
Keeping Track of Crosscutting Requirements in UML
Models via Context-Based Constraints

Felix Bübl
Epigenomics AG
Berlin, Germany

fbuebl@cocons.org

ABSTRACT
One crosscutting requirement (also called aspect) affects several
parts of a software system. Handling aspects is well understood
at source-code level or at runtime. However, only a few aspect-
oriented approaches handle other software artefact types, like UML
models, configuration files, or database schema definitions. Instead
of re-writing the same aspect newly for each artefact type, this pa-
per suggests to write down aspects independent of artefact types.

But, wait a minute: Where do we weave in an aspect if its point-
cut doesn’t refer to artefact details? Which places does such an
aspect affect? This paper suggests expressing aspects via Context-
Based Constraints (CoCons). They select their constrained system
elements according to the element’s context. For instance, CoCons
affect all system elements used in a certain department, workflow,
or location. CoCons are easy to grasp for users and customers be-
cause they express business requirements without referring to tech-
nical details. This paper focuses on how to express crosscutting
requirements in UML models via CoCons and compares CoCons
to the Object Constraint Language OCL.

1. INTRODUCTION
1.1 It’s a Long Way to the Top if you wanna

Rock’n’Roll
This article has already been submitted to several conferences with-
out success. The reviewers of these previous conferences had good
reasons for rejecting this article. For example:

“The paper has no clear focus and is badly written.”

Thanks to the bags of critics, the maturity of the article has hope-
fully improved in the meantime. For instance, it doesn’t claim any-
more that Earth is a flat disk. Well, we still does not learn grammar
at school, does we? On the next pages, you will find several quo-
tations from reviewers that helped improving this article, like the
reviewer comment above.

1.2 Privacy Policy Example
Before going into details, we start with two examples for cross-
cutting requirements where one requirement affects several system
elements.

Let’s assume that a component-based software system should com-
ply with the following privacy policy:

All components handling personal data must be
inaccessible to all components used in the workflow
‘Create XYZ Report’

A software system consists of different artefact types, like mod-
els, source code, or configuration files. Which elements of which
system artefact should be checked for whether they do (or do not)
access which other elements in order to meet the privacy policy?

1.3 Availability Requirement Example
Moreover, let’s assume that our distributed software should meet
the following availability requirement:

All data needed in the workflow ‘Create XYZ Re-
port’ must be allocated to all computers belonging to
the ‘Sales’ department.

Due to this requirement, any computer of the sales department can
access all the data needed in the workflow ‘Create XYZ Report’
even if the network fails. Hence, the availability of the workflow
‘Create XYZ Report’ is ensured on these computers. But, which
data should be checked if it is (not) allocated to which computers?
Before providing the answer, the next sections outline the problems
we want to solve.

1.4 Goal: Identify Join Points Independent of
Artefact Types

According to [21],aspect-oriented programming languagessup-
plement programming languages with crosscutting concerns that
are called aspects. The aspects are developed separately from the
normal source code and are weaved into the source code on com-
pile time or even dynamically at runtime. A place where to weave
in an aspect is calledjoin point in AspectJ ([3]). Apointcut de-
fines the conditions under which to weave in an aspect – it defines
a query for selecting the join points. According to [35], defining
the pointcuts is independent design issue and can be accomplished



separate from other tasks such as modelling the crosscutting effect
(which is calledadvice in AspectJ).

Typically, a pointcut selects join points by referring to source code
details like names of classes or methods. But, stakeholders who
don’t know anything about the source code should be able to un-
derstand and agree with crosscutting requirements. Hence, our goal
is to define pointcuts that work without knowing the source code at
all. For example, we want to determine where to control the pri-
vacy policy (see section 1.2) without knowing any technical detail
about the system’s components.

In a system model, one crosscutting requirement relates to several
model elements that may not be associated with each other or may
even belong to different diagrams. In source code files, one cross-
cutting requirement can be reflected in many different lines of code.
Likewise, one crosscutting requirement can affect several places in
configuration files. At runtime, one crosscutting requirement can
be realized in several binary components that may not invoke each
other or may even run on different platforms.

It takes too much effort if the same requirement must be stated
newly for each software system artefact at each affected place. On
the contrary, we try to express crosscutting requirements indepen-
dent of the modelling language, the programming language, or the
platform in order to apply the same requirement expression to all
these artefact types. In order to achieve this goal, we need to ex-
press pointcuts without referring to system artefact details. For ex-
ample, the privacy policy (see section 1.2) should be written down
only once in an abstract, artefact-type-independent manner that can
be reflected in each software system artefact at each affected place.
In this paper, we focus on UML models. Our approach, however,
can be adapted to other artefact types, too.

1.5 Goal: Detect Violated or Contradicting
Crosscutting Requirements

Contradicting or violated requirements should be detected as soon
as possible. We try to express crosscutting requirements in a way
that enable tools to find both violated and contradicting require-
ments automatically. For example, software tools should be able
us to detect any system artefact element that violates the privacy
policy, and they should detect if other crosscutting requirements
contradict the privacy policy. In order to enable tools to understand
our crosscutting requirements, we specify them as constraints.

1.6 The Approach in Brief
Specifying crosscutting requirements via context-based constraints
(CoCons) is explained in [8] on a formal, abstract level. This paper
compares them with aspects, applies them to UML models, and
compares them with OCL. Their basic notion can be explained in
just a few sentences:

1. We annotate the system artefact elements with formatted meta-
data called ‘context properties’. A context property describes
its element’s context. As explained in section 2.1, context is
any information that can be used to characterize the situation
of an element.

2. A CoCon expresses a condition on how system elements must
(or must not) relate to each other.

3. A CoCon selects its constrained elements (= join points) ac-
cording to their context properties – the pointcuts of a CoCon

are determined by the context of the constrained elements.

For instance, we could use context properties to mark each element
that handles personal data, and to mark each element that is used
in the ‘Create XYZ Report’ workflow. Then, the privacy policy in
section 1.2 can be expressed via the following CoCon:

All elements that handle personal data must be in-
accessible to those elements that are used in the Create
XYZ Report workflow.

1.7 Section Overview
Section 1 has introduced two example scenarios, outlined the prob-
lem we want to tackle here, and explained the basic terms of aspect-
oriented software development.

The next two sections suggest a solution approach. Section 2 presents
the notion of context used here, and section 3 describes context-
based constraints (CoCons).

Theoretically, CoCons can be applied to any software system arte-
fact type. In this paper, however, we focus on one artefact type
only: UML models. The standard constraint language for UML is
OCL. Hence, section 4 compares CoCons and OCL. Afterwards,
section 5 suggests how to apply CoCons to UML models. Sub-
sequently, section 6 discusses related research on crosscutting re-
quirements engineering. These three sections contain the main con-
tribution of this article. Only by going into details for one artefact
type, we can explain why and how this paper suggests new notion
of constraints. Finally, section 7 discusses the limitations and ben-
efits of the approach.

“Most of the paper is about comparisons. This is
what should be the content of a related work section
(which is missing in this paper).”

Well, related literature is scattered all over the paper in a cross-
cutting way because different sections focus on different research
areas: related research on aspects is discussed in a different section
than related research on UML.

2. INTRODUCING CONTEXT PROPERTIES
2.1 What is Context?
Each software system element resides in an infinite number of con-
texts – according to [34, 19], it is impossible to list all contexts
of an element because it is not possible to completely define what
an element denotes. All context definitions developed in computer
science fail to provide ageneral theory of context as discussed in
[17]. Only limited context models can be handled. Thus, we stick
to a simple and limited context model:

• The context of an element characterizes the situation(s) in
which the element resides as defined in [15].

• The context of a context is ignored here.

• Context that is not part of or managed by the system can be
taken into account.



This notion needs a precise definition of ‘situation’. In situation
calculus ([14]),situation is defined as structured part of the real-
ity that an agent manages to pick out and/or to individuate. This
definition suits well for this paper because context is used here for
distinguishing those elements that are involved in a requirement
from the other elements. A context is not a situation, for a situation
(of situation calculus) is the complete state of the world at a given
instant. A single context, however, is necessarily partial and ap-
proximate. It cannotcompletely define the situations. In contrast,
it only characterizes the situation.

