
Software Architecture at a Large Financial Firm

George Fairbanks
Carnegie Mellon University

School of Computer Science
5000 Forbes Avenue

Pittsburgh, PA, 15213, USA

fairbanks@cmu.edu

Kevin Bierhoff
Carnegie Mellon University

School of Computer Science
5000 Forbes Avenue

Pittsburgh, PA, 15213, USA

bierhoff@cmu.edu

Desmond D’Souza
Kinetium, Inc.

9901 Spicewood Mesa Drive
Austin, TX, 78759, USA

desmond.dsouza@kinetium.com

ABSTRACT
System builders have historically used informal software architec-
ture models to understand options, make choices, and communi-
cate with others. Research into software architecture overthe past
fifteen years has indicated that more precise architecture models
may be beneficial. At a large financial firm, we applied precise
software architecture techniques on four software projects and this
experience has revealed a number of practical issues. We made the
following observations across the projects: 1) Architecture models
can be used to bridge gaps between business requirements andtech-
nology, 2) A small collection of techniques and a detail knobare
practical and useful in a variety of projects, 3) Architecture mod-
eling techniques amplify the skills of the architects, 4) A model of
domain concepts and relationships is helpful when buildingarchi-
tecture models, and 5) It is difficult to know when to stop adding
detail to your architecture model. We believe that these observa-
tions motivate future research and can help practitioners make soft-
ware architecture more effective in practice.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

General Terms
Design, Documentation

Keywords
Experience report, finance

1. INTRODUCTION
Daily operations at many companies rely on services provided by

complex enterprise software systems. Software helps or even en-
ables many companies to do their business but software is usually
not their area of expertise. Conversely, software engineers under-
stand software but typically not the business it is written for. This
disconnect has to be addressed when building or integratingenter-
prise software. Success requires effective collaborationof software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’06,October 22–26, 2006, Portland, Oregon,USA.
Copyright 2006 ACM 1-59593-193-7/05/0010 ...$5.00.

engineers and subject matter experts to ensure that the software be-
ing created actually provides the services needed by the business.

Software architecture [14] promises to aid this difficult task. Ar-
chitecture has been a focus of software engineering research for
fifteen years [8] and researchers have identified various benefits
of incorporating software architecture into software development
projects, including reduced cost of development [1].

In our view, software architecture involves modeling the soft-
ware being built at a high level, thus expressing the domain,goals
(or requirements), architectural structure, and behavior. As such, it
addresses some of the classic challenges of software engineering.
For instance, Sommerville includes lack of clarity, requirements
confusion, and requirements amalgamation as common problems
in system requirements ([15] p. 127). Informal requirements may
appear clear to the subject matter expert because of her domain
knowledge but the software engineer, lacking domain knowledge,
needs a more precise specification.

Practitioners are starting to apply software architectureon indus-
trial projects [5, 12]. This paper reflects on our experiences over
the past year with applying software architecture techniques at a
large financial company. This company recently decided to employ
precise software architecture techniques based on object-oriented
principles in the early stages of their projects. The firm hopes to
improve its existing practice for developing software by using a
more precise approach that leverages modern results of architec-
ture research and practice.

We worked on four projects of significant size and importance
alongside company employees who had not previously used these
techniques. These four projects are noteworthy for their different
natures. The first was a greenfield project, unencumbered with
legacy code, while the second was a brownfield project to enhance
an existing system. The third project was focused on vendor prod-
uct selection and integration. The fourth was an overarching project
whose goals were to coordinate the efforts of three others and com-
municate this design to senior management.

Most technologies must be adapted from the pure research be-
fore they can be applied in industrial settings [11]. Our architecture
modeling technique is a synthesis of ideas from practice andacad-
emic research. Four elements form the backbone of the technique:
goals models, component and connector models, informationmod-
els, and behavior models. The models are based on objects and
their interactions and rely on notations such as the UML [13]. The
four models are tightly interconnected and thereby allow the archi-
tect to cross-check her models for completeness and consistency,
yielding more precise models. Details on our architecture model-
ing technique are presented in section [3].

Precise software architecture models were effective in uncover-
ing problems with designs in progress. Our experience herein sup-

In Proc. OOPSLA 2006, ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications.
October 22-26, Portland, Oregon, USA.

ports hypotheses from the research community [14] but we found
ourselves confronted with practical challenges. What is the role of
software architecture in a company whose area of expertise is not
software? Is the software architecture for a brownfield project the
same as for a greenfield project? Is a systematic approach to soft-
ware architecture useful (compared to just doing the best design
we can)? Are there effective sanity checks for our understanding
of the system to be built, given that domain experts only havelim-
ited time to validate our models? Where does architecture end? We
made specific observations on each of these challenges. In section
?4 of this report, we describe anecdotal evidence for the following
themes that we found to be true across the four projects.

• Architecture models can be used to bridge gaps between busi-
ness requirements and technology.

• A small collection of techniques and a detail knob are prac-
tical and useful in a variety of projects.

• Architecture modeling techniques amplify the skills of the
architects.

• A model of domain concepts and relationships based on object-
oriented principles is helpful when building architecturemod-
els.

• It is difficult to know when to stop adding detail to an archi-
tecture model.

