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Abstract 
More than five years ago, the OMG proposed the Model Driven 
Architecture (MDA™) approach to deal with the separation of 
platform dependent and independent aspects in information 
systems. Since then, the initial idea of MDA evolved and Model 
Driven Engineering (MDE) is being increasingly promoted to 
handle separation and combination of various kinds of concerns in 
software or data engineering. MDE is more general than the set of 
standards and practices recommended by the OMG's MDA 
proposal. In MDE the concept of model designates not only OMG 
models but a lot of other artifacts like XML documents, Java 
programs, RDBMS data, etc. Today we observe another 
evolutionary step. A convergence between MDE and DSL 
(Domain Specific Language) engineering is rapidly appearing. In 
the same way as MDE is a generalization of MDA, the DSL 
engineering may be viewed as a generalization of MDE. One of 
the goals of this paper is to explore the potential of this important 
evolution of engineering practices. In order to anchor the 
discussion on practical grounds, we present a set of typical 
problems that could be solved by classical (object-oriented and 
others), MDE, or DSL-based techniques. Solutions to these 
problems will be based on current platforms (EMF, AMMA, 
GME, etc.). This paper illustrates how powerful model-based 
frameworks, allowing to use and build a variety of DSLs, may 
help to solve complex problems in a more efficient way.   

Categories and Subject Descriptors    D.3.2 [Language 
Classifications]: Specialized Application Languages – domain 
specific languages, modeling languages, model transformation 
languages.  

General Terms   Design, Languages, Theory 

Keywords   Model-Driven Engineering, MDA, DSL Engineering, 
Tool-based approaches. 

1. Introduction 
As an emerging solution for handling complex and evolving 
software problems, Model Driven Engineering (MDE) is still very 
much in evolution [7]. The industrial demand is quite high while 
the research answer for a sound set of foundation principles is still 
far from being stabilized. Various organizations and companies 
(OMG, IBM, Microsoft, etc.) are currently proposing several 
environments claiming to support MDE. Among these, the OMG 
MDA™ (Model Driven Architecture) has a special place since it 
was historically one of the original proposals in this area [48].  

This paper focuses on the identification of the basic MDE 
principles, and the applicability of the related ideas, concepts, and 
tools to solve current practical problems. Of particular interest 
also is the present convergence of MDE and DSL (Domain 
Specific Language) engineering [19]. Both MDE and DSL share 
the idea that language engineering may help in domain modeling. 
DSL Engineering is positioned at a more abstract level, using 
different technical solutions like MDE (sometimes called 
Modelware), Grammarware [35], XML solutions, etc. MDE 
mainly uses metamodeling capabilities to implement families of 
languages in specific application domains. 
Observing that MDE is more and more related to DSL 
engineering, we suggest that MDE principles and tools may be 
considered as a convenient support technique for building DSL 
frameworks that may solve existing and newly emerging complex 
problems. We illustrate this claim with the example of the 
AMMA (ATLAS Model Management Architecture) framework, 
an open-source effort of more that 15 person-years that is now 
being used in a variety of application areas [3]. The various tools 
are contributed as open source to the Eclipse GMT project [24]. 
Some of the more stable components, like the ATL transformation 
language environment, are currently used on more than 100 sites, 
both in academy and industry (Thales, Airbus, CS, TNI, JPL, 
Sodius, etc.).  Initially considered as a tool support for MDA, for 
generating platform specific models from platform independent 
models, AMMA has evolved to be a DSL building framework. It 
consists of a set of primitive DSLs that will be presented later in 
the paper like ATL (ATLAS Transformation Language), KM3 
(Kernel MetaMetaModel), TCS (Textual Concrete Syntax), etc. 
and offers the capability to build sets of related new DSLs for a 
given domain of for a family of systems. 
This paper is organized as follows. Section 2 provides the basic 
definitions related to models, tools, and DSLs. Section 3 gives a 
list of typical problems that could be solved by these new 
conceptual tools. Section 4 presents some current tools and how 
they may contribute to solve these problems. Section 5 presents 
some related work. Section 6 concludes the paper. 

2. Definitions 
In MDE models are considered as the unifying concept in IT 
engineering. Traditionally, models have been used as initial 
design sketches mainly aimed for communicating ideas among 
developers. MDE promotes models to primary artifacts that drive 
the whole development process. The notion of model goes beyond 
the narrow view of semi-formal diagram thus requiring much 
more precise definitions and modeling languages.  
Models come in various flavors. A UML model, a Java program, 
an XML or RDF document, a database relational table, an entity-
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relationship schema are all examples of models. We call all these 
models λ-models where λ identifies the technology used to create 
the model. Therefore, we need another unification concept that 
helps us to denote various modeling technologies at a higher level 
of abstraction. We call this concept technical space [37][14] 
associated with a given precise metametamodel. Many technical 
spaces represent existing technologies that have not been strictly 
perceived as modeling frameworks.  
In the previous paragraph we have referred to a number of 
concepts that need precise and consensual definitions. It is the 
purpose of this section to provide these definitions so that this 
common vocabulary may allow us later to talk more precisely 
about problems and solutions. 
First we need to distinguish between principles, standards, and 
tools. Figure 1 illustrates the relations among them. 

 
Figure 1. Principles, Standards, and Tools 

MDE principles provide the conceptual foundation of the 
approach. They may be applied in multiple ways resulting in 
different MDE approaches that are often standardized. Every 
MDE approach/standard relies on a set of tools. Figure 1 
enumerates some existing standards and tools. 
 

 
Figure 2. General organization of a metamodeling stack 

The central role in the MDE conceptual foundation is played by 
the notion of model. There are two main definitions of a model 
corresponding to its internal organization and its potential 
utilization. Furthermore, the organizational structure of models is 
constrained by a model called metamodel. A metamodel, in turn, 
is constrained by a metametamodel. Models, metamodels, and 
metametamodels together with the relations among them form a 
metamodeling stack. Figure 2 illustrates the organization of a 
metamodeling stack. 

The next section gives precise definitions of the elements in the 
metamodeling stack. 

2.1 Model Organization Definition 
The organization of a model reflects its structure. From an 
organization point of view we perceive models as graphs 
constrained by other graphs. We propose the following 
definitions: 

Definition 1. A directed multigraph G = (NG, EG, ΓG) consists of a 
set of nodes NG, a set of edges EG, and a mapping function ΓG: EG 
→ NG x NG. 
Definition 2. A model M = (G, ω, μ) is a triple where: 

• G = (NG, EG, ΓG) is a directed multigraph 
• ω is itself a model (called the reference model of M) 

associated to a graph Gω = (Nω, Eω, Γω) 
• μ: NG ∪ EG → Nω is a function associating elements 

(nodes and edges) of G to nodes of Gω 
The relation between a model and its reference model is called 
conformance. We denote it as conformsTo, or simply c2. 
We may rewrite the previous discussion more precisely as 
follows, finally explaining the illustration provided by Figure 2: 

Definition 3. A metametamodel is a model that is its own 
reference model (i.e. it conforms to itself). 
Definition 4. A metamodel is a model such that its reference 
model is a metametamodel. 
Definition 5. A terminal model is a model such that its reference 
model is a metamodel. 
 

