-automatically, be adapted to generate code
for different target architectures. While retargetable compilers have
found significant use in ASIP design in the past years, they are still
hampered by their limited code quality as compared to hand-written
compilers or assembly code. This is no surprise, since higher com-
piler flexibility comes at the expense of a lower amount of target-
specific code optimizations. Therefore, it is common practice to
manually enhance a generated compiler with target-specific opti-
mizations, once the ASIP architecture exploration phase has con-
verged and an initial working compiler is available.

A promising approach to further reduce ASIP compiler design ef-
fort is to identify target processor classes which, due to their archi-
tectural features, demand for specific code optimization techniques,
and to implement these specific techniques such that retargetabil-
ity within the given processor class is achieved. An example is the
retargetable software pipelining support recently introduced for the
CoSy compiler platform [4]. While being less useful for scalar ar-
chitectures, software pipelining is a necessity for the class of VLIW
processors, and for this class it can be designed in a retargetable (or
configurable) fashion.

This paper focuses on another class of target processors, namely
those equipped with SIMD instructions. Wikipedia provides the fol-
lowing definition:

In computing, SIMD (Single Instruction, Multiple Data)
is a set of operations for efficiently handling large quan-
tities of data in parallel, as in a vector processor or ar-
ray processor. First popularized in large-scale super-
computers (... ), smaller-scale SIMD operations have
now become widespread in personal computer hardware.
Today the term is associated almost entirely with these
smaller units.
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Figure 1: Sample arithmetic SIMD instruction: two parallel ADDs
on 16-bit sub-registers of 32-bit data registers A, B, C

In fact, many embedded processors today feature SIMD instruc-
tions in their instruction sets, in order to speed up execution of mul-
timedia computational kernels. As exemplified in fig. 1, a SIMD
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instruction performs several primitive operations in parallel, using
operands from several sub-registers of the processor’s data registers
at a time. Other typical SIMD instructions perform more complex
operations (e.g. partial dot products) or serve for sub-register pack-
ing and permutation. By using SIMD instructions, computations on
”short” data types (e.g. in audio or image processing) can be signif-
icantly accelerated. If instructions operate on data registers divided
into s sub-registers, then a linear peak speedup by a factor of s can
theoretically be expected (in section 6 it will be shown that devia-
tions from this theoretical speedup occur due to different reasons).
In turn, a poor utilization of SIMD implies a large loss in code qual-
ity.

While the SIMD concept has been introduced first for standard
architectures (e.g. Intel MMX, Motorola AltiVec, AMD 3DNow!),
it was quickly adopted in ASIPs for DSP applications (e.g. TI C6x,
Philips Trimedia), and is being used in today “s custom ASIP designs,
too (e.g. Tensilica Xtensa). Therefore, support for SIMD instructions
in retargetable compilers is of high interest.

Several target specific C compilers already do include SIMD uti-
lization, but it is still very weakly supported in ASIP compilers. For
the use in this domain, retargetable SIMD optimizations are required.
Therefore, in this paper, we propose a novel concept for retargetable
code optimization for ASIPs with SIMD instructions, and we prove
this concept by an implementation within an existing retargetable
compiler framework and an experimental evaluation for a real-life,
complex embedded processor.

The rest of this paper is organized as follows. In section 2 some
related work is discussed. Based on the system overview in sec-
tion 3, sections 4 and 5 describe the core of our approach, i.e. an
algorithm for exploiting SIMD instructions in the compiler backend
as well as the retargeting procedure for this algorithm. Section 6
summarizes our experiments for a sample embedded processor with
SIMD support. Finally, sections 7 and 8 mention current limitations
and conclusions.

2. RELATED WORK

A key problem in compiler utilization of SIMD instructions is that
traditional code generation techniques, such as tree covering with
dynamic programming [11], fail in case of SIMD. Hence, compilers
without dedicated techniques are unlikely to exploit SIMD instruc-
tions at all.

Many C compilers, though, provide semi-automatic SIMD sup-
port via compiler known functions (CKFs) or intrinsics. CKFs make
assembly instructions accessible at the C programming level, where
the compiler expands a CKF call like a macro. However, due to
the low-level programming style and poor portability of code with
CKFs, this cannot be considered a satisfactory solution. Some ad-
vanced compilers (e.g. for Intel MMX and SSE) provide automatic
generation of SIMD instructions, yet restricted to certain C language

constructs. Moreover, these compilers are inherently non-retargetable.