Our experience, even though preliminary and incomplete, isno-
table for three reasons. First, it demonstrates how research results
on software architecture can be applied in an industrial setting. Sec-
ond, it can motivate future research. Finally and most importantly,
we believe that our observations can guide practitioners intheir
own efforts to apply software architecture. While we do not be-
lieve software architecture will be a silver bullet, our experience
indicates it is an improvement over current practice.

The remainder of this paper is organized as follows. Section
?? gives an overview of the technique we used. The projects we
worked on are introduced in section??. Section?? provides ev-
idence for our specific observations. Limits of these observations
are investigated in section??, and we conclude in section??.

2. ARCHITECTURE MODELING
TECHNIQUE

Our architecture technique is primarily a synthesis of existing
published techniques. Its four primary parts are: a goals model,
a component and connector model, an information model, and a
behavior model. We specifically avoid prescribing a projectman-
agement style even though our preference is to apply this technique
in an iterative process. We view software architecture as anengi-
neering task to be completed regardless of the team organization or
the sequence of construction.

2.1 Sources
Our architecture modeling technique is best seen as a synthesis

of existing modeling techniques and applied to the domain ofsoft-
ware architecture. Many challenges of software architecture have
been addressed in other contexts and it is natural to choose from
known-good approaches.

The treatment of domain concepts follows from the precise mod-
eling of objects in Catalysis [4]. In general, our modeling of do-
main types has not been as detailed as in Catalysis but it is reassur-
ing to know the depth is there if needed.

The treatment of components and connectors is based on the cen-
tral ideas from Shaw and Garlan [14]. The pragmatic application

of these ideas to UML2 [13] is taken from the work of Cheeseman
and Daniels [2]. Component and connector models were generally
drawn as UML2 composite structure diagrams.

Behavior models in the form of scenarios are taken from Cataly-
sis while Role Activity Diagrams (RADs) are from Oulds business
process modeling [10].

The use of goals models patterned after KAOS [9] and allows the
expression of competing architecture desires as in ATAM analyses
[7], as well as items more in the business domain than the software
domain. The goals models also contain concepts from Jacksons
problem frames [6], specifically to structure the goals models and
connect them with the domain types.

2.2 Elements
Four models provide the backbone of our architecture technique.

A goals model expresses the highest level intent of the system. A
component and connector model expresses the runtime entities in
the system. The information model expresses the vocabularyfor
the other models, including types found in the domain. The behav-
ior model expresses the dynamics of the system as it performsits
intended functions.

While these four models provide the backbone to express the
functionality of the system, other models are added as necessary to
cover other quality attributes such as security or transactions. The
additional models can use sophisticated domain-specific modeling
notations or can be as simple as some ad hoc tables in a spreadsheet.
The four elements are described in the following sections.

2.2.1 Goals model
The highest level goal expresses the reason for the systems exis-

tence. Each goal is decomposed into sub-goals and domain proper-
ties that collectively achieve the goal. This hierarchicaldecompo-
sition proceeds until the sub-goals are small enough to be directly
accomplished.

Obstacles to accomplishing goals are also captured in the hier-
archy. Strategies for overcoming the obstacle are expressed with
additional goals in the goals model.

Maintain room
temperature according

to user preference

Accurately
measure current

room temperature

Determine target
temperature from

user

Adjust radiator
valve to meet

target temperature

Domain property:
Central heating

Goal

Subgoal

goal refinement

Property

Legend

Domain terms are underlined

Figure 1: Example goals model

A set of sub-goals is assumed to be conjoined to achieve satisfac-
tion of a goal, but annotations can be used when sub-goals represent
competing strategies. In practice, our evaluation of goal satisfaction
is subjective and yields yes-no decisions. The work on KAOS de-
scribes an objective technique to evaluate partial goal satisfaction
that provides additional analysis capacity at the expense of greater

effort. There are additional techniques to evaluate alternative strate-
gies based on degree of goal satisfaction using a combination of
domain-based and balanced-score-card-based approaches,trading
off more objective analysis with greater effort.

Domain properties are facts and assumptions about the domain
that support the analysis of the goals model. Terms and relation-
ships present in the goals are expressed in the information model
(see section 2.2.3 below).

Ideally the goals model would form a simple tree but it is often
the case that a sub-goal may support more than one higher-level
goal. Michael Jacksons example of the skin of a rocket being used
to provide an aerodynamic surface as well as a container for the
propellant shows how one sub-goal can satisfy two goals. In these
cases we attached the sub-goal to multiple parent goals.

The goals models can be represented textually, using a simple
indented view in a word processor, or graphically, using a box-and-
line diagram (Figure 1gives an example). Graphical diagrams take
more effort to maintain but are more quickly understood by non-
architects and clearly express the cases where goals have multiple
parents. Finally, goals models in the style of problem frames can
be created to express domain details more richly.

Goals are connected to the domain concepts they either control or
observe (use as inputs). Decomposing a higher-level goal typically
relies on domain properties (central heating in our example). Goal
decompositions often follow a pattern (called a frame by Jackson)
such as the control pattern in our example.

Goals models can start out quite informal and be tightened up
over time. This property makes them useful at stages of the project
when there are many unknowns. Goals models can also help in the
partitioning of a large task across multiple teams.

2.2.2 Component and connector model
The component and connector model expresses the runtime com-

ponents, connectors, and ports in the system. For the most part, our
use of these models is conventional so the description of it here will
be brief and focus on a few points of difference.

