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ABSTRACT
Sensor networks are being deployed for substantial periods
of activity, and are being used by multiple applications with
possibly diverse requirements. Since manually upgrading or
updating sensor software is often impossible, run-time soft-
ware reconfiguration represents a considerable success fac-
tor for many practical usage scenarios of sensor networks.
This paper presents DAViM, the Distrinet Adaptable Vir-
tual Machine and describes how it allows to customize sensor
behavior, to extend its functionality and to execute multi-
ple applications in parallel. We have evaluated the proposed
architecture by implementing a proof-of-concept prototype
on micaZ hardware. First results indicate that it is already
feasible to run the DAViM core on micaZ hardware, while
memory requirements of the full DAViM implementation are
close enough to fit on more recent sensor hardware.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications; D.2.11 [Software En-
gineering]: Software Architectures—Domain-specific archi-
tectures

General Terms
Design, Management

Keywords
Sensor middleware, software architecture, adaptability

1. INTRODUCTION
Sensor networks must be dynamically adaptable to sur-

vive software bugs and changes in network conditions, ap-
plication requirements, or available resources [16]. Sensors
are typically deployed for substantial periods of activity and
integrated in office buildings or warehouses, implanted in
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animals, or spread out in nature [4]. By consequence, in-
stalling a new sensor network may imply a considerable in-
vestment. In addition, sensor networks may produce data
that are relevant for multiple purposes, which implies that
multiple applications should be able to reuse the same sensor
infrastructure.

From this perspective, a sensor network becomes a light-
weight service platform on which service providers can in-
stall a wide variety of applications. Figure 1 sketches the
context of such a service platform and illustrates how it is
linked with end-user applications. Think, for example, of
a chemical factory in which a sensor network has been de-
ployed to manage operations and safety. The same sensor
network can be used, for instance, by (1) a facility manage-
ment application to control the temperature in rooms where
inflammable substances are stored, (2) a stock management
application to check in real-time the availability of particu-
lar supplies and to monitor incoming and outgoing products,
and (3) a safety monitoring application to localize dangerous
products and to detect when incompatible substances ap-
proach within a pre-defined perimeter. These applications
make use of various services offered by the sensor network
such as temperature monitoring, data querying, sensor lo-
calization, and distance measuring. In addition, each appli-
cation may require different behavior and accuracy related
to data collection, data aggregation, localization, or timing.

In this context, one of the key research challenges is to
manage sensor networks in such a way that they can be
dynamically customized to various (unanticipated) circum-
stances. Since resource limitations prevent sensors to have
an extensive set of services pre-installed, sensor software
should be dynamically reconfigurable [13]. This implies not
only customizing the behavior of a sensor node, i.e. chang-
ing how a sensor operates by using the same functionality in
different ways, but also adding and removing functionality,
i.e. changing what the sensor node does.

The contribution of this paper is the presentation of DA-
ViM, the Distrinet Adaptable Virtual Machine. DAViM is
partly inspired by ASVM [10], but offers more possibilities
for dynamic reconfiguration of sensor networks. DAViM
allows not only running lightweight applications, but also
allows adding or removing operation libraries. In addition,
it allows multiple applications to execute concurrently on a
node. The architecture has been validated by implementing
a proof-of-concept prototype on micaZ hardware. Although
the full implementation of the current prototype is slightly
too large to fit on micaZ hardware, it shows that DAViM’s
memory requirements are modest enough to fit on more re-
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Figure 1: A sensor network as a lightweight service platform on which service providers can install a wide
variety of applications, e.g. for airco control, localization and people detection. Application components are
distributed over user terminals (e.g. a portable, PDA or a mobile phone), the sensor network and the gateway
between the two. DAViM is installed on the sensor network. The DAViM tools on the user terminals support
functionality for code injection and operation library management.

cent hardware.
The remainder of the paper is structured as follows. Sec-

tion 2 summarizes the key requirements that DAViM must
support. Section 3 describes related work in the context
of dynamically reconfigurable sensor systems. Section 4
presents the DAViM architecture through exploring a rep-
resentative use case and discusses its main contributions.
Section 5 describes the proof-of-concept implementation of
the architecture. Section 6 formulates the main conclusions
and sketches directions for future work.

