In Proc. OOPSLA 2006, ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications.

October 22-26, Portland, Oregon, USA.

Software Architecture at a Large Financial Firm

George Fairbanks
Carnegie Mellon University
School of Computer Science
5000 Forbes Avenue
Pittsburgh, PA, 15213, USA

fairbanks@cmu.edu

ABSTRACT

System builders have historically used informal softwadhitec-

ture models to understand options, make choices, and commun

cate with others. Research into software architecture theepast
fifteen years has indicated that more precise architectudern

may be beneficial. At a large financial firm, we applied precise

software architecture techniques on four software prsjentl this
experience has revealed a number of practical issues. We thad
following observations across the projects: 1) Architeztmodels
can be used to bridge gaps between business requiremerechnd
nology, 2) A small collection of techniques and a detail kizob
practical and useful in a variety of projects, 3) Architeetinod-
eling techniques amplify the skills of the architects, 4) Adual of
domain concepts and relationships is helpful when buildirai-
tecture models, and 5) It is difficult to know when to stop addi
detail to your architecture model. We believe that thesesilas
tions motivate future research and can help practitionedeensoft-
ware architecture more effective in practice.

Categories and Subject Descriptors
D.2.11 [Software Engineering: Software Architectures

General Terms
Design, Documentation

Kevin Bierhoff
Carnegie Mellon University
School of Computer Science
5000 Forbes Avenue
Pittsburgh, PA, 15213, USA

bierhoff@cmu.edu

Desmond D’Souza
Kinetium, Inc.
9901 Spicewood Mesa Drive
Austin, TX, 78759, USA

desmond.dsouza@kinetium.com

engineers and subject matter experts to ensure that tiveesefbe-
ing created actually provides the services needed by thrdass

Software architecture [14] promises to aid this difficuitkaAr-
chitecture has been a focus of software engineering rdsdarc
fifteen years [8] and researchers have identified variougflien
of incorporating software architecture into software depment
projects, including reduced cost of development [1].

In our view, software architecture involves modeling thé-so
ware being built at a high level, thus expressing the dongoals
(or requirements), architectural structure, and behaisrsuch, it
addresses some of the classic challenges of software enigige
For instance, Sommerville includes lack of clarity, requients
confusion, and requirements amalgamation as common pnsble
in system requirements ([15] p. 127). Informal requireraenty
appear clear to the subject matter expert because of herimloma
knowledge but the software engineer, lacking domain kndgde
needs a more precise specification.

Practitioners are starting to apply software architecouréndus-
trial projects [5, 12]. This paper reflects on our experisnoeer
the past year with applying software architecture tectesgat a
large financial company. This company recently decided toleyn
precise software architecture techniques based on objectted
principles in the early stages of their projects. The firmdsm
improve its existing practice for developing software byngsa
more precise approach that leverages modern results atearch
ture research and practice.

We worked on four projects of significant size and importance
alongside company employees who had not previously useé the
techniques. These four projects are noteworthy for thdferdint
natures. The first was a greenfield project, unencumbered wit

Keywords

Experience report, finance

1. INTRODUCTION

Daily operations at many companies rely on services proMiye
complex enterprise software systems. Software helps ar ene
ables many companies to do their business but software &lysu
not their area of expertise. Conversely, software engieeder-
stand software but typically not the business it is written fThis
disconnect has to be addressed when building or integratitey-
prise software. Success requires effective collaboraticoftware

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

OOPSLA'06October 22-26, 2006, Portland, Oregon,USA.

Copyright 2006 ACM 1-59593-193-7/05/0010 ...$5.00.

legacy code, while the second was a brownfield project tore#ha
an existing system. The third project was focused on vendmi-p
uct selection and integration. The fourth was an overagchinject
whose goals were to coordinate the efforts of three othetsam-
municate this design to senior management.

Most technologies must be adapted from the pure research be-

fore they can be applied in industrial settings [11]. Ouhédecture
modeling technique is a synthesis of ideas from practiceaaad-
emic research. Four elements form the backbone of the wobni
goals models, component and connector models, informatma+

els, and behavior models. The models are based on objects and

their interactions and rely on notations such as the UML.[TBle
four models are tightly interconnected and thereby allasvatchi-
tect to cross-check her models for completeness and cenesyst
yielding more precise models. Details on our architectuogleh
ing technique are presented in section [3].

Precise software architecture models were effective irovere
ing problems with designs in progress. Our experience heaug-

ports hypotheses from the research community [14] but wadou
ourselves confronted with practical challenges. Whatestie of
software architecture in a company whose area of expegigeti
software? Is the software architecture for a brownfield gubjhe
same as for a greenfield project? Is a systematic approadtitto s
ware architecture useful (compared to just doing the besigde
we can)? Are there effective sanity checks for our undedstan
of the system to be built, given that domain experts only Hiave
ited time to validate our models? Where does architectuile &¥e
made specific observations on each of these challengesctiorse
?4 of this report, we describe anecdotal evidence for theviioig
themes that we found to be true across the four projects.

[]
ness requirements and technology.

A small collection of techniques and a detail knob are prac-
tical and useful in a variety of projects.

Architecture modeling techniques amplify the skills of the
architects.

A model of domain concepts and relationships based on ebjec
oriented principles is helpful when building architectored-
els.

It is difficult to know when to stop adding detail to an archi-
tecture model.