Temperature
Control

(Blackbox)

Temperature Control (Whitebox)

Sensor

Radiator
Control

Setting

Componentconnector
port

port binding

Room temperature

User preference
Radiator

Legend

Figure 2: Example component and connector model

For many systems it is sufficient to create just two levels of re-
finement, which we call the blackbox and whitebox (example in
Figure 2). The blackbox component and connector model depicts
the system to be built as a single component and also containsex-
ternal systems that it interacts with (omitted in the example). In
the whitebox component and connector model the components on
the inside of the system to be built are shown along with bindings
to the blackbox ports. Limiting modeling to two levels of refine-
ment provides clarity when it works, but occasionally the architect
is forced into more than two levels and this simple nomenclature
can work against clarity.

As a weak surrogate for richer descriptions for ports and con-
nectors, we sometimes use a simple naming convention. The port
is prefixed with either provided or required to imply suppliers or
consumers and given a name corresponding to the types that flow
across it.

2.2.3 Information model
The information model expresses the terms in the domain and

relationships between the types. It is not a stored data model but
instead a conceptual model. Our models are often related through
refinement, though the refinement is rarely formally expressed be-
cause of the effort required. For example, there is usually an in-
formation model that documents the types and relationshipsfrom
the goals model, another for the blackbox component and connec-
tor model, and another for the whitebox component and connector
model. In detailed modeling, each port can have its own infor-
mation model describing the relationship between types from the
domain and datatypes passed along the connector.

User

Radiator Control

Temperature
Room

Radiator

valve setting
Legend: UML Static
Structure Diagram.
Each classifier
represents a concept.

1

*

- controls

*1

- room temperature* 1

- preference

*

1

- target

*

1

- measured

Figure 3: Example information model

Used diligently, the information model ensures consistentusage
of vocabulary and reduces the chance that subject matter experts,
architects, and developers will have different interpretations of do-
main terminology. Invariants can be used to express the relation-
ships between domain terms, e.g., relating a persons age with her
birth date.

Information models can be represented as textual tables in aword
processor or graphically using UML static structure diagrams (ex-
ample in Figure 2.2.3). In every case it includes a definitionof the
concepts used. In our example, temperature would be defined as an
absolute measurement in degrees Fahrenheit (rather than qualita-
tive measures like hot). In that sense the information modelfulfills
the role of a glossary.

2.2.4 Behavior model (use case model, scenario or
RAD)

The behavior model expresses the behavior of the system. Often
this is the most difficult part of modeling architecture and so we
use a variety of techniques that vary in their expressiveness and
difficulty.

Scenarios are an ordered sequence of actions performed on the
system by actors. A scenario describes one possible use paththrough
the system, not all possible paths. They are easy to create, effec-
tive at engaging subject matter experts, and refutable. However, it
is also impossible to describe all possible system behaviors with
scenarios and time-consuming to keep them updated as the archi-
tecture evolves.

The UML use case model is a graphical map of use cases that
provides an at-a-glance overview of who uses a system and what
they can do.

In order to model all possible system behavior, we use Role Ac-
tivity Diagrams (RADs). A RAD is a graphical representationof
use cases that expresses both who participates as well as theper-
missible ordering. Parallel activities can be depicted because RADs
are based on Petri nets. Simple RADs are easy to create and under-
stand, but this can fall away quickly with slightly more complex
RADs.

2.3 Detail knob
The benefits of architecture models must be weighed against the

costs, especially the time it takes to develop them. For eachof the
elements listed above, we have a conceptual detail knob thatwe can
twist to build simple or complex versions of the models. For each
project, and even for different times on the same project, weset the
detail knob to balance the benefits with the time investment in the
architectural models.

For goals models, it is the least effort to create textual versions
and to focus on the highest level goals. More detail can be added
by using the problem frames style of goals models and by adding
more sub-goals.

For component and connector models, starting with a textuallist
of components, connectors, and ports is the least effort. Switching
to a graphical representation of these components and portstakes
more effort but provides models that are easier to visualize. De-
tailed port and connector descriptions provide more value and can
be analyzed with respect to various quality attributes and protocol
conformance.

For information models, a simple textual dictionary of domain
types provides substantial value. The addition of invariants to en-
code relationships and presentation as a graphical UML static struc-
ture diagram both help precision but take more time.

For behavior models, a list of supported use cases provides an
overview of system functions. When presented as a graphicaluse
case diagram it is easier to visualize. Scenarios do not require much
up-front effort but keeping more than just a few updated takes time.
RADs take the most time but provide details on sequencing of be-
havior not found in the other models.

Choosing the setting for the detail knob is an important partof
deciding on the process for using the architecture technique. This
report does not prescribe process details but it is easy to imagine,
for example, that in a spiral process the architect would setthe de-
tail knob low on the first pass and higher on subsequent passes.

3. SOFTWARE PROJECTS
All of these projects took place at a large financial firm. Many

large financial firms, including this one, have emerged from re-
peated mergings of smaller firms, each with its own set of infor-
mation systems, yielding a great variety of systems within the firm.
Reference data is often fragmented across these multiple systems,
making conceptually simple tasks rather difficult.

The firm is beginning to use software architecture modeling and
these projects are among the first. Some architects are full time em-
ployees while others are contractors but all participate aspeers on

the project teams. Most software projects within the company, in-
cluding these projects, are developed by a team comprised ofplay-
ers from different departments.

