
Methods for Power Optimization in Distributed Embedded
Systems with Real-Time Requirements ∗

Razvan Racu, Arne Hamann, Rolf Ernst

IDA
†

Technical University of Braunschweig
D-38106 Braunschweig, Germany

{racu,hamann,ernst}@ida.ing.tu-bs.de

Bren Mochocki, Xiaobo Sharon Hu

Department of CSE
‡

University of Notre Dame
Notre Dame, IN 46556, USA

{bmochock,shu}@cse.nd.edu

ABSTRACT
Dynamic voltage scaling and sleep state control have been shown to
be extremely effective in reducing energy consumption in CMOS
circuits. Though plenty of research papers have studied the ap-
plication of these techniques in real-time embedded system design
through intelligent task and/or voltage scheduling, most of these
results are limited to relatively simple real-time application mod-
els. In this paper, a comprehensive real-time application model
including periodic, sporadic and bursty tasks as well as distributed
real-time constraints such as end-to-end delays is considered. Two
methods are presented for reducing energy consumption while sat-
isfying complex real-time constraints for this model. Experimental
results show that the methods achieve significant energy savings
without violating any deadlines.

Categories and Subject Descriptors
C.3 [Special-Purpose and application-based systems]: Real-time
and embedded systems; C.4 [Performance of systems]: Model-
ing techniques; Performance attributes; Reliability, availability, and
serviceability

General Terms
Design, Performance, Reliability, Verification

Keywords
real-time systems, power optimization, sensitivity analysis, Dy-
namic Voltage Scaling, evolutionary algorithms, timing analysis,
SymTA/S

∗This work is supported in part by the ARTIST2 Network of Excel-
lence and by Deutsche Forschungsgemeinschaft under grant num-
ber ER168/18-4†Institute of Computer and Communication Network Engineering
‡Embedded System Design Group

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’06, October 23–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-543-6/06/0010 ...$5.00.

1. INTRODUCTION
Besides meeting timing constraints, energy consumption has be-

come a major consideration in real-time embedded system (RTES)
design as VLSI technology continues its remarkable advances. This
is partially due to the proliferation of mobile systems with limited
power resources, e.g. portable communication devices. Even in an
energy-rich platform, power consumption has raised serious con-
cerns [3] with respect to reliability and cost.

Since most RTESes only require the peak performance occasion-
ally, an extremely effective approach to save power and energy
is to dynamically adjust the operating clock frequency or operat-
ing modes, provided that the real-time performance can be guar-
anteed. Two circuit-level power-reduction techniques have been
widely employed at the system level to achieve this: Dynamic Volt-
age Scaling (DVS), which enables systems to operate under dynam-
ically varied supply voltages and hence frequency; and clock/power
gating, which dynamically cuts off clock or supply voltage to reg-
ulate the operation mode of a system. We refer to the latter as
Low-Leakage Mode (LLM). To fully exploit the benefits of DVS
and LLM in RTESes is a complex issue and has attracted the atten-
tion of researchers from both the real-time system community and
the design automation community.

In this paper, we consider RTESes consisting of a set of applica-
tions mapped on a heterogeneous distributed system architecture.
The applications may have distributed real-time constraints, like
end-to-end deadlines. Different hardware components may employ
individually controllable power management mechanisms. The ob-
jective is to minimize energy consumption of such systems while
satisfying real-time constraints. Two distinguishing features of this
work include comprehensive real-time application modeling and
close interaction with timing analysis tools. We propose two ap-
proaches: one leverages the sensitivity analysis taking place in tim-
ing validation for energy reduction, while the other uses genetic
algorithms to find Pareto-optimal system configurations satisfying
both timing and power requirements.

The paper is organized as follows: in Section 2.1 we review the
existing work on system level formal timing analysis. Section 2.2
shows the state-of-the-art in low power embedded system design.
Section 3 introduces the notations and the model used for system
specification. In Section 4 we present two methods that combine
system timing analysis and power analysis to optimize the energy
requirements in embedded systems with real-time and power con-
straints. The first approach uses the results of the sensitivity anal-
ysis of different system timing properties. The second approach is
based on evolutionary search techniques. The two approaches are
compared in Section 5 using a mobile gaming platform example.

379

2. ANALYSIS OF SYSTEMS WITH TIMING
AND POWER CONSTRAINTS

2.1 Methods for formal timing analysis
System performance validation is key during the design of state-

of-the-art real-time distributed systems. System simulation repre-
sents the analysis methodology that has been adopted for a very
long time in practice. However, as a current trend, the single-
processor architectures are replaced by large heterogeneous plat-
forms based on multi-processor systems on chip (MpSoC). In spite
of high applicability and diversity at the resource level, perfor-
mance simulation faces complex adaptability issues when mov-
ing to the system level. One is due to weak corner-case coverage
that drastically reduces the performance guarantees. The large run-
time complexity and the impossibility to be applied at early design
phases are other main draw-backs of system simulation.

As an alternative, formal performance analysis has got in the past
years a lot of attention from the real-time community. The larger
scalability of the formal techniques compared with the simulation
approaches allows the system designer to quickly derive the sys-
tem performance estimates. Event though it can cover all system
corner-cases, formal analysis methods may suffer from accuracy
issues, i.e. overestimated results. A lot of work has been already
done or is currently in progress to capture the timing dependencies
between the system components and to increase the result accuracy.

Since in this paper we use a formal timing analysis model for
system performance verification, the rest of this section shortly re-
views the main work done in this area.

The holistic analysis approach developed by Tindell [28] sys-
tematically extended the classical local analysis techniques, con-
sidering the scheduling influences along functional paths in the
system. He proposed a performance verification model for dis-
tributed real-time systems with preemptive task sets communicat-
ing via message passing and shared data areas. Eles et al. [19] ex-
tended this approach for systems consisting of fixed-priority sched-
uled CPUs connected via a TDMA scheduled bus. Later on, Pa-
lencia et al. [18] extended the analysis for tasks with precedence
relations and activation offsets.