Our experience, even though preliminary and incompleteois
table for three reasons. First, it demonstrates how relseasults
on software architecture can be applied in an industriéihgetSec-
ond, it can motivate future research. Finally and most irtgoly,
we believe that our observations can guide practitionerthéir
own efforts to apply software architecture. While we do net b
lieve software architecture will be a silver bullet, our exgnce
indicates it is an improvement over current practice.

The remainder of this paper is organized as follows. Section
?7? gives an overview of the technique we used. The projects we
worked on are introduced in secti@?. Section?? provides ev-
idence for our specific observations. Limits of these olatéras
are investigated in secti®??, and we conclude in sectid®2®?.

2. ARCHITECTURE MODELING
TECHNIQUE

Our architecture technique is primarily a synthesis of texis
published techniques. Its four primary parts are: a goaldeho
a component and connector model, an information model, and a
behavior model. We specifically avoid prescribing a projeen-
agement style even though our preference is to apply tHisiigee
in an iterative process. We view software architecture asrai-
neering task to be completed regardless of the team ordemiza
the sequence of construction.

2.1 Sources

Our architecture modeling technique is best seen as a systhe
of existing modeling techniques and applied to the domawsoftF
ware architecture. Many challenges of software architechave
been addressed in other contexts and it is natural to choose f
known-good approaches.

The treatment of domain concepts follows from the precisd-mo
eling of objects in Catalysis [4]. In general, our modelirfgdo-
main types has not been as detailed as in Catalysis but assue-
ing to know the depth is there if needed.

The treatment of components and connectors is based onrthe ce
tral ideas from Shaw and Garlan [14]. The pragmatic apptinat

Architecture models can be used to bridge gaps between busi-

of these ideas to UML2 [13] is taken from the work of Cheeseman
and Daniels [2]. Component and connector models were génera
drawn as UML2 composite structure diagrams.

Behavior models in the form of scenarios are taken from @atal
sis while Role Activity Diagrams (RADs) are from Oulds biess
process modeling [10].

The use of goals models patterned after KAOS [9] and allows th
expression of competing architecture desires as in ATAMyaes
[7], as well as items more in the business domain than thevaodt
domain. The goals models also contain concepts from Jaskson
problem frames [6], specifically to structure the goals nmdead
connect them with the domain types.

2.2 Elements

Four models provide the backbone of our architecture tegfeni
A goals model expresses the highest level intent of the syste
component and connector model expresses the runtimeesrititi
the system. The information model expresses the vocabtdary
the other models, including types found in the domain. Theale
{'or model expresses the dynamics of the system as it perfissms
intended functions.

While these four models provide the backbone to express the
functionality of the system, other models are added as sacgt
cover other quality attributes such as security or tramsast The
additional models can use sophisticated domain-specifiteiing
notations or can be as simple as some ad hoc tables in a dpeeads
The four elements are described in the following sections.

2.2.1 Goals model

The highest level goal expresses the reason for the systésas e
tence. Each goal is decomposed into sub-goals and domaierpro
ties that collectively achieve the goal. This hierarchiatompo-
sition proceeds until the sub-goals are small enough to teett
accomplished.

Obstacles to accomplishing goals are also captured in #gre hi
archy. Strategies for overcoming the obstacle are exmlesih

additional goals in the goals model.
Legend Goal
goal refinement

Domain terms are underlined

Maintain room
temperature according
to user preference
A

Accurately
measure current
room temperature

Adjust radiator
valve to meet
target temperature

i Domain property: |
Central heating }

Determine target

temperature from
user

Figure 1: Example goals model

A set of sub-goals is assumed to be conjoined to achievdaatis
tion of a goal, but annotations can be used when sub-goaksset
competing strategies. In practice, our evaluation of gatiéfaction
is subjective and yields yes-no decisions. The work on KA®S d
scribes an objective technique to evaluate partial go@dfaation
that provides additional analysis capacity at the expehgeeater

effort. There are additional techniques to evaluate aidre strate-
gies based on degree of goal satisfaction using a combmafio
domain-based and balanced-score-card-based appro&etuisg
off more objective analysis with greater effort.

Domain properties are facts and assumptions about the domai
that support the analysis of the goals model. Terms andariat
ships present in the goals are expressed in the informatamem
(see section 2.2.3 below).

Ideally the goals model would form a simple tree but it is ofte
the case that a sub-goal may support more than one highedr-lev
goal. Michael Jacksons example of the skin of a rocket beseglu
to provide an aerodynamic surface as well as a containethéor t
propellant shows how one sub-goal can satisfy two goalshdad
cases we attached the sub-goal to multiple parent goals.

The goals models can be represented textually, using aeimpl
indented view in a word processor, or graphically, using>adad-
line diagram Figure 1gives an example). Graphical diagrams take
more effort to maintain but are more quickly understood bg-no
architects and clearly express the cases where goals hdtiplenu
parents. Finally, goals models in the style of problem framen
be created to express domain details more richly.

Goals are connected to the domain concepts they eitheiotontr
observe (use as inputs). Decomposing a higher-level gpadaly
relies on domain properties (central heating in our exajnieal
decompositions often follow a pattern (called a frame byksau)
such as the control pattern in our example.

Goals models can start out quite informal and be tightened up
over time. This property makes them useful at stages of thieqr
when there are many unknowns. Goals models can also help in th
partitioning of a large task across multiple teams.

2.2.2 Component and connector model

The component and connector model expresses the runtime com
ponents, connectors, and ports in the system. For the masbpa
use of these models is conventional so the description efé tvill
be brief and focus on a few points of difference.