“One of the important concepts that is used several
times in this paper is context. However, the concept
context was not clearly defined.”

As explained at the start of this section and in [17], context remains
a spurious concept. We can only arrive at a clear definition if we
focus one application. Before providing context examples in the
next section that hopefully clarify the definition of context used
here, this section explains why we donot use the typical notion of
context in software engineering.

A software system consists of artefacts, like source code files, con-
figuration files, or models. One artefact can consist of several el-
ements. Aninternal element is contained in at least one of the
system’s artefacts. For example, a component, a method, or a
method’s parameter are internal elements because they are defined
within the system’s artefacts. On the contrary, anexternal context
is not contained in any of the system’s artefacts. Most context defi-
nitions used in software engineering only consider internal context
of a software system element: internal context only refers to other
internal elements. It does not refer to external elements. For in-
stance, the ‘context of a component’ is defined as ‘the required in-
terfaces and the acceptable execution platforms’ of components in
[36]. This is an internal notion of context because it only refers to
internal elements that are part of the system: other components or
containers are defined as context of a component. In the UML 2.0
specification ([25]), context is defined as ‘a view of a set of related
modelling elements for a particular purpose, such as specifying an
operation’. Again, this is an internal notion of context: the context
of a model element refers to other internal model elements.

On the contrary, this paper proposes also to take external contexts
of the system into account. The users and customers understand the
external context of a system better than internal technical details.
The next section suggests how to express external context and gives
examples.

2.2 Context Properties: Formatted Metadata
Describing Elements

The context of a software system element can be expressed as meta-
data. The attribute-value model is commonly used as metadata for-
mat today. As well, we suggest expressing context in the simple
attribute-value syntax: Acontext property consists of a name and
a set of values. Some examples are provided:

• The values of the context property ‘Workflow’ reflect the
names of the workflows in which the associated element is
used.

• The value ‘Yes’ or ‘No’ of the context property ‘Personal
Data’ signals whether an element handles data of private na-
ture.

• The values of the context property ‘Operational Area’ tell, in
which department(s), module(s), or domain(s) the associated
element is used. They provide an organisational perspective.
For instance, ‘Sales’, ‘Human Resources’, ‘Controlling’, and
‘IT’ are values of the context property ‘Operational Area’.

Such context information is typically not part of a system’s source
code. Still, we need to store it somewhere if we want to refer to it.
In order to enrich a system with context information, we don’t have
to modify its source code or its binary components. On the con-
trary, we can manage the context-information in an external repos-
itory. Of course, the context properties can also be managed in the
source code. For instance, the Java metadata facility, a part of J2SE
5.0, is a significant recent addition to the Java language. It includes
a mechanism for adding custom annotations to your Java code, as
well as providing a programmatic access to metadata annotation
through reflection.

A context property groups artefact elements that share a context.
Object-oriented grouping mechanisms like inheritance, stereotypes
or packages are not used because the values of a context property
associated with one element might vary in different configurations
or even change at runtime. An element is not supposed to change
its stereotype or its package at runtime. Context properties facili-
tate handling crosscutting requirements because they are a simple
mechanism for grouping otherwise possibly unassociated model el-
ements - even across different views, artefact types, or platforms.

3. INTRODUCING CONTEXT-BASED CON-
STRAINTS (COCONS)

This section describes a new technique for specifying crosscutting
requirements called ‘CoCons’.

3.1 Intuitive Definition of Context-Based Con-
straints

A context-based constraint(CoCon) expresses a condition on how
its constrained elements must relate to each other. This condi-
tion C(x, y) is calledCoCon-predicatehere. Different CoCon-
predicates exist. For example, a CoCon-predicate can express that
‘x must (or must not) be accessible toy’ (as in the security require-
ment in section 1.2). Another CoCon-predicate can express that
certain elements must (or must not) be allocated to certain comput-
ers (distribution requirement, see section 1.3). In terms of AspectJ
([3]), C(x, y) expresses an advice.

“You tell us thatC(x, y) expresses an advice. I’d
like to see an explanation for this. Doesn’t it express a
constraint?”

So, what’s the difference between constraints and advices? In UML
([25]), a constraint is a semantic condition or restriction expressed
which must be true for the model to be well formed. In AspectJ,
advice is the implementation of behaviour that crosscuts the set of
execution points defined by a pointcut. An advice can implement
any kind of behaviour. For instance, an advice can implement a
constraint: it can either monitor if the system meets the constraint’s



condition in each join point, or it can enforce the constraint’s con-
dition (if the system doesn’t meet the constraint’s condition at a
specific join point then change the system so that it meets the con-
straint’s condition). A CoCon cannot express every possible ad-
vice. It can only express a condition. This conditionC(x, y) can
either me monitored or enforced by an advice. This paper focuses
only on those aspects/advices that monitor or enforce constraints.
We will continue comparing aspects and CoCons in section 6.

A CoCon could relate manysets of constrained elements. In this
paper, we only discuss CoCons that relatetwo sets of elements (one
is called target set, and the other one scope set) as expressed via the
following predicate logic formula:

∀x, y : TCC(x) ∧ SCC(y) → C(x, y)

The variablex holds all elements in the target set, and the variable
y hold all elements in the scope set. The predicateC(x, y) on
the right side of the formula is a called CoCon-predicate because
it defines the semantics of the CoCon. For example,C(x, y) can
representx MUST BE ACCESSIBLE TO y, or it can represent
x MUST BE LOGGED WHEN CALLING y. C(x, y) is a binary
relation – it expresses howx relates toy.

BesidesC(x, y), all the other predicates refer to a different level:
they definewhich x must relate towhich y. The predicatesTCC(x)
andSCC(y) define context conditions.

“What is TCC and what is SCC?”

TCC is the abbreviation of Target Set Context Condition, an SCC
stands for Scope Set Context Condition. Acontext condition se-
lects artefact elements according to their context property values.
It is a point cut condition which only refers to context properties
of system elements as discussed later on in section 6.1. Different
query languages exist for expressing a context condition - the right
choice depends on in which format the context metadata is stored.
If the context properties of each artefact element are stored in a
relational schema then a relational query language, e.g. SQL, can
be used to express context conditions. If the context properties are
stored in a hierarchical XML schema then a query language for
XML documents can be used, e.g. XQuery.

The Context-Based Constraint Language CCL has been defined in
[7]. The syntax of CCL is not explained here, because it resembles
plain English and is easily understood. For example, the privacy
policy described in section 1.2 can be expressed in CCL as follows:

ALL COMPONENTS WHERE ‘Personal Data’ CONTAINS
‘True’ MUST NOT BE ACCESSIBLE TO ALL COMPONENTS
WHERE ‘Workflow’ CONTAINS ‘Create XYZ Report’

3.2 Two-Step Approach for Defining CoCon-
Predicate Semantics

CoCons can be applied toartefact types at different development
levels, likerequirement specifications at analysis level,UML mod-
els at design level,Java files at source code level, orcomponent
instances at runtime. Figure 1 illustrates the two-step approach for
defining semantics of CoCon-predicates:

• Theartefact-type-independent semanticsof a CoCon-predicate
do not refer to specific properties of an individual artefact
type. For instance, the artefact-type-independent semantics
of anACCESSIBLE TOCoCon are defined in plain English
as: its target set elements are accessible to its scope set ele-
ments.

• Theartefact-type-specific semanticsof a CoCon-predicate
define how to check artefacts of a certain type whether the
artefact elementx relates to the artefact elementy as de-
manded by the CoCon-predicate. For example, how can we
check a UML model if its elements comply with the CoCon-
predicate ‘x must be accessible toy’? The artefact-type-
specific semantics definition ofACCESSIBLE TOCoCons
for UML models can be defined via the object constraint lan-
guage OCL as discussed in section 4.

“A simpler to that problem would be to describe
the crosscutting requirement in design and then auto-
matically translate it into code.”

This comment reflects the traditional software engineering think-
ing. It’s a great vision to specify requirements in design and then
translate them into code, but it won’t work if the system design
artefacts are incomplete, outdated, or don’t exist at all. The tra-
ditional approach is not simpler because it demands an up-to-date,
complete, and hopefully formal model (called ‘master-model’ from
now on).