Gresser [7] and Thiele [27] established a different view on schedul-
ing analysis. The individual components or subsystems are seen as
entities which interact, or communicate, via event streams. Math-
ematically speaking, the stream representations are used to cap-
ture the dependencies between the equations (or equations sets) that
describe the individual components timing. The difference to the
holistic approach (that also captures the timing using system-level
equations) is that the compositional models are well-structured with
respect to the architecture. This is considered a key benefit, since
the structuring significantly helps designers to understand the com-
plex dependencies in the system, and it enables a surprisingly sim-
ple solution. In the compositional approach, an output event stream
of one component turns into an input event stream of a connected
component. Schedulability analysis, then, can be seen as a flow-
analysis problem for event streams that, in principle, can be solved
iteratively using event stream propagation.

Richter et al. proposed a compositional analysis model based on
event model interfaces [22]. The approach combines local schedul-
ing techniques and event model propagation into a system-level
analysis. The interfacing between the local components is realized
using a set of comprehensible standard event models. Jersak [14]
extended this approach for applications with complex task depen-
dencies, including multiple activating inputs and cyclic task graphs.
This method is used in SymTA/S analysis framework [11].

2.2 Methods for power optimization
Power consumption in a CMOS circuit includes two compo-

nents: dynamic and static power. Dynamic power consumption
consists of the switching power for charging and discharging the
load capacitance, and the short-circuit power due to the non-zero
rising and falling time of the input and output signals, while static
power consumption is primarily due to leakage currents. The over-
all power consumption of a system can be expressed as

Ptotal = Pdyn + Pleak = αCLV 2f + IscV + IleakV, (1)

where α is the switching activity, CL is the load capacitance, V is
the supply voltage, f is the system clock frequency, Isc is the short-
circuit current, and Ileak is the leakage current which consists of
both the subthreshold leakage current and the reverse bias junction
current in the CMOS circuit.

When the processor is in the active mode, lowering supply volt-
age (V in (1)) is one of the most effective ways to reduce dynamic
power/energy consumption. Scaling supply voltage has a negative
impact on the speed (i.e., frequency) of a circuit which is captured
by the following expression:

f =
(V − Vth)a

k · V (2)

where k is a device related parameter, Vth is the threshold volt-
age, and a is a technology dependent parameter ranging from 1.2
to 2. Therefore, scaling voltage is equivalent to executing a task at
a lower frequency, i.e., prolong the task execution time. With volt-
age scaling, different tasks can be executed at different frequencies
(i.e., task level) or different components can operate at different
frequencies (i.e., resource level).

An effective technique to reduce the leakage power consumption
is to switch a processor into the low-leakage mode when it is idle
and switch it back to the normal execution mode when execution
is required. Various circuit level techniques have been proposed
related to LLM, e.g., power gating [20], input vector control [15],
and body biasing [6]. It is important to note that mode changes
could incur considerable energy and timing overhead. The work
presented in this paper focuses on DVS techniques but the approach
can be extended to LLM as well since LLM can be considered as a
special case of DVS where speed of 0 is also a possible value.

System-level techniques play a major role for maximally har-
vesting the benefit provided by DVS. A number of researchers have
studied simpler versions of the problem that we are interested in.
Some do not consider real-time constraints (e.g., [12]) while oth-
ers investigate only independent real-time tasks executed on multi-
ple processors [5, 31]. Most research on systems with dependent
tasks utilizes acyclic task graphs. For this task model, globally opti-
mal solutions based on either nonlinear mathematical programming
(for the continuous voltage case) or integer nonlinear mathematical
programming (for the discrete voltage case) have been presented
(e.g. [1, 30]). Though the solutions are quite comprehensive, the
inherently high computational cost would deem such approaches
not applicable to larger systems. A number of heuristic approaches
have also been proposed to tackle similar problems. The work in [8,
29, 23, 31] solves the energy minimization problem for dependent
tasks on multiple DVS processors. However, the acyclic task graph
model can be rather inefficient if the periods of the tasks are not
harmonic or when tasks are bursty. The task model under consid-
eration of this paper is much more comprehensive and practical.

380

3. SYSTEM SPECIFICATION MODEL AND
NOTATIONS

For the system specification, we use the SymTA/S model [11].
An application is modeled by a set of computation and commu-
nication tasks (application entities). The tasks are mapped to and
executed on a set of processing and communication elements, rep-
resenting the system architecture. Each task is characterized by
its execution time interval, defined as the minimum and maximum
time the task requires for a complete execution on the correspond-
ing resource, assuming that no blocking occurs during execution.
A task is activated due to an activating event. All activating events
of a task are captured by an event stream. The behavior of the event
streams is described using event models. The task may be periodi-
cally or sporadically activated, and additionally each of these mod-
els may be with jitter or with burst. The event models are charac-
terized by a set of timing parameters like period, jitter or minimum
inter-arrival distance. Any timing dependency between the activa-
tions of two tasks is represented by an event stream emerging from
one task and entering the dependent task. The real-time behavior
is described by a set of timing constraints, like task deadlines, end-
to-end deadlines, and maximum jitter at system output.

When multiple tasks share the same resource, two or more tasks
may request the resource at the same time. To arbitrate request con-
flicts, each resource is associated with a scheduler which selects a
task for execution out of the set of active tasks according to some
scheduling policy. The scheduling analysis calculates worst-case
and best-case task response times, i.e. the maximum and mini-
mum times between task activation and task completion taking into
account the effects of scheduling. One may check the feasibility
of the system by comparing the results of the scheduling analysis
against the set of timing constraints. We say that a system is feasi-
ble if all constraints are fulfilled. Vice-versa, a system is infeasible
if at least one constraint is violated. Note that the SymTA/S model
is much more general than both periodic/aperiodic task models and
task dependency graph models [11].

In terms of system architecture, we consider heterogeneous sys-
tems on a chip (SoC). Each processing element may have indepen-
dently controllable power management mechanisms such as DVS.
Voltage-island based design investigated by various researchers, for
example [13, 16, 26], can readily implement the above architec-
ture. With the continuous scaling of CMOS technology, this trend
will gain even bigger momentum. We consider both the scenar-
ios where power management decisions are made at the task level
and at the resource level. At the task level, each task may be ex-
ecuted with its own speed/voltage, which is equivalent to DVS.
At the resource level, each processing element may be assigned a
unique speed/voltage and will not change during context switches,
which is referred to as multiple voltage approach (MV). The volt-
age/frequency levels can be either continuous or discrete. The prob-
lem of interests is to minimize the energy consumption of a given
system while satisfying real-time constraints.