ASIP design platforms comprising retargetable C compilers in-
clude LISATek [5], Expression [6], Mescal [1], and ASIPMeister
[7]. However, no SIMD support has been reported for those tools
yet. Tensilica’s [8] compiler for the configurable Xtensa processor
supports SIMD, but it is restricted to a narrow range of architectures.

In the domain of general purpose” retargetable compilers, recent
versions (4.x) of the gcc support SIMD [17] for certain loop con-
structs, but gcc is generally known as being difficult to adapt effi-
ciently to embedded processor architectures.

In research on embedded processor code optimization, a number
of techniques for SIMD utilization have been proposed recently. In
[9] a combination of traditional code selection [10] and Integer Lin-
ear Programming based optimization is presented. This approach
achieves high code quality but suffers from high complexity for large
programs. The work in [13] presents an efficient approach for pack-
ing operations step by step into SIMD instructions, and it presents
results for the AltiVec ISA. Further works in this domain deal with
memory alignment optimization, length conversion [15] and inter-
leaved data for SIMD [16], pointer alignment analysis [14], and

flow graph permutations for more effective SIMD instruction pack-
ing [18].

In summary, a number of techniques for SIMD utilization in com-
pilers with different levels of complexity are available, most of which
are adapted for a certain target machine. Porting of a SIMD opti-
mization technique to a new target machine is still a tedious manual
process. Therefore our approach emphasizes efficient utilization of
SIMD instructions and compiler retargetability at the same time. As
outlined in the next section, this is implemented by integrating a rela-
tively simple, yet effective, SIMD optimization pass into a well-tried
retargetable C compiler framework. The amount of required target
specific information is limited, so that most of it can be extracted
automatically from high-level processor models.

3. SYSTEM OVERVIEW

We use the C compiler generation technique described in [12] that
bridges the gap between the LISATek tools for ASIP design [5] and
the CoSy compiler generation platform [4]. From a single target
processor model, given in the LISA 2.0 architecture description lan-
guage (ADL), a complete software development tool chain (C com-
piler, ISS, assembler, etc.) can be generated. The Compiler Designer
tool [12] extracts a compiler-oriented view from a given LISA 2.0
ADL model and transforms it into a custom specification format. On
this specification, CoSy is invoked as a "backend” to generate the
compiler executable.

Compiler
Designer

ASIP mode
(LISA 2.0 ADL)

LISATek
Processor
Designer :

SIMD
config

Figure 2: Tool flow for retargetable compilation with SIMD sup-
port

CoSy compilers are designed in a highly modular fashion, which
enables to add new optimization “engines” mostly in a plug-and-
play fashion. Hence, we added a retargetable SIMD engine (plus
several auxiliary engines) into the framework that implements the
techniques described in detail in section 4. Due to the coupling to
LISATek, the SIMD properties of the target processor can be de-
scribed within the same “golden” ADL ISA model that drives the
entire ASIP design process, and they can be largely automatically
translated into the CoSy compiler description format (see section 5).
This tool flow, illustrated in fig. 2, enables a complete and retar-
getable path from the target machine model to a SIMD-enabled C
compiler.

4. SIMD ENGINE

4.1 Basic design decisions

Many existing approaches generate SIMD instructions only at a
late stage of the compilation process, i.e. in the backend. The ad-
vantage is that more information is available, both about the input
program’s precise data flow and about the target machine instruction
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set, potentially leading to higher code quality. However, such late
formation of SIMD instructions is not well suitable for retargetable
compilers.

We therefore chose a high level approach to SIMD optimization,
where combination of SIMD instructions takes place as one of the
first compilation phases, almost directly after the program interme-
diate representation (IR) has been generated from the C source code.
This approach is easily retargetable, since it requires only very basic
knowledge of the target machine (as described in section 5). Fur-
thermore, it simplifies code generation, since it abstracts from low-
level problems like register allocation for SIMD sub-words in the
backend. In addition, our approach allows for reuse of all existing
”downstream” standard code generation and optimization engines of
the underlying compiler framework.