In contrast, the two-step semantics approach works for specific
artefact types regardless of which other system artefacts exists, are
outdated, or don’t exist. For instance, in order to check if a dis-
tributed system meets the availability constraint of section 1.3 via
traditional software engineering, we build a distribution model (for
example a UML deployment diagram even though UML isn’t a
formal language), check it, and then generate the JBoss configura-
tion files from this distribution model. In the two-step approach,
however, it is sufficient to check the JBoss files - we don’t need a
UML deployment diagram. If a UML model of a system exists,
then it can be checked for compliance with CoCons via the UML-
specific semantics of these CoCons. If JBoss configuration files
exist, then you need the JBoss-specific semantics of these CoCons.
We don’t need a master-model that contains all details needed to
check the constraint. On the contrary, we directly check those arte-
facts that express the relevant details. It’s still important to doc-
ument as many details of your system as possible, but sometimes
we need to check system artefacts without having a formal master-
model for them.

“The author says in that he uses a two-step ap-
proach for defining semantics, he rather defines two
kinds of semantics.”

Oops. Actually, this comment reveals a weakness of the two-step
approach. According to its definition at the beginning of this sec-
tion, the artefact-independent semantics can be expressed in plain
English. They don’t need to be formally defined (which would
again call for a master model on which they are formally defined).
But: plain English language can easily be misunderstood. Never-
theless, as long as the plain English semantics are not ambiguous,



Figure 1: Two-Step Approach for Defining the Semantics of CoCon-Predicates

we can do without formal semantics or a master-model. It’s not
perfect, but achievable.

“You claim that your approach is independent of
artifact types. To what extent is this really true, or ex-
ample, does your approach work with artifacts that are
plain text documents?”

The two-step semantics approach only works for artefact types,
which stick to a defined syntax and semantics (I tried to avoid the
term ‘semi-formal’ artefact types). Hence, it doesn’t work for plain
text document, because we cannot define bulletproof semantics for
English.

3.3 Which Requirements can be Expressed
via CoCons?

All in all, 22 CoCon-predicates for component-based systems are
defined in [7]. They address concerns like ‘x must be logged when
callingy’ which are typically realized via aspect-oriented program-
ming. Future research hopefully will examine additional CoCon-
predicates. These currently 22 CoCon types are grouped in five
different families of CoCons:

• Access Permission CoCons express which componentsmust
(or must not) be accessible to which other components.

• Communication CoCons control whether a method call be-
tween componentsmust be (or must not be) intercepted in or-
der to handle it. For instance,x MUST BE LOGGED WHEN
CALLING y orx MUST BE ASYCHRONOUSLY CALLING
y express crosscutting communication concerns.

• Distribution CoCons express which componentsmust (or must
not) be allocated to which computers. For example,x MUST
BE ALLOCATED TO yorx MUST BE REPLICATED TO
y express crosscutting distribution requirements.

• Information-Need CoCons express which usersmust (or must
not) be notified of which documents at runtime. For instance,
x MUST BE NOTFIED OF yis a crosscutting informa-
tion need concern.

• Inter-Value CoCons express whether elements in a certain
context must (or must not) reside in another context. For ex-
ample,x MUST RESIDE IN THE SAME CONTEXT AS
y is a crosscutting context-property-value concern.

“Why are there 22 CoCon predicates? Aren’t there
arbitrary many? And why are there only 5 families of
CoCons? How did the author find them?”

These 22 CoCon predicates were identified in several collabora-
tions outlined in section 5.3. But of course, additional crosscutting
concerns can be expressed via CoCons as well, but they haven’t
been examined yet.

“The authors fail to discuss how reasonable or how
feasible it would be to write all requirements as Co-
Cons.”

Is it not possible to write down all requirements via CoCons. A con-
text condition can be restricted to only select elements of a specific
element type. For instance, it can be restricted to select nothing but
components, or nothing but classes. A CoCon-predicate expresses
a condition on how two elements must relate. The expressiveness
of a CoCon-predicate depends on the range of (= the element type
in focus of) its context conditions. All elements of one element
type share their type’s properties. For example, all elements having
the element type ‘component’ share the type property ‘a component
can have interfaces’. In UML, these type properties are defined in
the metamodel. But, not all components have the same interface.
Therefore, a CoCon restricted to components cannot express condi-
tions on specific properties of one interface of one of its constrained
components. Instead, a CoCon only can express conditions on the
type’s properties of those element types to which its context condi-
tions are restricted.

As soon as the context property values change or elements are
added or removed, the same CoCon can apply to other elements
that areunknown when specifying the CoCon. Besides its type
properties, all other properties of the constrained element are un-
known.

Up to now, we did not examine CoCon-predicatesC(x) which fo-
cus on a single type property, as in the condition ‘the attribute age



of a customer must have a value greater then 17’. Many other con-
straint languages exist for expressing conditions on single proper-
ties. On the contrary, we focused on CoCon-predicates expressing
how elements having certain type propertiesrelate to each other .

4. COMPARING CONTEXT-BASED CON-
STRAINTS AND OCL

Many techniques exist to date that augment UML with properties
and constraints. This section explains why CoCons add a new no-
tion of constraints, which is not covered by other approaches. Typ-
ically, theObject Constraint Language OCL ([38]) is used for the
constraint specification of UML models. This section explains how
to express CoCons via OCL and discusses the differences. It does
not claim that CoCons are superior to OCL.

“The paper proposes a more abstract constrained
based language that could replace OCL.”

No. CoCons cannot replace OCL.

“The authors claim that their approach provides a
richer constraint language than the standard OCL.”

No. CoCons are not richer than OCL. Instead, they add a different
abstraction layer.

4.1 UML-Specific Semantics ofACCESSIBLE TO

CoCons
This section discusses the translation ofACCESSIBLE TOCo-
Cons into OCL via the privacy policy example described in section
1.2 and expressed in CCL at the end of section 3.1. This CCL ex-
pression is two lines long. It can incompletely be specified in OCL
as:

context component inv: self.taggedvalue
->select(tv | tv.dataValue = "Create XYZ
Report") .type -> select(td | td.name =
"Workflow") -> notEmpty()

implies self.clientDependency.supplier
-> select(i | i.oclIsTypeOf(Interface))
.clientDependency
-> select(d | d.oclIsKindOf(Abstraction)
and d.stereotype.name = "realize"
and d.supplier.oclIsKindOf(Classifier))
.supplier -> select(c |
c.oclIsTypeOf(Component)) .taggedvalue
newline -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal
Data") -> Empty()

This OCL expression states that a component having the tagged
value ‘Workflow: Create XYZ Report’ must not (= ‘Empty() ’ at
the end of the OCL expression above) depend on the interface of
a component having the tagged value ‘Personal Data: True’. The

violation of this OCL expression is illustrated in the UML deploy-
ment diagram shown in figure 2. In this diagram, the dependency
relationship (represented as dotted arrow in the diagram, and as
clientDependency in the OCL expression) specifies that com-
ponent ‘A’ invokes component ‘B’. However, this invocation vio-
lates the privacy policy due to the context property values of A and
B.

Figure 2: The component ‘A’ invokes the component ‘B’ and,
thus, violates the privacy policy of section 1.2

Why should anyone use the new language CCL for expressing Co-
Cons at all if the prevailing (standard!) language OCL already can
express the same privacy policy? The problem is that the OCL ex-
pression above is incomplete - it needs to be much longer to com-
pletely map the CCL expression to UML. It would be much longer
if it would cover the following missing details.

First, it only defines inaccessibility for componenttypes, but not
for component instances. A UML model, however, can contain
both component types and component instances. Therefore, addi-
tional OCL expressions are needed which consider the component
instances.

Moreover, the OCL expression above does not consider communi-
cation between components in various behavioural diagrams, such
as activity diagrams, sequence diagrams, and state machine dia-
grams, communication diagrams, or interaction overview diagrams.
For each of these diagrams, the concept of (in)accessibility both
between component typesand between component instances must
also be considered in the specification of artefact-specific seman-
tics. Again, additional OCL expressions are needed which con-
sider communication via one of these metaclasses: Action, Activ-
ity, Behavior, CommunicationPath, Connector, ControlFlow, Infor-
mationFlow, Interaction, Message, ObjectFlow, Operation, Recep-
tion, Signal, or Stimulus.

