
A Dynamic Code Placement Technique for Scratchpad
Memory Using Postpass Optimization ∗

Bernhard Egger, Chihun Kim, Choonki Jang, Yoonsung Nam,
Jaejin Lee, and Sang Lyul Min

School of Computer Science and Engineering
Seoul National University

Seoul, Korea
http://aces.snu.ac.kr

{bernhard,chihun,choonki,yoonsung,jlee}@aces.snu.ac.kr,
symin@dandelion.snu.ac.kr

ABSTRACT
In this paper, we propose a fully automatic dynamic scratch-
pad memory (SPM) management technique for instructions.
Our technique loads required code segments into the SPM
on demand at runtime. Our approach is based on postpass
analysis and optimization techniques, and it handles the
whole program, including libraries. The code mapping is de-
termined by solving mixed integer linear programming for-
mulation that approximates our demand paging technique.
We increase the effectiveness of demand paging by extract-
ing from functions natural loops that are smaller in size and
have a higher instruction fetch count. The postpass opti-
mizer analyzes the object files of an application and trans-
forms them into an application binary image that enables
demand paging to the SPM. We evaluate our technique on
eleven embedded applications and compare it to a processor
core with an instruction cache in terms of its performance
and energy consumption. The cache size is about 20% of
the executed code size, and the SPM size is chosen such
that its die area is equal to that of the cache. The experi-
mental results show that, on average, the processor core and
memory subsystem’s energy consumption can be reduced by
21.6% and the performance improved by 20.2%. Moreover,
in comparison with the optimal static placement strategy,
our technique reduces energy consumption by 23.7% and
improves performance by 22.9%, on average.

∗
This work was supported in part by the Ministry of Education

under the Brain Korea 21 Project, by MIC under the IT-SoC
Project, and by MIC & IITA through the IT Leading R&D Sup-
port Project. ITC at Seoul National University provided research
facilities for this study.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’06, October 23–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-543-6/06/0010 ...$5.00.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design Studies; D.3.4
[Programming Languages]: Processors—code generation,
compilers, optimization; D.4.2 [Operating Systems]: Stor-
age Management—secondary storage, storage hierarchies,
virtual memory

General Terms
Algorithms, Management, Measurement, Performance, De-
sign, Experimentation.

Keywords
Compilers, Postpass optimization, Code placement, Demand
paging, Heterogeneous memory, Scratchpad memory, Em-
bedded systems.

1. INTRODUCTION
Reducing energy consumption in mobile embedded sys-

tems is of great importance these days. The memory sub-
system, especially on-chip caches using SRAM, consumes
a large portion of the total chip power. Recently, scratch-
pad memory (SPM) has been proposed as an alternative to
caches in order to reduce power and improve performance [6,
23]. While cache behavior is unpredictable to programmers
and transparent to applications, programmers can explicitly
map the addresses of external memory to the addresses of
the SPM because the SPM is addressed using an indepen-
dent address space.

Many studies [2, 3, 5, 6, 9, 10, 15, 16, 27, 28, 29, 30, 31]
have been performed to map code or data to the SPM in
order to reduce energy or improve performance. Although
dynamic mapping approaches utilize the given SPM space
better than static approaches, only a few studies [9, 14, 27,
31] address dynamic code mapping. While the dynamic ap-
proaches in [27] and [31] are fully automatic, they require
analysis of the application’s source code and, thus, cannot
handle library code unless the library source code is avail-
able. In [14], the authors use the program trace to compute
the most beneficial set of basic blocks, and could therefore
handle libraries. However, their framework does not pro-
duce executable images; instead, it analytically computes
the expected performance and energy metrics.

223

This paper focuses on a fully automatic code placement
technique for SPM that loads required code sections on de-
mand into the SPM at runtime. The contributions of this
paper are as follows.

First our approach is based on compiler postpass opti-
mizations that operate on the object code or binary exe-
cutable image. This makes our technique applicable to the
whole program, including libraries.

Our technique is implemented in a post-pass optimizer.
The post-pass optimizer takes object files of an application
as inputs and generates a binary executable image that con-
tains a small page manager. The original application code,
including libraries, is divided into multiple segments. Each
code segment in the application is placed in the SPM or
external memory, or it is loaded on demand by the page
manager into an execution buffer in the SPM from the ex-
ternal memory. The page manager checks if the target of a
function call/return already resides in the execution buffer.
If it does, the page manager simply passes control to the
target; otherwise, the page manager loads the correspond-
ing code segment into the buffer and then passes control to
the target. The optimizer transforms function call/return
instructions into a call to the page manager only if the callee
(or the function returned to) has been identified as having
been paged from external memory.

The second contribution of this paper is that the optimizer
extracts natural loops from the application binary and ab-
stracts them as functions (this technique is called function
abstraction or function outlining [21]). While placing loops
in the SPM is similar to the loop cache approach [11, 18],
our placement is controlled by software at runtime, which
makes more effective use of the SPM.

Finally, we approximate the dynamic code mapping for
demand paging with a mixed integer linear programming
(ILP) problem. The classical 0-1 Knapsack formulation is
extended to model our demand paging mechanism. The
solution of our ILP formulation determines a suboptimal
placement of the outlined functions and original functions
in the SPM.

We evaluate the performance and energy consumption of
our compiler postpass dynamic SPM management technique
using eleven realistic embedded applications. Compared to
a system with an on-chip instruction cache and similar die
size, our technique improves performance by 20.2% and re-
duces energy consumption by 21.6% on average.

The rest of this paper is organized as follows. Section 2
lists related work. Section 3 describes the overall optimiza-
tion framework of our approach. Section 4 presents our ILP
formulation in detail. Section 5 describes the evaluation
environment. Section 6 discusses the experimental results
obtained. Finally, Section 7 concludes the paper.