Room temperature Temperature
Control

(Blackbox)

[0 Radiator
User preference

Legend
connector

ort bindi
.. E N -I- -I[lg

port

Figure 2: Example component and connector model

For many systems it is sufficient to create just two levelseef r
finement, which we call the blackbox and whitebox (example in
Figure 2). The blackbox component and connector model tepic
the system to be built as a single component and also cordgains
ternal systems that it interacts with (omitted in the exahplin
the whitebox component and connector model the components o
the inside of the system to be built are shown along with Iigsli
to the blackbox ports. Limiting modeling to two levels of refi
ment provides clarity when it works, but occasionally thehitect
is forced into more than two levels and this simple nomenoat
can work against clarity.

As a weak surrogate for richer descriptions for ports and con
nectors, we sometimes use a simple naming convention. Tithe po
is prefixed with either provided or required to imply supmier
consumers and given a name corresponding to the types that flo
across it.

2.2.3 Information model

The information model expresses the terms in the domain and
relationships between the types. It is not a stored data hinde
instead a conceptual model. Our models are often relatedghr
refinement, though the refinement is rarely formally exprddse-
cause of the effort required. For example, there is usuallyna
formation model that documents the types and relationships
the goals model, another for the blackbox component andemnn
tor model, and another for the whitebox component and cdaonec
model. In detailed modeling, each port can have its own infor
mation model describing the relationship between types filoe
domain and datatypes passed along the connector.

1 - controls

*

Radiator
o valve setting

Legend: UML Static Radiator Control

Structure Diagram.
Each classifier
represents a concept.

* *

- target - measured
1 1
Temperature

- preference *

1

User Room

- room temperature

Figure 3: Example information model

Used diligently, the information model ensures consistsaige
of vocabulary and reduces the chance that subject mattertsxp
architects, and developers will have different interpiets of do-
main terminology. Invariants can be used to express théoela
ships between domain terms, e.g., relating a persons abehweiit
birth date.

Information models can be represented as textual tablesamd
processor or graphically using UML static structure diaggdex-
ample in Figure 2.2.3). In every case it includes a definitibthe
concepts used. In our example, temperature would be definaa a
absolute measurement in degrees Fahrenheit (rather tlzditagu
tive measures like hot). In that sense the information mbdflls
the role of a glossary.

2.2.4 Behavior model (use case model, scenario or
RAD)

The behavior model expresses the behavior of the systeran Oft
this is the most difficult part of modeling architecture aradvee
use a variety of techniques that vary in their expressive@esl
difficulty.

Scenarios are an ordered sequence of actions performeakon th the project teams. Most software projects within the congpem

system by actors. A scenario describes one possible usthpatigh
the system, not all possible paths. They are easy to crege; e
tive at engaging subject matter experts, and refutable. edevy it

is also impossible to describe all possible system behawidth
scenarios and time-consuming to keep them updated as thie arc
tecture evolves.

cluding these projects, are developed by a team comprisgidyf
ers from different departments.

Precise modeling and software architecture were identlfied
senior management as tools that could help improve softazak
ity and project efficiency. Adherence to the old process ditdre-
quire the use of any particular software engineering tephes but

The UML use case model is a graphical map of use cases thatdid require the use of specific document templates that tefédyg
provides an at-a-glance overview of who uses a system antl wha imposed a waterfall style process. Since there were noxstirey

they can do.

In order to model all possible system behavior, we use Role Ac
tivity Diagrams (RADs). A RAD is a graphical representatioi
use cases that expresses both who participates as well psrthe
missible ordering. Parallel activities can be depictedinee RADs
are based on Petri nets. Simple RADs are easy to create aad und
stand, but this can fall away quickly with slightly more cdesp
RADs.

2.3 Detail knob

The benefits of architecture models must be weighed agaiast t
costs, especially the time it takes to develop them. For eatte
elements listed above, we have a conceptual detail knolvehaan
twist to build simple or complex versions of the models. Fache
project, and even for different times on the same projeciset¢he
detail knob to balance the benefits with the time investmeité
architectural models.

For goals models, it is the least effort to create textuasiosis
and to focus on the highest level goals. More detail can beddd
by using the problem frames style of goals models and by gddin
more sub-goals.

For component and connector models, starting with a teksial
of components, connectors, and ports is the least efforitcBing
to a graphical representation of these components and tades
more effort but provides models that are easier to visuall2e-
tailed port and connector descriptions provide more vahgeaan
be analyzed with respect to various quality attributes anatbpol
conformance.

For information models, a simple textual dictionary of dama
types provides substantial value. The addition of invdsiaa en-
code relationships and presentation as a graphical UMic static-
ture diagram both help precision but take more time.

For behavior models, a list of supported use cases provitdes a
overview of system functions. When presented as a graphszal
case diagram itis easier to visualize. Scenarios do notresouuch
up-front effort but keeping more than just a few updateddakae.
RADs take the most time but provide details on sequencingef b
havior not found in the other models.

Choosing the setting for the detail knob is an important pért
deciding on the process for using the architecture tecleniginis
report does not prescribe process details but it is easy agiime,
for example, that in a spiral process the architect wouldhsetle-
tail knob low on the first pass and higher on subsequent passes

3. SOFTWARE PROJECTS

All of these projects took place at a large financial firm. Many
large financial firms, including this one, have emerged frem r
peated mergings of smaller firms, each with its own set ofrinfo
mation systems, yielding a great variety of systems withenfirm.
Reference data is often fragmented across these multipterag,
making conceptually simple tasks rather difficult.