In addition to ‘plain’ standard UML, some component specifica-
tion approaches considercomposition of components. The OCL
expression given above does not consider composition (or aggrega-
tion, or PackagableElement): if the component ‘B’ in figure 2 does
not manage personal data, but ‘B’ is composed of other components
among whom at least one component handles personal data, than
‘A’ must not invoke an operation of an interface of ‘B’. Further-
more, the OCL expression given above does not handle recursion
(a solution is described in [12]): ‘A’ must not invoke an operation
of an interface of ‘B’ if ‘B’ calls another component ‘C’ handling
personal data in order to execute A’s call. Again, some additional
OCL expressions are needed which consider composition and re-
cursion.

Moreover, an artefact using additional concepts which are not part
of the artefact’s standard needs special artefact-specific semantics:
the OCL translation of the CoCon example given above must be
adapted if any profile is used that adds a new notion of (in)accessibility



to UML. For example, the ‘UML Components’ approach intro-
duced in [9] specifies components via stereotyped classes. The
incomplete OCL expression given above does not consider stereo-
typed classes (neither in component nor in deployment nor in se-
quence or collaboration diagrams). In ‘UML Components’, stereo-
typed classes represent componenttypes. Thus, componentin-
stances are represented as objects in ‘UML Components’. If we
use a profile, we need several additional OCL expressions that con-
sider the profile’s semantics.

In case ofACCESSIBLE TOCoCons, the artefact-type-independent
semantics definition in plain English consists of three words: ‘is ac-
cessible to’. On the contrary, the corresponding listing of artefact-
type-specific OCL expressions for expressing the precise semantics
for UML models is about as long as this article because it considers
a lot more details. CoCons stay on the artefact-type-independent,
abstract level. OCL, however, is too close to programming for ex-
pressing requirements at this abstraction level. The effort of writ-
ing down a requirement in the minutest details is unsuitable if the
details are not important. The designer can ignore many details
by expressing the same requirement via the Context-Based Con-
straint Language CCL instead of OCL. Moreover, it is easier to
adapt the short artefact-type-independent CCL expression instead
of changing all the OCL expressions if the corresponding require-
ment changes.

“Your claim that CoCons are much simpler than
corresponding OCL constraints is a self-deception: in
your approach, the complexity is hidden in the precise
definition of the semantics of basic CoCon statements
such as ACCESSIBLE TO.”

That’s correct. But this self-deception enables us to discussACCESSIBLE
TOconstraints with customers and users. This section has outlined
how many details must be considered when defining the UML-
specific semantics ofx is ACCESSIBLE TO y. But, we need
to define the UML-specific semantics only once (at least until a new
version of UML is released) and then ‘hide’ the complexity by only
using the artefact-independent expression. Besides the detail level,
two other differences between CoCons and OCL are discussed in
the next two sections.

4.2 CoCons can be Verified Already at the
Same Meta-Level

The Object Management Group (OMG) describes four metal-levels:
Level ‘M0’ refers to a system’s objects at runtime, ‘M1’ refers to
a system’s model or schema, such as a UML model, ‘M2’ refers
to a metamodel, such as the UML metamodel, and ‘M3’ refers to
a meta-metamodel, such as the Meta-Object Facility (MOF). Note
that levelMi−1 elements areinstances of levelMi elements.

If an OCL constraint is associated with a model element on level
Mi then it refers the instances of this model element on levelMi−1

— in OCL, the ‘context’ ([13]) of an invariant is aninstance of the
associated model element. In order to check aM1 level OCL con-
straint, eitherM0 level instances must be simulated as proposed in
[31], or the OCL constraint must be translated intoM0 level source
code which evaluates the constraint at runtime as suggested in [18].
In order to check the compliance of a model element (M1 level)
with an OCL constraint, the OCL constraint must be specified on
metamodel level (M2). Hence, the OCL expressions defining the

UML-specific semantics forACCESSIBLE TOCoCons described
in the previous section 4.1 must be specified on themetamodel
level. As long as we use OCL to express context-based constraints,
we need to modifying themetamodel each time the requirements
change - this is simply not appropriate.

On the contrary,M1 level model elements can already be checked
for compliance with CoCons expressed onM1 level as explained
next.A CoCon’s context condition can be evaluated as soon as the
corresponding context property values are defined in the UML model
via tagged values onM1 level.. Hence, the model elements con-
strained by aM1 level CoCon can already be identified onM1

level. Additionally, each pair of related constrained elements must
be checked if it fulfils the CoCon-predicateC(x, y). The OCL se-
mantics definition ofACCESSIBLE TOprovided in the previous
section are be expressed onM2 level and refer toM1 level model
elements. Therefore, anACCESSIBLE TOCoCon expressed on
M1 level can be checked onM1 level. This is a major difference
between CoCons and the prevailing notion of constraints.

“The author claims that CoCons can be verified at
the same meta-level. It is not clear how this can be
done.”

When we express a CoCon onM1 level (in a UML model), we need
to evaluate its context conditions and its CoCon-predicate in order
to verity the CoCon. Both checks work on the same metalevelM1

for the following reasons.

Evaluate a Context Condition: The context properties of the model
elements are defined onM1 level (as tagged values in the
UML model). In order to evaluate the CoCon’s context con-
ditions, we only need theM1 model because it contains both
the model elements and their context properties. We neither
need to refer to anyM0 or M2 information to select the con-
strained elements.

Evaluate a CoCon-Predicate: As explained in the previous section
4.1, the UML-specific semantics of a CoCon-Predicate are
defined in OCL atmetamodel level (M2). TheseM2 OCL
constraints can be verified atM1 level because OCL con-
straints can be verified on the next lower metalevel as ex-
plained in the second paragraph of this section.

According to [16], those persons that produce traceability links -
mainly the members of the development team - have different goals
and priorities than the users - mainly the clients, managers, and the
test and maintenance team – who use these traceability links in or-
der to check whether the system complies with the requirements.
According to [26], the designers and developers simply do not see
the benefits that may accrue to the final product compared to the
time and effort required for producing the traceability links. Co-
Cons enable the designers and developers to instantly see the ben-
efits because a model element can be checked for compliance with
requirements at the moment when the relevant context property val-
ues are associated with it. A tool can immediately warn designers if
their model violates a CoCon. This direct feedback can encourage
them in associating model elements with context property values.

“The paper does not really deal with tracing re-
quirements.”



According to [27], applying requirements traceability to a software
system starts with the following two tasks:

1. Traces Definition: It must be defined what (kinds of) objects
should be traced and what (kinds of) traceability links are
needed between those objects.

2. Traces Production: The traces are recorded by associating
traceability links with the relevant objects.

A traceability link is expressed by associating meta information
with an element. According to [29], the following kinds of trace-
ability links exist:

1. A satisfaction link is defined between an element that repre-
sents a constraint or goal, and another element that satisfies
it.

2. A dependency link is defined between an element whose
modification will impact another element.

3. An evolution link is defined between an element that acts as
a replacement of another one, such that only the latter is still
valid.

4. A rationale link is defined between an element and an ex-
planation of this element.

Context properties refine the notion of rationale links: acontext
link is defined between an element and its context by associating
the element with context property values. This context link is a
rationale link because it explains the element. A CoCon is a satis-
faction link because it expresses a condition on how its constrained
elements must relate to each other. Up to now, satisfaction links
tell which goals the element must fulfil to which they are associ-
ated. On the contrary, a CoCon must not be directly associated
with its constrained elements. Instead, context property values are
directly associated with the elements. They do not tell which goals
the element must fulfil with which they are associated. Instead,
they tell the context of their element. A CoCon can express a goal
by referring to the element context. Hence, CoCons areindirect
satisfaction links — they provide a new notion of requirements
traceability.

Higher-level requirements must be decomposed to a more refined
level in order to provide a link from initial requirements to actual
system elements that satisfy those requirements. During this re-
cursive decomposition process, low-level requirements arederived
from higher-level requirements. Both original an derived require-
ments areallocated to system elements. According to [29], anre-
quirements allocation table is the common mechanism used to
maintain this information. However, keeping track of each indi-
vidual requirement or element becomes more and more difficult
if the number of requirements or elements grows. Furthermore,
this difficulty increases if the requirements or elements change fre-
quently. In case of large-scale or frequently changing systems, it
takes much effort to maintain an requirements allocation table that
directly links requirements to individual elements. Instead, Co-
Cons enable to specify requirements for possibly large groups of
elements. They allow for indirect,adaptive selection of all the ele-
ments involved in the requirement.