2. RELATED WORK
Steinke et al. [27] proposed a technique that dynami-

cally copies code sections into the SPM. At selected program
points, they insert copying function calls that copy a corre-
sponding program part (i.e., a loop or a function body) into
the SPM. Their technique automatically selects the copy
points and program parts that can be active at the same
time in the SPM. After determining the candidates for copy
points and program parts, they compute energy costs and
select an optimal set of program parts for dynamic copying
by solving an ILP problem. Verma et al. [31] proposed a

technique to share the SPM between various memory ob-
jects (e.g., global variables, non-scalar local variables, and
code segments) using the overlay technique. Their approach
is capable of handling both instructions and data in a dy-
namic way at the same time. They perform lifetime analysis
on memory objects by analyzing memory traces to assign the
SPM space. The memory objects are copied into the SPM
when they are required.

While the approaches in [27] and [31] require the applica-
tion’s source code, our approach requires only object code
or binary code. The SPM space is shared between functions
and loops in the whole program, including libraries, result-
ing in better utilization of the SPM space. Automatic code
overlay [8, 26] could be used with our approach instead of
demand paging. However, automatic code overlay incurs a
code copy cost, and it requires the SPM size to be greater
than the sum of the function sizes in the application’s max-
imum call chain.

Recently, Janapsatya et al. [14] proposed a dynamic SPM
allocation strategy based on the so-called concomitance met-
ric. Concomitance is a measure to indicate how temporally
related two code blocks are. The concomitance is computed
based on profiling information, and the resulting dynamic
SPM allocation is evaluated using several energy models
without producing a running version of the SPM-enabled
application.

In [9], Egger et al. proposed a dynamic SPM management
technique for systems with virtual memory. A postpass op-
timizer groups code that is to be run from the SPM into
pages and places them in a special memory region. At run-
time, the memory management unit’s page fault exception
mechanism is used to track the course of the program and
copy the code to the SPM on demand.

Beyond these dynamic approaches, some studies have been
done on static code mapping to SPM. Steinke et al. [28]
proposed a static and optimal selection algorithm. The al-
gorithm selects beneficial program parts (e.g., basic blocks)
and variables that can be placed in the SPM to save en-
ergy. Their mapping problem is formulated as a Knapsack
problem. Angiolini et al. [2, 3] proposed a postpass and
static approach, based on dynamic programming, to find an
optimal set of frequently accessed instruction blocks to map
to the SPM. Their formulation is a variant of the Knapsack
problem, which considers extra instructions to relocate the
code blocks. Verma et al. [30] proposed a static algorithm
and an ILP formulation that can be applied to embedded
systems with caches in addition to SPM in order to reduce
the energy consumed by instruction fetches. Our approach
is different from the static solutions in that we focus on a
dynamic code placement technique that is based on demand
paging and an approximated mixed ILP formulation.

Many studies on SPM management techniques focus on
assigning data objects to the SPM statically or dynamically.
Udayakumaran and Barua [29] proposed a compiler algo-
rithm for dynamically managing the SPM to place global
and stack variables. Avissar et al. [5] proposed a static data
partitioning algorithm between SPM and external memory
to improve performance. Their technique is based on a bi-
nary ILP formulation. Francesco et al. [10] proposed a run-
time mechanism that uses direct memory access (DMA) en-
gines to reduce the cost of dynamically copying data to the
SPM and provides an application programmer’s interface
(API) to utilize them. Kandemir et al. [16, 15] proposed

224

Disassemble

Generation
CFG

Profile
Code

Generation

c.ob.oa.o

Call/Return
Expansion

and
Segmentation

Executable
Image

Libraries

Solver
ILP

Executable
Image

with instrumentation
code

SNACK−pop

of inst. fetched / function
of calls and returns / function

Instruction Set
Simulator

Natural Loops
Detecting

and
Procedure
Abstraction

Figure 1: The post-pass optimizer.

2

3

4 5

6

1

7

8

9

2

3

4 5

6

1

7

8

9

10

foo foo
foo_nloop

Figure 2: Extracting a natural loop from the control
flow graph of a function.

a compiler technique based on loop transformations that
dynamically manages SPM for arrays. Panda et al. [22] in-
troduced techniques to partition on-chip memory into SPM
and cache areas. To improve performance, they statically
assign critical data in the program to the SPM.

3. SPM MANAGEMENT
In this section, we describe the basic idea of our post-pass

approach and on-demand code mapping techniques.

3.1 The Post-Pass Optimizer
Figure 1 shows the skeleton of our post-pass optimizer,

SNACK-pop, which is part of the (Seoul National Univer-
sity Advanced Compiler tool Kit)[24]. Application and li-
brary object files are fed into the post-pass optimizer, dis-
assembled, and then converted into a list of functions. Each
function contains a list of instructions, and each instruction
has its own relocation information. SNACK-pop detects ad-
dresses of constant data in code sections (i.e., .text sections)
that are passed as arguments to other functions or that are
accessed by other functions directly. Such constant data is
copied and clustered together with the corresponding func-
tion that receives the address of data as an argument or that
accesses the data directly. Then, a basic block control flow
graph (CFG) is constructed for each function.

SNACK-pop analyzes each CFG and extracts the natural

Scratchpad
Memory

Copied on demand

Paged function 0
(segment 0)

Paged function 1
(segment 1)

page 0
page 1

...

page n

...

...

...

(segment q)
Paged function q

DRAM

Page
Manager

Code

page 0
page 1
page 2

page m

...

...

Data

Page
Manager

Part I

Resident

SPM

Part II

DRAM
Resident

Code

SPM

ExtExecution Buffer

Paged

Figure 3: Memory map.

loops of each function [1, 21]. As shown in Figure 2, each
natural loop is replaced with a new node that contains a
branch to the header of the natural loop. The natural loop
is transformed into a function and added to the function list.
Note that the functions outlined in this way do not need
to follow the calling convention (i.e., there is no function
call overhead, but merely a jump to the loop header). We
describe the loop selection criteria later in Section 4.2.

Then, our post-pass optimizer inserts instrumentation
code into each function and reassembles the functions. A
binary executable image containing instrumentation code is
generated and run on a cycle-accurate instruction set simu-
lator, SNACK-armsim [24]. The simulator generates profil-
ing information, such as the number of instructions fetched
from each function and the number of calls and returns to
each function. This profiling information is then fed into an
integer linear programming (ILP) solver that categorizes the
functions (including the functions from natural loops) into
three classes: SPM, Ext, and Paged. The functions in SPM
and Ext are statically placed in the SPM (i.e., SRAM) and
external memory (i.e., SDRAM), respectively. The func-
tions in Paged are statically placed in the external memory
and are copied to the SPM on demand at runtime.