Precise modeling and software architecture were identifiedby
senior management as tools that could help improve softwarequal-
ity and project efficiency. Adherence to the old process did not re-
quire the use of any particular software engineering techniques but
did require the use of specific document templates that effectively
imposed a waterfall style process. Since there were no pre-existing
uniform techniques in place, nor any design metrics, it was not pos-
sible to take measurements to show improvement.

The following sections describe four projects where the archi-
tecture modeling technique was applied and at least one of the au-
thors was the lead architect. The first three projects deal with non-
proprietary technology and we have some freedom to discuss their
domain details but for the last project, labeled just Project D, we
can describe only its use of the architecture technique.

3.1 Identity and Entitlement Management:
Documentation and coordination

This project dealt with identity and entitlement management. In
small companies, keeping track of employees and what resources
they have access to is straightforward. In large companies where
employee records might be stored in multiple repositories and the
number of systems they might have access to numbers in the thou-
sands, the job of tracking entitlements becomes a significant chal-
lenge. An entitlement is an ability to do something to a resource,
for example, the ability to login to a server or the ability toexecute
a transfer of up to $10,000 between accounts.

This project arched across three constituent projects: Entitlement
review, provisioning/de-provisioning, and authentication/authori-
zation. The latter two can be purchased from vendors while at
the time it was not possible to purchase an acceptable entitlement
review application. All worker entitlements are supposed to be
reviewed, so those entitlements must be collected and presented
for review. Some of those systems can be provisioned and de-
provisioned through a central software application and some en-
titlements can be checked at runtime via the authentication/auth-
orization application. In a smaller company it might be possible
to connect every system with entitlements to the provisioning/de-
provisioning system but in this large company there were toomany
legacy systems for that option to be practical.

The technology goals of using software architecture modelswas
to coordinate the three constituent development projects,identify-
ing in advance possible points of concern, enabling planning, and
ensuring well-informed product purchases. The communication
goal was to aggregate the three designs and communicate to senior
management how they collectively would solve identified business
problems.

Procedurally, work on this project started by mining the design
documentation from the three constituent projects. In two of the
three projects, this documentation had been built by vendors whose
products were final candidates for purchase. Consequently,the de-
sign documents contained a variety of models ranging from de-
tailed designs to interface definitions to architectural models. In
the end, a stack of component and connector models had been cre-
ated with the most abstract model showing the identity and en-
titlement management component and its connections to external
systems; its refinement showed the components for the three con-
stituent projects, their connections between each other, and the
bindings to the higher-level ports. The tidy refinement of the final
models was not mirrored in the creation of the models the creation
of the models involved repeated back-and-forth between discovery

of details about the lower-level projects and the revision of models
to express them.

A goals model had been created for the parent of this project,
so the goals model for identity and entitlement management was
built to demonstrate satisfaction of the higher level goals. Similarly,
goals for the three constituent projects were built to demonstrate
satisfaction of the identity and entitlement management goals.

Subject matter experts were presented with a rough draft of a
scenario and participated in its cleanup. The primary driver for
the behavior of the system was a single large (30-step) scenario
describing the full lifecycle of a worker as it relates to theuse of this
system. This scenario was built at the blackbox level for theproject
and was later extended at the whitebox level to express sequencing
of behavior between the three constituent projects. Occasionally
other scenarios were sketched but were not maintained over time
or included in the documentation.

In summary, this project used the simple style of goals models
with refinements up to its parent project and down to the constituent
projects. Component and connector models for both the blackbox
and whitebox were created. A detailed information model wascre-
ated but only at the level of the goals model (it was not refinedto
add new concepts that appeared in the whitebox). RADs were ini-
tially created to express the system behavior but over time only the
single end-to-end scenario was kept updated.

3.2 Entitlement Review: Brownfield Design
The entitlement review project is a constituent project under-

neath the identity and entitlement management project. Thesystem
has been evolving for a few years and collects entitlement data daily
from many systems in the company. Reviewers can browse data for
the workers they are responsible for and can conduct periodic of-
ficial reviews to attest that the workers have no more entitlements
than necessary. The system was in use by just one division of the
company and we designed extensions to support is use by the whole
company.

The purpose of creating architecture models for this project was
to express the requirements, communicate these requirements to
the development team, and to design a solution that was compatible
with the peer identity and entitlement management systems.

Management decided to use the implementation team for the ex-
isting product to build the next version. Since the architects and the
implementation team were in different divisions of the company,
the priorities of the two were not aligned initially. The architecture
modeling for this project started out poorly because the develop-
ment team had no design models, would not share implementation
artifacts like the database schema or codebase, and was too busy
working on other projects to meet with architects to document the
existing system. We were able to build models from the details we
did know but our confidence in them was low because we had no
experts to validate them. The working relationship improved over
time but there was not time to make improvements to the modelsof
the existing system, which impaired the way that the architecture
techniques could help the project.

An additional hindrance was the need for the implementation
team to receive documents in a particular, non-architectural format.
Consequently, we produced architecture models and shoehorned
them into the document template. As such, most design discus-
sions did not make reference to the architecture models until late in
the engagement. The implementation team has warmed up to the
models, however, and has agreed to make them the central mech-
anism for discussing the design in the next set of enhancements
scheduled to follow the current set.