4. POWER OPTIMIZATION UNDER
TIMING CONSTRAINTS

In this section we present two methods for the power optimiza-
tion of embedded distributed systems with real-time constraints.
Section 4.1 presents a heuristic algorithm for power optimization
based on the results obtained applying sensitivity analysis for the
system parameters influencing the global energy demand of the
system. Section 4.2 describes a stochastic power optimization ap-
proach based on evolutionary algorithms.

4.1 Sensitivity-based approach
As already mentioned in Section 2.2, the most effective way to

reduce system power/energy is to switch the processor to a lower
voltage level. From Equation 2 it can be observed that the proces-
sor clock frequency is proportional to the processor voltage level.
However, a lower clock frequency will directly affect the timing
characteristics of all components executed on that resource. By re-
ducing the clock frequency of a processor by a factor sf leads to
an increase of the execution times of the tasks mapped on that re-
source by a factor that can be conservatively approximated by 1/sf .
Therefore, in systems with real-time requirements, modifications of
the resource voltage levels must be performed such that no timing
constraint is violated.

In this section we describe a heuristic algorithm for the optimiza-
tion of system power/energy based on sensitivity analysis. Sensitiv-
ity refers to the robustness of the system timing properties with re-
spect to changes, i.e., how far a particular parameter can be changed
without affecting the feasibility of the system. The robustness of a
parameter is characterized by the available slack obtained for that
parameter, where the slack is computed using the sensitivity analy-
sis framework presented in Section 4.1.1.

It is not difficult to see that the robustness of timing proper-
ties can be used to help decide how much a task execution can
be slowed down before the system becomes infeasible. In the rest
of this section, we describe our sensitivity analysis based power
minimization algorithms applied at task level using DVS, or at re-
source level using the minimum supply voltage for each resource
permitted by the set of constraints. Section 4.1.2 presents the over-
all approach of our optimization algorithms.

4.1.1 Sensitivity analysis framework

Figure 1: Sensitivity analysis framework

The diagram presented in Figure 1 shows the components of the
sensitivity analysis framework and the corresponding analysis flow.
The user selects (Step S1) from the pool of system properties, a set
of sensitivity tuples on which the sensitivity analysis is performed.
A sensitivity tuple, in this context, represents a data object contain-

381

ing a system property and a sensitivity objective defined for this
property. The system properties used by the power optimization al-
gorithm are the execution times of the tasks on which DVS can be
applied, or the speed of the resources allowing MV. The sensitivity
objective is the minimization of the scaling factors of the selected
properties.

The sensitivity tuples are sent one by one to the sensitivity anal-
ysis controller (Step S2). The sensitivity analysis controller is re-
sponsible for directing the flow of information between modules.
The sensitivity analysis loop contains the sensitivity analysis con-
troller, the scheduling analysis engine and the sensitivity algorithms.
At first iteration, the sensitivity analysis controller transmits (Step
S3) the initial value of the selected system property to the schedul-
ing analysis engine. It receives back (Step S4) the status of the ana-
lyzed system: feasible or infeasible. A detailed presentation of the
compositional performance analysis implemented by the schedul-
ing analysis engine is given in [11]. Based on status, the search
space is defined and sent (Step S5) to the analysis algorithm. The
algorithm selects a value in the search space and sends it back to
the analysis controller (Step S6). The steps S3 to S6 are repeatedly
carried out until the algorithm finds the desired value. Note that, the
search space is defined in the first iteration by the sensitivity con-
troller and adapted during each iteration by the analysis algorithm.
When the analysis completes, the result is stored (Step S7) in the
result database. Before first analysis iteration or sometimes during
iterations, the sensitivity analysis controller might access (Step S8)
the result database to reuse already existing information.

The scheduling analysis is performed using the SymTA/S anal-
ysis engine presented in [11]. The communication between the
scheduling analysis engine and the sensitivity analysis controller
is implemented using a client/server interface. The communication
between the sensitivity analysis controller and the other modules is
realized via function calls.

Once the selected properties are analyzed, the power optimiza-
tion controller performs the weighting of the computed slack val-
ues. For each analyzed tuple (Step P1), a new system configu-
ration is created, assigning the value determined using the above
algorithm to the corresponding system property. This configura-
tion is sent to the power analysis engine (Step P2). The power
analysis computes, based on scheduling traces, the average power
of the new configuration and sends it back to the power optimiza-
tion controller. Based on the power value and the available feasi-
bility slack, a weight is calculated for each system property (see
Section 4.1.3 and 4.1.4). The property with the maximum weight
is selected (Step P4) and the system configuration is modified ac-
cordingly. The entire algorithm is repeated until no slack left in the
system.

The communication between the power optimization controller
and the power analysis is realized using a client/server interface.
The communication between the power optimization controller the
other modules is realized by function calls.

The results are displayed (Step S9) by demand using visualiza-
tion algorithms specific to each sensitivity tuple. The sensitivity,
visualization and power optimization algorithms are automatically
selected, depending on the user choices.

4.1.2 Heuristic power optimization
Algorithm 1 gives the overall approach to minimizing power/energy

by a set of components that can be either tasks if task-level opti-
mization is selected, or resources when the optimization is applied
at resource level.

When applied at task level, the algorithm determines the mini-
mum scaling factor of the execution time for each individual task.

If applied at resource level, the algorithm computes the minimum
scaling factor of the speed of each resource. The algorithms to
determine the minimum scaling factors are presented in details in
sections 4.1.3 and 4.1.4. After the scaling factors are computed, a
weight is calculated for each component. The component weights
are also presented in detail in the next subsections. The timing
parameters of the component with the maximum weight are mod-
ified according to the minimum scaling factor computed for that
component. In the next iterations, the new scaling factors of all
components are recalculated and again modifications are applied
for the components with the maximum weights. The iteration ter-
minates when no more slack is available in the system, i.e., when
all scaling factors have been minimized and all components have
zero weights.