All functions in Paged are transformed into segments. Each
segment consists of single or multiple pages. Each page has
a fixed size, 64 bytes in our case. Each segment contains
exactly one function and at least one page.

SNACK-pop then expands each call instruction to a func-
tion in Paged into instructions that jump to a corresponding
paged function table entry. The paged function table is sim-
ilar to a jump table and is contained in the page manager.

For paged functions that currently reside in the execution
buffer area of the SPM, the table entry contains a direct
jump to the function. If the target is not in the execution
buffer, the table entry contains a jump to the page manager.
The page manager loads the target segment (callee) into the
execution buffer, modifies the corresponding table entry, and
then jumps to the target.

Return instructions in each function are expanded to a call
to the page manager. The page manager checks whether the
target is in the right place. If the target is located in SPM
and Ext, then it just jumps to the target. Otherwise, if the
target is located in Paged, the page manager further checks
whether the target currently resides in the execution buffer.
If not, it loads the target segment into the execution buffer,
modifies the corresponding table entry, and jumps to the

225

... ...
BL foo BL L1
(return address) (return address)
... =⇒ ...

L1: LDR lr, L2
B function table entry of foo

L2: absolute address of the return address
(a)

.. ...
B foo =⇒ B function table entry of foo
.. ...

(b)

.. ...
MOV lr, pc B L1
B rx (return address)
(return address) =⇒ ...
... L1: LDR lr, L2

B page manager
L2: absolute address of the return address

(c)

Figure 4: Function call expansion. (a) A function call using the linkage register. (b) A function call without
the linkage register. (c) A function call with a function pointer stored in a register rx and the linkage register.

target of the return.
Figure 3 shows the memory map used in our scheme. The

page manager takes care of loading paged functions into the
SPM at runtime. Parts of the page manager that are fre-
quently executed reside in the SPM; the remaining parts
reside in the external memory.

Finally, segments in Paged are linked together and become
a code section in the final binary image. This section is
placed in the external memory at the beginning of execution.
The functions in the SPM category are linked together and
become another code section in the final image. This section
is placed in the SPM at the beginning of execution. The
same is true for the functions in Ext, but this section is
placed in the external memory. The page manager code is
also linked in and becomes a part of the final executable
image.

Note that the executable image size is slightly bigger than
the original because of the internal fragmentation caused
by segmentation. SNACK-pop uses the space that results
from internal fragmentation to place the extra instruction
generated by the call/return expansion.

3.2 The Paged Function Table and the Page
Manager

The page manager contains three tables to manage the
execution buffer in the SPM: the paged function table, the
page table, and the execution buffer page table.

The paged function table contains one entry for each func-
tion in Paged. Each entry is two instructions in length (i.e.,
8 bytes in our case). Every call to a function in Paged is
translated into a call to the corresponding entry in the paged
function table. The contents of the first instruction in the

table entry change at runtime and depend on the current
location of the paged function as follows.

For functions that currently reside in the execution buffer
in the SPM, the first instruction in the paged function ta-
ble entry contains an unconditional branch to the current
address of the callee in the execution buffer. The second in-
struction is not executed in this case. We call this scenario
a paged function table hit.

When the function does not currently reside in the execu-
tion buffer, the first instruction stores the current program
counter (PC) register to a specific location p inside the page
manager. The second instruction in the paged function table
entry contains a branch to the page manager loader func-
tion. To identify the paged function to be called, the page
manager computes the page index of the function by sub-
tracting the paged function table base address from the PC
stored at location p. This scenario is called paged function
table miss.

Like the paged function table, the page table also contains
one entry per function in Paged. Each entry contains the
following information about the corresponding page and the
segment (i.e., function) to which it belongs:

• the address of the page in the execution buffer when
it is loaded into the buffer

• the information of the segment to which the page be-
longs (i.e., the length of the segment and its starting
address in the external memory)

After computing the page index as described above, the
page manager loader function loads the target segment from
the external memory into the execution buffer and modi-
fies the first instruction in the corresponding paged function

226

table entry such that it contains an unconditional branch
instruction to the address of the function entry in the exe-
cution buffer.

The execution buffer page table contains one entry per
page in the execution buffer. The entry contains the page
table index of the page loaded into the execution buffer page.
Using the execution buffer page table and a pointer to the
base of the execution buffer page table, the page manager
implements a simple round-robin page replacement policy.
Because page management is completely done by software
and the smallest replacement unit for paging is a segment
(i.e., not a page but a function), more sophisticated replace-
ment policies, such as LRU, will increase the complexity
of the page manager code resulting in more page manager
overhead at run time.

3.3 Call/Return Expansion
When the segment to which the target address of a func-

tion call/return belongs has been paged out, the page man-
ager needs to load the target segment into the execution
buffer before the actual code can be executed. As men-
tioned earlier, each call to a function in Paged is translated
into a branch instruction to the corresponding function table
entry. There are two cases: 1) typical calls where execution
resumes immediately after the branch instruction (follow-
ing the callee’s return), and 2) branches that do not return
(Figure 4(a) and (b), respectively).

Function calls via function pointers need to be treated spe-
cially because the target of such calls is usually not known
at compile time (Figure 4(c)). The original function call
is translated into a direct page manager function call. At
runtime, the page manager determines whether the function
call target is a paged function and, if so, whether the target
function is currently residing in the execution buffer. In the
former case, control is immediately transferred to the target
address. In the latter case, the page manager needs to load
the function into the SPM before branching to the target
address.

In all cases except branches that do not return
(Figure 4(b)), the return address must be translated into
the absolute address and saved in the linkage register before
the translated function call occurs. This absolute return ad-
dress will be used by the page manager later to identify the
correct location of the return’s target segment (note that
the caller may have been paged out when returned). The
extra code generated by the translation is placed in the un-
used space caused by internal fragmentation. If there is not
enough space, we allocate one more page to the segment and
place the extra code there.

