
Model-based DSL Frameworks
Ivan Kurtev, Jean Bézivin, Frédéric Jouault, Patrick Valduriez

ATLAS (INRIA & LINA)
University of Nantes

2, rue de la Houssinière BP 92208
44322, Nantes, France

{ ivan.kurtev | jean.bezivin | frederic.jouault }@univ-nantes.fr; patrick.valduriez@inria.fr

Abstract
More than five years ago, the OMG proposed the Model Driven
Architecture (MDA™) approach to deal with the separation of
platform dependent and independent aspects in information
systems. Since then, the initial idea of MDA evolved and Model
Driven Engineering (MDE) is being increasingly promoted to
handle separation and combination of various kinds of concerns in
software or data engineering. MDE is more general than the set of
standards and practices recommended by the OMG's MDA
proposal. In MDE the concept of model designates not only OMG
models but a lot of other artifacts like XML documents, Java
programs, RDBMS data, etc. Today we observe another
evolutionary step. A convergence between MDE and DSL
(Domain Specific Language) engineering is rapidly appearing. In
the same way as MDE is a generalization of MDA, the DSL
engineering may be viewed as a generalization of MDE. One of
the goals of this paper is to explore the potential of this important
evolution of engineering practices. In order to anchor the
discussion on practical grounds, we present a set of typical
problems that could be solved by classical (object-oriented and
others), MDE, or DSL-based techniques. Solutions to these
problems will be based on current platforms (EMF, AMMA,
GME, etc.). This paper illustrates how powerful model-based
frameworks, allowing to use and build a variety of DSLs, may
help to solve complex problems in a more efficient way.

Categories and Subject Descriptors D.3.2 [Language
Classifications]: Specialized Application Languages – domain
specific languages, modeling languages, model transformation
languages.

General Terms Design, Languages, Theory

Keywords Model-Driven Engineering, MDA, DSL Engineering,
Tool-based approaches.

1. Introduction
As an emerging solution for handling complex and evolving
software problems, Model Driven Engineering (MDE) is still very
much in evolution [7]. The industrial demand is quite high while
the research answer for a sound set of foundation principles is still
far from being stabilized. Various organizations and companies
(OMG, IBM, Microsoft, etc.) are currently proposing several
environments claiming to support MDE. Among these, the OMG
MDA™ (Model Driven Architecture) has a special place since it
was historically one of the original proposals in this area [48].

This paper focuses on the identification of the basic MDE
principles, and the applicability of the related ideas, concepts, and
tools to solve current practical problems. Of particular interest
also is the present convergence of MDE and DSL (Domain
Specific Language) engineering [19]. Both MDE and DSL share
the idea that language engineering may help in domain modeling.
DSL Engineering is positioned at a more abstract level, using
different technical solutions like MDE (sometimes called
Modelware), Grammarware [35], XML solutions, etc. MDE
mainly uses metamodeling capabilities to implement families of
languages in specific application domains.
Observing that MDE is more and more related to DSL
engineering, we suggest that MDE principles and tools may be
considered as a convenient support technique for building DSL
frameworks that may solve existing and newly emerging complex
problems. We illustrate this claim with the example of the
AMMA (ATLAS Model Management Architecture) framework,
an open-source effort of more that 15 person-years that is now
being used in a variety of application areas [3]. The various tools
are contributed as open source to the Eclipse GMT project [24].
Some of the more stable components, like the ATL transformation
language environment, are currently used on more than 100 sites,
both in academy and industry (Thales, Airbus, CS, TNI, JPL,
Sodius, etc.). Initially considered as a tool support for MDA, for
generating platform specific models from platform independent
models, AMMA has evolved to be a DSL building framework. It
consists of a set of primitive DSLs that will be presented later in
the paper like ATL (ATLAS Transformation Language), KM3
(Kernel MetaMetaModel), TCS (Textual Concrete Syntax), etc.
and offers the capability to build sets of related new DSLs for a
given domain of for a family of systems.
This paper is organized as follows. Section 2 provides the basic
definitions related to models, tools, and DSLs. Section 3 gives a
list of typical problems that could be solved by these new
conceptual tools. Section 4 presents some current tools and how
they may contribute to solve these problems. Section 5 presents
some related work. Section 6 concludes the paper.

2. Definitions
In MDE models are considered as the unifying concept in IT
engineering. Traditionally, models have been used as initial
design sketches mainly aimed for communicating ideas among
developers. MDE promotes models to primary artifacts that drive
the whole development process. The notion of model goes beyond
the narrow view of semi-formal diagram thus requiring much
more precise definitions and modeling languages.
Models come in various flavors. A UML model, a Java program,
an XML or RDF document, a database relational table, an entity-

Copyright is held by the author/owner(s).
OOPSLA’ 06 October 22– 26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

602

relationship schema are all examples of models. We call all these
models λ-models where λ identifies the technology used to create
the model. Therefore, we need another unification concept that
helps us to denote various modeling technologies at a higher level
of abstraction. We call this concept technical space [37][14]
associated with a given precise metametamodel. Many technical
spaces represent existing technologies that have not been strictly
perceived as modeling frameworks.
In the previous paragraph we have referred to a number of
concepts that need precise and consensual definitions. It is the
purpose of this section to provide these definitions so that this
common vocabulary may allow us later to talk more precisely
about problems and solutions.
First we need to distinguish between principles, standards, and
tools. Figure 1 illustrates the relations among them.

Figure 1. Principles, Standards, and Tools

MDE principles provide the conceptual foundation of the
approach. They may be applied in multiple ways resulting in
different MDE approaches that are often standardized. Every
MDE approach/standard relies on a set of tools. Figure 1
enumerates some existing standards and tools.

Figure 2. General organization of a metamodeling stack

The central role in the MDE conceptual foundation is played by
the notion of model. There are two main definitions of a model
corresponding to its internal organization and its potential
utilization. Furthermore, the organizational structure of models is
constrained by a model called metamodel. A metamodel, in turn,
is constrained by a metametamodel. Models, metamodels, and
metametamodels together with the relations among them form a
metamodeling stack. Figure 2 illustrates the organization of a
metamodeling stack.

The next section gives precise definitions of the elements in the
metamodeling stack.

2.1 Model Organization Definition
The organization of a model reflects its structure. From an
organization point of view we perceive models as graphs
constrained by other graphs. We propose the following
definitions:

Definition 1. A directed multigraph G = (NG, EG, ΓG) consists of a
set of nodes NG, a set of edges EG, and a mapping function ΓG: EG
→ NG x NG.
Definition 2. A model M = (G, ω, μ) is a triple where:

• G = (NG, EG, ΓG) is a directed multigraph
• ω is itself a model (called the reference model of M)

associated to a graph Gω = (Nω, Eω, Γω)
• μ: NG ∪ EG → Nω is a function associating elements

(nodes and edges) of G to nodes of Gω
The relation between a model and its reference model is called
conformance. We denote it as conformsTo, or simply c2.
We may rewrite the previous discussion more precisely as
follows, finally explaining the illustration provided by Figure 2:

Definition 3. A metametamodel is a model that is its own
reference model (i.e. it conforms to itself).
Definition 4. A metamodel is a model such that its reference
model is a metametamodel.
Definition 5. A terminal model is a model such that its reference
model is a metamodel.

Figure 3. Classification of models as terminal models,

metamodels, and metametamodels
Figure 3 shows the classification of models implied by the
definitions presented so far.

2.2 Model Utilization Definition
The utilization of a model reflects the purpose it is built for and
the relation to the real phenomenon it represents. The objective of
the model utilization definition is to define the possible usages of
a model. In the present subsection, model will mean "terminal
model". We base our second set of definitions on ideas presented
by Marvin Minsky in [41]:
"If a creature can answer a question about a hypothetical
experiment without actually performing it, then it has
demonstrated some knowledge about the world. …
We use the term "model" in the following sense: To an observer
B, an object A* is a model of an object A to the extent that B can
use A* to answer questions that interest him about A. …
It is understood that B's use of a model entails the use of
encodings for input and output, both for A and A*.
If A is the world, questions for A are experiments. ... A* is a good
model of A, in B's view, to the extent that A*'s answers agree with

603

those of A's, on the whole, with respect to the questions important
to B. …"
An analysis of the expressed view shows that a model is an object
always related to another object (object A above). We call the
latter one a system. This leads to a second set of definitions:

Definition 6. A system S is a delimited part of the world
considered as a set of elements in interaction.