 
Figure 3. Classification of models as terminal models, 

metamodels, and metametamodels 
Figure 3 shows the classification of models implied by the 
definitions presented so far. 

2.2 Model Utilization Definition 
The utilization of a model reflects the purpose it is built for and 
the relation to the real phenomenon it represents. The objective of 
the model utilization definition is to define the possible usages of 
a model. In the present subsection, model will mean "terminal 
model". We base our second set of definitions on ideas presented 
by Marvin Minsky in [41]: 
"If a creature can answer a question about a hypothetical 
experiment without actually performing it, then it has 
demonstrated some knowledge about the world. …  
We use the term "model" in the following sense: To an observer 
B, an object A* is a model of an object A to the extent that B can 
use A* to answer questions that interest him about A. … 
It is understood that B's use of a model entails the use of 
encodings for input and output, both for A and A*. 
If A is the world, questions for A are experiments. ... A* is a good 
model of A, in B's view, to the extent that A*'s answers agree with 
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those of A's, on the whole, with respect to the questions important 
to B. …" 
An analysis of the expressed view shows that a model is an object 
always related to another object (object A above). We call the 
latter one a system.  This leads to a second set of definitions: 

Definition 6. A system S is a delimited part of the world 
considered as a set of elements in interaction. 

Definition 7. A model M is a representation of a given system S, 
satisfying the substitutability principle (see below). 

Definition 8. (Principle of substitutability). A model M is said to 
be a representation of a system S for a given set of questions Q if, 
for each question of this set Q, the model M will provide exactly 
the same answer that the system S would have provided in 
answering the same question. 

The relation between a model and a system is called 
representationOf (repOf). It is shown in Figure 4. 

 
Figure 4. Utilization definition of a model 

In a set based view, the system is composed of system elements 
and the model is composed of model elements. The 
aforementioned relation repOf is thus defined in terms of a partial 
function ψ: S → M associating model elements to system 
elements.  

The study of this partial function ψ is one of the big difficulties of 
model engineering. We may quote here Brian Cantwell Smith in 
[18]: "What about the [relationship between model and real-
world]? The answer, and one of the main points I hope you will 
take away from this discussion, is that, at this point in intellectual 
history, we have no theory of this [...] relationship".  However the 
increasing importance of understanding the nature of this relation 
cannot be neglected. This is currently a subject of many efforts in 
the context of various sciences [2][29][42]. 

2.3 Relations between Organization and Utilization of a 
Model 
The study of the repOf representation relation (ψ function) is 
mostly the responsibility of ontology engineering. The study of 
the c2 conformance relation (μ function) is mostly the 
responsibility of language engineering. Model engineering may 
be considered as a synergy between these two fields of language 
engineering and ontology engineering. This synergy may be made 
apparent in Figure 5. 

 
Figure 5. Dual definition of a model 

Figure 5 illustrates that the organization of a model is closely 
related to its utilization. The extraction of elements from system S 
to build model M is guided by the metamodel MM and the 
purpose of the model. In other words, the metamodel MM acts as 
a filter that states which elements of the system can be selected to 
constitute the model M. 

2.4 Domain Specific Languages 
Language engineering is at the heart of computer science. There is 
a variety of categories of languages. We discuss here only a small 
facet of language engineering. A distinction is often made 
between programming languages and modeling languages. 
Typical examples are PL/1 and UML. The distinction between 
these categories has mainly to do with canonical executability. 
This distinction is currently becoming more and more blur since 
programs are treated as models and some modeling languages 
may have the executability property. Another distinction is 
between General Purpose Languages (GPLs) and Domain 
Specific Languages (DSLs). PL/1, UML, Java, and C# are 
examples of GPLs. R [5], SQL [40] or Excel are examples of 
DSLs. 

The distinction between GPLs and DSLs is orthogonal to many 
other language classifications. For example, there are indifferently 
visual or textual GPLs or DSLs. Similarly DSLs and GPLs may 
fall under various categories based on the employed paradigm 
being object-oriented, event-oriented, rule-oriented, function-
oriented, etc. There are examples of imperative and declarative 
GPLs and DSLs.  

A DSL is a language designed to be useful for a delimited set of 
tasks, in contrast to general-purpose languages that are supposed 
to be useful for much more generic tasks, crossing multiple 
application domains. A typical example of DSL is GraphViz [23], 
a language used to define directed graphs, which creates a visual 
representation of that graph as a result. Some GPLs have started 
as DSLs and have sometimes evolved towards genericity to 
become GPLs. The reverse process has not been observed in the 
history of programming languages. 

Similarly to GPLs, DSLs have the following common properties: 

• They usually have a concrete syntax; 

• They may also have an abstract syntax; 

• They have a semantics, implicitly or explicitly defined; 

There are several ways to define these syntaxes and semantics. 
The most commonly used way for defining the syntax is via 
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grammar-based systems. In contrast, there are multiple semantic 
specification frameworks but none has been widely established as 
a standard. 

2.5 DSLs and Models 
There are strong relations between DSLs and models. We discuss 
here the possibility of using model-based solutions for defining 
the syntax and semantics of DSLs. 

Definition 9. A DSL is a set of coordinated models. 
 
The following comments clarify this definition. 

Domain Definition Metamodel. As we discussed in the previous 
section, the basic distinction between DSLs and GPLs is based on 
the relation to a given domain. DSLs have a clearly identified, 
concrete problem domain. In contrast, GPLs cover multiple 
domains. Programs (sentences) in a DSL represent concrete states 
of affairs in this domain, i.e. they are models. A conceptualization 
of the domain is an abstract entity that captures the commonalities 
among the possible state of affairs. It introduces the basic 
abstractions of the domain and their mutual relations. Once such 
an abstract entity is explicitly represented as a model it becomes 
the reference model for the models expressed in the DSL, that is, 
it is a metamodel. We refer to this metamodel as domain 
definition metamodel (DDMM). Since the DDMM is a 
specification of the domain’s conceptualization, following the 
Gruber’s definition [27] we may regard it as an ontology. This 
base ontology plays a central role in the definition of the DSL. 
For example, a DSL for directed graph manipulation will contain 
the concepts of nodes and edges, and state that an edge may 
connect a source node to a target node. 
Such a DDMM plays the role of the abstract syntax for a DSL. 

Concrete Syntax. A DSL may have different concrete syntaxes. 
Each one is defined by a transformation model that maps the 
DDMM onto a "display surface" metamodel. Examples of display 
surface metamodels may be SVG or GraphViz, but also XML. An 
example of such a transformation for a Petri net DSL is the 
mapping from places into circles, from transitions into rectangles 
and from place to transition or transition to place relations into 
arrows. The display surface metamodel will then have the 
concepts of Circle, Rectangle and Arrow.  