4.3 CoCons can Constrain Unassociated Ele-
ments

A M1 level OCL constraint cannot consider unknownM1 model
elements - model elements are unknown if they do not exist yet
when specifying the constraint. On the contrary, any unknown el-
ement becomes involved in a context-based constraint simply by
having the matching context property value(s). Hence, the con-
strainedM1 elements can change without modifying theM1 level
CoCon expression. The indirect selection of constrained elements
is particularly helpful in highly dynamic or complex systems. Ev-
ery new, changed or removed system element is automatically con-
strained by a CoCon due to the element’s context property values.

An OCL constraint expressed onM1 level can only refer to those
M1 level elements that are directly associated with the constraint
via (possibly nested) associations. On the contrary, the scope of a
CoCon is not restricted. A CoCon can refer to elements that are
not necessarily associated with each other or which even belong
to different models. OCL constraints are associated with a model
element. CoCons, however, maynot necessarily be directly associ-
ated with a model element. Instead, one CoCon canindirectly se-
lect its constrained elements via the context property values associ-
ated with the model elements. A CoConcan directly be associated
with model element, but it should not be associated with an con-
strained element that is indirectly selected via a context condition
because the CoCon might not constrain the element anymore if the
element’s context property values change. By using CoCons, we
don’t have to understand every detail (‘glass box view’). Instead,
we only must understand the context property values we use for
describing the elements involved in the requirement. The person
who specifies requirements via CoCons does not have to have the
complete knowledge of the system due to theindirect association
of CoCons to the system parts involved. It can be unknown which
elements are involved in the requirement when writing down the
CoCon. The elements involved in the requirement can be identified
automatically each time when checking the system for compliance
with the CoCon.

All in all, we do not claim that CoCons are better than OCL. OCL is
the best choice for expressingnormal constraints in UML on a high
detail level. CoCons are an additional concept if you need a more
abstract solution (see section 4.1), if you want to check your model
for compliance with the requirements without tests at runtime (see
section 4.2), and if you need to keep track of a crosscutting require-
ment that relates to several, possibly unassociated model elements
(see section 4.3).

“You need to be more convincing as to the preci-
sion one can achieve with constraint specification us-
ing CoCons. OCL achieves a good level of precision
with its constraints, making the results relatively de-
terministic. However, the kinds of capabilities you de-
scribe in terms of constraining unassociated elements
bring to mind questions relating to determinism. ”

As explained in the previous section 4.1, the UML-specific seman-
tics of a CoCon-Predicate are defined in OCL atmetamodel level.
This means: we can express CoCons in OCL. Therefore, CoCons
have the same determinism as OCL. The complexity of algorithms
for detecting which system artefact elements violate which CoCon
and of algorithms for detecting contradicting CoCons are discussed
in [8].



5. INTEGRATING COCONS INTO UML
The notion of context-based constraints (CoCons) is not part of the
UML at present. This section discusses how to integrate CoCons
into the UML metamodel. Moreover, it explains why UML hardly
can express how to weave in a constraint.

5.1 The Easy Part: Using UML’s Constraints
and Tagged Values

UML profiles provide a standard way of using UML in a particular
area without having to extend or modify the UML metamodel. A
profile is a predefined set of stereotypes, tagged values, constraints,
and notation icons that collectively specialize and tailor UML for
a specific domain or process. In order to understand this section,
the reader should be familiar with the ‘core’ and ‘extension mech-
anisms’ packages of UML 1.5 (see [24]), or with the ‘constraint’
and ‘profiles’ packages of UML 2.0 (see [25]).

Context properties can be expressed in UML as tagged values. In
UML 1.5, the metaclass ‘TagDefinition’ defines the name and other
properties of a tagged value. A ‘TaggedValue’ belongs to exactly
one TagDefinition and contains the actual values for a model ele-
ment. A�ContextPropertyTag� TagDefinition specifies a context
property name, e.g. ‘Workflow’, and a�ContextPropertyValue�
TaggedValue (see figure 3) specifies a context property value, e.g.
‘Create XYZ Report’. In UML 2.0, a Stereotype may have Proper-
ties, which may be referred to as tag definitions. When a stereotype
is applied to a model element, the values of the properties are re-
ferred to as tagged values.

Figure 3: A Point Cut indirectly associates a Constraint with
its Constrained Elements

Expressing context-based constraints in UML seems to be straight-
forward: In UML 1.5, a Constraint has the attribute ‘body’ which
stores a BooleanExpression that must be true when evaluated for
a model to be well-formed. In case of a�CoCon� Constraint
(see figure 3), the body attribute stores strings that comply with
the Context-Based Constraint Language (CCL) syntax definitions
given in [7]. In UML 2.0, the CCL string is stored as ValueSpec-
ification of the�CoCon� Constraint. But even though UML has
a Constraint metaclass, it cannot easily integrate CoCons as ex-
plained in the next section.

5.2 The Problem: UML Constraints Don’t
Consider Point Cuts

The UML way of specifyingwhich elements are constrained by
a constraint doesn’t fit to the notion of crosscutting constraints –
the UML does not consider constraints which areweaved in as ex-
plained next. Both in UML 1.5 and in UML 2.0, a Constraint is
associated with ModelElements via the ‘constrainedElement’ as-
sociation. According to [25], this association defines the ordered

set of Elements referenced by this Constraint. The constrained ele-
ments are those elements required to evaluate the constraint. An as-
sociationdirectly links model element. Hence, the constrainedEle-
ment association holds a list ofdirectly identified ModelElements
affected by the Constraint. But, a�CoCon�Constraint can be as-
sociatedindirectly with model elements via a context condition. A
CoCon constrains all elements fulfilling its context conditions even
if these elements are not associated with each other at all.

In general, UML hardly can express a crosscutting advice as con-
straint because it can only express where to weave in the advice by
directly listing the constrained elements. Point cuts, on the con-
trary, can define a condition, which is used to select the involved
elements — the condition is a query, not a list of query results.
UML cannot handle pointcut conditions whose join points (=con-
strained elements) are UML model elements because when specify-
ing the constraint, we only know those join points which currently
fit the point cut condition. We could list these known join points in
the set of constrainedElements, but as soon as the system (model)
changes, some of these join points may not fulfil the pointcut con-
dition anymore, while some new join points may be added to the
constrainedElements set. A UML tool which expresses crosscut-
ting concerns as constraints must re-evaluate the constraint’s point-
cut condition after each model modification in order to keep the list
of constrainedElements up to date.

In figure 3, the ‘indirect association’ of a CoCon with its con-
strained elements is depicted as dependency (a dotted arrow). It
works as follows:

1. The context condition in the body expression of a�CoCon�
Constraint refers to TaggedValue(s).

2. The TaggedValue is associated with a ModelElement. This
ModelElement isindirectly associated with the CoCon if the
following condition holds: this TaggedValues meets the Co-
Con’s ContextCondition, while other TaggedValues associ-
ated with the same ModelElement must not violate that Con-
textCondition.

Maybe, some future version of UML supports ‘indirect associa-
tions’ whose pointcut condition must be re-evaluated each time
when traversing them.

5.3 Proof of Concept Tool
The application of CoCons during modelling component-based sys-
tem via UML has been evaluated in a case study being carried out in
cooperation with the ISST Fraunhofer Institute, the Technical Uni-
versity Berlin and the insurance company Schwäbisch Hall. The
goal of this case study was designing a complex component-based
system for Schẅabisch Hall. During three years, the analysis of the
requirements resulted in the 22 CoCon predicates and the Context-
Based Constraint Language CCL. The ‘CCL plugin’ for the open
source CASE tool ArgoUML has prototypically been implemented
and is available for download atccl-plugin.berlios.de/ .
It enables user to enter CCL expressions, and it integrates the veri-
fication of these CCL expressions into the Design Critiques ([32])
mechanism of ArgoUML. This mechanism continuously runs as
a background process in ArgoUML. It iterates over all model ele-
ments and reports constraint violations or design recommendations.
The CCL-Plugin adds design critiques that identify which model el-
ements violate which CoCon for accessability CoCons and for dis-

http://ccl-plugin.berlios.de/


tribution CoCons. These design critiques use the UML-specific Co-
Con semantics defined in section 4.1. Moreover, the CCL-Plugin
adds design critiques that identify which CoCons contradict each
other to ArgoUML. Hence, it demonstrates how to verify UML
models for compliance with CoCons.