Definition 7. A model M is a representation of a given system S,
satisfying the substitutability principle (see below).

Definition 8. (Principle of substitutability). A model M is said to
be a representation of a system S for a given set of questions Q if,
for each question of this set Q, the model M will provide exactly
the same answer that the system S would have provided in
answering the same question.

The relation between a model and a system is called
representationOf (repOf). It is shown in Figure 4.

Figure 4. Utilization definition of a model

In a set based view, the system is composed of system elements
and the model is composed of model elements. The
aforementioned relation repOf is thus defined in terms of a partial
function ψ: S → M associating model elements to system
elements.

The study of this partial function ψ is one of the big difficulties of
model engineering. We may quote here Brian Cantwell Smith in
[18]: "What about the [relationship between model and real-
world]? The answer, and one of the main points I hope you will
take away from this discussion, is that, at this point in intellectual
history, we have no theory of this [...] relationship". However the
increasing importance of understanding the nature of this relation
cannot be neglected. This is currently a subject of many efforts in
the context of various sciences [2][29][42].

2.3 Relations between Organization and Utilization of a
Model
The study of the repOf representation relation (ψ function) is
mostly the responsibility of ontology engineering. The study of
the c2 conformance relation (μ function) is mostly the
responsibility of language engineering. Model engineering may
be considered as a synergy between these two fields of language
engineering and ontology engineering. This synergy may be made
apparent in Figure 5.

Figure 5. Dual definition of a model

Figure 5 illustrates that the organization of a model is closely
related to its utilization. The extraction of elements from system S
to build model M is guided by the metamodel MM and the
purpose of the model. In other words, the metamodel MM acts as
a filter that states which elements of the system can be selected to
constitute the model M.

2.4 Domain Specific Languages
Language engineering is at the heart of computer science. There is
a variety of categories of languages. We discuss here only a small
facet of language engineering. A distinction is often made
between programming languages and modeling languages.
Typical examples are PL/1 and UML. The distinction between
these categories has mainly to do with canonical executability.
This distinction is currently becoming more and more blur since
programs are treated as models and some modeling languages
may have the executability property. Another distinction is
between General Purpose Languages (GPLs) and Domain
Specific Languages (DSLs). PL/1, UML, Java, and C# are
examples of GPLs. R [5], SQL [40] or Excel are examples of
DSLs.

The distinction between GPLs and DSLs is orthogonal to many
other language classifications. For example, there are indifferently
visual or textual GPLs or DSLs. Similarly DSLs and GPLs may
fall under various categories based on the employed paradigm
being object-oriented, event-oriented, rule-oriented, function-
oriented, etc. There are examples of imperative and declarative
GPLs and DSLs.

A DSL is a language designed to be useful for a delimited set of
tasks, in contrast to general-purpose languages that are supposed
to be useful for much more generic tasks, crossing multiple
application domains. A typical example of DSL is GraphViz [23],
a language used to define directed graphs, which creates a visual
representation of that graph as a result. Some GPLs have started
as DSLs and have sometimes evolved towards genericity to
become GPLs. The reverse process has not been observed in the
history of programming languages.

Similarly to GPLs, DSLs have the following common properties:

• They usually have a concrete syntax;

• They may also have an abstract syntax;

• They have a semantics, implicitly or explicitly defined;

There are several ways to define these syntaxes and semantics.
The most commonly used way for defining the syntax is via

604

grammar-based systems. In contrast, there are multiple semantic
specification frameworks but none has been widely established as
a standard.

2.5 DSLs and Models
There are strong relations between DSLs and models. We discuss
here the possibility of using model-based solutions for defining
the syntax and semantics of DSLs.

Definition 9. A DSL is a set of coordinated models.

The following comments clarify this definition.

Domain Definition Metamodel. As we discussed in the previous
section, the basic distinction between DSLs and GPLs is based on
the relation to a given domain. DSLs have a clearly identified,
concrete problem domain. In contrast, GPLs cover multiple
domains. Programs (sentences) in a DSL represent concrete states
of affairs in this domain, i.e. they are models. A conceptualization
of the domain is an abstract entity that captures the commonalities
among the possible state of affairs. It introduces the basic
abstractions of the domain and their mutual relations. Once such
an abstract entity is explicitly represented as a model it becomes
the reference model for the models expressed in the DSL, that is,
it is a metamodel. We refer to this metamodel as domain
definition metamodel (DDMM). Since the DDMM is a
specification of the domain’s conceptualization, following the
Gruber’s definition [27] we may regard it as an ontology. This
base ontology plays a central role in the definition of the DSL.
For example, a DSL for directed graph manipulation will contain
the concepts of nodes and edges, and state that an edge may
connect a source node to a target node.
Such a DDMM plays the role of the abstract syntax for a DSL.

Concrete Syntax. A DSL may have different concrete syntaxes.
Each one is defined by a transformation model that maps the
DDMM onto a "display surface" metamodel. Examples of display
surface metamodels may be SVG or GraphViz, but also XML. An
example of such a transformation for a Petri net DSL is the
mapping from places into circles, from transitions into rectangles
and from place to transition or transition to place relations into
arrows. The display surface metamodel will then have the
concepts of Circle, Rectangle and Arrow.

Semantics. A DSL may have an execution semantics definition.
This semantics definition is also defined by a transformation
model that maps the DDMM onto another DSL having by itself a
precise execution or even to a GPL. The firing rules of a Petri net
may, for example, be mapped into a Java code model.
In addition to canonical execution, there are plenty of other
possible operations on programs based on a given DSL. Each may
be defined by a mapping represented as a transformation model.
For example, if one wishes to query DSL programs, a standard
mapping of the DDMM onto Prolog may be useful.

2.6 Technical Spaces
Technical spaces were introduced in [37], in the discussion on
problems of bridging different technologies. This concept was
further elaborated in [14] where technical spaces are defined as
model management frameworks. The notion of technical space is
another important unification concept along with the concept of
model. The intention behind it is to denote technologies at a more

abstract level in order to allow reasoning about their similarities
and differences and possibilities for integration. The following
definition is given for technical space:

Definition 10. A technical space is a model management
framework with a set of tools that operate on the models definable
within the framework.

We observe that technical spaces expose an important
commonality: they are based on the three-level metamodeling
stack thus fitting into the definitions given so far (Figure 6).

Figure 6. Systems, models and technical spaces

Figure 7 gives concrete examples of technical spaces and shows
the levels observed in every space.

an XML
Document

an XML
Schema

XML
Metaschema EBNF

Java
Grammar

a Java
Program

conformsTo

conformsTo

conformsTo

conformsTo

conformsTo

conformsTo

RDF Schema

an RDF
schema

an RDF
Document

conformsTo

conformsTo

conformsTo

MOF

UML
Metamodel

an UML
model

conformsTo

conformsTo

conformsTo

M1

M2

M3

OMG/MDA TS XML TS EBNF TS RDF TS
Figure 7. The three-level model organization in various technical

spaces
This three-level organization is the corner stone for building the
model management functionality in a given space. It is mainly
based on the fixed metametamodel at M3 and the meaning of the
conformsTo relation between levels. It should be noted that the
conformsTo relation is defined differently in different spaces. In
OMG/MDA it is defined by the MOF language. In the XML TS it
is based on the notion of validity of XML documents. In the
EBNF TS, conformsTo means that a sentence is syntactically
correct according to the grammar rules. Usually, every TS
provides tools that check for the presence of the conformsTo
relation. For instance, in the EBNF TS these tools are language
parsers. In XML TS, they are validating XML parsers.

The main role of the M3-level in a TS is to define the
representation structure and a global typing system for underlying
levels. For example, MOF is based on directed multigraphs where
nodes are typed by MOF classes and edges are typed by MOF
associations. The notion of "association end" plays an important

605

role in this representation system. Within the EBNF TS we have
the specific representation of abstract syntax trees while within
the XML TS we also have trees but with different set of
constraints, for example, with possibilities to have direct
references from one node to another node. The basic
representation structure in Resource Description Framework
(RDF) TS is directed labeled graphs that are typed by an RDF
schema.