Semantics. A DSL may have an execution semantics definition. 
This semantics definition is also defined by a transformation 
model that maps the DDMM onto another DSL having by itself a 
precise execution or even to a GPL. The firing rules of a Petri net 
may, for example, be mapped into a Java code model. 
In addition to canonical execution, there are plenty of other 
possible operations on programs based on a given DSL. Each may 
be defined by a mapping represented as a transformation model. 
For example, if one wishes to query DSL programs, a standard 
mapping of the DDMM onto Prolog may be useful. 

2.6 Technical Spaces 
Technical spaces were introduced in [37], in the discussion on 
problems of bridging different technologies. This concept was 
further elaborated in [14] where technical spaces are defined as 
model management frameworks. The notion of technical space is 
another important unification concept along with the concept of 
model. The intention behind it is to denote technologies at a more 

abstract level in order to allow reasoning about their similarities 
and differences and possibilities for integration. The following 
definition is given for technical space: 

Definition 10. A technical space is a model management 
framework with a set of tools that operate on the models definable 
within the framework. 

We observe that technical spaces expose an important 
commonality: they are based on the three-level metamodeling 
stack thus fitting into the definitions given so far (Figure 6).  

 
Figure 6. Systems, models and technical spaces 

Figure 7 gives concrete examples of technical spaces and shows 
the levels observed in every space.  
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OMG/MDA TS XML TS EBNF TS RDF TS  
Figure 7. The three-level model organization in various technical 

spaces 
This three-level organization is the corner stone for building the 
model management functionality in a given space. It is mainly 
based on the fixed metametamodel at M3 and the meaning of the 
conformsTo relation between levels. It should be noted that the 
conformsTo relation is defined differently in different spaces. In 
OMG/MDA it is defined by the MOF language. In the XML TS it 
is based on the notion of validity of XML documents. In the 
EBNF TS, conformsTo means that a sentence is syntactically 
correct according to the grammar rules. Usually, every TS 
provides tools that check for the presence of the conformsTo 
relation. For instance, in the EBNF TS these tools are language 
parsers. In XML TS, they are validating XML parsers. 

The main role of the M3-level in a TS is to define the 
representation structure and a global typing system for underlying 
levels. For example, MOF is based on directed multigraphs where 
nodes are typed by MOF classes and edges are typed by MOF 
associations. The notion of "association end" plays an important 
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role in this representation system. Within the EBNF TS we have 
the specific representation of abstract syntax trees while within 
the XML TS we also have trees but with different set of 
constraints, for example, with possibilities to have direct 
references from one node to another node. The basic 
representation structure in Resource Description Framework 
(RDF) TS is directed labeled graphs that are typed by an RDF 
schema. 

An important benefit of treating technical spaces as semi-formal 
entities is the recognition of the various capabilities offered by 
technical spaces and their combination aimed to solve a given 
problem. To achieve an effective integration towards a certain 
goal, however, various technologies should interact with each 
other. An important requirement for such an interaction is the 
possibility for transferring an artifact from one space to another 
space and vice versa. This inter-space transfer is called bridging. 

Bridging is implemented by a transformation utility called 
technical projector. The responsibility to build projectors lies in 
one reference space. The rationale to define them is quite simple: 
when one facility is already available in a given space and 
building it in another space is economically too costly, then the 
decision may be taken to build a projector that enables the reuse 
of the facility. There are two kinds of projectors according to the 
direction of the transformation relative to the chosen reference 
space: injectors and extractors. 

3. Case Studies and Problems 
In this section, we present some typical problems. They can be 
solved with different technologies. We first describe the basic 
case studies. Then we look for corresponding characteristics in 
order to establish a list of generic problems. 

3.1 Telephony Languages 
Recently, Voice over Internet Protocol (VoIP) has gained 
popularity thanks to a combination of reasons including reduced 
fees compared to standard land-line phones. With this emerging 
technology several functions that used to be carried out by fixed 
pieces of hardware are now implemented in software. For 
instance, wires are replaced by TCP connections allowing users to 
have a single call identifier wherever they are. Similarly, any 
computer can now act as a Private Automatic Branch eXchange 
(PABX) and route calls. One consequence is that telephony 
routing tables can now be represented as user-specified programs 
capable of complex behaviors. 

To leverage these new possibilities, the Internet Engineering Task 
Force (IETF) has adopted CPL (Call Processing Language) [38], 
an XML-based language to control and describe internet 
telephony services. Other languages, such as SPL (Session 
Processing Language) [17] have also been developed to play a 
similar role but with different properties. For instance, CPL is 
voluntarily limited to be relatively simple and secure. On the 
contrary, SPL is expressive enough to represent most telephony 
services while still permitting some properties to be checked on 
programs. CPL and SPL are two telephony DSLs, but other exist 
too. 

3.2 Querying Program Source Code 
Today source code is one of the main artifacts in software 
engineering. Although programming languages are supposed to be 
a human usable interface with computers, it is often impossible 
for one person to understand all the details of even modestly sized 
systems. Therefore, languages and tools to query source code are 
often necessary. One of the first and still widely used tools is 
grep. It relies on concrete syntax and often on coding style. For 
instance, line feeds may be inserted almost anywhere in the code 
but are difficult to handle with standard regular expressions. 

More advanced tools are aware of abstract syntax and enable 
querying relations between entities in the source code (e.g. to get 
all subtypes of a given Java class). CodeQuest [28] is such a tool 
targeted at Java. It uses Datalog as a query DSL and is 
implemented as an Eclipse plugin. CodeQuest makes use of 
Eclipse Java parsing abilities and comes with a library of 
predicates to query Java code. Although the approach is generic, 
the implementation is limited at querying Java source code. 

There is a need to unify source code representations at the 
abstract syntax level independently of the language in which it is 
expressed. This would enable a single source code query DSL to 
be used on many languages. 

3.3 PIM to PSM Transformations 
Transformation of Platform Independent Models (PIM) to 
Platform Specific Models (PSM) was the central problem in the 
initial vision of Model Driven Architecture [43]. 

The goal of the MDA approach is to produce software assets that 
are resilient to changes in the technologies. Such assets should 
take the form of PIMs, that is, models that do not contain 
implementation specific details. These models may be 
transformed to other models that include information specific to 
the current state of the art implementation technologies (PSMs). 
PSMs then can be used for code generation. MDA stresses on the 
importance of PIMs since they are supposed to survive the 
constant changes in software technologies. If a new technology 
emerges as a competitor of an existing one (e.g. CORBA vs. Web 
Services, Java vs. C#) the PIMs remains the stable and reusable 
entities that are transformed to new PSMs. 

Compared to the traditional software development where 
programs are transformed to machine executable code by a 
compiler, the transformation and model centric MDA approach is 
step towards a higher flexibility. Whereas a compiler may be 
perceived as a transformer with fixed source and target languages, 
in MDA the languages of PIMs and PSMs are expected to vary. 
This put a requirement for more flexible transformation 
approaches capable of handling various source and target 
languages. 