The project used the simple goals model; a detailed information

model that expressed many domain terms, synonyms, and some in-
variants; a minimal behavior model because of limited information;
and an acceptable blackbox component and connector model but a
known insufficient whitebox model.

3.3 Provisioning/De-provisioning:
Product selection

The provisioning/de-provisioning project is a constituent project
in identity and entitlement management. The purpose of the system
is to provide a central place to administer workers entitlements.
Administrators can create or remove entitlements using a single
user interface and, through connections to managed systems, the
actual entitlements are changed on the affected systems.

The goal of creating architecture models for this system wasto
ensure that the product selected would match the needs of thebusi-
ness, to define a common model of entitlements to be shared by
all programs, and to produce a whitebox component and connector
model of the system to enable the creation of workflow scripts.

A significant challenge on this project was the collection ofin-
formation to create architecture models. The team within our com-
pany that was evaluating the vendor product was not co-located
with the architects and was under tight deadlines to demonstrate
feasibility, leaving little time to discuss what they had learned. The
vendor lacked the kinds of documents that would help the architects
build an architecture model. A significant obstacle, initially not de-
tected, was that the vendor and our company used the same termi-
nology with different definitions. A detailed information model of
the vendor product enabled us to identify and overcome this ob-
stacle. Eventually a purchase decision was made without having
complete confidence in the compatibility of this product with the
overall identity and entitlement management project.

This project used the simple goals model like other identityand
entitlement management projects. The blackbox model was de-
tailed and had ports appropriate to support what was known ofthe
vendor product. The whitebox model was known to be deficient
since the vendor had no documentation and a limited amount of
time was allocated to discover the architecture.

3.4 Project D: Greenfield Design
Project D is concerned with the architecture of a system thatis to

be developed over several years. The project is aimed at bringing
clarity into this longterm effort early on. The system is best de-
scribed as a greenfield development effort to provide functionality
that no existing system in the company covers.

Even though the necessity for the system had been recognized,
the requirements for the system were only understood in the broad-
est terms. Project D developed the business and software archi-
tecture for the system based on input from subject matter experts,
primarily through a precise goals model. This precise goalsmodel
in turn required a comprehensive domain model. Finally, black-
box and whitebox architectures of the system were derived from
the goals and domain models.

The goals and domain models were the core deliverables of pro-
ject D. They required substantial effort to produce and the subject
matter experts rated them as the greatest valueadd of the project.
The difficulties in developing goals and domain models for the sys-
tem arose mostly from the nature of the system as a visionary sys-
tem that even subject matter experts had only vague and conflicting
ideas about. While domains in the other projects were well under-
stood and the subject matter experts were able to focus on articu-
lating the system functions, in Project D the domain was novel and
forced us to create a domain model for the system as part of the
project.

We elicited the goals model from the subject matter experts
through example scenarios of what should be possible to do with
the system. Using these scenarios, the architect created a draft of
a goals model that that was then refined with the subject matter
experts. This process proved to be surprisingly efficient indiscov-
ering goals and the domain of the system.

4. OBSERVATIONS
In reflecting on these four projects we have noticed similarities

that are described in this section as themes. In each projectwe
were able to use the models as a central discussion point between
the subject matter experts and the technologists. We found that our
same set of techniques, if allowed to vary in the level of detail,
could be used on projects with quite different character. Our use
of information models, even at the most abstract levels of architec-
ture, was important in expressing the understanding of the domain.
Unfortunately, software architecture modeling is not a silver bullet
but architects should expect that learning the techniques will make
them more effective. Finally, we still find it challenging todecide
when to stop modeling and move on to other development activi-
ties.

4.1 Bridge from business to technology
Across the four projects a strong theme was the use of models

to bridge the gap between the business and technology domains.
The best example from the identity and entitlement management
program was the use of architecture models to communicate the
design of the system to management and other interested teams
during a meeting. The presentation included the goals model, infor-
mation model, component and connector models, and an excerpt of
the end-to-end scenario. It was effective enough that the audience
could immediately ask relevant detailed questions about areas that
concerned them.

Software architecture decisions are often of such high level that
it is impossible to strictly categorize them as either business or tech-
nology decisions. For example, in an early stage of entitlement re-
view we addressed a problem regarding data quality. The concern
was that the existing team receiving data feeds could not resolve
problems with the increased number of data feeds, as resolving
each problem required contacting the feed provider and negotiating
a resolution. We considered two solutions. The first was to keep
the data collection centralized but to delegate responsibility for data
quality issues to the feed provider. The second was to partlydecen-
tralize the data collection, thus limiting the number of feeds and the
number of groups that the central team would have to coordinate
with. Both alternatives address the same goal but are remarkable in
that one is a technology solution and the other is a business respon-
sibility solution. This demonstrates how architecture often sits on
the boundary between business decisions and technology decisions
and how the goals modeling can uncover such options.

A challenge in the provisioning/de-provisioning project was to
find a representation for entitlements that worked across the ven-
dor products. We were able to use architecture models, including
scenarios, to communicate with management how significant this
problem was and that it was not just a data translation issue.Based
on the shared understanding facilitated by the architecture model,
management allocated resources to solve the problem.

The use of architecture models to bridge gaps between business
and technology was most apparent in project D. In this project there
were no implemented solutions in existence and no technologist
could start writing code until the problem was described andun-
derstood. Many iterations were required between subject matter
experts and architects before both were satisfied with the solution.