When the callee returns control to a caller in Paged, there
is no guarantee that the caller still resides in the execu-
tion buffer. This means that the post-pass optimizer al-
ways needs to translate function returns to a page manager
call. Every return instruction in all functions whose target
is a function in Paged is translated into a call to the page
manager. To identify these return instructions, SNACK-
pop uses dynamic call graph information based on profiling.
Whenever control is passed to the page manager by return
instructions, the page manager identifies the location of the
target segment and computes the real target address using
the absolute return address saved in the linkage register.
When the target segment does not reside in the execution
buffer, the page manager loads the target segment into the

execution buffer. Then, control is passed to the target ad-
dress in the buffer. In addition, the page manager updates
the corresponding paged function table, page table, and ex-
ecution buffer page table entries appropriately. If the target
still resides in the execution buffer, the page manager simply
branches to the target address.

Note that not all return instructions from functions need
to be checked by the page manager at runtime: if all callers
of a function f are either located in SPM or Ext, the caller
cannot be paged and it is safe to return directly without any
additional overhead. This significantly reduces the overhead
caused by return expansion. For functions called via func-
tion pointers, we generally cannot determine the caller at
compile time. In this case, we use profiling information to
check whether the callee is ever called by functions located
in Paged.

4. INTEGER LINEAR PROGRAMMING
FORMULATION

A simple and intuitive solution to SPM code placement
without paging is mapping it to the 0-1 Knapsack prob-
lem [3, 5, 7, 28]. The objective is to maximize performance
and/or minimize the energy consumed by memory accesses.
This 0-1 Knapsack formulation gives a statically optimal
mapping for SPM. We extend the formulation later to ap-
proximate our demand paging mechanism.

4.1 0-1 Knapsack Problem
The problem is mapped to the 0-1 knapsack problem as

follows. There are N functions in the program. For every
function fi, we denote the size in bytes of fi by Si and the
dynamic number of instruction fetches plus the number of
accesses to the read-only data located within fi by Ai, where
both Si and Ai are integers. If SPM size is M bytes, and
we want to fetch as many instructions and read-only data
as possible from the SPM, what functions should we place
in the SPM?

Since SPM (i.e., on-chip SRAM) and external memory
(i.e., SDRAM) differ by an order of magnitude in the ac-
cess time and energy consumption per access, finding the
solution to the 0-1 knapsack problem involves minimizing
energy consumption and maximizing performance simulta-
neously. Here, we formulate the 0-1 Knapsack problem as a
binary integer linear programming problem. This formula-
tion is basically used to map code into the SPM statically in
[3, 5, 28] and gives the optimal solution for static mapping.
In our formulation, the following symbols are used:

Ai The number of instruction fetches and read-only
data word accesses located in a function fi

Si The size of a function fi in bytes
N The number of functions in the application
Sspm The SPM size in bytes
Espm The energy consumed to fetch an instruction (or

a word) from the SPM
Eext The energy consumed to fetch an instruction (or

a word) from the external memory

The binary integer variables Ispm and Iext for each func-
tion fi are defined by

Ispm(i) =

j
1 if fi is placed in the SPM
0 otherwise

227

Iext(i) =

j
1 if fi is placed in the external memory
0 otherwise

The objective function to be minimized is the total energy
consumption by all memory accesses caused by instruction
fetches: X

i=1,N

(Ispm(i) · Ai · Espm + Iext(i) · Ai · Eext)

Since each function is located in only one place (i.e., either
in SPM or external memory, but not both),

Ispm(i) + Iext(i) = 1 for all 0 < i ≤ N

In addition, the sum of the sizes of the functions placed
in the SPM cannot exceed the SPM size.

NX
i=1

Ispm(i) · Si ≤ Sspm

To maximize performance in the same ILP formulation,
we can define Espm and Eext as memory access times to
fetch an instruction from the SPM and external memory,
respectively.

The objective function with the above constraints is sol-
ved with an integer linear programming solver. The values of
the binary integer variables denoting the function locations
(i.e., Ispm(i) and Iext(i)) are then fed into SNACK-pop.

4.2 The Effect of Natural Loops
In the previous ILP formulation, a small function with

high instruction fetch and read-only data access counts is
likely to be placed in the SPM rather than in the external
memory. Based on this observation, we extract natural loops
from functions and abstract the loops into functions. The
functions from which the natural loops are extracted are
most likely to be placed in the external memory due to their
low instruction fetch count.

To determine the natural loops to be abstracted into func-
tions, we start from the outermost loops and move into the
inner loops. A loop is selected and abstracted into a func-
tion when its static instruction count is less than its dynamic
instruction count, and we then stop moving into the loop.

However, if the size of the selected loop is greater than
r% of the size of the function to which it belongs, we do
not extract the loop from the function. This effectively in-
creases the number of small functions with high instruction
fetch counts which results in a better solution of the binary
ILP formulation for the utilization of the SPM. In our case,
r = 50.

4.3 Extension to Demand Paging
When it comes to demand paging, we have another class

of functions: Paged. The functions in this class reside in the
external memory, but they are copied to the execution buffer
in the SPM on demand when they are needed by the appli-
cation. We assume that there is another memory location
called Paged and modify the object function of the binary
integer linear programming formulation. The binary ILP
formulation now becomes a mixed integer linear program-
ming formulation. First, we define a binary integer variable
Ipaged for Paged memory as follows:

Ipaged(i) =

j
1 if fi is in Paged and Si ≤ Ibuffer × P
0 otherwise

Application Source Code Size (Byte)

(quicksort) MIBench
(dijkstra) MIBench
(sha) MIBench
(adpcm-enc) MediaBench
(adpcm-dec) MediaBench
(bitcount) MIBench
synthetic Synthetic 12,328
fft MIBench 14,688
epic MediaBench 21,124
unepic MediaBench 20,128
mpeg4enc www.xvid.org 49,912
mpeg4dec www.xvid.org 44,248

Table 1: Applications used. Synthetic is a com-
bination of quicksort, dijkstra, sha, ADPCM-enc,
ADPCM-dec, and bitcount

Core
(0.13μm)

Pipeline: ARM926E-S with 4-word instruc-
tion prefetch buffer
Instruction set: ARMv5TE
Clock frequency: 200MHz
Power consumption without caches:
0.30mW/MHz, 60mW