The firm is beginning to use software architecture modelimg) a
these projects are among the first. Some architects ar@figlldm-
ployees while others are contractors but all participatpesss on

uniform techniques in place, nor any design metrics, it wagos-
sible to take measurements to show improvement.

The following sections describe four projects where théniarc
tecture modeling technique was applied and at least oneeafuh
thors was the lead architect. The first three projects dethl man-
proprietary technology and we have some freedom to distess t
domain details but for the last project, labeled just Projgcwe
can describe only its use of the architecture technique.

3.1 Identity and Entitlement Management:
Documentation and coordination

This project dealt with identity and entitlement managemén
small companies, keeping track of employees and what ressur
they have access to is straightforward. In large companfessev
employee records might be stored in multiple repositoriestae
number of systems they might have access to numbers in the tho
sands, the job of tracking entitlements becomes a signifitfzad-
lenge. An entitlement is an ability to do something to a reseu
for example, the ability to login to a server or the abilityeixecute
a transfer of up to $10,000 between accounts.

This project arched across three constituent projectsti&@&nent
review, provisioning/de-provisioning, and authentioatauthori-
zation. The latter two can be purchased from vendors while at
the time it was not possible to purchase an acceptableemétit
review application. All worker entitlements are supposecdeé
reviewed, so those entitlements must be collected and megbe
for review. Some of those systems can be provisioned and de-
provisioned through a central software application and esem-
tittements can be checked at runtime via the authenticaitith-
orization application. In a smaller company it might be [lass
to connect every system with entitlements to the provisigfe-
provisioning system but in this large company there werettaay
legacy systems for that option to be practical.

The technology goals of using software architecture modats
to coordinate the three constituent development projeatesitify-
ing in advance possible points of concern, enabling planramd
ensuring well-informed product purchases. The commuioicat
goal was to aggregate the three designs and communicateito se
management how they collectively would solve identifiedifess
problems.

Procedurally, work on this project started by mining theigies
documentation from the three constituent projects. In tivthe
three projects, this documentation had been built by vendtbiose
products were final candidates for purchase. Consequémslyle-
sign documents contained a variety of models ranging from de
tailed designs to interface definitions to architecturadeis. In
the end, a stack of component and connector models had been cr
ated with the most abstract model showing the identity and en
tittement management component and its connections tonatte
systems; its refinement showed the components for the tloree ¢
stituent projects, their connections between each othet, the
bindings to the higher-level ports. The tidy refinement &f fimal
models was not mirrored in the creation of the models thetiorea
of the models involved repeated back-and-forth betweerodery

of details about the lower-level projects and the revisibmodels
to express them.

A goals model had been created for the parent of this project,
so the goals model for identity and entitlement managemerst w
built to demonstrate satisfaction of the higher level go8Iimilarly,
goals for the three constituent projects were built to destrate
satisfaction of the identity and entitlement managemeatgyo

model that expressed many domain terms, synonyms, and seme i
variants; a minimal behavior model because of limited infation;
and an acceptable blackbox component and connector model bu
known insufficient whitebox model.

3.3 Provisioning/De-provisioning:
Product selection

Subject matter experts were presented with a rough draft of a e provisioning/de-provisioning project is a constituroject

scenario and participated in its cleanup. The primary drfee
the behavior of the system was a single large (30-step) soena
describing the full lifecycle of a worker as it relates to thse of this
system. This scenario was built at the blackbox level foipiiogect
and was later extended at the whitebox level to express seinge
of behavior between the three constituent projects. OcnaBy
other scenarios were sketched but were not maintained muer t
or included in the documentation.

In summary, this project used the simple style of goals nsdel
with refinements up to its parent project and down to the diestt
projects. Component and connector models for both the btack
and whitebox were created. A detailed information model evas
ated but only at the level of the goals model (it was not refitzed
add new concepts that appeared in the whitebox). RADs were in
tially created to express the system behavior but over tinhetbe
single end-to-end scenario was kept updated.

3.2 Entitlement Review: Brownfield Design

The entitlement review project is a constituent projectarnd
neath the identity and entitlement management project sysiem
has been evolving for a few years and collects entitlemeatatily
from many systems in the company. Reviewers can browsealata f
the workers they are responsible for and can conduct periafeli
ficial reviews to attest that the workers have no more entitiets
than necessary. The system was in use by just one divisidmeof t
company and we designed extensions to support is use by tile wh
company.

The purpose of creating architecture models for this ptajes
to express the requirements, communicate these requiterteen
the development team, and to design a solution that was ddigpa
with the peer identity and entitlement management systems.

Management decided to use the implementation team for the ex
isting product to build the next version. Since the arch#end the
implementation team were in different divisions of the camy
the priorities of the two were not aligned initially. The hitecture
modeling for this project started out poorly because theslbgv
ment team had no design models, would not share implementati
artifacts like the database schema or codebase, and wasisgo b
working on other projects to meet with architects to docuntiea
existing system. We were able to build models from the detad

in identity and entitlement management. The purpose ofytstem
is to provide a central place to administer workers entidats.
Administrators can create or remove entitlements usinghglesi
user interface and, through connections to managed systhms
actual entitlements are changed on the affected systems.