An important benefit of treating technical spaces as semi-formal
entities is the recognition of the various capabilities offered by
technical spaces and their combination aimed to solve a given
problem. To achieve an effective integration towards a certain
goal, however, various technologies should interact with each
other. An important requirement for such an interaction is the
possibility for transferring an artifact from one space to another
space and vice versa. This inter-space transfer is called bridging.

Bridging is implemented by a transformation utility called
technical projector. The responsibility to build projectors lies in
one reference space. The rationale to define them is quite simple:
when one facility is already available in a given space and
building it in another space is economically too costly, then the
decision may be taken to build a projector that enables the reuse
of the facility. There are two kinds of projectors according to the
direction of the transformation relative to the chosen reference
space: injectors and extractors.

3. Case Studies and Problems
In this section, we present some typical problems. They can be
solved with different technologies. We first describe the basic
case studies. Then we look for corresponding characteristics in
order to establish a list of generic problems.

3.1 Telephony Languages
Recently, Voice over Internet Protocol (VoIP) has gained
popularity thanks to a combination of reasons including reduced
fees compared to standard land-line phones. With this emerging
technology several functions that used to be carried out by fixed
pieces of hardware are now implemented in software. For
instance, wires are replaced by TCP connections allowing users to
have a single call identifier wherever they are. Similarly, any
computer can now act as a Private Automatic Branch eXchange
(PABX) and route calls. One consequence is that telephony
routing tables can now be represented as user-specified programs
capable of complex behaviors.

To leverage these new possibilities, the Internet Engineering Task
Force (IETF) has adopted CPL (Call Processing Language) [38],
an XML-based language to control and describe internet
telephony services. Other languages, such as SPL (Session
Processing Language) [17] have also been developed to play a
similar role but with different properties. For instance, CPL is
voluntarily limited to be relatively simple and secure. On the
contrary, SPL is expressive enough to represent most telephony
services while still permitting some properties to be checked on
programs. CPL and SPL are two telephony DSLs, but other exist
too.

3.2 Querying Program Source Code
Today source code is one of the main artifacts in software
engineering. Although programming languages are supposed to be
a human usable interface with computers, it is often impossible
for one person to understand all the details of even modestly sized
systems. Therefore, languages and tools to query source code are
often necessary. One of the first and still widely used tools is
grep. It relies on concrete syntax and often on coding style. For
instance, line feeds may be inserted almost anywhere in the code
but are difficult to handle with standard regular expressions.

More advanced tools are aware of abstract syntax and enable
querying relations between entities in the source code (e.g. to get
all subtypes of a given Java class). CodeQuest [28] is such a tool
targeted at Java. It uses Datalog as a query DSL and is
implemented as an Eclipse plugin. CodeQuest makes use of
Eclipse Java parsing abilities and comes with a library of
predicates to query Java code. Although the approach is generic,
the implementation is limited at querying Java source code.

There is a need to unify source code representations at the
abstract syntax level independently of the language in which it is
expressed. This would enable a single source code query DSL to
be used on many languages.

3.3 PIM to PSM Transformations
Transformation of Platform Independent Models (PIM) to
Platform Specific Models (PSM) was the central problem in the
initial vision of Model Driven Architecture [43].

The goal of the MDA approach is to produce software assets that
are resilient to changes in the technologies. Such assets should
take the form of PIMs, that is, models that do not contain
implementation specific details. These models may be
transformed to other models that include information specific to
the current state of the art implementation technologies (PSMs).
PSMs then can be used for code generation. MDA stresses on the
importance of PIMs since they are supposed to survive the
constant changes in software technologies. If a new technology
emerges as a competitor of an existing one (e.g. CORBA vs. Web
Services, Java vs. C#) the PIMs remains the stable and reusable
entities that are transformed to new PSMs.

Compared to the traditional software development where
programs are transformed to machine executable code by a
compiler, the transformation and model centric MDA approach is
step towards a higher flexibility. Whereas a compiler may be
perceived as a transformer with fixed source and target languages,
in MDA the languages of PIMs and PSMs are expected to vary.
This put a requirement for more flexible transformation
approaches capable of handling various source and target
languages.

3.4 Sensor Data Stream Processing
Following the recent Tsunami disaster, a lot of sensors have been
installed in different countries, by different operators, sometimes
independently in order to build world-wide real-time surveillance
networks. Real-time information about phenomena in the physical
world can be processed, modeled, measured, checked, correlated,
and mined to permit on-the-fly decisions and actions to be taken
on a large scale [49]. Examples include environment monitoring
with prediction and early warning of natural disasters, missile

606

detection tracking and interception and many more potential
applications in different areas such as medical care, aeronautics,
telephony. An airplane, a hospital, or a factory may be equipped
with such complex apparatus. The number of involved sensors in
such system is exponentially increasing, but also the nature of the
data produced and emitted is becoming much more complex as
embedded intelligence in the capture device has dramatically
evolved. As a result, many systems are becoming world-wide
data-centric processing networks. Furthermore the topology of the
network is constantly evolving with new data sources constantly
appearing or disappearing, new data translation, merging, control
or measure being added, deleted or updated, etc. Managing such
complex systems necessitate the ability to deal with the changing
metadata of the various source, targets or intermediary processing
nodes in the network.

3.5 Bug Tracking
Several tools are often used to ensure the quality of a software
product. We may consider the example of “bug-tracing” or “bug-
tracking” in the context of software product development.
Assume that three teams are currently working on the same
product at the same time but on different modules of this product.
Teams may be geographically distributed, may have different
levels of maturity of the used development process, with different
experience of the team members, and they may use different
tools. The following situation is typical. Team “A” is developing
the first module by using an Excel workbook with a specific
format to track bugs. Team “B” is working on the second module
and uses Bugzilla [16] which is a free bug-tracking system. Team
“C” is developing the third module and uses Mantis Bug Tracker
[39] which is another free bug tracking system. The problem is
that each team has used a different tool for keeping track of bugs.
So in that case, how to succeed in centralizing bug-tracking, i.e.
how to be able to interoperate a tool to another without losing
critical information about detected bugs? A list of nearly fifty
open-source bug-tracking tools may be found on the Web, not
counting a lot of commercial products. Each of these tools use
similar but often non-compatible data on the bugs found,
corrected, validated, etc.

3.6 Contract Management
Assume we want to build a contract management tool within an
organization. A contract is negotiated between different
companies and is directed by a person in charge. There are
financial payments made when various parts of the contract are
achieved with the production of deliverables. Staff is assigned to
the realization of various parts of the contract. The problem is to
build a contract management tool that may be used inside the
company by various stakeholders. All these users will use a
common terminology defined by the domain language supported
by the contract management tool. This tool should be considered
as belonging to a product line because different variants may have
to be built for different contexts. Covered features may include
general access control, relation management, project monitoring,
project planning, time tracking, statistics, productivity tools, todo
management, expense registration, overtime tracking, employee
contract management, etc. There is a straightforward way to
develop such a contract management tool by producing 100% of
the code in classical general purpose programming languages like
Java or C#. The way suggested here is rather different. It consists

in systematic use of bridging with other tools that implement
functionalities (or services) that may serve to construct the
facilities of the virtual contract management tool that we wish to
build. For example if we need a calendar management, a Gantt
chart displaying, a spreadsheet tabular information capture, an
accounting reporting, etc., then we may look for specific tools
already implementing these facilities (open source tools or
proprietary tools already used by the potential users in their
environments). There is obviously a service oriented dimension in
this approach, but the main idea is to build semantic data
conversion bridges between the virtual tool we want to build and
the various concrete tools that we are using to build it. The
difficulty is that most tools use different conventions and data
encoding that need to be harnessed. Of course between the 100%
code production and the 100% functionality reuse by tool-
bridging, it is likely that an intermediate way may have to be
found. However, what we define here as a case study is the
possibility to achieve a significant experiment in virtual tool
building.

3.7 Problem Identification
In these illustrative case studies we may identify several generic
problems of interest. In this section we abstract these problems
and describe them. The problems are summarized in Table 1.