Off-Chip
Bus

Clock frequency: 66.6MHz
Energy consumption per burst mode transfer:
10.0nJ
Energy consumption per non-burst mode
transfer: 8.0nJ

SPM
(0.13μm)

on-chip SRAM, 1 cycle (core clock) access

energy/access
Size (KB) Energy (nJ)

1 0.128
2 0.134
4 0.145
6 0.159 (interpolated)
8 0.173

12 0.189 (interpolated)
16 0.206

On-Chip
Instruction
Cache

4-way set associative, 32-byte line size,
1 cycle (core clock) access

energy/access
Size (KB) Energy (nJ)

0.5 0.534
1 0.538
2 0.542
4 0.551
8 0.564

External
Memory

SDRAM, 128MB
24-cycle sequential access, 30-cycle non-
sequential access round-trip time (core clock)
Standby power consumption: 57.3mW

active energy/access
(excluding standby power and includ-
ing off-chip bus energy)

type Energy (nJ)
Burst read (8 words) 19.28

Burst write (8 words) 13.28
Non-burst read 11.7nJ

Non-burst write 10.4nJ

Table 2: Architecture parameters used in our simu-
lation with SNACK-armsim

228

where P is the page size and Ibuffer is a new general integer
variable. Ibuffer represents the size of the execution buffer
in number of pages. The constraint for the execution buffer
size is as follows:

0 ≤ Ibuffer · P ≤ Sspm

The objective function becomesX
i=1,N

(Ispm(i) · Ai · Espm + Iext(i) · Ai · Eext

+ Ipaged(i) · [Ai · Espm + Penaltyi])

where Penaltyi is the energy consumed by copying function
fi from the external memory to the SPM:

Penaltyi = (Ci + Ri)(Espm + Eext)(�Si/P �(P/4))

+ CiEc + RiEr

with

Ci Number of calls to fi

Ri Number of returns to fi

Ec Energy consumed by extra instructions gener-
ated by the call expansion

Er Energy consumed by extra instructions gener-
ated by the return expansion

where P/4 is the number of words in a page, and �Si/P �(P/4)
is the total number of words to be copied.

Similar to the formulation in Section 4.1, each function
can be located in exactly one place.

Ispm(i) + Iext(i) + Ipaged(i) = 1 for all 0 < i ≤ N

In addition, the sum of the sizes of the functions placed
in the SPM cannot exceed the size of the SPM minus the
execution buffer size.X

i=1,N

Ispm(i) · Si ≤ Sspm − Ibuffer · P

We conservatively assume that a segment miss always oc-
curs whenever a paged function is called or returned to. In
reality, the function called or returned to might still reside
in the execution buffer. For this reason, our mixed integer
linear programming model produces a suboptimal solution
to the dynamic scratchpad memory allocation problem.

To make our demand paging more effective, we break a
function into inner natural loops of a size smaller than a
predefined threshold value St if the outlined function con-
structed from a natural loop is too big. In our case,
St = 256 bytes. This makes the execution buffer size smaller
and results in better SPM space utilization.

5. EVALUATION ENVIRONMENT

5.1 Applications
We evaluated our code placement strategy with eleven em-

bedded applications from MI bench [12], Media bench [17],
and www.xvid.org [13], which are summarized in Table 1.
The last column in the table shows the size of executed code
for each application. To better reflect realistic embedded
mobile applications, we converted the file I/O routines in
the applications to routines that access memory.

We combine quicksort, dijkstra, sha, adpcm-enc, adpcm-
dec, and bitcount to represent a multi-phase (function) ap-
plication called synthetic, that executes one phase at a time.
Each of these six applications is called (executed) once.

5.2 Simulation Environment
Evaluation is done using simulation. We use our cycle-

accurate ARM architecture simulator, SNACK-armsim,
which is one part of the Seoul National University Advanced
Compiler tool Kit. The processor core modeled in SNACK-
armsim uses the same 5-stage pipeline and instruction pre-
fetch buffer used in the ARM926E-S core and simulates the
ARMv5 instruction set [4]. The processor core also fea-
tures a memory subsystem similar to ARM926EJ-S, includ-
ing scratchpad memory, instruction cache, data cache, a
write buffer, and a memory management unit (MMU). Note
that we do not use the MMU and data cache in our ex-
periments. SNACK-armsim’s cycle accuracy (including the
memory subsystem) has been validated with the ARM926EJ-
S application baseboard from ARM [4]. The simulation pa-
rameters are given in Table 2.

5.3 Energy Model
We focus on the energy consumed by the processor core

and the memory components: on-chip SRAM (SPM), in-
struction cache, and external memory (off-chip SDRAM).
We can estimate the energy E consumed by the system with-
out caches using the following formula:

E = Ecore + Espm + Eext

Ecore is computed by

Ecore = t · Pcore

where t is the execution time of the application and Pcore is
the average power consumed by the core. We use the values
of an ARM946EJ-S embedded core without caches (Pcore is
0.3mW/MHz with 0.13μm technology[4]).

Espm is given by

Espm = Nspm · Esram

where Esram is the average energy consumed by one SPM
access, and Nspm is the number of read and write operations
to the SPM. We computed the average energy consumption
per access (i.e., energy consumed by the data array in the
cache) with CACTI [32].

SDRAM energy is composed of static and dynamic energy
[20]. We modeled the low power 128MB Micron
MT48H8M16LF SDRAM with a memory bus frequency of
100MHz and a supply voltage Vdd of 1.8V [19]. The static
energy consumption includes the standby power and the
power to periodically refresh the SDRAM cells.