Algorithm 1 Minimize power on selected components
INPUT: the set of target components: C;

OUTPUT: optimized power: Pmin;

the set of components with modified scaling factors: S ;

1: slackLeft = true;

2: while slackLeft do

3: for all ci ∈ C do

4: compute minimum scaling factor of ci: sfci
opt;

5: compute weight of ci: weightci ;

6: find cw such that weightcw = max(weightci), (∀)i such

that weightci �= 0;

7: if cw �= null then

8: set sfcw
opt;

9: add (cw, sfcw
opt) to S ;

10: slackLeft = true;

11: else

12: slackLeft = false;

13: compute power: Pmin;

4.1.3 Task level
The minimum scaling factor of the execution time of a task (Al-

gorithm 2) is determined using a binary search technique similar
to those described in [21]. The binary search is performed on the
interval bounded by the initial execution-time scaling factor, sfinit

(usually 1), and the scaling factor that determines a maximum re-
source utilization equal to a value Umax. Umax is implicitly set to
100% to avoid resource overload, or it can be defined by system
designer to specify an upper bound for the resource utilization.

The initial resource utilization, UCPU can be determined using
the following equation:

UCPU =
Cx

Px
+

nX

i=1,i�=x

Ci

Pi
, (3)

where Ci and Pi are the execution time and the activation period
of task τi.

Scaling the resource frequency by factor sf during the execution
of task τx leads to a new execution time of τx equal to 1

sf · Cx.
The maximum resource utilization Umax occurs when the execu-
tion time of τx equal to Cx,max:

Umax =
Cx,max

Px
+

nX

i=1,i�=x

Ci

Pi
(4)

382

Cx,max can be obtained by scaling the execution time of τx by a
factor sf lowest:

Cx,max =
Cx

sflowest
⇒ sf lowest =

Cx

Cx,max
(5)

Replacing Equation 5 in Equation 4 we obtain:

Umax =
Cx

Px · sflowest
+

nX

i=1,i�=x

Ci

Pi
(6)

If we denote by Uτx the load determined by task τx (Cx/Px) on
CPU , from equations (3) and (6) it results that

sf lowest =
Uτx

Umax − UCPU + Uτx

(7)

Notice that the value returned by the binary search technique,
sfopt, is smaller than the initial scaling factor value, leading to a
decrease in the CPU clock frequency during the execution of task
τx, and therefore to a lower power dissipation.

If the initial system configuration is not feasible, the search inter-
val is determined by the initial scaling factor sfinit, and the scaling
factor for which Uτx is equal to a user-defined value Umin. Umin is
defined by system designer and can be determined from the highest
possible clock frequency available for that resource.

Umin = Uτx,min =
1

sfhighest
· Cx

Px
⇒ sfhighest =

Uτx

Umin
(8)

In this case, the binary search algorithm is looking for the mini-
mum value of the scaling factor leading to a feasible system config-
uration. If such a value is found, then it is larger than sfinit. This
actually leads to a higher CPU clock frequency during the execu-
tion of task τx. The obtained feasible configuration might have a
higher power dissipation than the original infeasible configuration.

The system configurations corresponding to the values selected
by the binary search algorithm are validated (analyze system) by
the scheduling analysis engine presented in Section 4.1.1.

The task weights in Algorithm 1 are calculated according to the
following equation:

weightτx = (sfinit − sfopt) · Uτx · PCPU , (9)

where (sfinit − sfopt) represents the available scaling factor slack,
Uτx which is the load determined by task τx on CPU , and PCPU

is the power (energy per unit time) of CPU . The task weight lin-
early increases with the scaling factor slack. The larger the execu-
tion time scaling factor slack, the lower the supply voltage of the
resource during the execution of the task. The weight linearly de-
pends also on the task load, i.e. DVS is applied first on those tasks
using the resource most of the time. Additionally, the tasks mapped
on the resources with the highest power dissipation have priority for
optimization. In case that the original system configuration is in-
feasible, the obtained scaling factor slacks will be negative, and the
task with the maximum weight is the one whose computed scaling
factor is the smallest. The algorithm determines the minimum ad-
ditional power demand required by a feasible system configuration.

4.1.4 Resource level
Algorithm 3 determines the minimum scaling factor of a resource

speed permitted by the set of constraints. Similar to task execution
time scaling factor, a binary search technique is used. The search is
again performed in two directions, depending on the initial system
status: if the system is feasible, the search interval is determined
by the initial speed factor sfinit (usually 1) and the value that leads
to a maximum resource utilization equal to Umax. When the sys-
tem is infeasible, the search interval is determined by the initial

Algorithm 2 Execution time minimum scaling factor

INPUT: initial scaling factor: sfinit = 1;
initial resource load: UCPU ;
task execution time: Cx;
task activation period: Px;
maximum load: Umax;
minimum load: Umin;
algorithm precision: ε;

OUTPUT: minimum scaling factor: sfopt;
1: Uτx = Cx/Px;
2: sflowest = Uτx/(Umax − UCPU + Uτx);
3: sfhighest = Uτx/Umin;
4: analyze system;
5: if (system feasible) then
6: low = sfinit;
7: high = sf lowest;
8: else
9: low = sfhighest;

10: high = sfinit;
11: repeat
12: middle = (high + low)/2;
13: set sf = middle;
14: analyze system;
15: if (system feasible) then
16: low = middle;
17: else
18: high = middle;
19: until (high − low) ≤ ε
20: set sf = sfinit;
21: sfopt = low;

speed scaling factor sfinit and a scaling factor leading to a min-
imum resource utilization equal to Umin. Umin and Umax have
been previously defined in Section 4.1.3.

The initial resource utilization can be calculated using the fol-
lowing equation:

UCPU =
nX

i=1

Ci

Pi
, (10)

When scaling the resource speed by factor sf, the execution times
of all tasks mapped on that resource are scaled by factor 1/sf . If
the system is feasible, the lower limit of the binary search interval
is determined by the scaling factor value leading to Umax. This
value can be determined using the following equation:

Umax =
1

sflowest
·

nX

i=1

Ci

Pi
⇒ sflowest =

UCPU

Umax
(11)

Similarly, if the initial system configuration is infeasible, the up-
per bound of the search interval is determined by the scaling factor
value leading to Umin:

Umin =
1

sfhighest
·

nX

i=1

Ci

Pi
⇒ sfhighest =

UCPU

Umin
(12)

Similar to execution time scaling factor algorithm, the analyze system
procedure validates the system configurations corresponding to the
values selected by the binary search algorithm.