Two other proof-of-concept implementations enforce CoCons in
enterprise Java Beans (EJB) systems at runtime. The EJBcom-
plex framework described in [23] uses dynamic proxies to intercept
communication between EJB components. For instance, it can con-
trol which bean is allowed to invoke which other bean according to
the current context of the caller and the callee. As brute force ap-
proach we could monitor simply every communication call in the
system. In order to prevent overhead, we describe how to intercept
only those communication calls via which are relevant for a certain
CoCon in in [23]. Instead of using dynamic proxies as intercep-
tion mechanism, we could also use aspect-oriented programming
as examined in [30]. JBoss AOP and AspectWerkz support meta-
data in their current versions. The upcoming version of AspectJ
will support metadata by modifying the AspectJ language.

“Did the author ever apply CoCons to a real sys-
tem? ”

Yes, the pharmaceutical document management system dd-pro by
the imphar AG uses CoCons to achieve multi-client capability. How-
ever, the imphar AG did not check their few UML models for com-
pliance with their CoCons as discussed in this article. Therefore,
this real life application neither proofs the claims of section 4 nor of
section 5. Nevertheless, here is dd-pro’s CoCon implementation in
a nutshell: dd-pro controls documents. The user role of the current
userand the client where this current user is employed or for whom
the current user is authorized to work define the the access permis-
sions for each document. As a result, the user john can only see
and edit patent documents from client X, while user cathy only see
and edit patent documents from the clients X, Y and Z (she is em-
ployed at X and authorized to work for Y and Z). This multi-client
capability of dd-pro is achieved via CoCons. Context properties are
managed on three levels:

database level: Different types (= classes) of documents exist. In
dd-pro, the object-relational database schema is enhanced
with context properties which tell the ‘operational area’ (see
section 2.2) of each class. For instance, all classes belonging
to the patent department have the operational area ‘patents’.
Moreover, dd-pro stores for each document to which client
this document belongs.

user profile: The admins can configure the following context prop-
erties of each user:

• Employment: The client where user X is employed is
called the employer of X. One user works at exactly one
client, and one client can have many employees.

• Client-Authorization: If user X can work on behalf of
client Y then X is called authorized user of client Y.
A client on behalf of whom the user X is allowed to
work is called the represented client of X. One user can
work on behalf of many clients, and one client can have
many users. If client Y employs user X that X is auto-
matically an authorized user of Y.

• Role: A user can have the user roles. For instance, each
Operational Area (see database schema level) an Edi-
tor role exists who can edit all records of the Opera-
tional Area from that client. Examples: Patent-Editor,
Controlling-Editor, Human-Ressources-Editor.

runtime: At runtime, the user can select the value of his or her
currentClient context property.

Depending on these context properties, dd-pro ensures that a user
only can access certain documents according to the documents Op-
erational Area, to the users Client-Authorization and Client-Role,
and to the users Current Client.

“We doubt whether the customer can understand
(and is interested in) constraints on component level.”

Both running examples in section 1.2 and 1.3 address only compo-
nents in order to restrict this paper to a certain focus. When dis-
cussing requirements with Schwäbisch Hall, they understood and
were interested in the component level. But as outlined above, the
CoCons in the dd-pro system don’t refer to components at all. In-
stead, they refer to documents and users.

Example for a crosscutting requirement which does not refer to
components:ALL DOCUMENTS WHERE Operational Area
= Patent MUST BE WRITEABLE TO ALL USERS WHERE
user.CurrentClient = document.owningClient AND
user.Role = Patent-Editor .

6. RELATED WORK ON ASPECT-ORIENTED
SOFTWARE DEVELOPMENT

6.1 Aspects at Source Code Level
Even though CoCons can be implemented via aspect-oriented frame-
works, CoCons add the new notion of context-based point cuts
as explained next. The places where to weave in an aspect are
expressed in many different ways by current aspect-oriented lan-
guages. A few examples are the join point mechanism of AspectJ,
the hyperspace mechanism, or the composition filtering mecha-
nism. Modelling a pointcut is basically about modelling a selec-
tion query. The query defines a condition for selecting join points.
The currently most common way to capture join points utilizes the
implicit properties of program elements, including static properties
such as method signature and lexical placement, as well as dynamic
properties such as control flow. Typically, a pointcut query quanti-
fies over properties of the source code (called ‘internal context’ in
section 2.1).

On the contrary, a CoCon defines its pointcuts via context condi-
tions. Such a context condition quantifies over context properties in
order to select the join points. The context condition is a query that
selects the join points where to weave in the crosscutting concern
C(x, y). As explained in section 2.1, the context doesn’t have to be
part of the source code or managed by the system. Likewise, [22]
discusses that signature-based pointcuts cannot capture transaction
management or authorization because there might be nothing in-
herent in an element’s name or signature suggests transactionality
or authorization characteristics.



“The example constraint shown in section 1.2could
be implemented using the declare error feature in As-
pectJ. Why is it essential to use CoCons instead?”

Aspect-oriented software engineers have to define the relationships
between aspects and their target artefacts. We suggest using con-
text as glue between advices and joining points for two reasons.
Contexts are implementation-independent and may express thein-
tention why to weave in an advice better than normal pointcuts
referring to source code properties. For instance, a business expert
probably can tell whether an advice must affect all system element
in the context ‘sales department’ or all elements in the context of
the ‘purchase a ticket’ workflow , but this expert will hardly know
which regular expression a methods or components should match
in order to be affected. Moreover, we can identify and refer to
contexts even before the first line of source code has been written
down. For instance, stakeholders can understand and negotiate the
privacy policy of section 1.2 without knowing which components
actually exist already or will exist. As soon as some source code
or binary is added to the system that matches a CoCon’s context
condition, it will be affected by the CoCon.

In [22], several mechanisms are examined for referring to metadata
in pointcuts. In [33], aspects are expressed as C# custom attributes.
The aspects are weaved in using introspection and reflection tech-
niquebased on metadata in the .NET common language runtime.
Hence, recent research examines context-based aspects. CoCons
add two suggestions: we can express our context-based aspect in
an abstract textual language that does not refer to the source code
level at all. Furthermore, we can manage the metadata outside of
the system/source code in an external repository. We used external
repositories in [23, 30] because we wanted our frameworks to work
without modifying the components.

6.2 Aspects at Design Level
With regards to considering aspects already during design, several
interesting approaches exist. In [2], crosscutting concerns are also
expressed at a high abstraction level during design. But, in this ap-
proach the pointcuts are defined by listing the involved UML mod-
els. Instead, a CoCon indirectly selects its constrained elements
according to their context properties.

A graphical way to model join points called ‘Join Point Designa-
tion Diagram’(JPDD) is introduced in [35]. JPDDs describe ‘se-
lection patterns’ which specify all properties a model element (i.e.,
UML Classifier or UML Message) must provide in order to rep-
resent a join point. The semantic of JPDDs is specified by means
of OCL Expressions. JPDD could be used to model CoCons if the
context properties are expressed as tagged values for each model
element. But still, the JPDD approach demands to change the
UML metamodel each time when a pointcut condition is changed
or added. Furthermore, the JPDD community doesn’t consider con-
text in pointcuts yet.

In the hyperspace approach discussed in [37], a hyperslice encap-
sulates a crosscutting concern. The hyperslices are composed to
form a complete system: two hyperslices can be composed by a
hypermodule, which contains correspondence rules that determine
at what points the hyperslices should be joined. This approach is re-
flected in the Hyper/J framework. A CoCon expresses a hyperslice.
But, CoCons have a different notion of composition rules: In Hy-
per/J, the composition rule indicates which elements in the hyper-

slices describe the same concepts, and how these elements must be
integrated. The elements describing the same concept are selected
via a query. For instance, the composition rule could select ‘all
elements having the same name’. An aspects typically selects its
join points according to their structural properties, like their name.
On the contrary, a CoCons selects its constrained elements (=join
points) according to their context properties.