Eext is given by the following formula:

Eext = t · Pstatic

+ Next read non−burst · Esdram read non−burst

+ Next write non−burst · Esdram write non−burst

+ Next read burst · Esdram read burst

+ Next write burst · Esdram write burst

where t is the execution time of the application, Pstatic is
the average power consumed by the external memory when
there are no memory accesses, Esdram type is the dynamic
SDRAM energy consumed by one access whose type is type
where Esdram type includes off-chip bus energy per access,
and Nsdram type is the number of type operations to the
external memory. The energy parameters used are given

229

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

SD
R

A
M

51
2B

1K
B

2K
B

4K
B

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

SD
R

A
M

51
2B

1K
B

2K
B

4K
B

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

SD
R

A
M

51
2B

1K
B

2K
B

4K
B

8K
B

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

ICache SPM
1K

SPM
2K

SPM
4K

SPM
6K

ICache SPM
1K

SPM
2K

SPM
4K

SPM
6K

ICache SPM
1K

SPM
2K

SPM
4K

SPM
6K

SPM
8K

synthetic fft epic

N
um

be
r

of
 A

cc
es

se
s

SDRAM data SDRAM inst. ICache SPM data SPM inst.

(a) synthetic, fft, and epic

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

SD
R

A
M

51
2B

1K
B

2K
B

4K
B

8K
B

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

SD
R

A
M

51
2B

1K
B

2K
B

4K
B

8K
B

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

SD
R

A
M

51
2B

1K
B

2K
B

4K
B

8K
B

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

ICache SPM
1K

SPM
2K

SPM
4K

SPM
6K

SPM
8K

ICache SPM
4K

SPM
6K

SPM
8K

SPM
12K

SPM
16K

ICache SPM
4K

SPM
6K

SPM
8K

SPM
12K

SPM
16K

unepic mpeg4enc mpeg4enc

N
um

be
r

of
 A

cc
es

se
s

SDRAM data SDRAM inst. ICache SPM data SPM inst.

(b) unepic, mpeg4enc, and mpeg4dec

Figure 5: Number of memory accesses for different code placement strategies.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

SD
R

A
M

51
2B

1K
B

2K
B

4K
B

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

SD
R

A
M

51
2B

1K
B

2K
B

4K
B

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

SD
R

A
M

51
2B

1K
B

2K
B

4K
B

8K
B

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

ICache SPM
1K

SPM
2K

SPM
4K

SPM
6K

ICache SPM
1K

SPM
2K

SPM
4K

SPM
6K

ICache SPM
1K

SPM
2K

SPM
4K

SPM
6K

SPM
8K

synthetic fft epic

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n Core SDRAM Standby SDRAM Data SDRAM Inst. ICache SPM

(a) synthetic, fft, and epic

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

SD
R

A
M

51
2B

1K
B

2K
B

4K
B

8K
B

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

SD
R

A
M

51
2B

1K
B

2K
B

4K
B

8K
B

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

SD
R

A
M

51
2B

1K
B

2K
B

4K
B

8K
B

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

K
na

p
K

na
pL

P
P

ag
eL

P

ICache SPM
1K

SPM
2K

SPM
4K

SPM
6K

SPM
8K

ICache SPM
4K

SPM
6K

SPM
8K

SPM
12K

SPM
16K

ICache SPM
4K

SPM
6K

SPM
8K

SPM
12K

SPM
16K

unepic mpeg4enc mpeg4enc

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n Core SDRAM Standby SDRAM Data SDRAM Inst. ICache SPM

(b) unepic, mpeg4enc, and mpeg4dec

Figure 6: Energy consumption for different code placement strategies.

230

Executed ICache Comparable Exec. Exec. Total Total Number of Number of
Application code size SPM Time Time Energy Energy SPM pinned paged

size size to to to to library/user library/user
ICache Knap ICache Knap functions functions

(%) (%) (%) (%)

synthetic 12KB 2KB 6KB 64.7 97.5 62.6 97.3 11/35 0/3
fft 14KB 2KB 6KB 70.1 78.2 75.3 77.7 14/6 0/0
epic 21KB 4KB 8KB 90.5 88.3 85.1 87.3 14/15 0/5
unepic 20KB 4KB 8KB 87.6 38.2 83.4 36.8 15/41 0/6
mpeg4enc 49KB 8KB 12KB 74.9 95.9 73.7 95.7 8/45 0/15
mpeg4dec 43KB 8KB 12KB 96.1 85.2 94.8 84.7 15/16 0/12
Average 79.8 77.1 78.4 76.3
(geometric mean)

Table 3: The relative performance and energy consumption of PageLP. The instruction cache size is about 20%
of the executed code size. The SPM size is chosen such that the die area occupied by the SPM is comparable
to the die area of the cache.

in Table 2. The dynamic energy of the SDRAM is also
computed from [19]. The parameters for off-chip bus energy
per access are taken from [25].

For the system with an instruction cache, the energy for-
mula for E is given by

Eicache = Nicache hit · Eicache

+ Nicache miss · (Eicache + Licache · Esram)

where Nicache hit and Nicache miss are the numbers of in-
struction cache hits and misses respectively, Eicache is the
average energy consumption per access, and Licache is the
line size of the instruction cache in words. Eicache is ob-
tained from CACTI [32].

6. EXPERIMENTAL RESULTS
Figure 5 compares the breakdown of the number of mem-

ory accesses for each application under different code place-
ment strategies with various instruction cache and SPM
sizes while providing ample external memory (SDRAM).
The bar SDRAM simulates the case when all the code and
data are placed in the external SDRAM. The number of to-
tal memory accesses for each bar in the figure is normalized
to SDRAM. The next group of bars, ICache shows the break-
down of memory accesses when an instruction cache is used
without SPM.

Among the remaining bars for each application, Knap sim-
ulates the ILP formulation for the function placement strat-
egy without the natural loop extraction described in Sec-
tion 4.1. This is the optimal static allocation strategy pro-
posed by [3, 28]. KnapLP is for the strategy proposed in this
paper where natural loops are extracted from the applica-
tion, abstracted as functions, and then allocated statically
with the ILP formulation (Section 4.2). Finally, PageLP is
the case when the ILP formulation for demand paging in
Section 4.3 is applied to the image where natural loops are
outlined.

The SPM size varies from 1KB to 8KB for all applica-
tions except mpeg4enc and mpeg4dec. For mpeg4enc and
mpeg4dec, the SPM size varies from 4KB to 16KB. For each
application, each bar is divided into sections that represent

the percent numbers of SDRAM data accesses, SDRAM in-
struction fetches, instruction cache accesses, SPM data ac-
cesses, and SPM instruction fetches to the total number of
memory accesses in SDRAM.