Table 1. Problems exemplified in different case studies
Case Studies

Te
le

ph
on

y
La

ng
ua

ge
s

Q
ue

ry
in

g
So

ur
ce

 C
od

e

PI
M

 to
 P

SM

Tr
an

sf
or

m
at

io
n

Se
ns

or
 D

at
a

St
re

am

Pr
oc

es
si

ng

B
ug

 T
ra

ck
in

g

C
on

tra
ct

M

an
ag

em
en

t

Semantics interoperability X X X

Heterogeneous syntaxes X X X

Uniform representation
framework X X

Flexible transformations
between languages X

Metadata management X X X

Volume scalability X X X

Tool reusability X

Querying heterogeneous
data X

Pr
ob

le
m

s

Product and Process
combination X X

It can be seen that a given problem is usually exemplified in more
than one case study. The columns of the table indicate case
studies and the rows indicate the problems that we have
formulated. The ‘X’ sign indicates in which case study a problem
is observed.

The following list summarizes some of the characteristics of the
problems mentioned above.

Uniform representation framework. The problem of uniform
representation framework emerges in the case studies that process
data represented in various formats. A major requirement is
scalability of the solutions, that is, the possibility to handle an

607

open set of representation formats. In the case study of querying
program source code we need a system that represents the
concrete syntaxes of programming languages in a uniform way. In
the stream-based data processing and conversion the open set of
data formats must be accommodated in the same type of uniform
underlying representation.

Semantic interoperability. In the telephony languages, bug
tracking, and contract management case studies there is the
common goal of implementing solution for ensuring semantics
interoperability between tools or languages. In all these cases we
observe different conceptualizations of the same underlying
domain. These conceptualizations are usually developed
independently from each other by different agents. It is possible
to have overlap between them but also we may have aspects of
the domain that are captured in one tool/language and are missing
in another. For example, the concept of bug in Bugzilla has the
same meaning as the concept of issue in Mantis but these
concepts capture different sets of attributes. Another semantic
related problem is observed in the telephony languages case study
where the two languages conceptualize the domain at different
levels of abstraction. Solving the semantic interoperability
problem requires to identify the equivalent and non-equivalent
concepts and to resolve the differences between the concepts that
refer to the same domain abstraction.

Heterogeneous syntaxes. Three case studies deal with various
representation formats. They have to handle an open set of
heterogeneous syntaxes. A generic system for querying source
code requires uniform view over the syntaxes of various
programming languages. In bug tracking and contract
management we observe the problem of syntactic interoperability
along with the problem of semantic interoperability described
above. Bug tracking systems may use XML-based or EBNF-
based syntaxes as input/output formats. The same heterogeneity is
observed in various contract management systems. To achieve
tool interoperability in these case studies we need a scalable
translation mechanism from one syntax to another. This facility
will need to easily allow changes from one representation system
to another one, for example from a Java program classical textual
representation to an XML corresponding document based on a
Java DTD or schema, or to a Java model based on a Java MOF
metamodel. Flexibility to apply dynamically these format
translation from various contexts is also an important feature.

Flexible transformations between languages. This problem is
present in most of the case studies to a certain degree but is most
apparent in the PIM to PSM transformation case study. Crafting a
transformation program on the base of fixed source and target
languages is not a big challenge. Much more challenging is
developing an open and flexible transformation system. The
openness and flexibility properties indicate the ability to handle
an open set of source and target languages.

Metadata management. The term metadata used here refers to
its most general meaning as “data about data”. We stay neutral
from any particular form of metadata such as metamodels and
metametamodels as defined in section Error! Reference source
not found.. Metadata are of significant importance when different
types of data in different formats must be handled. Almost all of
the case studies are related to the need of some form of metadata
processing. This is most apparent, however, in the case studies on

data-centric distributed systems for stream processing, the bug
tracking, and the contract management.

Volume scalability. Three case studies expose a potential for
dealing with large volumes of data that must be processed. The
large volume of data that may be considered in stream-based
situations or in analysis of large volumes of source code is an
important characteristic of these case studies that may necessitate
specific solutions. Yet, in the bug tracking system we have
potentially a huge number of bugs in case of large software
systems.

There is an important aspect observed in the stream-data
processing. Many data processing scenarios assume that the data
are available prior to the processing. However, in the case of data
coming from censors we may have a continuous, eventually
infinite stream of data. The problem is then to investigate if the
existing techniques for data processing (e.g. transformation and
querying) are applicable or new techniques must be invented.

Tool reusability. One difference between the bug tracking and
the contract management case studies is that the latter implies the
building up of a new "virtual" tool from the functionalities
available in other concrete tools. We see here a potential for tool
reusability as an alternative to class reusability. In other words, it
should be possible to build tools without coding, just by
establishing bridges with other tools that offer composable
functionalities. Obviously this is based on some form of service
composition that also needs to consider data integration and
semantic interoperability.

Querying heterogeneous data. A problem that appears in the
source code querying program is the querying of heterogeneous
data. How the request may be established or adapted to the nature
of the data to be queried is also an important dimension to
consider in the problem space. This problem is also relevant to the
stream-based data processing case study.

Product and Process combination. If we look at the bug
tracking and the contract management case studies, we see that
there is a strong relation between the data models of bugs or
contracts and the lifecycle of these entities. More generally, the
product/process aspect separation pattern again applies here.
Processes affect the products and the state of the products drives
the processes. We need to find generic solution to this problem.

4. Solutions
In this section we outline solutions for the problems identified in
the previous section. Solutions are based on the vision that we
need domain specific languages to perform various tasks.
Consequently, the ability to rapidly define DSLs and to
manipulate models expressed in various DSLs is of a key
importance. To provide such ability we developed a model-based
DSL framework called AMMA. In section 4.1 we give an overall
presentation of AMMA followed by descriptions of its
components (sections 4.2-4.4). Finally, in section 4.5 we discuss
how the problems may be solved by using AMMA.

4.1 The Overall Structure of AMMA
AMMA provides facilities for defining domain specific
languages. According to Definition 9 a DSL is a set of
coordinated models. Among these models are the DDMM, the

608

concrete syntax, the semantics of the language. AMMA provides
several DSLs that are used to define the components of other
DLSs. They form the core of AMMA. In this work, we focus on a
simplified subset of AMMA composed of three DSLs. Figure 8
shows the components of AMMA and how they are used to define
DSLs.

DDMM

CS

KM32Ecore

KM3

DDMM

CS

ATL2VM

ATL

DDMM

CS

TCS2EBNF

TCS

DDMM

CS

SPL

DDMM

CS

Mapping

DSLx

Legend

<Name>

<Name>

Model

DSL

definedIn

Model <Name>:
 - DDMM: Domain
 Definition MetaModel
 - CS: Concrete Syntax
 - <Name>: transformation

AMMA

Figure 8. Structure of AMMA: a model based framework for

DSLs
The core of AMMA consists of KM3, TCS, and ATL languages.
KM3 is a DSL for defining metamodels. TCS is a DSL for
describing concrete syntaxes of DSLs and how the concrete
syntax is related to the DDMM of a given DSL. ATL is a model
transformation language.

It can be seen that these three DSLs contain models that are
expressed in some other DSL from the core. For example, the
DDMM of KM3 is defined in KM3. The concrete syntax of KM3
is defined in TCS. Furthermore, KM3 is mapped to the elements
of Ecore by using an ATL transformation (the box KM32Ecore).
The semantics of ATL is defined as a transformation to the
language of the ATL virtual machine (ATL2VM), which we
described in [32]. This transformation is expressed in ATL.

We can define other DSLs by using the ones provided by
AMMA. For example, we experimented with the SPL language
(see section 3.2) by defining its DDMM in KM3 and its concrete
syntax in TCS. The semantics of the language is not defined since
we assumed that it is implemented by already existing tools.

An arbitrary language (denoted as DSLx in Figure 8) can be
defined in a similar manner. In the context of DSLx, the box
Mapping denotes a possible mapping to another DSL or a GPL
such as Java.