2. REQUIREMENTS SUMMARY
When considering a sensor network as a lightweight ser-

vice platform, we can identify two key roles of the DAViM
architecture. On the one hand, DAViM must enable service
providers to use and extend the sensor network by installing
various applications on it and retrieving data from its sen-
sors. On the other hand, DAViM must support network
administrators to manage the sensor network by distribut-
ing, storing and handling applications.

To implement this segregation successfully and to enable
complex applications to execute on the sensor network, DA-
ViM must offer support to as many applications as possible
by extending the available set of operations if needed and
by allowing applications to execute in parallel.

We summarize the key requirements of the system from
both perspectives: customizability of sensor behavior, ex-
tendability of sensor functionality, and concurrency. The
first requirement offers support to service providers, the oth-
ers help manage the sensor network as a service platform.

2.1 Customizability of sensor behavior
First of all, sensor behavior must be customizable by dy-

namically injecting application code in the sensor network.
This code is stored in every node of the network and its
execution makes each sensor behave as preferred.

Secondly, the system must offer functionality that is spe-

cific for a particular application domain. This functionality
is offered as operation libraries that can be called by appli-
cations running on the node. By consequence, applications
can be very lightweight since the core functionality is already
available in the libraries on the node.

2.2 Extendability of sensor functionality
Deciding what functionality will be installed on every sen-

sor node is complex since requirements can vary during the
life-time of an application, network conditions are highly un-
predictable, and system resources are very scarce and vari-
able. For example, when a more efficient sensor localization
algorithm becomes available, it can be much more efficient
to dynamically install this building block as needed.

In order to handle such changing circumstances, first of
all, the system must be extendable by adding missing func-
tionality when needed. The set of operations should be
modularized in order to allow fine-grained extensions. At
all times, the system should offer the most appropriate set
of operations without pre-installing unneeded functionality.

Secondly, the system must be able to support the exe-
cution of added functionality, i.e. reacting to new types of
events and handling these events correctly. Consequently,
the system must be extendable by adding specific event han-
dlers and corresponding state machines. For example, when
functionality is added to communicate with a previously un-
used hardware sensor, the system must be extended to han-
dle new types of hardware events.

Finally, the system must provide each application with
an execution environment that offers the minimal but suffi-
cient (sub)set of operations. Different applications may have
highly diverse requirements, resulting in different amounts
of system support needed. Some operations may be used by
multiple applications, some operations may be application
specific. Consequently, common operations must be decou-
pled from the application and concentrated in libraries that
dynamically offer operation sets with respect to the system.



2.3 Concurrency
The system should allow multiple applications to use the

set of operation libraries in parallel. Concurrency should be
transparent: each application should execute as if it were
the only one on the system and the only application us-
ing a particular operation library. The system must ensure
safe execution and prevent race conditions and deadlocks; it
must protect shared variables and schedule operations from
different applications.

3. RELATED WORK
Related research in the domain of sensor reconfigurability

typically focuses on either operating system reconfigurabil-
ity or virtual machine support.

Research in dynamically reconfigurable sensor operating
systems has shown that it is feasible to dynamically extend
system services in a sensor network. The cost of extending
sensor functionality mainly depends on the granularity of
the code to be transported in the network. TinyOS/Deluge
[6], for instance, replaces a complete system image which
implies considerable network overhead to transport the up-
date to all nodes in the network. Several approaches [12,
14, 7] have been proposed to reduce the code that has to
be transported to be able to reconstruct the updated image.
SOS [5] modularizes the operating system in a static ker-
nel and multiple service modules for routing, localization,
timing, etc. Modules are position independent code, have
a limited size (4KB) and can be dynamically downloaded
to update the system. Contiki [3, 2] allows to dynamically
load binary modules in the standard ELF file format and a
variant called CELF (compact ELF).

Research in the domain of sensor virtual machines shows
that the update cost can be decreased considerably by in-
stalling on every node a virtual machine that offers a set
of high-level operations related to a specific application do-
main. In order to customize sensor behavior, application
scripts are downloaded to every sensor node. Such applica-
tions can use high-level operations that are available in the
VM of every node, which makes them very lightweight. By
consequence, sensor updates can be very efficient on condi-
tion that the operation library that is available on the node
offers enough functionality to cover the life-time of the sen-
sor network.