The total number of memory accesses of each case in
ICache and SPM is smaller than each case in SDRAM except
for fft ICache 512B. This is due to the 4-word instruction
prefetch buffer that can be found in common ARM pro-
cessors. When the instruction cache is used, the prefetch
buffer is not used. Thus, inexact instruction prefetches that
are due to branch instructions will not occur with an in-
struction cache. Because of the high number of instruction
cache misses in the case of fft ICache 512B, the total number
of memory accesses is larger than that of SDRAM (note that
an instruction cache miss is counted as one cache access).

With SPM, some part of the code is placed in the SPM.
For instructions placed in the SPM, the instruction prefetch
buffer will not be used because the SPM guarantees one
cycle access. This results in a smaller number of instruc-
tion prefetches. As the size of the SPM increases, the total
number of memory accesses decreases, as can bee seen in
Figure 5.

For the cases with an instruction cache, we see that the
number of SDRAM accesses decreases as cache size increases,
except for synthetic. For synthetic, a 512B instruction cache
is already enough to avoid any SDRAM instruction accesses,
except for cold misses.

We see that the number of instruction fetches from the
SPM increases as the size of the SPM increases. In addi-
tion, interestingly enough, some read-only data accesses in
SDRAM are converted to SPM data accesses because the
functions that contain the read-only data are placed in the
SPM.

Among our SPM code placement strategies, PageLP has
the largest SPM inst., except for fft and epic. This results
PageLP consuming less energy than Knap and KnapLP. For
fft and epic, KnapLP performs almost equally well. This
is because our ILP solutions for KnapLP and PageLP are
identical at 1KB and 2KB for epic and at all sizes for fft.
Moreover, KnapLP always has a larger SPM inst. than Knap
due to natural loop outlining.

231

The effect of demand paging with larger SPM sizes is
marginal compared to smaller SPM sizes. The reason is
that most of the important functions are pinned in the SPM
for larger SPM sizes.

Page loading from the external memory to the SPM is
performed with load and store instructions by the page man-
ager. We see that the paging overhead is very small because
the difference between SPM data in KnapLP and PageLP is
negligible in the figure. If the paging overhead were large,
the SPM data section in PageLP would be larger than KnapLP.

Figure 6 compares energy consumption of the processor
core and the memory subsystem for each application un-
der different code placement strategies with various sizes of
instruction cache and SPM. Each bar is normalized to the
value of SDRAM. In each bar, Core represents the amount
of energy consumed by core. SDRAM Standby is the amount
of energy caused by the standby power consumption of the
external memory. SDRAM data and SDRAM inst. represent
the energy consumed by SDRAM accesses for data and in-
struction fetches, respectively. ICache represents the amount
of energy consumed due to cache accesses, and SPM repre-
sents the energy consumed by SPM accesses.

Since we multiply a constant power consumption with the
execution time of each case to obtain the energy consump-
tion of the processor core (i.e., Core), Core is proportional to
the execution time. The same is true for SDRAM Standby.
Thus, the height of Core or SDRAM Standby represents the
execution time of each case relative to the execution time of
SDRAM.

Thanks to the reduced number of memory accesses to
SDRAM, PageLP is faster than Knap and KnapLP. However,
when the size of the SPM is large enough that almost all in-
struction fetches go to the SPM (i.e., the SPM is saturated),
Knap, KnapLP, and PageLP show comparable performance.
See, for example, the 16KB case of MPEG4-enc.

Due to the reduced execution time with a bigger instruc-
tion cache or SPM, Core and SDRAM Standby decrease as
the size of the cache or SPM increases. In addition, SDRAM
inst. decreases as as the size of the cache or SPM increases.

Table 3 summarizes the performance and energy consump-
tion of PageLP relative to ICache and Knap (the optimal
static allocation strategy) when the instruction cache size
is about 20% of the executed code size in the unmodified
application. The SPM size is chosen such that the die area
occupied by the SPM is comparable to the die area of the
instruction cache of a given size. The die areas for both in-
struction cache and SPM are computed with CACTI [32].
Table 3 also shows the number of SPM pinned library/user
functions and paged library/user functions for PageLP.

Again from Table 3, we see that our demand paging mech-
anism for SPM reduces the energy consumption by 21.6%
and improves performance by 20.2% compared to an instruc-
tion cache occupying a comparable die area. If we compare
our demand paging to the optimal static placement strat-
egy used in [3, 28], the total energy consumption is reduced
by 23.7% and performance is improved by 22.9% on aver-
age. This shows that our code placement strategy is very
effective in reducing energy consumption and increasing per-
formance. In addition, many library functions are placed in
the SPM, which is impossible unless a postpass approach is
used.

7. CONCLUSIONS
This paper introduced a fully automatic and dynamic

code placement technique for on-chip scratchpad memory
for embedded processors. Our approach is based on de-
mand paging techniques and profiling information. We ap-
proximate our code placement technique for demand paging
with a mixed ILP problem. Our technique has been im-
plemented in a postpass optimizer that handles the whole
application binary, including libraries. No application or li-
brary source code is needed. Our experimental results show
that our postpass and dynamic approach can reduce energy
consumption and improving performance compared to sys-
tems with an instruction cache or the optimal static code
placement.

8. REFERENCES
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.

Compilers: Principles, Techniques, and Tools.
Addison Wesley, 1986.

[2] Federico Angiolini, Luca Benini, and Alberto Caprara.
Polynomial-Time Algorithm for On-chip Scratchpad
Memory Partitioning. In International Conference on
Compilers, Architectures and Synthesis of Embedded
Systems (CASES 2003), October 2003.

[3] Federico Angiolini, Francesco Menichelli, Alberto
Ferrero, Luca Benini, and Mauro Oliveri. A
Post-Compiler Approach to Scratchpad Mapping of
Code. In International Conference on Compilers,
Architectures and Synthesis of Embedded Systems
(CASES 2004), September 2004.

[4] ARM. http://www.arm.com.

[5] Oren Avissar and Rajeev Barua. An Optimal Memory
Allocation Scheme for Scratchpad-Based Embedded
Systems. IEEE Transactions on Embedded Computing
Systems, 1(1):6–26, 2002.