The resource weights introduced in Algorithm 1 are calculated
using the following equation:

weightCPU = (sfinit − sfopt) · PCPU , (13)

383

Algorithm 3 Resource speed minimum scaling factor

INPUT: current speed factor: sfinit = 1;
current resource load: UCPU ;
maximum load: Umax;
minimum load: Umin;
algorithm precision: ε;

OUTPUT: minimum speed allowed: sfopt;
1: sf lowest = UCPU/Umax;
2: sfhighest = UCPU/Umin;
3: analyze system;
4: if (system feasible) then
5: low = sfinit;
6: high = sflowest;
7: else
8: low = sfhighest;
9: high = sfinit;

10: repeat
11: middle = (high + low)/2;
12: set sf = middle;
13: analyze system;
14: if (system feasible) then
15: high = middle;
16: else
17: low = middle;
18: until (high − low) ≤ ε

19: set sf = sfinit;
20: sfopt = low;

where (sfinit − sfopt) is the scaling factor slack and PCPU is
the resource power dissipation. The resources with the maximum
speed slack and the highest power dissipation are likely to be scaled
down first. In case the initial system configuration is infeasible,
the heuristic determines the minimum additional power demand re-
quired by a feasible system configuration.

4.2 Stochastic approach
In this section we present a stochastic approach for power op-

timization with DVS. It is based on a previously published design
space exploration framework [10], which uses multi-dimensional
evolutionary search techniques [4, 32].

We first give a short description of the exploration framework
and how it is used to perform the power optimization (Section 4.2.1).
We then give details on several important aspects: search space en-
coding (Section 4.2.2), the creation of an initial population used as
starting point for the optimization (Section 4.2.3), and the variation
operators used to guide the exploration (Sections 4.2.4 and 4.2.5).

4.2.1 Exploration framework
Figure 2 shows the compositional design space exploration frame-

work [10] used in this work. It implements the standard exploration
loop common to exploration frameworks based on evolutionary al-
gorithms.

One unique characteristic of the utilized exploration framework
is its compositional organization of the search space. Different pa-
rameters of a system, such as priority assignments, scaling factors,
etc., are encoded as separate chromosomes. For optimization the
user selects a subset of all system parameters. The chromosomes
for these parameters form an individual and are included in the evo-
lutionary optimization while all others are fixed and immutable.

Figure 2: Exploration framework

Note that the variation operators of the evolutionary algorithm are
applied chromosome-wise for individuals. More details on the ex-
ploration framework can be found in [10].

In this paper we explain in detail the DVS chromosome. Its algo-
rithms (creation of the initial population, crossover, and mutation)
are tailored for power minimization with DVS. Note that the DVS
chromosome can be combined with previously developed chromo-
somes for priority optimization [10], TDMA time slot optimiza-
tion [9], traffic shaping [10], etc.

During exploration the scheduling analysis engine analyzes the
generated system configurations and determines properties subject
to optimization (optimization objectives). In the case of power min-
imization addressed in this paper, scheduling traces are generated
and sent to power analysis. Based on these traces power analysis
calculates and returns the power dissipation.

Note that the utilized exploration framework can perform Pareto-
optimization of multiple concurrent optimization objectives. Con-
sequently, it is capable of determining trade-off curves (Pareto-
fronts) between system power dissipation and other optimization
objectives including timing, buffer sizes, etc.

4.2.2 Encoding
As previously explained the voltage levels assigned to tasks in-

cluded into DVS are modeled by scaling factors for their core ex-
ecution time intervals in this paper. Correspondingly, processor
clock-rates are modeled by scaling factors. In both cases, a scaling
factor of 1 corresponds to a nominal core execution time or clock-
rate, respectively. In the following we refer to the set of tasks and
processors included power optimization as components.

The scaling factors are directly encoded as vector containing one
real number entry for each considered component. In the following
we call such a vector of scaling factors an individual. Additionally,
each individual is annotated with a boolean flag working indicating
whether it represents a feasible system configuration or not.

The working flag is left unassigned after the creation of an in-
dividual in step 7 of the exploration loop. However, it is assigned
once the individual is analyzed by the scheduling analysis engine,
and thus before it can be used as parent individual for the genera-
tion of offsprings.

384

4.2.3 Initial population
Algorithm 4 describes the creation of the initial population. It

creates α individuals, each with random initial scaling factors for
the components included into power optimization. Thereby, the
upper bound for the generated scaling factors is boundsf .

The parameter k permits control over the creation of the ini-
tial population. Figure 3 visualizes the effect of k on the scaling
factors generated during the creation of the initial population for
boundsf = 1.5.

Figure 3: Average generated scaling factors for boundsf = 1.5
as a function of k

We observe, that k = 1 leads to a uniform distribution, and that
decreasing and increasing values for k increase or decrease the av-
erage value of the generated scaling factors, respectively.

A good choice for k can significantly increase the validity of the
initial population, and thus decreases the time for the exploration
to find good scaling factor assignments. For instance, if there is
little slack in the system, low values for k enforce the generation of
high scaling factors, and thus increase the probability that feasible
system configurations are generated.

Algorithm 4 Initial Population

INPUT: Set of components included into DVS: C = {c1, . . . , cn}
Maximum bound for scaling factors boundsf

Number k > 0

Initial population size α

OUTPUT: Initial population P = {p1, . . . , pα}
1: for (i = 1; i <= α; i = i + 1) do
2: for (j = 1; j <= n; j = j + 1) do
3: choose random r ∈]0, boundsf]

4: pi.sfcj =
boundsf

boundk
sf

× rk

4.2.4 Crossover operator
The crossover operator described in algorithm 5 leads to the con-

vergence of the obtained scaling factor assignments towards (lo-
cally) optimal solutions contained ”between” individuals consid-
ered by the evolutionary algorithm. It takes as input two parent
individuals A and B and generates one offspring C.

The offspring is created by randomly choosing scaling factors
for the considered components in the intervals defined by the two
parents (lines 9 − 11). Thereby, klow and khigh influence the gen-
erated scaling factors by shifting them towards the lower or the
upper bound of these intervals, respectively. Note that choosing
khigh = klow = 1 leads to uniform distribution of the generated
scaling factors.