Deciding what functionality will be offered in the VM is
complex given the highly dynamic circumstances in which
a sensor network operates. ASVM [10], based on the work
in Maté [9], allows customization of the available operations
at deployment-time. VM* [8] provides a continuous update
model in which the functionality of a sensor virtual ma-
chine can be incrementally extended as needed. VM* only
includes the operations that are needed by the application
that is running on the node, and extends the virtual machine
when applications with extra requirements are installed.

The two related research domains, operating systems and
virtual machines for sensor networks, focus on two require-
ments that were described in Section 2: customizability of
sensor behavior and extendability of sensor functionality.
The research for this paper can be positioned between the
two state-of-the-art approaches for dynamic sensor updat-
ing. Virtual machine approaches enable highly efficient up-
dates but are limited to a pre-defined application domain.
Modular operating systems enable any service to be up-

dated, but imply a higher cost since downloaded modules are
more coarse-grained compared to a virtual machine applica-
tion. The DAViM architecture offers a best-of-both-worlds
solution by extending the idea of ASVM [10] to allow cus-
tomization of available operations at runtime through dy-
namically loadable operation libraries. In addition, DAViM
can be reused for various application domains by enabling
concurrent execution of different VMs.

Dunkels e.a. have investigated the energy efficiency of
various reprogramming techniques for wireless sensor net-
works [2]. They confirm that the combination of virtual
machine code and native code using dynamically loadable
modules, which is the approach taken in this paper, is ben-
eficial for energy efficiency.

Balani e.a. present DVM [1], which takes a similar ap-
proach for dynamically updating sensor VMs. DAViM, how-
ever, is positioned in a broader and more open perspective
by approaching sensor networks as lightweight service plat-
forms. In view of this, DAViM also enables multiple appli-
cations to be executed in parallel. Furthermore, the DAViM
architecture is independent from the underlying sensor op-
erating system.

4. DAVIM ARCHITECTURE
This section presents the main components of the DAViM

architecture (see Figure 2). The three key aspects that dif-
ferentiate the DAViM architecture from related sensor vir-
tual machines are: (1) a network coordinator that is respon-
sible for distributing application code, operation libraries,
as well as VM descriptions, (2) a scheduler that schedules
operations over multiple VMs, and (3) a library manager
that allows dynamic updates of the used instruction set of
a VM.

The architecture is explained by exploring how it supports
a representative use case that incorporates the requirements
outlined in Section 2. We consider a sensor network deployed
in a building of a chemical factory used for storage of chem-
icals (see Figure 1). The use case is presented incrementally
by using three scenarios: the first scenario illustrates the ba-
sic VM support of DAViM, the second scenario shows how
DAViM enables a VM to be dynamically updated and the
third scenario describes DAViM support for executing mul-
tiple VMs in parallel. It should be noted that the DAViM
architecture assumes that the underlying operating system
provides dynamic memory and dynamic modules.

4.1 Basic virtual machine support
The sensor network is used by the air conditioning system

to detect when to switch the system on or off. The sensor
network informs the air conditioning system whenever an ob-
served temperature rises above or falls below certain thresh-
olds. These thresholds may change during the lifetime of
the sensor network. The nodes in the sensor network may
also change due to addition or removal of containers that
have a node attached.

To support this basic application, the system must first
of all include the application specific functionality that is
needed by the air conditioning system. Secondly, it must be
possible to dynamically customize the application to change
the thresholds. Thirdly, new nodes that enter the network
must be brought up to date to enable them to be used in
the application.

This scenario is supported by deploying the DAViM sys-



Figure 2: Overview of the DAViM architecture.

tem on the sensor nodes along with one virtual machine
with an instruction set capable of sensing temperature and
communicating with the air conditioning system. The ap-
plication itself is implemented in the instruction set of this
virtual machine.

To change the thresholds, the air conditioning system can
install a new version of (a part of) the application on the
gateway node. The Coordinator component on the gate-
way will inform the neighbors of the update and distributes
the new code to them. Each node that receives the update
via its Coordinator component passes the code to the Ap-
plication Manager, which installs the newly arrived update
and informs the VM Store of this change. The Concurrency
Manager analyzes the new code to determine which shared
variables are used. This information is stored to ensure safe
execution of the different parts of an application. After-
wards the VM Manager reboots the virtual machine with
the new application.