The goal of creating architecture models for this system twas
ensure that the product selected would match the needs biiie
ness, to define a common model of entitlements to be shared by
all programs, and to produce a whitebox component and ctmmec
model of the system to enable the creation of workflow scripts

A significant challenge on this project was the collectionmnf
formation to create architecture models. The team withinrcom-
pany that was evaluating the vendor product was not coddcat
with the architects and was under tight deadlines to dematest
feasibility, leaving little time to discuss what they hadreed. The
vendor lacked the kinds of documents that would help thetaats
build an architecture model. A significant obstacle, ifiifiaot de-
tected, was that the vendor and our company used the samie term
nology with different definitions. A detailed informationatel of
the vendor product enabled us to identify and overcome this o
stacle. Eventually a purchase decision was made withouhgav
complete confidence in the compatibility of this producthntite
overall identity and entitlement management project.

This project used the simple goals model like other ideratityl
entittement management projects. The blackbox model was de
tailed and had ports appropriate to support what was knowheof
vendor product. The whitebox model was known to be deficient
since the vendor had no documentation and a limited amount of
time was allocated to discover the architecture.

3.4 Project D: Greenfield Design

Project D is concerned with the architecture of a systemisttat
be developed over several years. The project is aimed aibgn
clarity into this longterm effort early on. The system is thds-
scribed as a greenfield development effort to provide fonetlity
that no existing system in the company covers.

Even though the necessity for the system had been recognized
the requirements for the system were only understood inrbexb
est terms. Project D developed the business and softwané arc
tecture for the system based on input from subject mattegréxp

did know but our confidence in them was low because we had no primarily through a precise goals model. This precise goaidel

experts to validate them. The working relationship impobeeer
time but there was not time to make improvements to the madels
the existing system, which impaired the way that the archire
techniques could help the project.

An additional hindrance was the need for the implementation
team to receive documents in a particular, non-architatfarmat.
Consequently, we produced architecture models and shosdhor
them into the document template. As such, most design discus
sions did not make reference to the architecture modelklatgiin

in turn required a comprehensive domain model. Finallyclla
box and whitebox architectures of the system were derivexh fr
the goals and domain models.

The goals and domain models were the core deliverables of pro
ject D. They required substantial effort to produce and thgext
matter experts rated them as the greatest valueadd of tfecipro
The difficulties in developing goals and domain models fergis-
tem arose mostly from the nature of the system as a visionary s
tem that even subject matter experts had only vague and ctordli

the engagement. The implementation team has warmed up to thedeas about. While domains in the other projects were weleun
models, however, and has agreed to make them the central mechstood and the subject matter experts were able to focus mu-art

anism for discussing the design in the next set of enhandsmen
scheduled to follow the current set.
The project used the simple goals model; a detailed infaonat

lating the system functions, in Project D the domain was hand
forced us to create a domain model for the system as part of the
project.

We elicited the goals model from the subject matter experts The groups communicated their ideas and expressed thaeomn

through example scenarios of what should be possible to to wi
the system. Using these scenarios, the architect createaftaoéi

a goals model that that was then refined with the subject matte
experts. This process proved to be surprisingly efficienti$cov-
ering goals and the domain of the system.

4. OBSERVATIONS

In reflecting on these four projects we have noticed sintitsi
that are described in this section as themes. In each pregct
were able to use the models as a central discussion poinebatw
the subject matter experts and the technologists. We fduatctr
same set of techniques, if allowed to vary in the level of ieta
could be used on projects with quite different characterr e
of information models, even at the most abstract levelsafitac-
ture, was important in expressing the understanding of dinesdh.
Unfortunately, software architecture modeling is not gesibullet
but architects should expect that learning the techniquiksnake
them more effective. Finally, we still find it challenging decide
when to stop modeling and move on to other development activi
ties.

4.1 Bridge from business to technology

through the architecture models. In addition to being thmary
vehicle for conveying design proposals, the precise achite
models exposed fuzzy terms and fuzzy thinking. The hiefarch
cal nature of the models aided this iterative process. Itiquéar,
goals are decomposed into sub-goals and types are decainpose
into subtypes, allowing the group to quickly zoom in from Hrg
level overviews to the relevant detailed models.

4.2 Collection of techniques plus detail knob

The architecture modeling technique provided a backbofeuof
elements to express the core functions of the system buiedlais
flexibility in choosing the level of detail. In each projecewset the
detail knob differently to respond to the needs of the ptagewe,
for example, it is not a good investment of time to model imple
mentation details when you are planning on purchasing aorend
product. Our finding was that despite the differences batvike
projects, the core set of techniques was largely sufficeeakpress
our intent. The level of detail used on each project is suriradr
in Table 1.

All of the projects except for project D used the simple stfie
goals modeling that lacked the problem frames style of natiirgg
domain details. While project D was unprecedented and iadsgo

Across the four projects a strong theme was the use of models Still quite unclear, the other projects could rely on a gehshared

to bridge the gap between the business and technology dsmain
The best example from the identity and entittlement manageme
program was the use of architecture models to communicate th

understanding of the domain as a substitute for detailetirgod-
eling.
When concerns arose we were able to turn the detail knob up

design of the system to management and other interesteds team O that particular area. For example, when it became apptran

during a meeting. The presentation included the goals mudet-
mation model, component and connector models, and an eéxaferp
the end-to-end scenario. It was effective enough that tdeeace
could immediately ask relevant detailed questions abaasathat
concerned them.