[6] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee,
M. Balakrishnan, and Peter Marwedel. Scratchpad
Memory: A Design Alternative for Cache On-chip
Memory in Embedded Systems. In The tenth
International Symposium on Hardware/Software
Codesign, pages 73–78, 2002.

[7] Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. Introduction to Algorithms. McGraw
Hill, 1990.

[8] Ron Cytron and Paul G. Loewner. An Automatic
Overlay Generator. IBM Journal of Research and
Development, 30(6):603–608, 1986.

[9] Bernhard Egger, Jaejin Lee, and Heonshik Shin.
Scratchpad Memory Management for Portable
Systems with a Memory Management Unit. In The
ACM Conference on Embedded Software (EMSoft
2006), October 2006.

[10] Poletti Francesco, Paul Marchal, David Atienza, Luca
Benini, Francky Catthoor, and Jose M. Mendias. An
Integrated Hardware/Software Approach for
Run-Time Scratchpad Management. In The 41st
Design Automation Conference (DAC 2004), pages
238–243, June 2004.

[11] Ann Gordon-Ross, Susan Cotterell, and Frank Vahid.
Exploiting Fixed Programs in Embedded Systems: A
Loop Cache Example. IEEE Computer Architecture
Letters, January 2002.

232

[12] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan
Ernst, Todd M. Austin, Trevor Mudge, and
Richard B. Brown. MiBench: A Free, Aommercially
Representative Embedded Benchmark Suite. In
Proceedings of the 4th Annual Workshop on Workload
Characterization, December 1998.

[13] http://www.xvid.org. Xvid MPEG-4 Video Codec.
2004.

[14] Andhi Janapsatya, Aleksandar Ignjatovic;, and Sri
Parameswaran. A novel instruction scratchpad
memory optimization method based on concomitance
metric. In ASP-DAC ’06: Proceedings of the 2006
conference on Asia South Pacific design automation,
pages 612–617, New York, NY, USA, 2006. ACM
Press.

[15] M. Kandemir and A. Choudhary. Compiler-Directed
Scratch Pad Memory Hierarchy Design and
Management. In Annual ACM IEEE Design
Automation Conference, June 2002.

[16] M. Kandemir, J. Ramanujam, M. J. Irwin,
N. Vijaykrishnan, I. Kadayif, and A. Parikh. Dynamic
Management of Scratch-Pad Memory Space. In
Annual ACM IEEE Design Automation Conference,
June 2001.

[17] Chunho Lee, Miograg Potkonjak, and William H.
Mangione-Smith. MediaBench: A Tool for Evaluating
and Synthesizing Multimedia and Communications
Systems. In Proceedings of the 30th International
Symposium on Microarchitecture, December 1997.

[18] Lea Hwang Lee, Bill Moyer, and John Arends.
Instruction Fetch Energy Reduction Using Loop
Caches for Embedded Applications with Small Tight
Loops. In Proceedings of the 1999 International
Symposium on Low Power Electronics and Design
(ISLPED99), pages 267–269, February 1999.

[19] Inc Micron Technology. Mt48h8m16lf mobile sdram.
2003.

[20] Micron Technology, Inc. Mobile SDRAM Power Calc
10. 2004.

[21] Robert Muth, Saumya Debray, Scott Watterson, and
Koen De Bosschere. Alto : A Link-Time Optimizer for
the Compaq Alpha. Software Practice and Experience,
31:67–101, 2001.

[22] P. R. Panda, N. Dutt, and A. Nicolau. Memory Issues
in Embedded Systems-on-Chip: Optimizations and
Exploration. Kluwer Academic Publishers, 1999.

[23] P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient
Utilization of Scratch-Pad Memory in Embedded
Processor Applications. In European Design
Automation and Test Conference, March 1997.

[24] Chanik Park, Junghee Lim, Kiwon Kwon, Jaejin Lee,
and Sang Lyul Min. Compiler-Assisted Demand
Paging for Embedded Systems with Flash Memory. In
The ACM Conference on Embedded Software (EMSoft
2004), September 2004.

[25] Aviral Shrivastava, Ilya Issenin, and Nikil Dutt.
Compilation Techniques for Energy Reduction in
Horizontally Partitioned Cache Architectures. In
International Conference on Compilers, Architectures
and Synthesis of Embedded Systems (CASES 2005),
September 2005.

[26] Abraham Silberschatz, Peter Galvin, and Greg Gagne.
Applied Operating System Concepts. John Wiley and
Sons, Inc., 2003.

[27] Stefan Steinke, Nils Grunwald, Lars Wehmeyer,
Rajeshwari Banakar, M. Balakrishnan, and Peter
Marwedel. Reducing Energy Consumption by
Dynamic Copying of Instructions onto Onchip
Memory. In Proceedings of the 15th international
symposium on System Synthesis (ISSS’02), October
2002.

[28] Stefen Steinke, Lars Wehmeyer, Bo-Sik Lee, and Peter
Marwedel. Assigning Program and Data Objects to
Scratchpad for Energy Reduction. In Design,
Automation and Test in Europe Conference and
Exposition (DATE 2002), pages 409–417, February
2002.

[29] Sumesh Udayakumaran and Rajeev Barua.
Compiler-Decided Dynamic Memory Allocation for
Scratch-Pad Based Embedded Systems. In
International Conference on Compilers, Architectures
and Synthesis of Embedded Systems (CASES 2003),
October 2003.

[30] Manish Verma, Lars Wehmeyer, and Peter Marwedel.
Cache-Aware Scratchpad Allocation Algorithm. In
Design, Automation and Test in Europe Conference
and Exposition (DATE 2004), pages 1264–1269,
February 2004.

[31] Manish Verma, Lars Wehmeyer, and Peter Marwedel.
Dynamic Overlay of Scratchpad Memory for Energy
Minimization. In International Conference on
Hardware/Software Codesign and System Synthesis,
September 2004.

[32] S. Wilton and Norman Jouppi. CACTI: An Enhanced
Access and Cycle Time Model. IEEE Journal of Solid
State Circuits, 31(5):677–688, 1996.

233

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