3.4 Sensor Data Stream Processing 
Following the recent Tsunami disaster, a lot of sensors have been 
installed in different countries, by different operators, sometimes 
independently in order to build world-wide real-time surveillance 
networks. Real-time information about phenomena in the physical 
world can be processed, modeled, measured, checked, correlated, 
and mined to permit on-the-fly decisions and actions to be taken 
on a large scale [49]. Examples include environment monitoring 
with prediction and early warning of natural disasters, missile 
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detection tracking and interception and many more potential 
applications in different areas such as medical care, aeronautics, 
telephony. An airplane, a hospital, or a factory may be equipped 
with such complex apparatus. The number of involved sensors in 
such system is exponentially increasing, but also the nature of the 
data produced and emitted is becoming much more complex as 
embedded intelligence in the capture device has dramatically 
evolved. As a result, many systems are becoming world-wide 
data-centric processing networks. Furthermore the topology of the 
network is constantly evolving with new data sources constantly 
appearing or disappearing, new data translation, merging, control 
or measure being added, deleted or updated, etc. Managing such 
complex systems necessitate the ability to deal with the changing 
metadata of the various source, targets or intermediary processing 
nodes in the network. 

3.5 Bug Tracking 
Several tools are often used to ensure the quality of a software 
product. We may consider the example of “bug-tracing” or “bug-
tracking” in the context of software product development. 
Assume that three teams are currently working on the same 
product at the same time but on different modules of this product. 
Teams may be geographically distributed, may have different 
levels of maturity of the used development process, with different 
experience of the team members, and they may use different 
tools. The following situation is typical. Team “A” is developing 
the first module by using an Excel workbook with a specific 
format to track bugs. Team “B” is working on the second module 
and uses Bugzilla [16] which is a free bug-tracking system. Team 
“C” is developing the third module and uses Mantis Bug Tracker 
[39] which is another free bug tracking system. The problem is 
that each team has used a different tool for keeping track of bugs. 
So in that case, how to succeed in centralizing bug-tracking, i.e. 
how to be able to interoperate a tool to another without losing 
critical information about detected bugs? A list of nearly fifty 
open-source bug-tracking tools may be found on the Web, not 
counting a lot of commercial products. Each of these tools use 
similar but often non-compatible data on the bugs found, 
corrected, validated, etc. 

3.6 Contract Management 
Assume we want to build a contract management tool within an 
organization. A contract is negotiated between different 
companies and is directed by a person in charge. There are 
financial payments made when various parts of the contract are 
achieved with the production of deliverables. Staff is assigned to 
the realization of various parts of the contract. The problem is to 
build a contract management tool that may be used inside the 
company by various stakeholders. All these users will use a 
common terminology defined by the domain language supported 
by the contract management tool. This tool should be considered 
as belonging to a product line because different variants may have 
to be built for different contexts. Covered features may include 
general access control, relation management, project monitoring, 
project planning, time tracking, statistics, productivity tools, todo 
management, expense registration, overtime tracking, employee 
contract management, etc. There is a straightforward way to 
develop such a contract management tool by producing 100% of 
the code in classical general purpose programming languages like 
Java or C#. The way suggested here is rather different. It consists 

in systematic use of bridging with other tools that implement 
functionalities (or services) that may serve to construct the 
facilities of the virtual contract management tool that we wish to 
build. For example if we need a calendar management, a Gantt 
chart displaying, a spreadsheet tabular information capture, an 
accounting reporting, etc., then we may look for specific tools 
already implementing these facilities (open source tools or 
proprietary tools already used by the potential users in their 
environments). There is obviously a service oriented dimension in 
this approach, but the main idea is to build semantic data 
conversion bridges between the virtual tool we want to build and 
the various concrete tools that we are using to build it. The 
difficulty is that most tools use different conventions and data 
encoding that need to be harnessed. Of course between the 100% 
code production and the 100% functionality reuse by tool-
bridging, it is likely that an intermediate way may have to be 
found. However, what we define here as a case study is the 
possibility to achieve a significant experiment in virtual tool 
building. 

3.7 Problem Identification 
In these illustrative case studies we may identify several generic 
problems of interest. In this section we abstract these problems 
and describe them. The problems are summarized in Table 1. 

Table 1. Problems exemplified in different case studies 
Case Studies  
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Semantics interoperability X    X X 

Heterogeneous syntaxes  X   X X 

Uniform representation 
framework  X  X   

Flexible transformations 
between languages    X    

Metadata management    X X X 

Volume scalability  X  X X  

Tool reusability      X 

Querying heterogeneous 
data  X     

Pr
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m
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Product and Process 
combination     X X 

 
It can be seen that a given problem is usually exemplified in more 
than one case study. The columns of the table indicate case 
studies and the rows indicate the problems that we have 
formulated. The ‘X’ sign indicates in which case study a problem 
is observed. 

The following list summarizes some of the characteristics of the 
problems mentioned above. 

Uniform representation framework. The problem of uniform 
representation framework emerges in the case studies that process 
data represented in various formats. A major requirement is 
scalability of the solutions, that is, the possibility to handle an 
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open set of representation formats. In the case study of querying 
program source code we need a system that represents the 
concrete syntaxes of programming languages in a uniform way. In 
the stream-based data processing and conversion the open set of 
data formats must be accommodated in the same type of uniform 
underlying representation. 

Semantic interoperability. In the telephony languages, bug 
tracking, and contract management case studies there is the 
common goal of implementing solution for ensuring semantics 
interoperability between tools or languages. In all these cases we 
observe different conceptualizations of the same underlying 
domain. These conceptualizations are usually developed 
independently from each other by different agents. It is possible 
to have overlap between them but also we may have aspects of 
the domain that are captured in one tool/language and are missing 
in another. For example, the concept of bug in Bugzilla has the 
same meaning as the concept of issue in Mantis but these 
concepts capture different sets of attributes. Another semantic 
related problem is observed in the telephony languages case study 
where the two languages conceptualize the domain at different 
levels of abstraction. Solving the semantic interoperability 
problem requires to identify the equivalent and non-equivalent 
concepts and to resolve the differences between the concepts that 
refer to the same domain abstraction. 

Heterogeneous syntaxes. Three case studies deal with various 
representation formats. They have to handle an open set of 
heterogeneous syntaxes. A generic system for querying source 
code requires uniform view over the syntaxes of various 
programming languages. In bug tracking and contract 
management we observe the problem of syntactic interoperability 
along with the problem of semantic interoperability described 
above. Bug tracking systems may use XML-based or EBNF-
based syntaxes as input/output formats. The same heterogeneity is 
observed in various contract management systems. To achieve 
tool interoperability in these case studies we need a scalable 
translation mechanism from one syntax to another. This facility 
will need to easily allow changes from one representation system 
to another one, for example from a Java program classical textual 
representation to an XML corresponding document based on a 
Java DTD or schema, or to a Java model based on a Java MOF 
metamodel. Flexibility to apply dynamically these format 
translation from various contexts is also an important feature.  

Flexible transformations between languages. This problem is 
present in most of the case studies to a certain degree but is most 
apparent in the PIM to PSM transformation case study. Crafting a 
transformation program on the base of fixed source and target 
languages is not a big challenge. Much more challenging is 
developing an open and flexible transformation system. The 
openness and flexibility properties indicate the ability to handle 
an open set of source and target languages.  