Software architecture decisions are often of such high e
itis impossible to strictly categorize them as either besgor tech-
nology decisions. For example, in an early stage of entélgme-
view we addressed a problem regarding data quality. Theetonc
was that the existing team receiving data feeds could nolves
problems with the increased number of data feeds, as regolvi
each problem required contacting the feed provider andtizdony
a resolution. We considered two solutions. The first was &pke
the data collection centralized but to delegate respditgifor data
quality issues to the feed provider. The second was to pdetten-
tralize the data collection, thus limiting the number ofdfeand the
number of groups that the central team would have to coaina
with. Both alternatives address the same goal but are rexbkerin
that one is a technology solution and the other is a busiespon-
sibility solution. This demonstrates how architecturesnfsits on
the boundary between business decisions and technologgiatec
and how the goals modeling can uncover such options.

A challenge in the provisioning/de-provisioning projecismo
find a representation for entittements that worked across/ém-
dor products. We were able to use architecture models,dimgdu
scenarios, to communicate with management how signifitasit t
problem was and that it was not just a data translation iBased
on the shared understanding facilitated by the architeatuwdel,
management allocated resources to solve the problem.

The use of architecture models to bridge gaps between lassine
and technology was most apparent in project D. In this ptofese
were no implemented solutions in existence and no techistlog
could start writing code until the problem was described and
derstood. Many iterations were required between subjettema
experts and architects before both were satisfied with theigo.

the existing entitlement review application and the priovisng/de-
provisioning application might have incompatible viewseatitle-
ments, it was possible to write more detailed scenarios aild b
more detailed information models.

The entitlement review project required the creation oftamfthl
models beyond the core set. A spreadsheet was built to eticede
application user roles and the set of entitlements eachAwather
spreadsheet was built that tracked the referential integfitwo
source data feeds over time as it was cleaned up and becarae mor
complete.

4.3 Model of domain concepts

Our observation that a model of domain concepts is useftieat t
architecture modeling level is not novel but neither is itversally
recognized. Subject matter experts may be in a hurry to ithesar
systems functions and technologists may be in a hurry toridbesc
how those functions will be implemented, but we have found it
essential to build an information model that underpins kad
ensures that concepts and relationships are well undetstoo

In the entitlement review project, subject matter expemtsnf
many domains contributed to the project requirements. \&&od
ered that their terms might overlap but they did not alwaysagn
relationships or definitions. On this project synonyms weym-
mon so we used convenience attributes and invariants tadenco
them.

A central challenge on the provisioning/de-provisioningject
was the structure of entittements. Each system to be pomési
had its own model of entittements and we needed to produce a
model that covered them all and was able to encode role-lzased
cess control. After creating an information model that wedt
would be sufficient, we discovered that often resources areip
sioned indirectly. For example, the provisioning systerghhactu-
ally create new entries in an LDAP server in order to entitleess
to another system. The precise encoding of our understguadian
information model enabled us to express our understandidga

Models
Project Goals Component and Connector | Information Model Behavior Model
(character) Model Model
Identity and Entitlement Management| Simple Detailed blackbox, Sufficient for simple | Detailed single
(documentation) detailed whitebox goals model end-to-end scenario
Entitlement Management Simple Acceptable blackbox, Detailed Minimal
(brownfield) insufficient whitebox
Provisioning / Deprovisioning Simple Detailed blackbox, Sufficient for simple | Minimal
(product selection) minimal whitebox goals model
Project D Detailed | Acceptable blackbox, Detailed Simple scenario
(greenfield) idealized whitebox

Table 1: Level of detail by projects

detect when our design was incompatible with new requirésnen

Unlike the other three projects, project D entered into aaiom
still being explored by the subject matter experts (and riweyi of
their title was not lost on the group). Rather than using tifier
mation model to simply detect overlapping terminology oswee
knowledge transfer between subject matter experts andtecth
project D used the information model as a key working model by
the subject matter experts themselves to encode alteznatis-
sibilities and grow their understanding of this new domairhe
precision of the model enabled them to detect inconsistengith
their proposals and to communicate them to the architectstrer
subject matter experts.

4.4 Architecture techniques amplify skill

Some tasks have the property that, after a person has baedtra
to do them, the work of one person cannot be differentiatech fr
another. For example, after teaching Ann and Bab to fill queti
cards, we dont expect that one will do it better than the other

Software architecture modeling can amplify the skills ofaan
chitect but cannot guarantee success [5]. While we shoydatx
that after training they will have greater insight and hageess to
more precise techniques, we should not be surprised wher#mn
use the techniques effectively and Bob struggles.

All models are abstractions of more complicated systemthdn
hands of an expert, models can be used to comprehend pespefti
systems that would otherwise be too complex. Models catofaié
useful either if they focus on unhelpful properties or ifitteannot
be analyzed by the architect. Two of our projects were exaspl
these failings.

On the provisioning/de-provisioning project, over the rsauof
many meetings our architects were unable to validate thradwer-
all model of entitlements was compatible with the vendorsleho
despite having access to published documentation, intdota-
mentation, and even the vendors implementation team. The ve
dors internal, implementation-level model made extensse of
meta-modeling ideas like key-value pairs but did not exprelsat
instances would be present at runtime. The vendor had pedduc
an accurate model that abstracted away details necessangwer
our question. Itis our belief that had the vendors team beewk
edgeable regarding architecture modeling that their nsodelld
be more helpful for our task and less like literal drawingsthod
data structures.