Currently, AMMA does not provide means for defining semantics
of DSLs. In many cases a pragmatic definition of the semantics
can be given by providing a mapping from the DDMM of a DSL
to the DDMM of another DSL for which there is clearly defined
semantics. This mapping can be specified in ATL. We are
performing experiments on using Abstract State Machines [15] as
formal foundation for specifying dynamic semantics of DSLs.
The initial results are promising [9]. This opens the possibility for
inclusion of a DSL that captures the ASM mechanisms in the core
of AMMA.

It should be noted that Figure 8 is a visual representation of a
specific kind of model. Elements of this model are: models,
DSLs, the definedIn relation between them, and the AMMA
framework itself. We call megamodels such models, in which
some elements represent models or other artifacts (e.g. DSLs,
tools and services) as well as relations between them. We are
currently working on AM3 [12] (ATLAS MegaModel
Management): a generic tool for megamodeling. More details
about megamodeling in general and AM3 in particular are
available in [12] and [13].

In the subsequent sections we present the three core DSLs: KM3,
TCS, and ATL.

4.2 KM3: Metamodel Definition Language
Considering the need for DSLs we have been using a language
named KM3 (Kernel MetaMetaModel) to define the domain
definition metamodel of DSLs. This section briefly presents the
rationale of this language.

The KM3 language [33] is intended to be a lightweight textual
metamodel definition language allowing easy creation and
modification of metamodels. The metamodels expressed in KM3
have good readability properties. These metamodels may be
easily converted to/from other notations like Emfactic or XMI.

KM3 has its roots in the complex and evolving relations between
modeling and visual languages. The OMG has proposed the MOF
language for the definition of its various metamodels (e.g. SPEM,
UML, CWM, etc.). The problem was that there was no practical
support environment for this language. As a replacement solution
the existing UML CASE tools were used. The price to pay for this
was an alignment of MOF with a subset of UML (mainly class
diagrams). Since this time, the alignment has been more or less
maintained through the various versions of UML and MOF. In
other words, UML may be considered as a multi-purpose
language allowing defining software object-oriented terminal
models and also allowing defining MOF metamodels. However,
this approach has certain drawbacks. When we need to build a
metamodel (for example a source or target model for a
transformation), we have first to start building a UML class
diagram with certain properties. The result may then be serialized
in a first XMI file and then transformed into a second XMI file
corresponding to the metamodel. This conversion from a UML
model to a MOF metamodel is called a "promotion" and is
implemented by some widely available tools like UML2MOF
provided in the MDR/NetBeans suite.

We have experimented for some time with this approach. When
the number of involved metamodels is limited (i.e. when someone
mainly deals with OMG fixed and stable metamodels), there are
no major problems. But when we need multiple and evolving
metamodels, we found this approach very cumbersome. The only
alternative was to define KM3, a textual language for specifying
metamodels, including MOF metamodels. After experimenting
with this language for two years, we are completely convinced of
the practicality of the approach. Public libraries of more than one
hundred metamodels expressed in KM3 are now available [50].
ATL (explained in the next section), a QVT-like model
transformation language, uses natively KM3 to facilitate the
handling of metamodels. Many other projects are based on this
format.

609

Among the properties of KM3 is the possibility to use it for the
definition of non-MOF based models. KM3 has also been
designed to cross technical spaces.

KM3 has a clear semantics, partially presented in [33]. This
semantics is based on the definitions of terminal model,
metamodel, and metametamodel presented in section 2. The
semantics uses multi-graph structures for representing models and
first-order logic to express the required axioms. An
implementation in Prolog has been developed as a proof of
concept. To the best of our knowledge, such a formal definition
has not been proposed for the existing metamodeling languages in
MDE. As a side effect of this work, we have been able to propose
also a precise characterization of a model and a metamodel.

4.3 TCS: Language for Defining Concrete Syntaxes
According to Definition 2 (section 2.1), a model is a graph. Tools
are required to present such an abstract structure in a user-friendly
fashion. TCS (Textual Concrete Syntax) is such a tool. We call
concrete syntax the definition of a set of rules allowing the
representation of a model. There are several kinds of concrete
syntaxes: visual, XML-based, textual, binary, etc. Some are
designed to allow convenient transmission and storage of models
(e.g. XMI). Others are targeted at users like most visual syntaxes
(e.g. class diagrams for metamodels) and some textual syntaxes
(e.g. KM3, ATL). Such human usable concrete syntaxes have
specific requirements: user-friendliness, low complexity and low
verbosity.

TCS is a DSL aimed at specifying context-free textual concrete
syntaxes of DSLs. From such specifications, models can be
serialized into their textual equivalent and text can be parsed into
models. In other words, a TCS specification defines a
bidirectional translation utility between a textual representation of
a model and its internal representation. The choice of context-free
languages was mainly motivated by the observation that
programming languages use them extensively. TCS models are
used to attach syntactic elements, such as keywords and symbols,
to elements of the DDMM of a DSL.

To outline the usage of TCS models, consider the TCS2EBNF
transformation in Figure 8. It takes as source a DDMM (expressed
in KM3) and a TCS model to generate an EBNF grammar. This
grammar is annotated with semantic actions, which build the
model in memory while parsing its textual representation. If the
grammar of a DSL was directly specified in EBNF (instead of
automatically generated), the mappings to the metamodel would
also have to be specified in the form of annotations. Annotating a
grammar to build a metamodel is a tedious task, which also
depends on the parser generator that is used. By providing a
dedicated language for this task we can abstract from the
underlying parser generator tool (e.g. ANTLR, YACC).
Generating an annotated grammar for different parser generators
is achieved by providing different transformations on TCS
models.

4.4 ATL: Model Transformation Language
Model transformation is one of the most important operations on
models. The recent efforts in MDE are towards defining DSLs for
specification of model transformation programs. In AMMA we
provide such a language called ATL (ATLAS Transformation
Language).

ATL is a hybrid model transformation DSL. Its declarative part
enables simple specification of many problems, while its
imperative part helps in coping with problems with higher
complexity. The operational context of ATL is represented in
Figure 9. A model Ma (conforming to metamodel MMa) is
transformed into a model Mb (conforming to metamodel MMb)
based on the Mt transformation expressed in ATL. The box ATL
represents the DDMM (the abstract syntax) of the language. An
ATL program is therefore a model that conforms to this DDMM.
More than one source and one target models may be used in
practice. Informal semantics of ATL is presented in [31] along
with a non-trivial case study. More than forty different scenarios
accounting for more than a hundred individual transformations are
available on ATL GMT website [51].

DDMM

CS

KM32Ecore

KM3

DDMM

CS

ATL2VM

ATL

DDMM

CS

TCS2EBNF

TCS

DDMM

CS

SPL

DDMM

CS

Mapping

DSLx

Legend

<Name>

<Name>

Model

DSL

definedIn

Model <Name>:
 - DDMM: Domain
 Definition MetaModel
 - CS: Concrete Syntax
 - <Name>: transformation

AMMA

Figure 9. The operational context of ATL

The fact that transformation programs are models conforming to
the ATL metamodel opens a possibility for interesting
applications. For instance, Higher-Order Transformations (HOTs)
may be defined that take other transformations as source, target or
even both. An example of a HOT is given in [30] to implement
traceability in ATL.

The general scenario shown in Figure 9 is similar to the context of
the QVT transformation language proposed by OMG. Thus, ATL
can be considered as a QVT-like model transformation language.
In [32] we explored the relations between ATL and QVT.

The general scheme of a model transformation operation is the
generation of output models from given source models by
executing a transformation program. We may further identify
different schemes that define specific classes of transformations.
For example, model composition (model merging) is an operation
in which two source models are transformed into one target model
following certain constraints. Although ATL is not targeted at a
specific class of model transformations such as model merging,
other transformation DSLs may be specified by focusing on
particular scenarios. We therefore postulate the existence of a
family of model transformation DSLs that share the scheme
shown in Figure 9.

AMMA provides a generic mechanism for constructing such
DSLs. This mechanism is called ATLAS Model Weaving
(AMW). It should first be noted that model weaving [20] is

610

different from aspect weaving [35]. Model weaving is about
establishing typed links between model elements. Links
themselves form a model and link types are therefore defined in a
metamodel. Weaving links are more abstract than ATL rules
because, whereas ATL has fixed semantics, AMW has user-
defined semantics. Consequently, link types can be adapted to
specific application domains.