The groups communicated their ideas and expressed their concerns
through the architecture models. In addition to being the primary
vehicle for conveying design proposals, the precise architecture
models exposed fuzzy terms and fuzzy thinking. The hierarchi-
cal nature of the models aided this iterative process. In particular,
goals are decomposed into sub-goals and types are decomposed
into subtypes, allowing the group to quickly zoom in from high-
level overviews to the relevant detailed models.

4.2 Collection of techniques plus detail knob
The architecture modeling technique provided a backbone offour

elements to express the core functions of the system but allowed us
flexibility in choosing the level of detail. In each project we set the
detail knob differently to respond to the needs of the project since,
for example, it is not a good investment of time to model imple-
mentation details when you are planning on purchasing a vendor
product. Our finding was that despite the differences between the
projects, the core set of techniques was largely sufficient to express
our intent. The level of detail used on each project is summarized
in Table 1.

All of the projects except for project D used the simple styleof
goals modeling that lacked the problem frames style of integrating
domain details. While project D was unprecedented and its goals
still quite unclear, the other projects could rely on a general shared
understanding of the domain as a substitute for detailed goal mod-
eling.

When concerns arose we were able to turn the detail knob up
on that particular area. For example, when it became apparent that
the existing entitlement review application and the provisioning/de-
provisioning application might have incompatible views ofentitle-
ments, it was possible to write more detailed scenarios and build
more detailed information models.

The entitlement review project required the creation of additional
models beyond the core set. A spreadsheet was built to encodethe
application user roles and the set of entitlements each had.Another
spreadsheet was built that tracked the referential integrity of two
source data feeds over time as it was cleaned up and became more
complete.

4.3 Model of domain concepts
Our observation that a model of domain concepts is useful at the

architecture modeling level is not novel but neither is it universally
recognized. Subject matter experts may be in a hurry to describe a
systems functions and technologists may be in a hurry to describe
how those functions will be implemented, but we have found it
essential to build an information model that underpins bothand
ensures that concepts and relationships are well understood.

In the entitlement review project, subject matter experts from
many domains contributed to the project requirements. We discov-
ered that their terms might overlap but they did not always agree on
relationships or definitions. On this project synonyms werecom-
mon so we used convenience attributes and invariants to encode
them.

A central challenge on the provisioning/de-provisioning project
was the structure of entitlements. Each system to be provisioned
had its own model of entitlements and we needed to produce a
model that covered them all and was able to encode role-basedac-
cess control. After creating an information model that we hoped
would be sufficient, we discovered that often resources are provi-
sioned indirectly. For example, the provisioning system might actu-
ally create new entries in an LDAP server in order to entitle access
to another system. The precise encoding of our understanding as an
information model enabled us to express our understanding and to

Models
Project
(character)

Goals
Model

Component and Connector
Model

Information Model Behavior Model

Identity and Entitlement Management
(documentation)

Simple Detailed blackbox,
detailed whitebox

Sufficient for simple
goals model

Detailed single
end-to-end scenario

Entitlement Management
(brownfield)

Simple Acceptable blackbox,
insufficient whitebox

Detailed Minimal

Provisioning / Deprovisioning
(product selection)

Simple Detailed blackbox,
minimal whitebox

Sufficient for simple
goals model

Minimal

Project D
(greenfield)

Detailed Acceptable blackbox,
idealized whitebox

Detailed Simple scenario

Table 1: Level of detail by projects

detect when our design was incompatible with new requirements.
Unlike the other three projects, project D entered into a domain

still being explored by the subject matter experts (and the irony of
their title was not lost on the group). Rather than using the infor-
mation model to simply detect overlapping terminology or ensure
knowledge transfer between subject matter experts and architects,
project D used the information model as a key working model by
the subject matter experts themselves to encode alternative pos-
sibilities and grow their understanding of this new domain.The
precision of the model enabled them to detect inconsistencies with
their proposals and to communicate them to the architects and other
subject matter experts.

4.4 Architecture techniques amplify skill
Some tasks have the property that, after a person has been trained

to do them, the work of one person cannot be differentiated from
another. For example, after teaching Ann and Bob to fill out time-
cards, we dont expect that one will do it better than the other.

Software architecture modeling can amplify the skills of anar-
chitect but cannot guarantee success [5]. While we should expect
that after training they will have greater insight and have access to
more precise techniques, we should not be surprised when Anncan
use the techniques effectively and Bob struggles.

All models are abstractions of more complicated systems. Inthe
hands of an expert, models can be used to comprehend properties of
systems that would otherwise be too complex. Models can failto be
useful either if they focus on unhelpful properties or if they cannot
be analyzed by the architect. Two of our projects were examples of
these failings.

On the provisioning/de-provisioning project, over the course of
many meetings our architects were unable to validate that our over-
all model of entitlements was compatible with the vendors model
despite having access to published documentation, internal docu-
mentation, and even the vendors implementation team. The ven-
dors internal, implementation-level model made extensiveuse of
meta-modeling ideas like key-value pairs but did not express what
instances would be present at runtime. The vendor had produced
an accurate model that abstracted away details necessary toanswer
our question. It is our belief that had the vendors team been knowl-
edgeable regarding architecture modeling that their models would
be more helpful for our task and less like literal drawings ofthe
data structures.