Metadata management. The term metadata used here refers to 
its most general meaning as “data about data”. We stay neutral 
from any particular form of metadata such as metamodels and 
metametamodels as defined in section Error! Reference source 
not found.. Metadata are of significant importance when different 
types of data in different formats must be handled. Almost all of 
the case studies are related to the need of some form of metadata 
processing. This is most apparent, however, in the case studies on 

data-centric distributed systems for stream processing, the bug 
tracking, and the contract management. 

Volume scalability. Three case studies expose a potential for 
dealing with large volumes of data that must be processed. The 
large volume of data that may be considered in stream-based 
situations or in analysis of large volumes of source code is an 
important characteristic of these case studies that may necessitate 
specific solutions. Yet, in the bug tracking system we have 
potentially a huge number of bugs in case of large software 
systems.  

There is an important aspect observed in the stream-data 
processing. Many data processing scenarios assume that the data 
are available prior to the processing. However, in the case of data 
coming from censors we may have a continuous, eventually 
infinite stream of data. The problem is then to investigate if the 
existing techniques for data processing (e.g. transformation and 
querying) are applicable or new techniques must be invented. 

Tool reusability. One difference between the bug tracking and 
the contract management case studies is that the latter implies the 
building up of a new "virtual" tool from the functionalities 
available in other concrete tools. We see here a potential for tool 
reusability as an alternative to class reusability.  In other words, it 
should be possible to build tools without coding, just by 
establishing bridges with other tools that offer composable 
functionalities. Obviously this is based on some form of service 
composition that also needs to consider data integration and 
semantic interoperability. 

Querying heterogeneous data. A problem that appears in the 
source code querying program is the querying of heterogeneous 
data. How the request may be established or adapted to the nature 
of the data to be queried is also an important dimension to 
consider in the problem space. This problem is also relevant to the 
stream-based data processing case study. 

Product and Process combination. If we look at the bug 
tracking and the contract management case studies, we see that 
there is a strong relation between the data models of bugs or 
contracts and the lifecycle of these entities. More generally, the 
product/process aspect separation pattern again applies here. 
Processes affect the products and the state of the products drives 
the processes. We need to find generic solution to this problem. 

4. Solutions 
In this section we outline solutions for the problems identified in 
the previous section. Solutions are based on the vision that we 
need domain specific languages to perform various tasks. 
Consequently, the ability to rapidly define DSLs and to 
manipulate models expressed in various DSLs is of a key 
importance. To provide such ability we developed a model-based 
DSL framework called AMMA. In section 4.1 we give an overall 
presentation of AMMA followed by descriptions of its 
components (sections 4.2-4.4). Finally, in section 4.5 we discuss 
how the problems may be solved by using AMMA. 

4.1 The Overall Structure of AMMA 
AMMA provides facilities for defining domain specific 
languages. According to Definition 9 a DSL is a set of 
coordinated models. Among these models are the DDMM, the 
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concrete syntax, the semantics of the language. AMMA provides 
several DSLs that are used to define the components of other 
DLSs. They form the core of AMMA. In this work, we focus on a 
simplified subset of AMMA composed of three DSLs. Figure 8 
shows the components of AMMA and how they are used to define 
DSLs. 
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Figure 8. Structure of AMMA: a model based framework for 

DSLs 
The core of AMMA consists of KM3, TCS, and ATL languages. 
KM3 is a DSL for defining metamodels. TCS is a DSL for 
describing concrete syntaxes of DSLs and how the concrete 
syntax is related to the DDMM of a given DSL. ATL is a model 
transformation language. 

It can be seen that these three DSLs contain models that are 
expressed in some other DSL from the core. For example, the 
DDMM of KM3 is defined in KM3. The concrete syntax of KM3 
is defined in TCS. Furthermore, KM3 is mapped to the elements 
of Ecore by using an ATL transformation (the box KM32Ecore). 
The semantics of ATL is defined as a transformation to the 
language of the ATL virtual machine (ATL2VM), which we 
described in [32]. This transformation is expressed in ATL. 

We can define other DSLs by using the ones provided by 
AMMA. For example, we experimented with the SPL language 
(see section 3.2) by defining its DDMM in KM3 and its concrete 
syntax in TCS. The semantics of the language is not defined since 
we assumed that it is implemented by already existing tools. 

An arbitrary language (denoted as DSLx in Figure 8) can be 
defined in a similar manner. In the context of DSLx, the box 
Mapping denotes a possible mapping to another DSL or a GPL 
such as Java. 

Currently, AMMA does not provide means for defining semantics 
of DSLs. In many cases a pragmatic definition of the semantics 
can be given by providing a mapping from the DDMM of a DSL 
to the DDMM of another DSL for which there is clearly defined 
semantics. This mapping can be specified in ATL. We are 
performing experiments on using Abstract State Machines [15] as 
formal foundation for specifying dynamic semantics of DSLs. 
The initial results are promising [9]. This opens the possibility for 
inclusion of a DSL that captures the ASM mechanisms in the core 
of AMMA. 

It should be noted that Figure 8 is a visual representation of a 
specific kind of model. Elements of this model are: models, 
DSLs, the definedIn relation between them, and the AMMA 
framework itself. We call megamodels such models, in which 
some elements represent models or other artifacts (e.g. DSLs, 
tools and services) as well as relations between them. We are 
currently working on AM3 [12] (ATLAS MegaModel 
Management): a generic tool for megamodeling. More details 
about megamodeling in general and AM3 in particular are 
available in [12] and [13]. 

In the subsequent sections we present the three core DSLs: KM3, 
TCS, and ATL. 

4.2 KM3: Metamodel Definition Language 
Considering the need for DSLs we have been using a language 
named KM3 (Kernel MetaMetaModel) to define the domain 
definition metamodel of DSLs. This section briefly presents the 
rationale of this language. 

The KM3 language [33] is intended to be a lightweight textual 
metamodel definition language allowing easy creation and 
modification of metamodels. The metamodels expressed in KM3 
have good readability properties. These metamodels may be 
easily converted to/from other notations like Emfactic or XMI. 

KM3 has its roots in the complex and evolving relations between 
modeling and visual languages. The OMG has proposed the MOF 
language for the definition of its various metamodels (e.g. SPEM, 
UML, CWM, etc.). The problem was that there was no practical 
support environment for this language. As a replacement solution 
the existing UML CASE tools were used. The price to pay for this 
was an alignment of MOF with a subset of UML (mainly class 
diagrams). Since this time, the alignment has been more or less 
maintained through the various versions of UML and MOF. In 
other words, UML may be considered as a multi-purpose 
language allowing defining software object-oriented terminal 
models and also allowing defining MOF metamodels. However, 
this approach has certain drawbacks. When we need to build a 
metamodel (for example a source or target model for a 
transformation),   we have first to start building a UML class 
diagram with certain properties. The result may then be serialized 
in a first XMI file and then transformed into a second XMI file 
corresponding to the metamodel. This conversion from a UML 
model to a MOF metamodel is called a "promotion" and is 
implemented by some widely available tools like UML2MOF 
provided in the MDR/NetBeans suite.  