On the entitlement review project, one of the goals was te edu
cate an apprentice architect. After training he was ableddyce
syntactically correct architecture models, the same amtire ex-
perienced architects. Due to his lack of experience, hoiéie
models at the time tended to be straightforward expresdiamat
he had learned from subject matter experts and he was noblget a
to use the formalization to detect inconsistencies or exjgaps in

the design. As a consequence, the architecture models titkim
him to improve the quality of the system design.

Not all subject matter experts in project D embraced theitach
ture models. Those that rejected the technique outrightiraged
to create documentation with imprecisions and contraatistithat
would have been avoided with the goals and information niogel
techniques. Those that embraced the models avoided thelse pr
lems and were able to help the architects remove problentsin t
design. This experience suggests that the models werelgstéma
designing the system.

4.5 When to stop adding detail

With both an ability to turn up the detail knob on every model
type and an ability to borrow more modeling techniques from t
source techniques, it was often tempting to continue addétgil
to our models. In formal or informal reviews, architectsofasked
each other why they chose the level of detail they did, or exen
pressed the opinion that more detail should have been adged-i
ticular places. Adding more detail must always be tradedwitff
an additional time investment to add that detail. While wenca
offer a universal rule, we can describe some cases and oigiatec
process. In general, we traded off model creation efforh e
models ability to answer questions.

The choice of where to stop the model was easiest in the iden-
tity and entitlement management project because each thfrie
constituent projects had an architecture model itselfs Tas not
license to add all possible detail because in the whitebar-co
ponent and connector view showing the three constituerjégio
there were approximately sixty ports, either for commutiizato
the peer systems or to external systems. While we had thelmode
ing capability to document the datatypes and operationsdoh of
those ports, we declined to add this detail and forego tHéyatn
detect problems at that level.

The provisioning/de-provisioning project was targetegratiuct
purchase from the start. The important questions to be ars\ioy
the model included whether or not the vendor product coufd su
port our model of entitlements and if it could connect to thieeo
projects. We did end up creating a whitebox component ane con
nector model of the vendor product because it supportedriie c
ation of workflows and the workflow authors would need to know
that level of architecture.

The choice of where to stop was most challenging on the brown-
field entittement review project. The enhancements for thet n
version ranged from changes visible at a highest level ofehod
ing to small changes to input datatypes. One particuladerti
stood out: The developers informed us that one of our require
ments would entail changes to 110 stored procedures. Whige t
work was inevitable for this release, we wanted to be suredala
similar problems for subsequent releases and the architemight

they knew how to prevent future problems. Two problems eetrg
First, the developers would resent the architects enchogabn
their detailed design, and second, we did not want to invest t
effort to make all of our models sufficiently detailed to edeall
such details. One camp of architects subscribed to the looispd-
ary theory where a line was drawn and the architecture stbppe
there. The crisp boundary architects would not tell the dpers
how to avoid implementation problems but instead write iqyat-
tribute requirements, in this case, that future changesaafrtain
nature must be able to be made within a certain time. The other
camp of architects advocated a design wedge theory where mor
architecture details were modeled at the top levels butégpeff
as the model approached the implementation componentdieln t
end we produced a crisp boundary architecture model andmad a
informal chat with the developers about implementatioriooyst

Due to the novel nature of project D, the key question was fea-
sibility rather than balancing various quality attributBgcause of
this restriction, architecture modeling progressed Lntilecame
apparent that any given component could be constructedrer pe
haps already existed. Each component had a correspondjhg hi
level goal motivating it and in most cases its subcomponesie
not specified to allow for latitude in implementation. It waessi-
ble to stop modeling at the highest level of components tsecthe
key question of feasibility could be answered at that level.

5. LIMITATIONS

Ideally, this report would be produced by an independertypar
that was neither invested in the application of the architectech-
nigue nor responsible for its development, as were the asihio
this report. To the best of our abilities we have tried to keap
observations objective.

Furthermore, an ideal report would compare some quality at-
tributes of project delivery with and without the softwarelstec-
ture modeling. Since such metrics were not available indthis-
nization before we started we were not able to make a meaningf
comparison.

While this report focuses on the first year of usage of theiarch
tecture technique, we do not yet know how it will fare duritg) i
longer-term application across the whole firm. Moreover,dee
not present evidence of reproducibility at other firms witffied-
ent existing customs. However, our observations can senana
early sanity check of our approach and guide future devedopm
and research.

Finally, the architects participating in these projectsadly have
a track record of successful project delivery and are, ireggn
highly knowledgeable regarding software engineering themd
practice. Since not all architects will have a similar backend, we
have little evidence that the architecture technique cbalttarned
and effectively applied by other architects. On the otherdhave
did provide some indications that inexperienced arclstbenefit
from using the technique.

It is possible that many readers of this report, as expergsfia
ware architecture, will be disappointed at the apparenbgapeen

this perspective, the use of UML with its mature tool suppe
pragmatic choice and the lack of formalism in other areagst-
fied because their benefits might not outweigh the time invest
required.

6. CONCLUSIONS

We have presented an architecture modeling technique that w
believe has pulled the best ideas from various researclcatibhs.
We summarized anecdotal evidence from its usage in fouegtoj
of different nature across five themes of observations. &bbser-
vations address practical problems of software archite¢hat we
believe have to be faced by many software architects in ipeact
These projects were performed at a large financial compaaty th
bears similarity to many other information technology dépants
that the authors have experienced. Thus we believe ourv@bser
tions can guide the application of software architectureiacti-
tioners in similar situations.