A second design decision concerns the representation of gener-
ated SIMD instructions in the compiler’s IR. All IR formats com-
prise elements for representing primitive operations like ~+7, -
”#” etc. However, there is usually no notion of SIMD operations
such as "two parallel ADDs”. Hence, an extension of the underly-
ing IR format would be required. From a practical viewpoint, such
extensions have a dramatic impact on most “downstream” compiler
engines. They demand either for expensive manual adaptations in
the engines or lead to poor performance of optimization engines,
which in turn implies poor code quality. Therefore, we decided
to represent generated SIMD instructions internally in the form of
compiler-known functions (CKFs). CKFs are transparent for other
compiler engines and therefore cause no problems!. A further ad-
vantage of using CKFs is that during the SIMD generation process,
which in turn involves multiple sequential stages, the current IR can
be dumped into a human-readable valid C code file anytime for de-

bugging purposes.

4.2 Preprocessing

Two preprocessing engines have been developed to exhibit suffi-
cient sub-word level parallelism for the subsequent SIMD instruction
combination. The first one performs loop unrolling, a well known
standard code transformation [11] that duplicates loop bodies by a
given unroll factor. While our underlying compiler platform CoSy
already contains an unrolling engine, we added a custom engine that
gives precise control about which loops are unrolled by what factor.

The second preprocessing engine performs scalar expansion. This
transformation serves to split accumulators within unrolled loop bod-
ies into multiple variables that are added only after loop execution.
Scalar expansion (exemplified in fig. 3) removes artificial inter-state-
ment dependencies, e.g. by splitting accumulator variables thereby
exposing more parallelism. It is used as a subroutine in the main
algorithm described below.

1: sO = s1 = s2 = 83 = 0;

2: for(i=0; i<64; i+=4)

3: {

4: s0 = s0 + a[i+0] * b[i+0];
5: sl = sl + a[i+1] * b[i+1];
6: s2 = s2 + al[i+2] * b[i+2];
T . s3 = 83 + al[i+3] * b[i+3];
8:

9: sum = sum + sO + sl + s2 + s3;

Figure 3: Sample FOR-loop unrolled by factor 4 and after scalar
expansion

4.3 SIMD instruction combination

For a given IR of an input C program, we use an iterative algorithm
(fig. 4) that combines IR operations into SIMD instructions and re-
places such instructions by CKFs in the IR. It focuses on the inner-

'Tt is important to note here that this does not imply the disadvan-
tages of CKFs mentioned in section 2. In our approach, CKFs are
only used as a special IR element. They are later automatically re-
placed with assembly instructions in the backend. The compiler user
is not bothered with CKFs at all, while for the processor designer it
is a one-time effort to specify the CKF semantics for the SIMD in-
structions of a given target machine.

most loops with a single basic block, since these tend to be the hot
spots of the input program. Certain multiple basic block constructs
may have been merged into a single basic block by an if-conversion
pass prior to SIMD. The algorithm forms SIMD instructions step
by step, starting at IR nodes that represent operand LOADs from
memory (”collect memory accesses”), and updating memory access
information after each step, in order to finalize combination by gen-
erating SIMD STORE operations.

For all innermost loops
3
Exhibit parallelism (unroll...)
¥

Collect memory accesses

Can find SIMDset?

yes

Replace with SIMD
¥

v Update memory accesses ——

CEnd D

Figure 4: Iterative SIMD instruction combination flowchart

We denote a set of IR operations that can be combined into a
SIMD instruction as a SIMD-set. The algorithm for SIMD-set for-
mation first constructs a data flow graph (DFG) for the loop body to
exhibit interdependencies. Next, it checks a number of constraints
for tuples N = (ni,...,ny) of DFG nodes, where k denotes the
number of sub-registers as specified in the machine description (fre-
quently k = 2 or k = 4). Amongst others®, nodes n; of a potential
SIMD-set must

1. represent isomorphic operations that can be combined to a
SIMD instruction according to the target machine description

2. show no interdependencies that would prevent parallelism

3. satisfy memory alignment constraints if demanded by the tar-
get machine

For the latter, an inter-procedural pointer alignment analysis simi-
lar to [14] has been implemented to improve the static (i.e. compile-
time) alignment checking and to reduce the overhead of dynamic (i.e.
run-time) alignment checks, which may still be required depending
on the given input program characteristics.