On the entitlement review project, one of the goals was to edu-
cate an apprentice architect. After training he was able to produce
syntactically correct architecture models, the same as themore ex-
perienced architects. Due to his lack of experience, however, his
models at the time tended to be straightforward expression of what
he had learned from subject matter experts and he was not yet able
to use the formalization to detect inconsistencies or expose gaps in

the design. As a consequence, the architecture models did not help
him to improve the quality of the system design.

Not all subject matter experts in project D embraced the architec-
ture models. Those that rejected the technique outright continued
to create documentation with imprecisions and contradictions that
would have been avoided with the goals and information modeling
techniques. Those that embraced the models avoided these prob-
lems and were able to help the architects remove problems in the
design. This experience suggests that the models were a catalyst in
designing the system.

4.5 When to stop adding detail
With both an ability to turn up the detail knob on every model

type and an ability to borrow more modeling techniques from the
source techniques, it was often tempting to continue addingdetail
to our models. In formal or informal reviews, architects often asked
each other why they chose the level of detail they did, or evenex-
pressed the opinion that more detail should have been added in par-
ticular places. Adding more detail must always be traded offwith
an additional time investment to add that detail. While we cannot
offer a universal rule, we can describe some cases and our decision
process. In general, we traded off model creation effort with the
models ability to answer questions.

The choice of where to stop the model was easiest in the iden-
tity and entitlement management project because each of itsthree
constituent projects had an architecture model itself. This was not
license to add all possible detail because in the whitebox com-
ponent and connector view showing the three constituent projects
there were approximately sixty ports, either for communication to
the peer systems or to external systems. While we had the model-
ing capability to document the datatypes and operations foreach of
those ports, we declined to add this detail and forego the ability to
detect problems at that level.

The provisioning/de-provisioning project was targeted atproduct
purchase from the start. The important questions to be answered by
the model included whether or not the vendor product could sup-
port our model of entitlements and if it could connect to the other
projects. We did end up creating a whitebox component and con-
nector model of the vendor product because it supported the cre-
ation of workflows and the workflow authors would need to know
that level of architecture.

The choice of where to stop was most challenging on the brown-
field entitlement review project. The enhancements for the next
version ranged from changes visible at a highest level of model-
ing to small changes to input datatypes. One particular incident
stood out: The developers informed us that one of our require-
ments would entail changes to 110 stored procedures. While this
work was inevitable for this release, we wanted to be sure to avoid
similar problems for subsequent releases and the architects thought

they knew how to prevent future problems. Two problems emerged:
First, the developers would resent the architects encroaching on
their detailed design, and second, we did not want to invest the
effort to make all of our models sufficiently detailed to encode all
such details. One camp of architects subscribed to the crispbound-
ary theory where a line was drawn and the architecture stopped
there. The crisp boundary architects would not tell the developers
how to avoid implementation problems but instead write quality at-
tribute requirements, in this case, that future changes of acertain
nature must be able to be made within a certain time. The other
camp of architects advocated a design wedge theory where more
architecture details were modeled at the top levels but tapered off
as the model approached the implementation components. In the
end we produced a crisp boundary architecture model and had an
informal chat with the developers about implementation options.

Due to the novel nature of project D, the key question was fea-
sibility rather than balancing various quality attributes. Because of
this restriction, architecture modeling progressed untilit became
apparent that any given component could be constructed or per-
haps already existed. Each component had a corresponding high
level goal motivating it and in most cases its subcomponentswere
not specified to allow for latitude in implementation. It waspossi-
ble to stop modeling at the highest level of components because the
key question of feasibility could be answered at that level.

5. LIMITATIONS
Ideally, this report would be produced by an independent party

that was neither invested in the application of the architecture tech-
nique nor responsible for its development, as were the authors of
this report. To the best of our abilities we have tried to keepour
observations objective.

Furthermore, an ideal report would compare some quality at-
tributes of project delivery with and without the software architec-
ture modeling. Since such metrics were not available in thisorga-
nization before we started we were not able to make a meaningful
comparison.

While this report focuses on the first year of usage of the archi-
tecture technique, we do not yet know how it will fare during its
longer-term application across the whole firm. Moreover, wedo
not present evidence of reproducibility at other firms with differ-
ent existing customs. However, our observations can serve as an
early sanity check of our approach and guide future development
and research.

Finally, the architects participating in these projects already have
a track record of successful project delivery and are, in general,
highly knowledgeable regarding software engineering theory and
practice. Since not all architects will have a similar background, we
have little evidence that the architecture technique couldbe learned
and effectively applied by other architects. On the other hand, we
did provide some indications that inexperienced architects benefit
from using the technique.

It is possible that many readers of this report, as experts insoft-
ware architecture, will be disappointed at the apparent gapbetween
what has been shown in research contexts and what we have pre-
sented here from an industrial context. For example, we suggest the
creation of UML models instead of using a special-purpose archi-
tecture description language and we have never been able to prove
that our systems have any strong property, such as absence ofdead-
locks. In the experience of the authors, however, the techniques that
we have employed are a significant improvement compared to the
norm in industry projects. The concepts of components, connec-
tors, ports, goals, and refinements are rarely represented with any
precision in the all-too-common PowerPoint architectures. From

this perspective, the use of UML with its mature tool supportis a
pragmatic choice and the lack of formalism in other areas is justi-
fied because their benefits might not outweigh the time investment
required.