An similar approach for composing (= weaving) hyperslices (=ad-
vices) into UML models is presented in [10]: so calledcomposition
relationships identify overlapping elements in different UML mod-
els and specify how to integrate these elements. Again, the com-
position relationships discussed up to now don’t select the involved
elements according to the element’s context. But, they could be-
cause they are expressed in OCL, which can refer to tagged values,
which can express the element’s context.

In a distributed system, objects that interact heavily should be lo-
cated together. The aspect-oriented approachD2AL groups col-
laborating objects that are directly linked via associations. It de-
scribes in textual language in which manner these objects interact
which are connected via these associations. This does not work for
objects that are not directly linked like ‘all objects needed in the
‘Create Report’ workflow. Darwin (or ‘δarwin’ ) is aconfiguration
language for distributed systems described in [28] that, likewise,
expresses the architecture explicitly by specifying the associations
between objects. However, there may a reason for allocating ob-
jects together even if they do not collaborate at all. For instance, it
may be necessary to cluster all objects needed in a certain workflow
regardless whether they invoke each other or not. Distribution Co-
Cons introduced in [5] allocate objects together because of shared
context instead of direct collaboration.

6.3 Early Aspects at Requirements Level
Aspects already exist in requirements and architecture artefacts.
According to [1], an early aspect is a crosscutting requirement be-
cause it recurs in several stakeholders’ or viewpoints’ requirement
specifications. But, even if one requirement is mentioned in multi-
ple requirement specifications, it won’t necessarily be implemented
in different classes. Furthermore, a requirement, which is only
mentioned once in the requirement specification documents, can
still become a crosscutting concern when implementing the sys-
tem. CoCons differ from the common notion of early aspects as
discussed in [6], because a CoCons does not need to be mentioned
in several places in order to express a crosscutting requirement. In-
stead, it expresses an aspect at one place. Its context conditions
help to trace this aspect to the other system artefacts at design,
source code or runtime level because the context conditions will
select the constrained elements in each artefact.

According to [4], we should avoid the word ‘all’ when stating a
requirement because it is an example of a hard to interpret require-
ment. This may be right, but its also is an interesting requirement
because it may become a crosscutting requirement. A CoCon use
the word ‘all’ to express that there may be more than one join point
for this requirement, and it describes its involved system elements
(= join points) indirectly via their context. By using dangerous
‘all’ statements, we can write down the crosscutting concern at one
place in the requirement specification and, thus, avoid redundancy,
which may impede us in evolving our system.

“The abstract implies that an RE aspect is a single



requirement. Do you not consider crosscutting con-
cerns at requirements level which are described by mul-
tiple requirements?”

No. CoCons don’t handle if someone expresses the same require-
ment several times in different requirement specifications. This
question is addressed in the Theme approach described in [11]
which consists of two parts: Theme/Doc identifies so called ‘early
aspects’ via linguistic analysis of plain English requirements spec-
ifications: a requirement which is mentioned several times in the
requirements specification is called ‘early aspect’ because its some-
how crosscutting the requirements specification. But this horizontal
notion of early aspects doesn’t care whether this ‘crosscutting-at-
requirements-level’ requirement is implemented in one single place
or not - this notion ignores if the implementation of the requirement
will be crosscutting in the AspectJ understanding of ‘crosscutting’.
On the contrary, CoCons express vertical early aspects: they ex-
press features which are mentioned only once in the requirements
specification but affect possibly many places in the model or in the
source code. The Theme approach also has a second part called
Theme/UML which examines vertical aspects (= aspects which are
crosscutting at the source code level). It expresses these early as-
pects via UML. For each aspect, a list of all its join points is com-
piled. On the contrary, a CoCon doesn’t list each constrained ele-
ment. Instead, a CoCon indirectly describes its join points via the
join point’s context properties.

The PROBE framework described in [20] defines which aspect cross-
cuts which requirement by writing down composition rules. Again,
these rules list all affected requirements. On the contrary, a CoCon
doesn’t list each constrained element.

7. CONCLUSION
7.1 Limitations of CoCons
Taking only the metadata of an element into account bears some
risks. It must be ensured that the context property values are al-
ways up-to date. If the metadata is extracted newly each time when
checked and if the (automatical) extraction mechanism works cor-
rectly then the metadata is correct and up-to-date. Moreover, the
extraction mechanism ensures that metadata is available at all. If
the metadata cannot be extracted automatically, we recommend that
the quality assurance department approves the manually encoded
metadata and defines an expiration date after which the metadata
must be approved newly.

“The author mentions that keeping the context prop-
erty values up to date is an issue, but I think it is a big
issue.”

Yes. That’s why a whole chapter deals with maintaining context
property values in [7].

“The motivation of the work as described in sec-
tion 1 is not convincing: In section 1.4, the author
states that one of the goals of the approach is to al-
low stakeholders who do not know anything about the
code to specify join-points. However, if CCL is to be
used in source code level, one still needs to go through
the source code and add the context information. ”

Yes, but those people who add the context information are different
to those who write down the CoCons. The experts who understand
a system artefact enrich this artefact with context properties and
enable the requirements engineers to hide the technical details.

Within one system, only one context property terminology should
be used. For instance, the workflow ‘New Customer’ should have
exactly this name (and semantics) in every part of the system, even
if different companies manufacture or use its parts. Otherwise,
string matching gets complex when checking a context condition.

7.2 Benefits of CoCons
CoCons select their constrained system elements via the element’s
context properties. In contrast to other grouping techniques, e.g.
packages or stereotypes, context properties candynamically group
elements even at runtime. Furthermore, the assist in handling sets
of elements that share a context even across different element types,
artefact types, or platforms. They also help to express crosscutting
requirements relating to several elements that are not associated
with each other or even belong to different artefacts.

The same CoCon used to check the system model can also be used
to check other system artefact for violated or contradicting require-
ments because CoCons specify requirements at an artefact-type-
independent, abstract level. Therefore, they enable us to check dif-
ferent software development artefacts for compliance with the same
CoCon during modelling, during deployment and at runtime. This
paper has suggested how to check UML models for compliance
with CoCons.

The requirements specification should serve as a document under-
stood by designers, programmers, and customers. CoCons can be
specified in easily comprehensible, straightforward language that
assists every English speaking person in understanding their design
rationale. A CoCon can be translated into an artefact-specific ad-
vice that is more complex than the corresponding CoCon because it
refers to all the artefact-specific details. The effort of writing down
a requirement in the minutest details is unsuitable if the details are
not important. CoCons facilitate staying on an abstract level that
eases requirements specification.

The people who need a requirement to be enforced do often neither
know all the details of every part of the system (glass box view) nor
do they have access to the complete source code, model or config-
uration files. It can be unknown which elements are involved in the
requirement when we specify it via CoCons. Software tools that
check the system artefacts for violated or contradicting CoCons
will identify those elements that are involved in the requirement
automatically. CoCons help us to specify requirements because it
is easier to write down a requirement if we don’t have to list all
of the elements that relate to this requirement. By using CoCons,
we don’t have to understand every detail of the system. Instead,
we only need to understand the context property values we use for
describing the context of the system elements.

When adapting a system to new requirements, existing dependen-
cies and invariants should not be violated. CoCons help us to en-
sure consistency during system evolution. A context-based con-
straint serves as an invariant and, thus, prevents the violation of re-
quirements during modifications of the system artefacts. It assists
in detecting when design or context modifications compromise in-
tended functionality. Hence, CoCons help us to prevent unantici-
pated side effects during (re-)design, during (re-)configuration and



at runtime. Requirements tend to change quite often. Indirectly
selecting the elements involved improves adaptability because ev-
ery new or changed element is constrained automatically if it fits
to the context condition. The context property values can be easily
adapted whenever the context of an element changes. Furthermore,
each modified or additional CoCon can automatically be enforced
and any resulting conflicts can be identified. It is changing con-
texts that drive evolution. CoCons are context-based and are there-
fore easily adapted if the contexts, the requirements, or the con-
figuration changes – they improve the traceability of crosscutting
requirements.

8. REFERENCES
[1] J. Araújo, E. Baniassad, P. Clements, A. Moreira, A. Rashid,

and B. Tekinerdŏgan. Early aspects: The current landscape.
Technical Report COMP-001-2005, Lancaster University,
February 2005.