The adaptability of AMW to different problem domains is
achieved by providing tools working on a core weaving
metamodel defining only the abstract notion of link type. This
core metamodel can be extended by users. Metamodel extension
is a complex operation, which will not be discussed here. The
basic idea is that user-defined link types have to extend the
abstract link type concept defined in the AMW core.
Transformations to ATL code can then be used to implement link
types’ semantics.

Furthermore, weaving semantics need not even be executable.
This is because AMW application domain is actually broader than
transformation specification.

4.5 Using AMMA to Solve Problems
In this section we address the problems identified earlier by
applying the conceptual framework presented in section 2 and the
tools provided by AMMA.

Uniform representation framework. The definitions of model,
metamodel, and metametamodel given in Section 2 specify a
uniform modeling framework. Each model conforms to a
reference model itself conforming to a unique metametamodel.
Different implementations of this abstract framework may have
distinct metametamodels. However, the uniformity of this
approach alone is limited to the MDE Technical Space. If we also
consider the concepts of Technical Space, and projectors then we
broaden the uniformity of the framework. For instance, abstract
syntaxes may be represented in MDE (e.g. using KM3), concrete
syntaxes in EBNF, and projectors may be used to bridge between
these TSs. TCS is an example of such a projector. In summary,
our primary unification concepts are model and technical space

To address the problem that necessitates uniform representation
framework we may consider various entities in the context of a
single TS, for example the MDE TS. Usually, the entities will
come from different technical spaces. We may apply injectors to
import these entities in the MDE TS. In that way, the uniform
representation will be based on the basic representation scheme
induced by the metametamodel (see the part of section 2.6
concerning the role of the M3 level).

Flexible transformations between languages. We have seen in
the previous paragraph that we have a uniform representation
framework for models. Languages, or more precisely their
abstract syntaxes, are captured as metamodels. The problem of
transforming between languages may then be restated as problem
of transforming between metamodels. ATL is a DSL designed for
this purpose. The ATL metamodel itself is hardwired into the
ATL engine along with its execution semantics. The source and
target metamodels are, however, specified at runtime. This
enables transformations between virtually any metamodels, and
therefore languages.

Semantic interoperability. Given a uniform representation
framework as described previously, semantic interoperability may
be approached by specification of mappings between metamodels.
Such a mapping can define the relationship between the concepts
from several metamodels. In AMMA, we consider two kinds of
mappings:

• Transformations. A transformation (e.g. written in ATL) is
an operational representation of a mapping. It may be
executed to automatically transform a model conforming to a
metamodel into a model conforming to another metamodel.
The way target elements are created from source elements
depends on the semantic mapping. With transformations,
mappings are specified by the transformation writer.

• Weavings. A weaving model (e.g. specified with AMW) can
capture semantic relationships between several metamodels
as a set of typed links. Actual meaning of this links depends
on the semantics of the weaving metamodel. We do not
provide a general semantic mapping weaving metamodel as
part of AMMA. However, it is possible for the user to define
her own weaving metamodel. Additionally, heuristics may
be defined to semi-automatically derive weaving links from
the metamodels which semantics have to be aligned. This is
related to the problem of schema matching in data
integration. We do not claim to solve this problem, but rather
to provide a tool (namely AMW), which enables a uniform
specification of semantic relationships.

To summarize our approach to semantic interoperability we may
state that the process of establishing correspondence links
between semantic entities is generally semi-automatic. Semantic
equivalence, mismatches, and conflicts are judged and resolved
by domain experts helped by heuristics. Their decisions are
captured in the form of transformations and weavings. AMMA
provides tools to automatically execute transformations and to
handle weavings as ordinary models.

Heterogeneous syntaxes. Heterogeneity may be handled by
defining a uniform representation framework for syntaxes and
providing bridges between various kinds of syntaxes. The notion
of Technical Space based on the three-level architecture provides
such a uniform representation framework: context-free syntaxes
are represented as grammars, XML-based syntaxes as schemas,
etc. Technical Projectors (such as TCS) provide means to bridge
heterogeneous technical spaces. AMMA does not provide
projectors for every possible situation. However, new projectors
may be defined by using AMMA as a building framework.

Metadata management. Metadata can take various forms. It can
be, for instance, a metamodel, a grammar, an annotation, etc.
Whatever their forms are metadata can be uniformly represented
as models (e.g. KM3 models, EBNF models). The problem is now
to deal with a possibly large number of such models.
Megamodeling, which represents models and relations between
them as a model, may be used to capture complex relations
between various metadata. For instance, a metamodel, a concrete
syntax (in TCS or EBNF), and an annotation metamodel may be
linked together by megamodel links.

Volume Scalability. One possible way to handle large volumes
of data is to use tools that are specialized in this task. These are
mainly database management systems. In the context of AMMA
and the concepts defined so far this is achieved as a projection

611

from one technical space to another. For example, in case of huge
files of source code we need a projector from the EBNF technical
space to the RDBMS technical space. The latter one provides
optimized engines for querying large volumes of data. Once the
data are obtained after a query execution we need to extract them
in the technical space of initial interest.

This approach, however, may not be applicable in case of
continuous and possibly infinite streams of data. To solve this
problem we need new techniques for transformations and query
execution. This is an interesting direction for future research
concerning an important problem.

Tool Reusability. This problem is related to two other problems:
semantic interoperability and dealing with heterogeneous
syntaxes. The solutions proposed for them should be used for this
problem as well. Furthermore, often we need to describe a tool
chains and flow of data between different tools. Therefore, we
need a DSL for performing workflow management tasks. Such
DSLs exist and it should be possible to incorporate them in our
framework for DSL definition. Currently, we perform a practical
experiment for solving this problem. Results will be reported in
another paper.

Querying Heterogeneous Data. One approach to this problem is
to represent the data in a uniform way thus eliminating the
heterogeneity. The unification concept of model may be used here
and then the queries over data are in fact queries over models.
Since models are graphs we have the uniformity achieved and
then we may run queries over graphs. However, this approach
may require translation of the data to be queried from one format
to another. That is, again we apply the concept of bridging
between technical spaces. In case of large amount of data,
however, this may be inefficient.

Another approach is to create a metamodel that provides the
structure of the uniform view but no actual data are translated.
Queries may be formulated over the uniform view and translated
to queries over the original sources. This approach reflects the
classical schema integration problem in data engineering. This
problem requires query translation. Queries may be considered as
models expressed in a query DSL thus opening the possibility to
apply model transformations.

It should be noted that we have not experimented with the
application of this approach in a practical context so it remains
mostly a vision.

If the data to be queried are coming from a data stream then we
need novel techniques. This marks another open issue for future
research.

Product and Process Combination. This problem requires
establishing relationships between the process models and product
models. Basically, such relationships may be considered as
forming a model. What is the semantics and the possible usage of
such a model requires further investigation.

5. Related Work
In this paper we proposed a model based framework for defining
DSLs. There are other approaches that aim at facilitating
definition of DLSs. Some of them are based on classical language
engineering techniques and others apply MDE principles.

SDRR (Software Design for Reliability and Reuse) [6] is a
method based on DSLs, which the authors call Domain Specific
Design Language (DSDL). SDRR is targeted at executable DSLs
for which computational semantics must be specified in terms of
ADL (Algebraic Design Language). Meaning preserving program
transformations are then used to optimize the definitions.
Contrary to AMMA, this approach offers no support for non-
executable DSLs and requires a formal semantics to be specified.
Having a formal semantics is useful but being able to implement a
DSL by simply transforming it to another language is sometimes
enough from practical point of view.

GME (Generic Modeling Environment) [25][34] and Microsoft
DSL Tools [26] are two approaches for defining DSLs based on
MDE principles. The main difference with AMMA is that they
are not defined as a set of core DSLs. The Microsoft approach
lacks an explicitly specified metametamodel equivalent to KM3
in the case of AMMA. GME focuses on definition of visual
syntax whereas AMMA provides TCS which is a DSL for
defining textual concrete syntax.