We have experimented for some time with this approach. When 
the number of involved metamodels is limited (i.e. when someone 
mainly deals with OMG fixed and stable metamodels), there are 
no major problems. But when we need multiple and evolving 
metamodels, we found this approach very cumbersome. The only 
alternative was to define KM3, a textual language for specifying 
metamodels, including MOF metamodels. After experimenting 
with this language for two years, we are completely convinced of 
the practicality of the approach. Public libraries of more than one 
hundred metamodels expressed in KM3 are now available [50]. 
ATL (explained in the next section), a QVT-like model 
transformation language, uses natively KM3 to facilitate the 
handling of metamodels. Many other projects are based on this 
format. 
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Among the properties of KM3 is the possibility to use it for the 
definition of non-MOF based models. KM3 has also been 
designed to cross technical spaces. 

KM3 has a clear semantics, partially presented in [33]. This 
semantics is based on the definitions of terminal model, 
metamodel, and metametamodel presented in section 2. The 
semantics uses multi-graph structures for representing models and 
first-order logic to express the required axioms. An 
implementation in Prolog has been developed as a proof of 
concept. To the best of our knowledge, such a formal definition 
has not been proposed for the existing metamodeling languages in 
MDE. As a side effect of this work, we have been able to propose 
also a precise characterization of a model and a metamodel. 

4.3 TCS: Language for Defining Concrete Syntaxes 
According to Definition 2 (section 2.1), a model is a graph. Tools 
are required to present such an abstract structure in a user-friendly 
fashion. TCS (Textual Concrete Syntax) is such a tool. We call 
concrete syntax the definition of a set of rules allowing the 
representation of a model. There are several kinds of concrete 
syntaxes: visual, XML-based, textual, binary, etc. Some are 
designed to allow convenient transmission and storage of models 
(e.g. XMI). Others are targeted at users like most visual syntaxes 
(e.g. class diagrams for metamodels) and some textual syntaxes 
(e.g. KM3, ATL). Such human usable concrete syntaxes have 
specific requirements: user-friendliness, low complexity and low 
verbosity. 

TCS is a DSL aimed at specifying context-free textual concrete 
syntaxes of DSLs. From such specifications, models can be 
serialized into their textual equivalent and text can be parsed into 
models. In other words, a TCS specification defines a 
bidirectional translation utility between a textual representation of 
a model and its internal representation. The choice of context-free 
languages was mainly motivated by the observation that 
programming languages use them extensively. TCS models are 
used to attach syntactic elements, such as keywords and symbols, 
to elements of the DDMM of a DSL. 

To outline the usage of TCS models, consider the TCS2EBNF 
transformation in Figure 8. It takes as source a DDMM (expressed 
in KM3) and a TCS model to generate an EBNF grammar. This 
grammar is annotated with semantic actions, which build the 
model in memory while parsing its textual representation. If the 
grammar of a DSL was directly specified in EBNF (instead of 
automatically generated), the mappings to the metamodel would 
also have to be specified in the form of annotations. Annotating a 
grammar to build a metamodel is a tedious task, which also 
depends on the parser generator that is used. By providing a 
dedicated language for this task we can abstract from the 
underlying parser generator tool (e.g. ANTLR, YACC). 
Generating an annotated grammar for different parser generators 
is achieved by providing different transformations on TCS 
models. 

4.4 ATL: Model Transformation Language 
Model transformation is one of the most important operations on 
models. The recent efforts in MDE are towards defining DSLs for 
specification of model transformation programs. In AMMA we 
provide such a language called ATL (ATLAS Transformation 
Language). 

ATL is a hybrid model transformation DSL. Its declarative part 
enables simple specification of many problems, while its 
imperative part helps in coping with problems with higher 
complexity. The operational context of ATL is represented in 
Figure 9. A model Ma (conforming to metamodel MMa) is 
transformed into a model Mb (conforming to metamodel MMb) 
based on the Mt transformation expressed in ATL. The box ATL 
represents the DDMM (the abstract syntax) of the language. An 
ATL program is therefore a model that conforms to this DDMM. 
More than one source and one target models may be used in 
practice. Informal semantics of ATL is presented in [31] along 
with a non-trivial case study. More than forty different scenarios 
accounting for more than a hundred individual transformations are 
available on ATL GMT website [51]. 
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Figure 9. The operational context of ATL 

The fact that transformation programs are models conforming to 
the ATL metamodel opens a possibility for interesting 
applications. For instance, Higher-Order Transformations (HOTs) 
may be defined that take other transformations as source, target or 
even both. An example of a HOT is given in [30] to implement 
traceability in ATL. 

The general scenario shown in Figure 9 is similar to the context of 
the QVT transformation language proposed by OMG. Thus, ATL 
can be considered as a QVT-like model transformation language. 
In [32] we explored the relations between ATL and QVT. 

The general scheme of a model transformation operation is the 
generation of output models from given source models by 
executing a transformation program. We may further identify 
different schemes that define specific classes of transformations. 
For example, model composition (model merging) is an operation 
in which two source models are transformed into one target model 
following certain constraints. Although ATL is not targeted at a 
specific class of model transformations such as model merging, 
other transformation DSLs may be specified by focusing on 
particular scenarios. We therefore postulate the existence of a 
family of model transformation DSLs that share the scheme 
shown in Figure 9. 

AMMA provides a generic mechanism for constructing such 
DSLs. This mechanism is called ATLAS Model Weaving 
(AMW). It should first be noted that model weaving [20] is 
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different from aspect weaving [35]. Model weaving is about 
establishing typed links between model elements. Links 
themselves form a model and link types are therefore defined in a 
metamodel. Weaving links are more abstract than ATL rules 
because, whereas ATL has fixed semantics, AMW has user-
defined semantics. Consequently, link types can be adapted to 
specific application domains. 

The adaptability of AMW to different problem domains is 
achieved by providing tools working on a core weaving 
metamodel defining only the abstract notion of link type. This 
core metamodel can be extended by users. Metamodel extension 
is a complex operation, which will not be discussed here. The 
basic idea is that user-defined link types have to extend the 
abstract link type concept defined in the AMW core. 
Transformations to ATL code can then be used to implement link 
types’ semantics. 

Furthermore, weaving semantics need not even be executable. 
This is because AMW application domain is actually broader than 
transformation specification. 

4.5 Using AMMA to Solve Problems 
In this section we address the problems identified earlier by 
applying the conceptual framework presented in section 2 and the 
tools provided by AMMA. 