The following rules are used to determine whether klow or khigh

is applied to the generated scaling factor for a specific component
ci (lines 5 − 8):

Algorithm 5 Crossover Operator

INPUT: 2 parent configurations A = {sfa1 , . . . , sfan} and B =

{sfb1 , . . . , sfbn}
khigh : 0 < khigh ≤ 1

klow : 1 ≤ klow

OUTPUT: offspring configuration C = {sfc1 , . . . , sfcn}
1: for (i = 1; i <= n; i = i + 1) do
2: if (sfai = sfbi) then
3: sfci = sfai

4: else
5: if (A.working ∧ sfai < sfbi) ∨ (B.working ∧ sfbi <

sfai) then
6: kapplied = klow

7: else
8: kapplied = khigh

9: difference =| sfai − sfbi |
10: choose random numbers r and s ∈ [0, difference]

11: sfci = min(sfai , sfbi) + difference

difference
kapplied

× rkapplied

• klow: if both parents correspond to feasible system configura-
tions

• khigh: if both parents correspond to non-feasible system con-
figurations

• klow: if the parent corresponding to the feasible system con-
figuration has a smaller scaling factor for ci

• khigh: otherwise

4.2.5 Mutation operator
The crossover operator described in section 4.2.4 combines prop-

erties of two parent individuals to create new configuration alterna-
tives. Of course, it is possible that the variety of the initial popula-
tion is insufficient to find good solutions only by using the crossover
operator. Additionally, the exploration may get stuck in a local op-
timum, without the possibility to reach globally better solutions.

Therefore, we introduce a mutation operator (algorithm 6), en-
abling the evolutionary algorithm to break out of local optima and
to reach parts of the search space not yet considered. It takes as
input one parent individuals A and generates one offsprings B.

The mutation algorithm increases and decreases scaling factors
of randomly chosen components. Thereby, the overall variation
percentage is bound by budgetapplied ≤ budgetmax.

The variation of the scaling factors is guided to a certain extend
(configurable through probheuristic) by a heuristic strategy (lines
7 − 12) decreasing or increasing the scaling factors of the con-
sidered components dependant on the parent configurations system
status. For instance, if the parent configuration is feasible all com-
ponents scaling factors are decreased trying to consume the remain-
ing system slack for power optimization.

However, this heuristic strategy should be used in moderation,
since it might be necessary to increase scaling factors of some com-
ponents to allow further scaling factor decreases of different com-
ponents in order to obtain optimal solutions. Therefore, probheuristic

should not be chosen greater than 0.5.
Note that choosing probheuristic = 0 leads (globally) to uni-

form distribution of budgetapplied among the considered compo-
nents.

385

Algorithm 6 Mutation Operator

INPUT: parent configurations A = {sfa1 , . . . , sfan}
Maximum bound for scaling factors boundsf

Integer budgetmax

probheuristic : 0 ≤ probheuristic ≤ 1

OUTPUT: offspring configuration B = {sfb1 , . . . , sfbn}
1: choose random integer budgetapplied ∈]0, budgetmax]

2: while (budgetapplied > 0) do
3: choose random integer r ∈]0, min(budgetapplied, 100)]

4: budgetapplied = budgetapplied − r

5: choose random integer i ∈ [1, n]

6: choose random number h ∈ [0, 1[

7: if (h < probheuristic) then
8: if (A.working) then
9: sfbi = sfai × (1 − r

100
)

10: else
11: sfbi = min(sfai × (1 + r

100
), boundsf)

12: else
13: choose random boolean b

14: if (b) then
15: sfbi = sfai × (1 − r

100
)

16: else
17: sfbi = min(sfai × (1 + r

100
), boundsf)

5. CASE STUDY
In this section an example system is presented and optimized us-

ing both the heuristic and stochastic techniques. The example sys-
tem, illustrated in Figure 4, represents a cooperative mobile gaming
platform with 2-way voice communication. Figure 4(a) shows the
target architecture. There are essentially three processing elements,
two ARM11 processor cores [2] operating at a peak frequency of
550 MHz and one GPU with two parallel pixel pipelines. Each pro-
cessor has its own dedicated memory for independent processing.
Data is shared via an on-chip bus, which is connected to off-chip
components (such as the game pad and display) via a bus bridge.
A separate bus connects the two ARMs to the wireless networking
hardware. All three processing elements are assumed to be inde-
pendently scalable, each with 32 voltage/frequency levels.

Figure 4(b) shows the example task set. The left portion of (b)
shows the task dependencies via a set of directed acyclic graphs,
while the right portion lists the name and [best, worst] case execu-
tion cycles of each sub-task. The double-ringed nodes are source/sink
tasks, the single ringed nodes are execution tasks and the arrows
represent communication tasks. Task one is representative of a rac-
ing 3D application from [17]. The task is activated 15 times a sec-
ond by periodically receiving input from the user and position data
from remote players. This information is used by the application
to generate the new position of the local player each frame, as well
as the raw triangles that make up the 3D scene. The local posi-
tion is forwarded to the remote player, while the triangles are sent
to the geometry stage for transformation and projection operations
(i.e., matrix multiplication). From there, the transformed triangles
are sent to the triangle setup stage where they are mapped to scan-
lines (rows of pixels). The scan-lines are then sent to the render
stage where the final color of each pixel is determined. Finally, the
pixels are written to the frame buffer. Tasks 2 and 3 represent the
encoding and decoding of VSELP voice traffic [24]. This allows
the local and remote users to communicate during play.

Figure 4(c) shows how the tasks are allocated to the various pro-
cessing and communication elements. The bandwidth requirements
of each communication task are also displayed [25]. With this allo-
cation at the maximum speed, the utilization of ARM1 is 68.79%,
ARM2 is 49.73% and the GPU is 59.7%. The shared bus and com-
munication bus are 20% and 2% utilized, respectively. From the
utilization values, it is clear that some slack exists that can be con-
verted into energy savings. However, from Figure 4(c) it is just
as clear that the system is quite complex. The slack must be used
without inducing significant delay or jitter, especially on the path
from the user input to the frame buffer, as such a delay can sig-
nificantly degrade the gaming experience. In the remainder of this
section, the effectiveness of the sensitivity-based DVS algorithm on
the example system will be compared to the stochastic approach.