Our observations are based on anecdotal evidence and sugges
future research questions. For example, we make the oliserva
that levels of detail of different models are possibly tiedlte na-
ture of the project. Quantitative data from a variety of potg
could expose relationships between these variables.

Another unresolved issue regards how architecture magéin
used within a company and by whom. It seems inappropriate to
expect every person in the company to learn the technoldgwnly
some learn it, how should they interact with those that d@ We
have tentatively identified three levels of knowledge rdigay the
models: In Level 1 someone can read a model produced by an-
other. In Level 2 someone can create syntactically correctais.

In Level 3 someone can use the models to discover flaws in pro-
posed designs, to identify areas of the domain that have eiot y
been modeled, and to evaluate various quality attributeguré
reports or research could address which people should gehwh
level of training.

We have not addressed how to decide the balance between in-
vesting time in software architecture versus proceedirth what
has already been modeled. This is an important technolagy tr
sition question as time and money are always scarce comiemdit
on commercial projects. In many ways the research community
has taken the high road and investigated highly formal nsotfelt
require considerable time investment with commensurdigevia
special domains, e.g., high reliability systems. Many stduman-
agers responsible for non-exotic projects would ask Whaefiie
can | get if | invest 1, 2, or 3 weeks in building an architeetur
model?

The response of the project teams to the architecture mbdsls
been generally positive. There are some team members who are
reluctant to learn another technique. Others questionire in-
vestment compared to just starting coding. Still othergsupthe
techniques in principle but when deadlines get tight thernteto
their old ways. But overall the people who have participdtade
been happy with the results. They tell us that the modelsdmeao
clear description of the problems and solutions, sometindisat-

what has been shown in research contexts and what we have preing that the clarity we can demonstrate in the problem dédimis

sented here from an industrial context. For example, weestdhe
creation of UML models instead of using a special-purposhiar
tecture description language and we have never been abieve p
that our systems have any strong property, such as absedeadf
locks. Inthe experience of the authors, however, the teciasi that
we have employed are a significant improvement compareceto th
norm in industry projects. The concepts of components, ecnn
tors, ports, goals, and refinements are rarely represeritachmy
precision in the all-too-common PowerPoint architecturEsom

the greatest value.

7. ACKNOWLEDGEMENTS

We thank Jonathan Aldrich, Bradley Schmerl, David Garlah, B
Scherlis, the SSSG, and the anonymous reviewers for hdgsfd}
back on this material. The first two authors wish to acknogéed
support through the US Army Research Office (ARO) under grant
number DAAD19-01-1-0485, the National Science Foundation

der grant CCR-0113810, and a research contract from Lodkhee
Martin ATL. The views and conclusions contained in this doemt

are those of the authors and should not be interpreted asseapr

ing the official policies, either expressed or implied, o #hRO,

the U.S. government, Lockheed Martin, or any other entity.

8.
[1]

(2]

(3]

[4]

(5]

(6]

[7]
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

Len Bass, Paul Clements, and Rick Kazm&oftware
Architecture in PracticeAddison-Wesley, 1998.

John Cheesman and John Dani&l8IL Components: A
Simple Process for Specifying Component-Based Software
Addison-Wesley, 2000.

Paul Clements, Felix Bachmann, Len Bass, David Garlan,
James Ivers, Reed Little, Robert Nord, and Judith Stafford.
Documenting Software Architectures: Views and Beyond
Addison-Wesley, Reading, Massachusetts, 2002.
Desmond F. D’'Souza and Alan Cameron Wills.
Objects,Components and Frameworks With UML: The
Catalysis ApproachAddison-Wesley, 1998.

George Fairbanks. Why can't they create architecturdet
like "developer x"?: an experience report.IGSE '03:
Proceedings of the 25th International Conference on
Software Engineeringpages 548-552, Washington, DC,
USA, 2003. IEEE Computer Society.

Michael JacksonProblem Frames: Analyzing and
Structuring Software Development Problems
Addison-Wesley, 2000.

Rick Kazman, Mark Klein, and Paul Clements. Atam:
Method for architecture evaluation, 2000.

Jeff Kramer and Jeff Magee. Engineering distributed
software: a structural discipline. BSEC/FSE-13:
Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software
engineering pages 283-285, New York, NY, USA, 2005.
ACM Press.

Emmanuel Letier and Axel van Lamsweerde. Reasoning
about partial goal satisfaction for requirements and daesig
engineeringSIGSOFT Softw. Eng. Note29(6):53-62,
2004.

Martin Ould.Business Processes - Modeling and Analysis
for Re-engineering and Improvemedbhn Wiley and Sons,
Chichester, 1995.

Samuel Redwine, Jr. and William Riddle. Software
technology maturation. pages 189-200, August 1985. This
paper was cited as the best/most influential paper by the
program committee for ICSE 18 in 1996.

Roshanak Roshandel, Bradley Schmerl, Nenad Medwiglovi
David Garlan, and Dehua Zhang. Using multiple views to
model and analyze software architecture: An experience
report. Technical Report USC-CSE Technical Report
USC-CSE-2003-508, USC, 1003.

Jim Rumbaugh, Ivar Jacobson, and Grady Boddte
Unified Modeling Language Reference Manual
Addison-Wesley, 1998.

Mary Shaw and David Garlasoftware Architecture:
Perspectives on an Emerging Discipliferentice-Hall, Inc.,
1996.

lan SommervilleSoftware EngineeringAddison-Wesley,
7th edition, 2004.