After successful construction of each SIMD-set, a corresponding
CKEF is put into the IR, and the iteration from fig. 4 goes on. The
basic idea of the iteration is illustrated in fig. 5. Part (1) shows an
initial IR for a sample loop body (unrolled twice) that computes the
dot product of two vectors a and b and stores the result in vector y.
The left and right fragments of the computations are isomorphic and
meet the memory alignment constraints. Therefore, after three iter-
ations, the left and the right arguments (16-bit LOAD operations) of
the two ”+” operations have been combined to 32-bit SIMD LOAD
operations, and finally the ”+” operations themselves are combined
to a SIMD instruction. Now the IR has the intermediate state shown
in fig. 5 (2). Note that a valid IR is retained in each step. For this
purpose, explicit “extract” operations have been inserted that select
16-bit sub-words out of the 32-bit result of the dual add operation.
The next iteration finds that the two 16-bit STORE operations form
a SIMD-set, too, which in turn enables to later eliminate the extract
operations in a cleanup phase. Finally, the IR state in fig. 5 (3) is
reached, and the algorithm terminates.

*The detailed description is omitted here for sake of brevity, since
the constraints resemble those already described in detail in previous
work, see section 2.
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Figure 5: IR states in different iterations

Since the algorithm avoids an exhaustive search within the given
loop body in favor of an iterative, step-by-step approach to SIMD
instruction formation, it requires only low-degree polynomial com-
plexity (O(n®) worst case for n variable accesses in the IR). In prac-
tice we found that this relatively simple heuristic consumes only a
few CPU seconds of compilation time and utilizes SIMD instruc-
tions very well for speeding up common DSP code benchmarks. In-
sertion of SIMD instructions may lead to an increase in code size,
though, due to the possible necessity of inserting extra code for dy-
namic pointer alignment checks before loop entry points and keeping
both code versions (SIMD and non-SIMD loop).

4.4 Code example

We provide a more detailed example to illustrate the representa-
tion of SIMD instructions in the IR. Fig. 6 shows the initial sample
C source code after preprocessing. We assume availability of SIMD
instructions for two sub-words and a target machine that requires
memory aligned SIMD operands.

void dotproduct(short int *pa; short int *pb; short int *pc)
{

short int sum;

short int sO, sl1, s2, s3;

int i;
sum = 0;
sO = s1 = s2 =83 = 0;

%or(i=0; i<64; i+=4)

sO = sO + (xpa * *pb) *
pat+; pb++; pct+;
sl = s1 + (*pa * *pb) *
pat+; pbt+; pctt;
s2 = s2 + (*pa * *pb) *
pat++; pb++; pct++;
s3 = s3 + (*pa * *pb) *
pat+; pb++; pct+;
}

sum =

*PC;
*pc;
*pc;

*pc;

sum + (sO + s1) + (s2 + s3);

}

Figure 6: Initial code after loop unrolling and scalar expansion

In the first iterations of the algorithm from fig. 4, the SIMD engine
identifies that two pairs of multiplications can be combined and be
replaced by CKFs (SIMD.mul_2x16). Furthermore, necessary sub-
word extract functions (EXTRACT _short_x_of_2) are inserted, and
temporary variables for intermediate results are allocated.

Fig. 7 shows the resulting code after several further steps (as gen-
erated by the IR-to-C code dump facility of our compiler platform).
The SIMD-set computation has been finalized by detecting that the
multiply results can be processed further by SIMD additions. Extract
operations are only required after the "SIMDfied” loop body in order
to recover the correct partial accumulator values (s0, ., s3)re-
sulting from scalar expansion. Here it is assumed that the alignment
analysis cannot resolve the alignment of the pointers, thus a dynamic
alignment check has been inserted (if (((palpblpc) & 3) == 0))

to rule out misaligned pointers. If the check fails, a non-SIMD ver-
sion of the loop is executed in the else-branch. Finally, standard
optimizations, such as dead code elimination, have been invoked to
remove superfluous operations (e.g. extracts) from previous phases.
The resulting code is passed to the compiler backend for assembly
code generation.

void dotproduct(short int *pa, *pb, *pc)

short int sum;

short int s0, sl1, s2, s3;

int i;

int SEaccucommon0Ol, SEaccucommon23;
sum = 0;

s0 = s1'=s2 = s3 = 0;
SEaccucommon01 = SEaccucommon23 = 0;

if ( ((palpblpe) & 3) == 0 )
for(i=0; i<64; i+=4)