Whenever a new container with a sensor node attached
enters the sensor network, the Coordinator component will
cooperate with the Coordinator components of neighboring
nodes to synchronize the state of the DAViM system. In
case the entering node misses an application loaded on the
other nodes, neighboring nodes will send it to the new node.

4.2 Dynamic adaptation of virtual machines
Since the energy cost to cool down the whole building

can be quite high, and since only a fraction of the stored
chemicals must be kept really cold, the management may
decide to divide the building in several rooms that can be
cooled down separately by the air conditioning system.

To support this new situation, the application on the sen-
sor network needs to be able to not only detect when a tresh-
old is exceeded, but also where this happens. This requires
the instruction set of the virtual machine to be extended to
with a localization instruction.

The instruction sets of the virtual machines are grouped in
operation libraries of related instructions. These operation
libraries can be loaded, changed or removed dynamically.
To extend the virtual machine of our air conditioning sys-
tem with a localization service, we implement this service
as an operation library and load it into the DAViM system.

The operation libraries are implemented as operating system
modules. The Coordinator uses the mechanisms provided by
the operating system to distribute and install the library in
the sensor network. After the operation library is loaded,
the Coordinator informs the Library Manager. The Library
Manager is part of the Operation Store, to which also the
operation libraries belong. Its task is to do the bookkeeping
associated with the operation libraries. The most important
task is to keep track of the mapping between the identifier
of a library and the actual operating system module imple-
menting it.

Before the localization library can be used, it has to be in-
cluded in the instruction set of the virtual machine of the air
conditioning application before it can be used. Again, this
update is installed on the gateway node and distributed au-
tomatically by the Coordinator component of DAViM. The
installation of the updated virtual machine is handled by
the VM Manager.

4.3 Support for multiple virtual machines
To comply with new legislation, a safety officer, possibly

externally hired, has to keep statistics of the presence of
workers in the neighborhood of the most dangerous chemi-
cals. To ease his work, the safety officer wants to deploy a
service on the existing sensor network to monitor the pres-
ence of people in the building and to trigger an alarm when
somebody stays in the neighborhood of a dangerous chemi-
cal for too long. In addition, it must be possible to monitor
the distance between the chemicals to ensure that a safety
perimeter around dangerous chemicals is preserved.

This new application is independent of the already de-
ployed air conditioning application and, by consequence,
they should be isolated. The new functionality needed for
detecting people must be added without interfering with the
already installed application. Furthermore, since the appli-
cation also needs the functionality for localization, the sys-
tem must support flexible and transparent sharing of this
functionality in order to minimize memory requirements.

DAViM supports the isolation of applications by allow-
ing multiple virtual machines to run concurrently. These
virtual machines do not have to be loaded in advance, but
can be loaded dynamically. This makes it possible to deploy



DAViM on a sensor network without predicting the future
applications that will run on it. For the safety application,
a new virtual machine is installed. To perform this instal-
lation, a description of the new virtual machine is loaded
onto the gateway node. After arrival on a node, the addi-
tion of a virtual machine is handled similar to an update to
an existing virtual machine.

The applications in both virtual machines, as well as the
virtual machines itself can be updated without interfering
with the application in the other virtual machine. The
VM Controller ensures the running virtual machines oper-
ate smoothly. The Scheduler enforces a scheduling policy
involving all loaded virtual machines. The Event Manager
dispatches the events in the system (e.g. timer events, events
generated by operation libraries, . . . ) to the appropriate vir-
tual machine.

In order to enable flexible and transparent sharing of op-
eration libraries, the library identifier encoded in the byte
code of an instruction set is decoupled form the actual li-
brary identifier known by the Library Manager. In addition,
this enables dynamic updates of the operation libraries that
are included in a virtual machine and loading of operation
libraries without interference with running virtual machines.

4.4 Discussion
The DAViM architecture supports the requirements that

were described in Section 2 as follows. First of all, sen-
sor behavior can be customized by distributing applications
in the network via the Coordinator component, and stor-
ing them in the Application Store that is available on every
node. Secondly, the functionality offered by each sensor can
be dynamically extended by distributing operation libraries
(again via the Coordinator) and storing them in the Oper-
ation Store. The Library Manager decouples the operation
libraries from the VM that is using them. In this way, an op-
eration library can be transparently added to a VM, which
allows to offer exactly those operations that are needed by
the applications running on a node. Thirdly, the Concur-
rency Manager and the Scheduler enable multiple VMs to
safely execute in parallel. In combination with the extension
capabilities, each VM can be offered a customized operation
library that can be used as if only one VM were present.