It should be noted that AMMA is not meant to replace these two
approaches. Our vision is that the MDE based approaches for
defining DSLs should be considered as complementary to each
other. We aim at achieving interoperability between these
approaches and portability of models across their tools. The
notion of technical space and projectors is applied to solve this.
We performed case studies in building projectors between
AMMA and MS/DSL tools and AMMA and GME. The results of
these case studies are reported in [10] and [11] respectively.

There are languages similar to the languages that form the core of
AMMA (KM3, TCS, and ATL).

MOF is a standard metametamodel proposed by OMG of which
there exist several versions (e.g. 1.4 [44] and 2.0). Both are more
complex than KM3 (i.e. they contain more classes). None has a
formal semantics. Their standard concrete syntax is XMI, which
is based on XML and is, as such, more verbose than KM3
concrete syntax. Human Usable Textual Notation (HUTN) [47] is
a standard by OMG that gives a default textual notation to each
metamodel.

Ecore [21] is a metametamodel close to MOF 2.0. There is a
standard textual notation for EMF: emfatic. One difference with
KM3 is that emfatic provides EMF-specific constructs (e.g. to
customize Java code generation). One of our experiments has
shown that such additional information may be embedded into
KM3 comments. Another difference is that Ecore has no formal
semantics.

Typed Attributed Graphs [22] are a conceptual framework on
which graph transformations are based. They have a precise
formal semantics. In contrast to KM3 and the definitions given in
section 2, there is no explicit metametamodel: type graphs are not
themselves typed.

sNets [8] is one of our past experiments. We have learnt much
from them and KM3 is an elaboration of this previous work.

There are two standards by OMG for defining concrete syntax for
MOF metamodels: XMI [46] and HUTN. They are therefore
closely related to TCS. However, contrary to TCS, both specify
an automatic mapping from the metamodel to an XML Schema

612

(for XMI) or an EBNF grammar (for HUTN). XMI is especially
adapted to automated serialization of models but relatively
difficult to use by human beings because of its verbosity and
syntactic constraints (e.g. XMI identifiers). HUTN is more user-
friendly than XMI because it uses a simpler textual representation
of models but still remains relatively verbose. TCS is capable of
reducing verbosity because the syntax is not automatically
derived from the metamodel but user-specified. For instance, it is
possible to tell TCS to use operators (either with infix or prefix
notation) for specific metamodel constructs (i.e. expressions).
This is typically something that cannot be automatically guessed.

In the last couple of years we observed a number of proposals for
model transformation languages. Some of them are a response to
the QVT RFP issued by OMG [45]. ATL is applicable in QVT
transformation scenarios where transformation definitions are
specified on the base of MOF metamodels. However, ATL is
designed to support other transformation scenarios going beyond
QVT context where source and target models are artifacts created
in various technical spaces.

Another class of transformation approaches relies on graph
transformations theory [1][52]. ATL is not directly based on the
mathematical foundation of these approaches. An interesting
direction for future research is to formalize the ATL semantics in
terms of graph transformation theory. The declarative part of ATL
is especially suitable for this. Currently, we are planning to
provide formal semantics for ATL in terms of Abstract State
Machines.

6. Conclusions
An important contribution of our work has been to take explicitly
into account the notion of technical space. Instead of building a
lot of different ad-hoc conversions tools (modelToText,
textToModel, ontologyToModel, modelToOntology,
XMLToText, textToXML, modelToSQL, SQLToModel, etc.)
covering various formats and data conversions, we have proposed,
with the notion of projectors (injectors or extractors), a general
concept that may be used in various situations. These projectors
can be selected as either front-ends or back-ends for classical
transformations.

Starting from there, the second contribution presented in this
paper has been to propose a precise and minimal definition for a
conceptual MDE technical space. This technical space may be
considered as a general graph where partitions are composed of
model, metamodel and metametamodel entities. We have not
committed here to a particular kind of graphs. The OMG/MOF
graphs, the EMF/Ecore graphs or the Microsoft
SoftwareFactories/DSL graphs are not completely identical but
we believe these systems share one common set of principles and
definitions corresponding to the MDE abstract global typing
system presented here. As a consequence this work should be
useful not only to relate different technical spaces like XML,
Grammarware, etc., but also to compare variants of the MDE
space.

There are many variants of model engineering. Our attitude has
been to find the set of basic principles common to all the
dominant model engineering approaches and to make them
explicit. We are then in a position to clearly separate the
principles, the standards, and the tools levels. With the proposed

approach we hope to avoid future portability problems in MDE. It
would be a pity if the abstraction rise from code to models
produces incompatibility between OMG models, EMF models,
Microsoft/DSL models, etc. With a clean separation of technical
spaces, the precise identification of the inter-space mappings and
the definition of efficient support tools for space projectors that
are being made available in open source libraries, we are in a
good position to deal with different kinds of models, a UML
model, a Java program or an XML document being considered as
models pertaining to different technical spaces.

Standard compatibility and user efficiency are supported by the
toolbox present in the AMMA open source Eclipse platform.
AMMA may be considered as an operational mapping onto Java,
compatible with the Eclipse Modeling Framework conventions.
However the successful practice of these metamodeling tools in
the last months has progressively evolved towards the
consideration of AMMA as a DSL-building framework. Model
engineering is being seen in turn as a successful implementation
of a DSL-based platform. We consider now that the main value of
AMMA is essentially its collection of core DSLs (ATL, KM3,
AMW, TCS, etc.) and its ability to facilitate the building of new
DSLs for specific families of systems from the built-in DSLs
natively available in the framework. This experimental work is
going on with the definition of new DSLs for specific goals, like
the specification of dynamic semantics.

Considering model engineering as a way to implement powerful
DSL building frameworks is by itself an interesting achievement.
Practical experimentation shows that this may allow to solve
complex and evolutive systems more easily and efficiently than
with conventional technologies like object-oriented programming.
We have provided a set of typical case studies where we have
done preliminary experiments. Although there is yet no definitive
killer application, first results show that the combined MDE/DSL
approaches may bring deployable solutions in the short to
medium term.

The ultimate validation of the approach would consist in building
a new virtual tool for some domain (e.g. bug tracking or project
management) from a set of existing tools in different domains.
Each domain would be organized around a DSL or a small set of
DSLs. Then the functionalities would be acquired from other
tools, themselves described with the help of other DSLs. We are
presently looking for mounting such an experiment that would
help validating more thoroughly the approach. The initial
implementation of specific semantic bridges between similar tools
seems to provide good indication of feasibility.

Acknowledgements
We would like to thank Freddy Allilaire, Marcos Didonet del
Fabro and all the students that have participated in this work. We
also acknowledge the support of Microsoft Research Cambridge
and of the ModelWare IST European Project 511731.

References
[1] Agrawal A., Karsai G., Kalmar Z., Neema S., Shi F.,

Vizhanyo A. The Design of a Simple Language for Graph
Transformations, Journal in Software and System Modeling,
2005

613

[2] Apostel, L. Towards the formal study of models in the non-
formal sciences. In H. Freudenthal (Ed.), The concept and
the role of the model in mathematics and natural and social
sciences. D. Reidel Publishing Company, Dordrecht, the
Netherlands, 1960

[3] ATL, ATLAS Transformation Language Reference site
http://www.sciences.univ-nantes.fr/lina/atl/

[4] ATLAS Group KM3: Kernel MetaMetaModel. Available
from
http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/gmt
-home/doc/atl/index.html

[5] Bates, D. & al. The R language definition for statistical data
analysis. http://stat.ethz.ch/R-manual/R-
patched/doc/manual/R-lang.html

[6] Bell, J., Bellegarde, F., Hook, J., Kieburtz, R. B., Kotov, A.,
Lewis, J., McKinney, L., Oliva, D. P., Sheard, T., Tong, L.,
Walton, L., and Zhou, T. Software design for reliability and
reuse: a proof-of-concept demonstration. In Proceedings of
the Conference on Tri-Ada '94 (Baltimore, Maryland, United
States, November 06 - 11, 1994)

[7] Bézivin, J. On the Unification Power of Models, Software
and System Modeling, SoSym Journal, 4(2):171--188, 2005