6. CONCLUSIONS
We have presented an architecture modeling technique that we

believe has pulled the best ideas from various research publications.
We summarized anecdotal evidence from its usage in four projects
of different nature across five themes of observations. These obser-
vations address practical problems of software architecture that we
believe have to be faced by many software architects in practice.
These projects were performed at a large financial company that
bears similarity to many other information technology departments
that the authors have experienced. Thus we believe our observa-
tions can guide the application of software architecture bypracti-
tioners in similar situations.

Our observations are based on anecdotal evidence and suggest
future research questions. For example, we make the observation
that levels of detail of different models are possibly tied to the na-
ture of the project. Quantitative data from a variety of projects
could expose relationships between these variables.

Another unresolved issue regards how architecture modeling is
used within a company and by whom. It seems inappropriate to
expect every person in the company to learn the technology. If only
some learn it, how should they interact with those that do not? We
have tentatively identified three levels of knowledge regarding the
models: In Level 1 someone can read a model produced by an-
other. In Level 2 someone can create syntactically correct models.
In Level 3 someone can use the models to discover flaws in pro-
posed designs, to identify areas of the domain that have not yet
been modeled, and to evaluate various quality attributes. Future
reports or research could address which people should get which
level of training.

We have not addressed how to decide the balance between in-
vesting time in software architecture versus proceeding with what
has already been modeled. This is an important technology tran-
sition question as time and money are always scarce commodities
on commercial projects. In many ways the research community
has taken the high road and investigated highly formal models that
require considerable time investment with commensurate value in
special domains, e.g., high reliability systems. Many industry man-
agers responsible for non-exotic projects would ask What benefit
can I get if I invest 1, 2, or 3 weeks in building an architecture
model?

The response of the project teams to the architecture modelshas
been generally positive. There are some team members who are
reluctant to learn another technique. Others question the time in-
vestment compared to just starting coding. Still others support the
techniques in principle but when deadlines get tight they revert to
their old ways. But overall the people who have participatedhave
been happy with the results. They tell us that the models encode a
clear description of the problems and solutions, sometimesindicat-
ing that the clarity we can demonstrate in the problem definition is
the greatest value.

7. ACKNOWLEDGEMENTS
We thank Jonathan Aldrich, Bradley Schmerl, David Garlan, Bill

Scherlis, the SSSG, and the anonymous reviewers for helpfulfeed-
back on this material. The first two authors wish to acknowledge
support through the US Army Research Office (ARO) under grant
number DAAD19-01-1-0485, the National Science Foundationun-

der grant CCR-0113810, and a research contract from Lockheed
Martin ATL. The views and conclusions contained in this document
are those of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the ARO,
the U.S. government, Lockheed Martin, or any other entity.

8. REFERENCES
[1] Len Bass, Paul Clements, and Rick Kazman.Software

Architecture in Practice. Addison-Wesley, 1998.
[2] John Cheesman and John Daniels.UML Components: A

Simple Process for Specifying Component-Based Software.
Addison-Wesley, 2000.

[3] Paul Clements, Felix Bachmann, Len Bass, David Garlan,
James Ivers, Reed Little, Robert Nord, and Judith Stafford.
Documenting Software Architectures: Views and Beyond.
Addison-Wesley, Reading, Massachusetts, 2002.

[4] Desmond F. D’Souza and Alan Cameron Wills.
Objects,Components and Frameworks With UML: The
Catalysis Approach. Addison-Wesley, 1998.

[5] George Fairbanks. Why can’t they create architecture models
like "developer x"?: an experience report. InICSE ’03:
Proceedings of the 25th International Conference on
Software Engineering, pages 548–552, Washington, DC,
USA, 2003. IEEE Computer Society.

[6] Michael Jackson.Problem Frames: Analyzing and
Structuring Software Development Problems.
Addison-Wesley, 2000.

[7] Rick Kazman, Mark Klein, and Paul Clements. Atam:
Method for architecture evaluation, 2000.

[8] Jeff Kramer and Jeff Magee. Engineering distributed
software: a structural discipline. InESEC/FSE-13:
Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software
engineering, pages 283–285, New York, NY, USA, 2005.
ACM Press.

[9] Emmanuel Letier and Axel van Lamsweerde. Reasoning
about partial goal satisfaction for requirements and design
engineering.SIGSOFT Softw. Eng. Notes, 29(6):53–62,
2004.

[10] Martin Ould.Business Processes - Modeling and Analysis
for Re-engineering and Improvement. John Wiley and Sons,
Chichester, 1995.

[11] Samuel Redwine, Jr. and William Riddle. Software
technology maturation. pages 189–200, August 1985. This
paper was cited as the best/most influential paper by the
program committee for ICSE 18 in 1996.

[12] Roshanak Roshandel, Bradley Schmerl, Nenad Medvidovic,
David Garlan, and Dehua Zhang. Using multiple views to
model and analyze software architecture: An experience
report. Technical Report USC-CSE Technical Report
USC-CSE-2003-508, USC, 1003.

[13] Jim Rumbaugh, Ivar Jacobson, and Grady Booch.The
Unified Modeling Language Reference Manual.
Addison-Wesley, 1998.

[14] Mary Shaw and David Garlan.Software Architecture:
Perspectives on an Emerging Discipline. Prentice-Hall, Inc.,
1996.

[15] Ian Sommerville.Software Engineering. Addison-Wesley,
7th edition, 2004.