Uniform representation framework. The definitions of model, 
metamodel, and metametamodel given in Section 2 specify a 
uniform modeling framework. Each model conforms to a 
reference model itself conforming to a unique metametamodel. 
Different implementations of this abstract framework may have 
distinct metametamodels. However, the uniformity of this 
approach alone is limited to the MDE Technical Space. If we also 
consider the concepts of Technical Space, and projectors then we 
broaden the uniformity of the framework. For instance, abstract 
syntaxes may be represented in MDE (e.g. using KM3), concrete 
syntaxes in EBNF, and projectors may be used to bridge between 
these TSs. TCS is an example of such a projector. In summary, 
our primary unification concepts are model and technical space 

To address the problem that necessitates uniform representation 
framework we may consider various entities in the context of a 
single TS, for example the MDE TS. Usually, the entities will 
come from different technical spaces. We may apply injectors to 
import these entities in the MDE TS. In that way, the uniform 
representation will be based on the basic representation scheme 
induced by the metametamodel (see the part of section 2.6 
concerning the role of the M3 level).  

Flexible transformations between languages. We have seen in 
the previous paragraph that we have a uniform representation 
framework for models. Languages, or more precisely their 
abstract syntaxes, are captured as metamodels. The problem of 
transforming between languages may then be restated as problem 
of transforming between metamodels. ATL is a DSL designed for 
this purpose. The ATL metamodel itself is hardwired into the 
ATL engine along with its execution semantics. The source and 
target metamodels are, however, specified at runtime. This 
enables transformations between virtually any metamodels, and 
therefore languages. 

Semantic interoperability. Given a uniform representation 
framework as described previously, semantic interoperability may 
be approached by specification of mappings between metamodels. 
Such a mapping can define the relationship between the concepts 
from several metamodels. In AMMA, we consider two kinds of 
mappings: 

• Transformations. A transformation (e.g. written in ATL) is 
an operational representation of a mapping. It may be 
executed to automatically transform a model conforming to a 
metamodel into a model conforming to another metamodel. 
The way target elements are created from source elements 
depends on the semantic mapping. With transformations, 
mappings are specified by the transformation writer. 

• Weavings. A weaving model (e.g. specified with AMW) can 
capture semantic relationships between several metamodels 
as a set of typed links. Actual meaning of this links depends 
on the semantics of the weaving metamodel. We do not 
provide a general semantic mapping weaving metamodel as 
part of AMMA. However, it is possible for the user to define 
her own weaving metamodel. Additionally, heuristics may 
be defined to semi-automatically derive weaving links from 
the metamodels which semantics have to be aligned. This is 
related to the problem of schema matching in data 
integration. We do not claim to solve this problem, but rather 
to provide a tool (namely AMW), which enables a uniform 
specification of semantic relationships. 

To summarize our approach to semantic interoperability we may 
state that the process of establishing correspondence links 
between semantic entities is generally semi-automatic. Semantic 
equivalence, mismatches, and conflicts are judged and resolved 
by domain experts helped by heuristics. Their decisions are 
captured in the form of transformations and weavings. AMMA 
provides tools to automatically execute transformations and to 
handle weavings as ordinary models. 

Heterogeneous syntaxes. Heterogeneity may be handled by 
defining a uniform representation framework for syntaxes and 
providing bridges between various kinds of syntaxes. The notion 
of Technical Space based on the three-level architecture provides 
such a uniform representation framework: context-free syntaxes 
are represented as grammars, XML-based syntaxes as schemas, 
etc. Technical Projectors (such as TCS) provide means to bridge 
heterogeneous technical spaces. AMMA does not provide 
projectors for every possible situation. However, new projectors 
may be defined by using AMMA as a building framework. 

Metadata management. Metadata can take various forms. It can 
be, for instance, a metamodel, a grammar, an annotation, etc. 
Whatever their forms are metadata can be uniformly represented 
as models (e.g. KM3 models, EBNF models). The problem is now 
to deal with a possibly large number of such models. 
Megamodeling, which represents models and relations between 
them as a model, may be used to capture complex relations 
between various metadata. For instance, a metamodel, a concrete 
syntax (in TCS or EBNF), and an annotation metamodel may be 
linked together by megamodel links. 

Volume Scalability. One possible way to handle large volumes 
of data is to use tools that are specialized in this task. These are 
mainly database management systems. In the context of AMMA 
and the concepts defined so far this is achieved as a projection 
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from one technical space to another. For example, in case of huge 
files of source code we need a projector from the EBNF technical 
space to the RDBMS technical space. The latter one provides 
optimized engines for querying large volumes of data. Once the 
data are obtained after a query execution we need to extract them 
in the technical space of initial interest. 

This approach, however, may not be applicable in case of 
continuous and possibly infinite streams of data. To solve this 
problem we need new techniques for transformations and query 
execution. This is an interesting direction for future research 
concerning an important problem. 

Tool Reusability. This problem is related to two other problems: 
semantic interoperability and dealing with heterogeneous 
syntaxes. The solutions proposed for them should be used for this 
problem as well. Furthermore, often we need to describe a tool 
chains and flow of data between different tools. Therefore, we 
need a DSL for performing workflow management tasks. Such 
DSLs exist and it should be possible to incorporate them in our 
framework for DSL definition. Currently, we perform a practical 
experiment for solving this problem. Results will be reported in 
another paper. 

Querying Heterogeneous Data. One approach to this problem is 
to represent the data in a uniform way thus eliminating the 
heterogeneity. The unification concept of model may be used here 
and then the queries over data are in fact queries over models. 
Since models are graphs we have the uniformity achieved and 
then we may run queries over graphs. However, this approach 
may require translation of the data to be queried from one format 
to another. That is, again we apply the concept of bridging 
between technical spaces. In case of large amount of data, 
however, this may be inefficient. 

Another approach is to create a metamodel that provides the 
structure of the uniform view but no actual data are translated. 
Queries may be formulated over the uniform view and translated 
to queries over the original sources. This approach reflects the 
classical schema integration problem in data engineering. This 
problem requires query translation. Queries may be considered as 
models expressed in a query DSL thus opening the possibility to 
apply model transformations. 

It should be noted that we have not experimented with the 
application of this approach in a practical context so it remains 
mostly a vision. 

If the data to be queried are coming from a data stream then we 
need novel techniques. This marks another open issue for future 
research. 

Product and Process Combination. This problem requires 
establishing relationships between the process models and product 
models. Basically, such relationships may be considered as 
forming a model. What is the semantics and the possible usage of 
such a model requires further investigation. 

5. Related Work 
In this paper we proposed a model based framework for defining 
DSLs. There are other approaches that aim at facilitating 
definition of DLSs. Some of them are based on classical language 
engineering techniques and others apply MDE principles. 

SDRR (Software Design for Reliability and Reuse) [6] is a 
method based on DSLs, which the authors call Domain Specific 
Design Language (DSDL). SDRR is targeted at executable DSLs 
for which computational semantics must be specified in terms of 
ADL (Algebraic Design Language). Meaning preserving program 
transformations are then used to optimize the definitions. 
Contrary to AMMA, this approach offers no support for non-
executable DSLs and requires a formal semantics to be specified. 
Having a formal semantics is useful but being able to implement a 
DSL by simply transforming it to another language is sometimes 
enough from practical point of view. 

GME (Generic Modeling Environment) [25][34] and Microsoft 
DSL Tools [26] are two approaches for defining DSLs based on 
MDE principles. The main difference with AMMA is that they 
are not defined as a set of core DSLs. The Microsoft approach 
lacks an explicitly specified metametamodel equivalent to KM3 
in the case of AMMA. GME focuses on definition of visual 
syntax whereas AMMA provides TCS which is a DSL for 
defining textual concrete syntax. 