To prevent excessive delay, an end-to-end deadline from τ11 to
τ17 of 1 second will be enforced.

Table 1 shows the results obtained using the task level heuris-
tic algorithm described in Section 4.1.3. The initial average power
of the system is Pinit = 3.51 W. Table 1(a) shows the tasks on
which DVS is applied and the corresponding clock frequency scal-
ing factors. In Table 1(b) are presented the initial power values of
each resource and the values obtained after optimization. The min-
imum system power is Pmin = 1.51 W. The measured algorithm
run-time is 91 seconds.

Table 2 presents the results determined by the resource level
heuristic (Section 4.1.4). Table 2(a) shows the computed mini-
mum scaling factors of the resource clock frequencies. The opti-
mized resource power values are shown in Table 2(b). After opti-
mization the average power in the system has been decreased from
Pinit = 3.51 W to Pmin = 1.65 W. The algorithm run-time is 20
seconds.

Figures 5(a) and 5(b) compare the stochastic and the heuristic
power optimization approaches with respect to quality of obtained
results and runtime. Note that the power curve of the stochastic
approach represents the best reached power dissipation after each
generation. This curve was obtained by averaging the results of 100
exploration runs each considering 50 generations with 15 individu-
als.

The following parameters are defined for the algorithms used by
the stochastic optimization:

• creation of the initial population: k = 0.75
• crossover operator: klow = 1.4 and khigh = 0.75
• mutation operator: budgetmax = 80 and probheuristic = 0.5
In the case of task level power optimization the stochastic ap-

proach finds in average a system configuration of comparable qual-
ity (1.51 W) to the configuration obtained by the heuristic approach
after 10 generations. Afterwards, the stochastic approach finds bet-
ter solutions in the average case. After 50 generation, for instance,
the average power dissipation of the best found system configura-
tion is equal to 1.43 W.

However, the better results of the stochastic approach are bought
with higher runtime. With comparable runtime the stochastic ap-
proach reaches 1.54 W in the average case.

The situation for the resource level power optimization looks
similar. After 4 generations the stochastic approach discovers in
average a system configuration of comparable quality (1.65 W) to
the configuration obtained by the heuristic approach. Afterwards,
it finds better solution, reaching an average power dissipation of
1.47 W after 50 generations.

Again, in order to obtain the same quality of results as the heuris-
tic approach, the runtime of the stochastic algorithm is higher. With
comparable runtime the stochastic approach reaches 1.75 W in the
average case.

386

Communication with local devices

Transmission Hardware

ARM 1

memory

ARM 2

memory memory

GPU
Pixel Pipe 1
Pixel Pipe 2

Mobile Gaming SoC

shared bus

bridge

communication bus

bridge

(a)

τ11

τ13

τ14

τ15

τ12

τ16

τ17

τ21

τ22

τ23

τ31

τ32

τ33

Task 1 Task 2

Task 3

Task 1 – 3D application, p=67 ms
1. Sample local-player input
2. Sample remote-player position
3. Application task [7.3e6, 1.4e7]
4. Geometry [5.15e6, 5.21e6]
5. Setup [3.85e6, 1.7e7]
6. Render [2.7e7,4.5e7]
7. Output to display buffer
8. Transmit local-player position

Task 2– Local Voice, p=40 ms
1. Sample local voice
2. VSELP encode [5e5,1e6]
3. Transmit

Task 3– Remote Voice, p=40 ms
1. Receive
2. VSELP decode [3.7e5,7.6e5]
3. Play remote voice

(b)

τ18

τ11

τ15

τ17

τ21 τ22 τ23

τ31τ33

τ18
τ13 τ14

User input
180 bps

Local voice
8 kbps

Local-voice
Encoded
130 kbps

Primitive
Traffic

4.1 Mbps

Scanline
Traffic

2.1 Mbps

Pixel traffic
14 Mbps

τ16

Remote-voice
Encoded
130 kbps

Remote
Voice
8 kbps

τ32

Remote
Position
300 bps

Local Position
300 bps

τ12

ARM1

ARM2

SHARED BUS COMM BUS

GPU

(c)

100 Mbps

1.5 Mbps

Figure 4: An example mobile gaming platform. (a) The system architecture. (b) The tasks with period p and core execution cycles
[best case, worst case]. (c) The task-resource assignment with the associated communication traffic.

Table 1: Task level heuristic power optimization
(a)

Task sfinit sfopt Mapping

VSELP ENCODE 1.0 0.48 ARM1
SETUP 1.0 0.75 ARM2

RENDER2 1.0 0.61 PIXEL PIPE2
3D APP 1.0 0.65 ARM1

VSELP DECODE 1.0 0.1 ARM2
RENDER1 1.0 0.61 PIXEL PIPE1

(b)

Resource Pinit Pmin

ARM1 0.65 0.43
ARM2 0.5 0.26

PIXEL PIPE1 1.0 0.23
PIXEL PIPE2 1.0 0.23
COMM BUS 0.08 0.08

SHARED BUS 0.28 0.28
Total power 3.51 1.51

Table 2: Resource level heuristic power optimization
(a)

Resource sfinit sfopt Mapping

ARM2 1.0 0.64 [SETUP, VSELP DECODE]
PIXEL PIPE1 1.0 0.61 [RENDER1]
PIXEL PIPE2 1.0 0.61 [RENDER2]

(b)

Resource Pinit Pmin

ARM1 0.65 0.65
ARM2 0.5 0.21

PIXEL PIPE1 1.0 0.23
PIXEL PIPE2 1.0 0.23
COMM BUS 0.08 0.08

SHARED BUS 0.28 0.25
Total power 3.51 1.65

(a) Task level power optimization (b) Resource level power optimization

Figure 5: Comparison of the heuristic and stochastic power optimization approaches

387

6. CONCLUSION
The previous approaches to system power optimization are lim-

ited by either simple task models and do not consider systems with
timing constraints or are restricted to systems with local real-time
requirements. In this paper we presented two methods for power
optimization of complex embedded systems without violating any
deadlines. As shown in the experimental section, the proposed
methods can be easily applied to real-time systems with distributed
functional and timing dependencies.