[8] Bézivin, J. sNets: A First Generation Model Engineering
Platform. In: Springer-Verlag, Lecture Notes in Computer
Science, Volume 3844, Satellite Events at the MoDELS
2005 Conference, edited by Jean-Michel Bruel. Montego
Bay, Jamaica, pages 169-181

[9] Bézivin, J., DiRuscio, D., Jouault, F., Kurtev, I., Pierantonio,
A. A practical Experiment to Give Execution Semantics to a
DSL for Telephony Services Development, Submitted for
Publication, March 2006

[10] Bézivin, J., Hillairet, G., Jouault, F., Kurtev, I., Piers, W.
Bridging the MS/DSL Tools and the eclipse EMF
Framework. OOPSLA Workshop on Software Factories,
http://softwarefactories.com/workshops/OOPSLA-
2005/Papers/Bezivin.pdf

[11] Bézivin, J., Brunette, C., Chevrel, R., Jouault, F., and
Kurtev, I. Bridging the Generic Modeling Environment
(GME) and the Eclipse Modeling Framework (EMF).
Proceedings of the Best Practices for Model Driven Software
Development at OOPSLA'05, San Diego, California, USA,
http://www.softmetaware.com/oopsla2005/bezivin2.pdf

[12] Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.
Modeling in the Large and Modeling in the Small.
MDAFA'2004, Springer-Verlag LNCS 3599, pages 33-46.

[13] Bézivin, J., Jouault, F., Valduriez, P., On the Need for
Megamodels, OOPSLA & GPCE, Workshop on best MDSD
practices, Vancouver, Canada, 2004

[14] Bezivin, J., Kurtev, I. Model-based Technology Integration
with the Technical Space Concept, In Metainformatics
Symposium 2005, Esbjerg, Denmark, November 2005, to be
published in LNCS volume

[15] Borger, E. High Level System Design and Analysis using
Abstract State Machines. In FMTrends 98, Current Trends in
Applied Formal Methods, volume 1641 of LNCS, pages 1–
43. Springer, 1999

[16] Bugzilla official site, http://www.bugzilla.org
[17] Burgy, L., Consel, C., Latry, F., Lawall, J., Reveillère, L.,

Palix, N. Language technology for internet-telephony service
creation. to appear In IEEE International Conference on
Communications, 2006

[18] Cantwell Smith, B. The Limits of Correctness; a paper
prepared for the Symposium on Unintentional Nuclear War,
Fifth Congress of the International Physicians for the
Prevention of Nuclear War, Budapest, Hungary, June 28 −
July 1 1985

[19] Consel, C. Domain Specific Languages. LABRI, Bordeaux,
http://compose.labri.fr/documentation/dsl/

[20] Didonet Del Fabro, M., Bézivin, J., Jouault, F., and
Valduriez, P., Applying Generic Model Management to Data
Mapping, in proceedings of the Journées Bases de Données
Avancées (BDA05), France, 2005

[21] Eclipse Modeling Framework http://www.eclipse.org/emf/
[22] Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory for

typed attributed graph transformation. In Graph
Transformations: Second International Conference, ICGT
2004. Volume 3256 of Lecture Notes in Computer Science.,
Springer-Verlag (2004) 161-177

[23] Gansner, E.R., North, S.C. An open graph visualization
system and its applications to software engineering. Software
- Practice and Experience, Volume 30, Issue 11, Pages 1203-
1233, 2000

[24] GMT, General Model Transformer Eclipse Project,
http://www.eclipse.org/gmt/

[25] GME, The Generic Modeling Environment, Reference site.
http://www.isis.vanderbilt.edu/Projects/gme/

[26] Greenfield, J., Short, K., Cook, S., Kent, S., Software
Factories, Wiley, ISBN 0-471-20284-3, 2004

[27] Gruber, T. R. Toward Principles for the Design of
Ontologies Used for Knowledge Sharing.,International
Journal of Human and Computer Studies, 43(5/6): 907-928,
1995

[28] Hajiyev, E., Verbaere, M., de Moor, O. CodeQuest: Scalable
Source Code Queries with Datalog Programming Tools
ECOOP'2006, Nantes, July 2006

[29] Hughes, R.I.G., The Ising model, computer simulation, and
universal physics. In M. Morgan and M. Morrison (Eds.),
Models as mediators. Perspectives on natural and social
science. Cambridge University Press, 1999

[30] Jouault, F : Loosely Coupled Traceability for ATL. In:
Proceedings of the European Conference on Model Driven
Architecture (ECMDA) workshop on traceability,
Nuremberg, Germany

[31] Jouault, F., Kurtev, I. Transforming Models with ATL,
Workshop Model Transformations in Practice, collocated
with MoDELS 2005, Montego Bay, Jamaica, October 2005

[32] Jouault, F, Kurtev, I. On the Architectural Alignment of ATL
and QVT. In: Proceedings of ACM Symposium on Applied
Computing (SAC 06), Model Transformation Track, Dijon,
Bourgogne, France, April 2006.

614

[33] Jouault, F., Bézivin, J. KM3: a DSL for Metamodel
Specification, FMOODS 2006, Bologna, Italy, 14-16 June
2006

[34] Karsai, G., Gray, J. Component Generation Technology for
Semantic Tool Integration. Proceedings of IEEE Aerospace
2000 Conference, Big Sky, MT, March, 2000

[35] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.
and Griswold, W.G., An Overview of AspectJ, Lecture
Notes in Computer Science, Volume 2072, Jan 2001, Page
327

[36] Klint, P., Lämmel, R. Kort, J., Klusener, S., Verhoef, C.,
Verhoeven, E.J. Engineering of Grammarware.
http://www.cs.vu.nl/grammarware/

[37] Kurtev, I., Bézivin, J., Aksit, M. Technical Spaces: An Initial
Appraisal. CoopIS, DOA’2002 Federated Conferences,
Industrial track, Irvine, 2002 http://www.sciences.univ-
nantes.fr/lina/atl/publications/

[38] Lennox, J., Wu, X., Schulzrinne, H. Call Processing
Language (CPL): A Language for User Control of Internet
Telephony Services. RFC 3880,
http://www.ietf.org/rfc/rfc3880.txt, 2004

[39] Mantis Bug Tracker official site, http://www.mantisbt.org
[40] McJones, P. (ed) The 1995 SQL Reunion: People, Projects,

and Politics. SRC Technical Note 1997-018, August 1997,
Digital System Research Center,
http://www.mcjones.org/System_R/SQL_Reunion_95/SRC-
1997-018.pdf

[41] Minsky, M. L. Matter, Mind and Models Semantic
Information Processing, MIT Press, 1968

[42] Molenaar, J. Mathematical modeling and dimensional
analysis. In A. van den Burgh and J. Simonis (Eds.), Topics
in Engineering Mathematics. Modeling and Methods,
Kluwer Academic Publishers, 1992

[43] OMG. MDA Guide version 1.0.1. OMG document
omg/2003-06-01, 2003

[44] OMG/MOF Meta Object Facility (MOF) Specification.
OMG Document AD/97-08-14, September 1997. Available
from www.omg.org

[45] OMG/RFP/QVT MOF 2.0 Query/Views/Transformations
RFP, OMG document ad/2002-04-10. Available from
www.omg.org

[46] OMG/XMI XML Model Interchange (XMI) OMG
Document AD/98-10-05, October 1998. Available from
www.omg.org

[47] OMG. Human Usable Textual Notation (HUTN)
Specification, Final Adopted Specification. OMG Document
ptc-02-12-01, 2002

[48] Soley, R., and the OMG staff. The Model Driven
Architecture Whitepaper, OMG document,
http://www.omg.org/mda

[49] Tham, C-K, Buyya, R. SensorGrid: Integrating Sensor
Networks and Grid Computing. Available from
http://www.gridbus.org/reports/sensor-grid.pdf

[50] The ATL Group, The Atlantic metamodel zoo in KM3,
http://www.eclipse.org/gmt/am3/zoos/atlanticZoo/

[51] The ATL Group, ATL Transformation Examples,
http://www.eclipse.org/gmt/atl/atlTransformations/

[52] Varró, D., Varró, G., Pataricza, A. Designing the automatic
transformation of visual languages. Journal of Science of
Computer Programming, vol. 44, pp. 205-227, Elsevier,
2002

615