[2] J. Araújo, A. Moreira, I. Brito, and A. Rashid.
Aspect-oriented requirements with UML. In M. Kandé,
O. Aldawud, G. Booch, and B. Harrison, editors,Workshop
on Aspect-Oriented Modeling with UML, 2002.

[3] AspectJ. http://www.aspectj.org.

[4] D. M. Berry and E. Kamsties. The syntactically dangerous
all and plural in specifications.IEEE Software, 22(1):55–57,
January 2005.

[5] F. Bübl. What must (not) be available where? In
R. Meersman, Z. Tari, and D. C. Schmidt, editors,5th

International Symposium on Distributed Objects and
Applications (DOA), Catania, Sicily (Italy), volume 2888 of
LNCS. Springer, November 2003.

[6] F. Bübl. Never mind the source code, but be aware of the
context when dealing with cross-cutting requirements. In
Early Aspects Workshop, October 2005.

[7] F. Bübl. Tracing crosscutting requirements for
component-based systems via context-based constraints.
PhD Thesis, Technical University Berlin, Germany, 2005.

[8] F. Bübl and M. Balser. Tracing cross-cutting requirements
via context-based constraints. In H. Yang, editor,9th

Conference on Software Maintenance and Reengineering,
Manchester, Great Britain. IEEE computer, March 2005.

[9] J. Cheesman and J. Daniels.UML Components.
Addison-Wesley, 2000.

[10] S. Clarke. Extending standard uml with model composition
semantics.Sci. Comput. Program., 44(1):71–100, 2002.

[11] S. Clarke and E. Baniassad.Aspect-Oriented Analysis and
Design - The Theme Approach. Addison-Wesley, Reading,
2005.

[12] S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer, , and
A. Wills. The amsterdam manifesto on OCL. Technical
Report TUM-I9925, Technische Universität München, 1999.

[13] S. Cook, A. Kleppe, R. Mitchell, J. Warmer, and A. Wills.
Defining the context of OCL expressions. In B.Rumpe and
R.B.France, editors,2nd International Conference on the
Unified Modeling Language, Colorado, USA, volume 1723
of LNCS. Springer, 1999.

[14] K. Devlin. Logic and Information. Cambridge University
Press, New York, 1991.

[15] A. K. Dey. Understanding and using context.Personal and
Ubiquitous Computing Journal, 5(1):4–7, 2001.

[16] O. Gotel and A. Finkelstein. An analysis of the requirements
traceability problem. In R. Arnold and S. Bohner, editors,
Software Change Impact Analysis. IEEE Computer Society
Press, 1996.

[17] G. Hirst. Context as a spurious concept. InProceedings of
the third workshop on Conference on Intelligent Processing
and Computational Linguistics, Rio de Janeiro, Mexico City,
pages 273–287, 2000.

[18] H. Hussmann, B. Demuth, and F. Finger. Modular
architecture for a toolset supporting OCL. In A. Evans,
S. Kent, and B. Selic, editors,UML 2000 - The Unified
Modeling Language. Advancing the Standard. Third
International Conference, York, UK, October 2000,
Proceedings, volume 1939 ofLNCS, pages 278–293.
Springer, 2000.

[19] V. Kashyap and A. P. Sheth. Schematic and semantic
similarities between database objects: A context-based
approach.Very Large Data Bases (VLDB) Journal,
5(4):276–304, 1996.

[20] S. Katz and A. Rashid. From aspectual requirements to proof
obligations for aspect-oriented systems. InInternational
Conference on Requirements Engineering (RE), Kayoto,
Japan, pages 48–57. IEEE Computer Society, 2004.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Aksit and S. Matsuoka, editors,
European Conference on Object-Oriented Programming
ECOOP, volume 1241 ofLNCS, pages 220–242, Berlin,
1997. Springer.

[22] R. Laddad. AOP at work: AOP and metadata: A perfect
match, part 1. Technical report, DeveloperWorks, 2005.

[23] A. Leicher, A. Bilke, F. B̈ubl, and E. U. Kriegel. Integrating
container services with pluggable system extensions. In
R. Meersman, Z. Tari, and D. C. Schmidt, editors,5th

International Symposium on Distributed Objects and
Applications (DOA), Catania, Sicily (Italy), volume 2888 of
LNCS. Springer, November 2003.

[24] OMG. UML 1.5, formal/03-03-01, March 2003.

[25] OMG. UML 2.0 infrastructure specification, ptc/03-09-15,
September 2003.

[26] J. D. Palmer. Traceability. In R. H. Thayer and M. Dorfman,
editors,Software Requirements Engineering, pages 412–422.
IEEE Computer Society, 2000.

[27] F. A. C. Pinheiro. Formal and informal aspects of
requirements tracing. InProceedings of the third workshop
on Requirements Engineering, Rio de Janeiro, Brazil, 2000.

[28] M. Radestock and S. Eisenbach. Semantics of a higher-order
coordination language. InCoordination 96, 1996.



[29] B. Ramesh and M. Jarke. Toward reference models of
requirements traceability.Transactions on Software
Engineering, 27(1):58–93, 2001.

[30] F. Ratzlow. Einsatzmoeglichkeiten der Aspekt-orientierten
Programmierung im Kontext der Java 2 Enterprise
Architektur. Diploma Thesis, FHTW Berlin, Germany, Prof.
Ingo Classen, 2004.

[31] M. Richters and M. Gogolla. Validating UML Models and
OCL Constraints. In A. Evans and S. Kent, editors,Proc. 3rd
Int. Conf. Unified Modeling Language (UML’2000).
Springer, Berlin, LNCS, 2000.

[32] J. E. Robbins and D. F. Redmiles. Software architecture
critics in the argo design environment.Knowledge-Based
Systems. Special issue: The Best of IUI’98, 5(1):47–60,
1998.

[33] W. Schult and A. Polze. Aspect-oriented programming with
c# and .net. InSymposium on Object-Oriented Real-Time
Distributed Computing, pages 241–248, 2002.

[34] A. P. Sheth and S. K. Gala. Attribute relationships: An
impediment in automating schema integration. InProc. of
the Workshop on Heterogeneous Database Systems
(Chicago, Ill., USA), December 1989.

[35] D. Stein, S. Hanenberg, and R. Unland. Modeling pointcuts.
In Workshop on Early Aspects: Aspect-Oriented
Requirements Engineering and Architecture Design, 2004.

[36] C. Szyperski.Component Software - Beyond Object-Oriented
Programming. Addison-Wesley, Reading, 1997.

[37] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. S. Jr.
Degrees of separation: Multi-dimensional separation of
concerns. InInt. Conference on Software Engineering
(ICSE), pages 107–119, 1999.

[38] J. B. Warmer and A. G. Kleppe.Object Constraint Language
– Precise modeling with UML. Addison-Wesley, Reading,
1999.


	Introduction
	It's a Long Way to the Top if you wanna Rock'n'Roll
	Privacy Policy Example 
	Availability Requirement Example 
	 Goal: Identify Join Points Independent of Artefact Types 
	 Goal: Detect Violated or Contradicting Crosscutting Requirements 
	 The Approach in Brief
	 Section Overview

	 Introducing Context Properties 
	 What is Context? 
	 Context Properties: Formatted Metadata Describing Elements 

	 Introducing Context-Based Constraints (CoCons) 
	 Intuitive Definition of Context-Based Constraints 
	 Two-Step Approach for Defining CoCon-Predicate Semantics
	 Which Requirements can be Expressed via CoCons?

	 Comparing Context-Based Constraints and OCL
	UML-Specific Semantics of ACCESSIBLE TO CoCons
	 CoCons can be Verified Already at the Same Meta-Level 
	 CoCons can Constrain Unassociated Elements 

	 Integrating CoCons into UML 
	The Easy Part: Using UML's Constraints and Tagged Values
	The Problem: UML Constraints Don't Consider Point Cuts
	 Proof of Concept Tool

	 Related Work on Aspect-Oriented Software Development
	 Aspects at Source Code Level 
	 Aspects at Design Level 
	 Early Aspects at Requirements Level 

	Conclusion
	 Limitations of CoCons 
	 Benefits of CoCons 

	References 