7. REFERENCES
[1] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. M.

Al-Hashimi. Simultaneous communication and processor
voltage scaling for dynamic and leakage energy reduction in
time- constrained systems. ICCAD, 2004.

[2] ARM11 MPCore. http://www.arm.com/products/
CPUs/ARM11MPCoreMultiprocessor.html.

[3] R. Bianchini and R. Rajamony. Power ans energy
management for server systems. IEEE Computers,
37(11):68–75, November 2004.

[4] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA – a
platform and programming language independent interface
for search algorithms.
http://www.tik.ee.ethz.ch/pisa/.

[5] J.-J. Chen and T.-W. Kuo. Multiprocessor energy-efficient
scheduling for real-time tasks with different power
characteristics. Int’l Conf. on Parallel Processing, 2005.

[6] S. Duarte, Y. Tsai, N. Vijaykrishnan, and M. Irwin.
Evaluating run-time techniques for leakage power reduction.
ASPDAC, 2002.

[7] K. Gresser. An event model for deadline verification of hard
real-time systems. In Proceedings 5th Euromicro Workshop
on Real-Time Systems, pages 118–123, Oulu, Finland, 1993.

[8] F. Gruian and K. Kuchcinski. Lens: Task scheduling for
low-energy systems using variable supply voltage
processors. Proc. Asia South Pacific Design Automation
Conference, pages 449–455, 2001.

[9] A. Hamann and R. Ernst. TDMA time slot and turn
optimization with evolutionary search techniques. In Proc. of
the IEEE/ACM Design, Automation and Test in Europe
Conference (DATE), Munich, Germany, Mar. 2005.

[10] A. Hamann, M. Jersak, K. Richter, and R. Ernst. A
framework for modular analysis and exploration of
heterogeneous embedded systems. Real-Time Systems
Journal, 33(1-3):101–137, July 2006.

[11] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and
R. Ernst. System level performance analysis - the SymTA/S
approach. IEE Proceedings Computers and Digital
Techniques, 152(2):148–166, March 2005.

[12] J. Hu, Y. Shin, N. Dhanwada, and R. Marculescu.
Architecting voltage islands in core-based system-on-a-chip
designs. In ISLPED, 2004.

[13] W. Hwang. New trends in low power soc design
technologies. IEEE SoC Conf., 2003.

[14] M. Jersak. Compositional Performance Analysis for Complex
Embedded Applications. PhD thesis, Technical University of
Braunschweig, 2004.

[15] M. Johnson, D. Somasekhar, L. Chiou, and K. Roy. Leakage
control with efficient use of transistor stacks in single
threshold cmos. IEEE Trans. on VLSI Systems, 10, 2002.

[16] D. Lackey, P. Zuchowski, T. Bednar, D. Stout, S. Gould, and

J. Cohn. Managing power and performance for
system-on-chip designs using voltage islands. In ICCAD,
2002.

[17] B. Mochocki. Desktop2handheld: the porting of an opengl
application to opengl/es.
http://www.nd.edu/˜bmochock/race/
ComputerGraphicsFinal_Mochocki.pdf.

[18] J. C. Palencia and M. G. Harbour. Schedulability analysis for
tasks with static and dynamic offsets. In Proceedings of 19th
IEEE Real-Time Systems Symposium (RTSS), Madrid, Spain,
1998.

[19] T. Pop, P. Eles, and Z. Peng. Holistic scheduling and analysis
of mixed time/event-triggered distributed embedded systems.
In Tenth International Symposium on Hardware/Software
Codesign (CODES), Estes Park, Colorado, USA, May 2002.

[20] M. Powell, S. Yang, B. Falsafi, K. Roy, and T. Vijaykumar.
Gated-vdd: a circuit technique to reduce leakage in
deep-submicron cache memories. In ISLPED, 2000.

[21] R. Racu, M. Jersak, and R. Ernst. Applying sensitivity
analysis in real-time distributed systems. In Proceedings of
the 11th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), San Francisco, CA, USA,
2005.

[22] K. Richter. Compositional Performance Analysis. PhD
thesis, Technical University of Braunschweig, 2004.

[23] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles.
Energy-efficient mapping and scheduling for dvs enabled
distributed embedded systems. DATE, pages 321–330, 2002.

[24] D. Shin, J. Kim, and S. Lee. Intra-task voltage scheduling for
low-energy hard real-time applications. IEEE Design & Test
of Computers, 18(2):20–30, March 2001.

[25] M. H. Sunwoo and S. Park. Real-time implementation of the
vselp on a 16-bit dsp chip. IEEE Transactions on Consumer
Electronics, 37(4):772–781, November 1991.

[26] E. Talpes and D. Marculescu. Toward a multiple
clock/voltage island design style for power-aware processors.
IEEE Trans. on VLSI Systems, 13, 2005.

[27] L. Thiele, S. Chakraborty, and M. Naedele. Real-time
calculus for scheduling hard real-time systems. In
Proceedings of the International Symposium on Circuits and
Systems (ISCAS), Geneva, Switzerland, 2000.

[28] K. Tindell and J. Clark. Holistic schedulability analysis for
distributed real-time systems. Microprocessing and
Microprogramming - Euromicro Journal (Special Issue on
Parallel Embedded Real-Time Systems), 40:117–134, 1994.

[29] L. Yan, J. Luo, and N. K. Jha. Combined dynamic voltage
scaling and adaptive body biasing for heterogeneous
distributed real-time embedded systems. ICCAD, pages
30–37, 2003.

[30] Y. Zhang, X. S. Hu, and D. Z. Chen. Task scheduling and
voltage selection for energy minimization. Proceedings of
the Design Automation Conference, 2002.

[31] D. Zhou, N. AbouGhazaleh, D. Mosse, and R. Melhem.
Power aware scheduling for and/or graphs in multi-processor
real-time systems. ICPP, pages 593–601, 2002.

[32] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving
the Strength Pareto Evolutionary Algorithm for
multiobjective optimization. In Proc. Evolutionary Methods
for Design, Optimisation, and Control, pages 95–100,
Barcelona, Spain, 2002.

388

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