SIMD_add_2x16 (SEaccucommonO1,
SIMD_mul_2x16 (SIMD_mul_2x16((int*)pa,
(int*)pb), (int*)pc));
SIMD_add_2x16 (SEaccucommon23,
SIMD_mul_2x16 (SIMD_mul_2x16((int*)pa,
(int*)pb), (int*)pc));
pa+=4; pb+=4d; pc+=4;

s0 = EXTRACT_short_1_of_2(SEaccucommonO1) ;
s1 = EXTRACT_short_2_of_2(SEaccucommonO1) ;
s2 = EXTRACT_short_1_of_2(SEaccucommon23) ;
. s3 = EXTRACT_short_2_of_2(SEaccucommon23) ;
else
%or(i=0; i<64; i+=4)
sO = sO + (xpa * *pb) * *pc;
sl = s1 + (x(pa+l) * *(pb+1) * *(pc+l);
s2 = s2 + (x(pa+2) * *(pb+2) * *(pc+2);
s3 = s3 + (x(pa+3) * *(pb+3) * *(pc+3);
pat+=4; pb+=4; pc+=4;
}
}
sum = sum + (s0 + s1) + (s2 + s3);
}

Figure 7: Final code after finding all SIMD sets, dynamic align-
ment check insertion, standard optimizations, and IR cleanup

S. RETARGETING THE SIMD ENGINE

As mentioned in section 3, we developed an interface between
LISA ADL processor models and the CoSy compiler generation plat-
form. From the LISA model, a SIMD configuration can be generated
that stores SIMD-relevant compiler information about the target ma-
chine, and that can be embedded into a compiler specification for
CoSy. The SIMD configuration first of all captures global param-
eters such as memory word lengths and alignment requirements of
C data types. These parameters control how many operations can
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be packed together and if memory alignment checking needs to be
carried out.

typedef struct

{
char* ruleName; /* clear-text description */
char* ckfName; /* CoSy-internal name of CKF */
int ckfNum; /* CoSy-internal number of CKF */|
opNamesInfo opName; /* instruction semantics */
signednessInfo signedness; /* signedness of the operands */
int p_in; /* fan-in */
int op_size; /* operand size in bits */

} simdSignature;

Figure 8: SIMD instruction signature format

The SIMD instruction combination algorithm from section 4 op-
erates on a signature of each available SIMD instruction as shown
in fig. 8. The first three components serve for unique identifica-
tion of each instruction and their association with compiler known
functions (CKFs). Component opName stores semantic informa-
tion, i.e. whether the instruction performs an arithmetic operation,
LOAD/STORE etc. This information can be extracted from the ADL
processor model. Further signature components store information
about signedness, number of operands, and bit width. Fig. 9 shows
an example signature for a 4 x 8-bit multiply SIMD instruction.
Specialized signature formats are available for more complex arith-
metic SIMD instructions and “extract” operations.

The SIMD configuration enables the execution of the SIMD in-
struction combination procedure from section 4. However, in order
to complete the retargetable compilation flow, the CKF calls in the
resulting intermediate code (cf. fig. 7) must be replaced by valid as-
sembly instructions for the target processor. In our framework, this
means that the relation between CKFs and assembly must be propa-
gated to the CoSy system.

CoSy uses code selection rules or mapping rules for IR to assem-
bly code mapping. Basically, each rule describes how a certain IR
operation is mapped to target assembly code. Our existing Com-
piler Designer tool [12] (cf. fig. 2) comprises techniques to gen-
erate mapping rules automatically from an ADL processor model.
Hence, in principle this technique could be extended to generate
rules for SIMD instructions, too. However, due to practical consider-
ations mentioned in section 4.1, our code selector has been designed
to work with CKFs. CoSy compilers know about declared CKFs
and handle them essentially within a single mapping rule, where a
switch/case construct is used to emit the correct assembly code for
each CKF.

The example in fig. 10 shows such a CKF mapping rule in pseudo-
code. The rule operates on C function calls and checks whether the
given function is a CKF. The cost metric is assigned depending on
the code optimization objective (speed or size). Assuming there is a
CKF usr_ckf_sadd_2_16, the matching target assembly code is fi-
nally emitted; in this example a “dspdualadd” instruction (cf. fig. 1)
for the Trimedia VLIW architecture, as well as some “nop” instruc-
tions that may be eliminated later via instruction scheduling. The re-
quired entries for the CKF mapping rules can be semi-automatically
generated by analyzing the ADL processor model for SIMD instruc-
tions and looking up the corresponding assembly instruction syntax.