It should be noted that AMMA is not meant to replace these two 
approaches. Our vision is that the MDE based approaches for 
defining DSLs should be considered as complementary to each 
other. We aim at achieving interoperability between these 
approaches and portability of models across their tools. The 
notion of technical space and projectors is applied to solve this. 
We performed case studies in building projectors between 
AMMA and MS/DSL tools and AMMA and GME. The results of 
these case studies are reported in [10] and [11] respectively. 

There are languages similar to the languages that form the core of 
AMMA (KM3, TCS, and ATL). 

MOF is a standard metametamodel proposed by OMG of which 
there exist several versions (e.g. 1.4 [44] and 2.0). Both are more 
complex than KM3 (i.e. they contain more classes). None has a 
formal semantics. Their standard concrete syntax is XMI, which 
is based on XML and is, as such, more verbose than KM3 
concrete syntax. Human Usable Textual Notation (HUTN) [47] is 
a standard by OMG that gives a default textual notation to each 
metamodel. 

Ecore [21] is a metametamodel close to MOF 2.0. There is a 
standard textual notation for EMF: emfatic. One difference with 
KM3 is that emfatic provides EMF-specific constructs (e.g. to 
customize Java code generation). One of our experiments has 
shown that such additional information may be embedded into 
KM3 comments. Another difference is that Ecore has no formal 
semantics. 

Typed Attributed Graphs [22] are a conceptual framework on 
which graph transformations are based. They have a precise 
formal semantics. In contrast to KM3 and the definitions given in 
section 2, there is no explicit metametamodel: type graphs are not 
themselves typed. 

sNets [8] is one of our past experiments. We have learnt much 
from them and KM3 is an elaboration of this previous work. 

There are two standards by OMG for defining concrete syntax for 
MOF metamodels: XMI [46] and HUTN. They are therefore 
closely related to TCS. However, contrary to TCS, both specify 
an automatic mapping from the metamodel to an XML Schema 
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(for XMI) or an EBNF grammar (for HUTN). XMI is especially 
adapted to automated serialization of models but relatively 
difficult to use by human beings because of its verbosity and 
syntactic constraints (e.g. XMI identifiers). HUTN is more user-
friendly than XMI because it uses a simpler textual representation 
of models but still remains relatively verbose. TCS is capable of 
reducing verbosity because the syntax is not automatically 
derived from the metamodel but user-specified. For instance, it is 
possible to tell TCS to use operators (either with infix or prefix 
notation) for specific metamodel constructs (i.e. expressions). 
This is typically something that cannot be automatically guessed. 

In the last couple of years we observed a number of proposals for 
model transformation languages. Some of them are a response to 
the QVT RFP issued by OMG [45]. ATL is applicable in QVT 
transformation scenarios where transformation definitions are 
specified on the base of MOF metamodels. However, ATL is 
designed to support other transformation scenarios going beyond 
QVT context where source and target models are artifacts created 
in various technical spaces. 

Another class of transformation approaches relies on graph 
transformations theory [1][52]. ATL is not directly based on the 
mathematical foundation of these approaches. An interesting 
direction for future research is to formalize the ATL semantics in 
terms of graph transformation theory. The declarative part of ATL 
is especially suitable for this. Currently, we are planning to 
provide formal semantics for ATL in terms of Abstract State 
Machines. 

6. Conclusions 
An important contribution of our work has been to take explicitly 
into account the notion of technical space. Instead of building a 
lot of different ad-hoc conversions tools (modelToText, 
textToModel, ontologyToModel, modelToOntology, 
XMLToText, textToXML, modelToSQL, SQLToModel, etc.) 
covering various formats and data conversions, we have proposed, 
with the notion of projectors (injectors or extractors), a general 
concept that may be used in various situations. These projectors 
can be selected as either front-ends or back-ends for classical 
transformations. 

Starting from there, the second contribution presented in this 
paper has been to propose a precise and minimal definition for a 
conceptual MDE technical space. This technical space may be 
considered as a general graph where partitions are composed of 
model, metamodel and metametamodel entities. We have not 
committed here to a particular kind of graphs. The OMG/MOF 
graphs, the EMF/Ecore graphs or the Microsoft 
SoftwareFactories/DSL graphs are not completely identical but 
we believe these systems share one common set of principles and 
definitions corresponding to the MDE abstract global typing 
system presented here. As a consequence this work should be 
useful not only to relate different technical spaces like XML, 
Grammarware, etc., but also to compare variants of the MDE 
space. 

There are many variants of model engineering. Our attitude has 
been to find the set of basic principles common to all the 
dominant model engineering approaches and to make them 
explicit. We are then in a position to clearly separate the 
principles, the standards, and the tools levels. With the proposed 

approach we hope to avoid future portability problems in MDE. It 
would be a pity if the abstraction rise from code to models 
produces incompatibility between OMG models, EMF models, 
Microsoft/DSL models, etc. With a clean separation of technical 
spaces, the precise identification of the inter-space mappings and 
the definition of efficient support tools for space projectors that 
are being made available in open source libraries, we are in a 
good position to deal with different kinds of models, a UML 
model, a Java program or an XML document being considered as 
models pertaining to different technical spaces.  

Standard compatibility and user efficiency are supported by the 
toolbox present in the AMMA open source Eclipse platform. 
AMMA may be considered as an operational mapping onto Java, 
compatible with the Eclipse Modeling Framework conventions. 
However the successful practice of these metamodeling tools in 
the last months has progressively evolved towards the 
consideration of AMMA as a DSL-building framework. Model 
engineering is being seen in turn as a successful implementation 
of a DSL-based platform. We consider now that the main value of 
AMMA is essentially its collection of core DSLs (ATL, KM3, 
AMW, TCS, etc.) and its ability to facilitate the building of new 
DSLs for specific families of systems from the built-in DSLs 
natively available in the framework. This experimental work is 
going on with the definition of new DSLs for specific goals, like 
the specification of dynamic semantics.  

Considering model engineering as a way to implement powerful 
DSL building frameworks is by itself an interesting achievement. 
Practical experimentation shows that this may allow to solve 
complex and evolutive systems more easily and efficiently than 
with conventional technologies like object-oriented programming. 
We have provided a set of typical case studies where we have 
done preliminary experiments. Although there is yet no definitive 
killer application, first results show that the combined MDE/DSL 
approaches may bring deployable solutions in the short to 
medium term. 

The ultimate validation of the approach would consist in building 
a new virtual tool for some domain (e.g. bug tracking or project 
management) from a set of existing tools in different domains. 
Each domain would be organized around a DSL or a small set of 
DSLs. Then the functionalities would be acquired from other 
tools, themselves described with the help of other DSLs. We are 
presently looking for mounting such an experiment that would 
help validating more thoroughly the approach. The initial 
implementation of specific semantic bridges between similar tools 
seems to provide good indication of feasibility. 
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