As such, we argue that the DAViM architecture combines
the advantages of both reconfigurable operating systems and
virtual machines: as long as the needed operation libraries
are present, lightweight applications can be downloaded to
a DAViM VM to reconfigure the system’s behavior. When
multiple applications need to be deployed in parallel, or
when extra sensor functionality is required by an applica-
tion, operating system modules can be downloaded to re-
configure the VMs itself. Because such an update implies
more code to be transported, it is less efficient. This is,
however, acceptable, given the low frequency of performing
such major updates and the considerable added value for
employing sensor networks during a substantial period of
time.

5. PROTOTYPE IMPLEMENTATION
The presented architecture has been evaluated by imple-

menting a proof-of-concept prototype. The implementation
offers support to download and install applications on a VM,
extend the functionality in each node by downloading oper-
ation libraries, and activate multiple VMs on a single sensor

node. The current implementation allows to activate up to
eight VMs in parallel, each of which can use up to eight
operation libraries. Due to memory limitations of micaZ
hardware, however, only one VM can be deployed at the
moment.

The architecture relies on an underlying operating sys-
tem that provides dynamic memory and loadable modules.
We have chosen the SOS operating system for our imple-
mentation because it provides this features and has good
support for micaZ hardware. The core architecture and
the operation libraries are implemented as SOS modules,
what enables the operation libraries to be loaded dynami-
cally. Code snippets for the basic operation libraries and
some algorithms related to the Coordinator, the Concur-
rency Manager, and the Scheduler could be reused from an
existing port of ASVM to the SOS operating system.1 The
architecture does not imply a specific algorithm for the Co-
ordinator component. The current implementation uses the
mechanism provided by SOS for distributing operation li-
braries (SOS uses a variant of MOAP [15]) and Trickle [11]
for distributing applications and VM descriptions.

The limited amount of dynamic memory that could be re-
served on micaZ hardware currently prevents realistic field
tests. MicaZ sensor nodes have available 4KB of RAM of
which SOS reserves 1,5 KB for dynamic memory allocation.
Experiments on micaZ nodes have shown that more dynamic
memory is needed to use more than one simultaneously acti-
vated VM for a realistic application. Yet, simulations show
that DAViM needs less than twice the amount of dynamic
memory available on micaZ hardware. This is a promis-
ing result that motivates us to implement the prototype on
more recent hardware.2 Our expectations are that more re-
cent hardware will solve current memory limitations.

6. CONCLUSION & FUTURE WORK
This paper has presented the DAViM architecture, which

offers a blueprint for dynamically adaptable sensor virtual
machines. The architecture offers support for three key re-
quirements that sensor networks have to deal with: cus-
tomizability of sensor behavior, extendability of sensor func-
tionality, and concurrent execution of multiple applications.
The paper has discussed the main components. By way of
evaluation of the architecture, we have implemented a proof-
of-concept prototype which provides promising indications
that it is feasible to implement the described functionality
on state-of-the-art sensor hardware.

With respect to future work, we will first of all evaluate
and refine the architecture in the context of an industrial
case study. Our research will gradually extend its focus
from an individual sensor node and a single sensor network
towards an end-to-end view. With end-to-end sensor appli-
cations we mean applications that are distributed over an
enterprise back-end and one or more sensor networks with
possibly different types of sensor nodes.

Developing and deploying end-to-end sensor applications
in a realistic business context remains very complex. This
complexity is partly caused by the highly resource limited,
dynamic and heterogeneous environments in which sensor

1Networked and Embedded Systems Lab at UCLA
(http://cvs.nesl.ucla.edu/cvs/viewcvs.cgi/ASVM/).
2For example TelosB (10KB RAM), XYZ (32 KB RAM) or
iMote2 (32 MB RAM)



applications must operate. These specific characteristics
of sensor networks require that sensor middleware (1) en-
ables to compose software that contains minimal but suf-
ficient functionality to meet application requirements, and
(2) hides system details and heterogeneity as much as possi-
ble, while still being open for fine-tuning or customizing the
underlying system in a controlled way.

The DAViM architecture fits in this research picture by
focussing on dynamic code injection based on application
specific requirements.
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