6. EXPERIMENTAL RESULTS

For experimental evaluation we created a SIMD-enabled C com-
piler with the design flow from fig. 2 for the Philips Trimedia 32
processor [19] and compiled multimedia application kernels, mostly
taken from the DSPStone benchmarks [20] and similar to those used
in [14] [17] [16]. Furthermore we provide results for more complex
DSP algorithms described in table 1.

For the given Trimedia LISA ADL model, the required retarget-
ing effort for SIMD support was several days. A similar workload
can be expected for other processors, depending on architecture fea-
tures. Note we intentionally did not perform a comparison to the na-
tive Trimedia C/C++ compiler that comes with sophisticated target-
specific optimizations, which would lead to biased results. Instead,

sig = (simdSignature *) malloc(sizeof (simdSignature));
sig->ruleName "unsigned mul 4*8bit";

sig->ckfName = "umul_4_8";
sig->ckfNum = 100202;
sig->opName = MULTIPLICATION;
sig->signedness = UNSIGNED;
sig->p_in =4;

sig->op_size S 63

Figure 9: Sample SIMD instruction signature instance

RULE f:IR_Function_Call(...)
CONDITION {
. /* verify this function is a registered SIMD CKF */

COST 2; /* cost metric for optimized code selection */

EMIT { /* code for assembly instruction emission */
switch(function_id)

case usr_ckf_sadd_2_16: /* unique CKF id */

fprintf (OUTFILE, "\tIF r1l nop ,\n\t IF r1 nop ,
\n\t dspidualadd Y%s hs => %s
\n\t IF rl1 nop ,\n\t IF rl nop ;\n",

REGNAME (source_reg_1) , REGNAME (source_reg_2),
REGNAME (destination_reg));
break;

}

}

Figure 10: Excerpt of CoSy CKF mapping rule for SIMD

benchmark | description

quantize matrix quantization with rounding

compress dct to compress a 128 x 128 pixel image by
a factor of 4:1, block size of 8 x 8

idct_8x8 IEEE-1180 compliant idct,

viterbigsm GSM full rate convolutional decoder

Table 1: Benchmark description

we focused on studying the net speedup (measured with a cycle-true
instruction set simulator) by integrating the SIMD engine into Com-
piler Designer while using only retargetable optimizations.

The Trimedia is a 5-slot VLIW DSP with a number of SIMD in-
structions. Due to its VLIW architecture, using SIMD instructions
does not lead to a speedup in all cases. For instance, one can issue
5 parallel ADD instructions simultaneously, while only 2 dual-ADD
SIMD instructions can be issued at a time. Furthermore, SIMD in-
structions may have a higher latency than regular instructions (e.g.
1 cycle for an ADD vs. 2 cycles for a dual-ADD). So, unless the
instruction scheduler is not able to find suitable instructions for fill-
ing the VLIW slots saved by SIMD, no speedup can be expected.
If there is resource pressure, though, SIMD instructions help to re-
duce the memory bottleneck (at most 2 parallel LOADs/STORE?S),
provided that a minimum loop unroll factor is applied.

There are also further effects, due to the C coding style or register
allocation effects in the compiler backend, that lead to deviations
from the theoretical speedup factor s in case of s sub-registers. We
quantify our results first for one simple, particular benchmark, i.e. a
dotproduct, where vector elements are accessed by means of array
accesses in the C code:

for(i=0;i<N;i++) sum += a[i] * b[i];

Fig. 11 gives the speedup achieved by our SIMD engine in rela-
tion to the unroll factor U and the number of loop iterations I (i.e.
the vector size). Loop unrolling was enabled for both the SIMD and
non SIMD version to distinguish the SIMD speedup from the perfor-
mance effects of loop unrolling. A minimum value of [ is needed to
compensate setup overhead (e.g. for scalar expansion). Beyond that,
the speedup is largely independent of I. The speedup does depend
on U, though, since resource pressure increases with U, and so does
the effectiveness of SIMD. For U = 32, the speedup is asymptoti-
cally 2, which corresponds to the theoretical speedup in this case.

Finally, table 2 summarizes the speedup results for the DSPStone
benchmarks, described both in array and pointer oriented style, and
for a fixed iteration count (I = 1024) with loop unrolling enabled
for the SIMD and non SIMD version. In addition, the last four lines
in table 2 give results for the four more complex DSP routines. In
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Figure 11: Speedup for dotproduct

presence of dynamic alignment checks the SIMD loop version in-
cluding the alignment check overhead has been measured. A sig-
nificant speedup was obtained in most cases. The speedup for the
complex DSP routines is generally lower, since a smaller fraction
of the benchmark code can be mapped to SIMD instructions than
in the case of the DSPStone kernels. Still, a speedup of 7% up to
66% was observed. However, there are also counterexamples, such
as n_complex_updates, where a slowdown has been measured. A
code analysis revealed that this is due to subtle scheduling problems
in the compiler backend, which could be eliminated by a more so-
phisticated instruction scheduler. On the other hand, backend ef-
fects sometimes also lead to a super-linear speedup (e.g. 2.4 for ma-
trixl/array/U32).

As program speedup is the primary objective in utilization of SIMD
instructions, we omit detailed results and analysis of code size effects
here. Analogous to the speedup, we observed a code size decrease
by a factor of 0.6 on average, as compared to unrolled benchmarks
without use of the SIMD engine, and a code size increase by a factor
of 1.5 for matrix1x3 which required a dynamic alignment check with
a SIMD and non-SIMD loop version in the code.

benchmark style | U2 U4 U8 Ule U32
vector addition array | 1.55 171 1.83 191 1.96
fir array | 1.09 123 149 1.72 211
n_real_updates array | 1.64 1.78 188 1.94 1.96
n_complex_updates array | 0.89 0.87 0.88 0.87 0.88
dot product array | 1.09 123 149 1.72 2.11
matrix 1 array | 1.07 1.36 158 1.82 240
mat1x3 array | 1.08 128 149 1.74 1.85
vector addition ptr 1.66 1.79 1.88 193 1.96
fir ptr .11 139 1.81 231 235
n_real_updates ptr 1.75 185 192 196 1.96
n_complex_updates  ptr 1.06 1.08 1.08 1.08 1.08
dot product ptr 1.11 139 1.81 231 2.35
matrix1 ptr 1.11 139 1.81 230 258
matlx3 ptr 1.11 139 181 231 247
quantize (I=64) array | 1.53  1.59 1.63 1.65 1.66
compress (I=8) array | 1.07 1.08 1.23 n/a n/a
idct_8x8 (I=8) array | 1.08 1.09 1.11 n/a n/a
viterbigsm (I=8) array | 1.09 1.10 1.11 n/a n/a

Table 2: Speedup results

7. LIMITATIONS

Our current implementation shows several limitations, whose elim-
ination would probably lead to higher code quality and would allow
to handle a wider range of loop constructs. Currently, the preprocess-
ing pass is being improved to take the trade-off between code size
increase by loop unrolling and speedup into account to determine
the optimal unrolling factor. A further improvement is to use the
pointer alignment analysis information to avoid misaligned point-
ers by loop peeling, to insert data reorganization operations enforc-
ing proper alignment and to exploit unaligned memory operations
of certain architectures. Further effort can also be invested in array

index analysis. We used custom symbolic manipulation functions
to handle simple linear index expressions in the compiler IR, but
recognizing more complex expressions will be beneficial. Finally,
there are limitations imposed by the underlying CoSy platform in
its current version concerning the precision of data dependency and
alias analysis, influencing the exposed parallelism, and instruction
scheduling, responsible for utilization of VLIW slots. Future ex-
tensions like points-to and loop-carried dependencies analysis are
required to handle more complex access patterns and to steer loop
transformations for better SIMD recognition.

8.  CONCLUSIONS

In contrast to previous, largely target specific, code optimizations
for SIMD instructions, we propose a retargetable approach in order
to enable SIMD utilization for a wide range of processor architec-
tures at limited manual effort. This is achieved by using a novel
SIMD engine that works at a high level in the compilation flow, and
by using an ADL based retargeting technique. This concept has been
proven by integrating the SIMD engine within the C compiler gener-
ator of an existing industrial ASIP design framework and generating
a SIMD-enabled compiler for a realistic DSP processor. While pre-
vious backend-oriented SIMD optimization techniques potentially
lead to higher code quality, significant speedup results for standard
benchmarks were generally obtained with our engine. Hence, we
believe that the proposed approach provides a good and practical
compromise between code efficiency and compiler flexibility. Future
work will concentrate on application to further SIMD target archi-
tectures and improvements in code quality by removing the current
limitations identified above.
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