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Abstract: We present a formal approach to implement fault-tolerance in real-time embed-
ded systems. The initial fault-intolerant system consists of a set of independent periodic
tasks scheduled onto a set of fail-silent processors connected by a reliable communication
network. We transform the tasks such that, assuming the availability of an additional spare
processor, the system tolerates one failure at a time (transient or permanent). Failure de-
tection is implemented using heartbeating, and failure masking using checkpointing and
rollback. These techniques are described and implemented by automatic program trans-
formations on the tasks’ programs. The proposed formal approach to fault-tolerance by
program transformation highlights the benefits of separation of concerns and allows us to
establish correctness properties (including the satisfaction of real-time constraints). We also
present an implementation of our method, to demonstrate its feasibility and its efficiency.
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Mise en ceuvre de la tolérance aux fautes
par transformation de programme

Résumé : Nous proposons une approche formelle pour la tolérance aux fautes dans des
systémes embarqués temps réels. Le systéme initial consiste en un ensemble de téaches
périodiques et indépendantes, ordonnancées sur un ensemble de processeurs & silence sur
défaillance reliés par un réseau de communication fiable. Nous transformons les taches
de telle sorte qu’en supposant ’existence d’un processeur de secours, elles tolérent une
défaillance (permanente ou transitoire) & la fois. La détection des défaillances est réalisée en
vérifiant la présence de signaux périodiques (heartbeating) et la reprise de ’exécution sur le
processeur de secours est faite grace a des points de reprise (checkpointing et rollback). Ces
techniques sont décrites et implantées par des transformations automatiques de programmes
du programme des taches. Cette approche formelle pour la tolérance aux fautes permet de
séparer les problémes et de montrer la correction de propriétés clés comme le respect des
contraintes temps réels. Nous présentons I’application de notre méthode sur un cas d’étude
afin de démontrer sa faisabilité et son efficacité.

Mots-clés :  Tolérance aux fautes, points de reprise, transformations de programme,
preuves de correction.



Implementing Fault-Tolerance by Program Transformations 3

1 Introduction

In most distributed embedded systems, such as automotive and avionics, fault-tolerance is
a crucial issue [Cristian, 1991, Nelson, 1990, Jalote, 1994]. Fault-tolerance is defined as the
ability of the system to comply with its specification despite the presence of faults in any of
its components [Avizienis et al., 2004]. To achieve this goal, we rely on two means: failure
detection and failure masking. Among the two classes of faults, hardware and software,
we only address the former. Tolerating hardware faults requires redundant hardware, be it
explicitly added by the system’s designer for this purpose, or intrinsically provided by the
existing parallelism of the system. We assume that the system is equipped with one spare
processor, which runs a special monitor module, in charge of detecting the failures in the
other processors of the system, and then masking the failure.

We achieve failure detection thanks to timeouts; two popular approaches exist: the so-
called “pull” and “push” methods [Aggarwal and Gupta, 2002]. In the pull method, the
monitor sends liveness requests (i.e., “are you alive?” messages) to the monitored compo-
nents, and considers a component as faulty if it does not receive a reply from that component
before a fixed time delay. In the push method, each component of the system periodically
sends heartbeat information (i.e., “I am alive” messages) to the monitor, which considers a
component as faulty if two successive heartbeats are not received by the monitor within a
predefined time interval [Aguilera et al., 1997]. We employ this last method which involves
only one-way messages.

We implement failure masking with checkpointing and rollback mechanisms, which have
been addressed in many works. It involves storing the global state of the system in a
stable memory, and restoring the last state upon the detection of a failure to resume exe-
cution. There exist many implementation strategies of checkpointing and rollback, such as
user-directed, compiler-assisted, system-level, library-supported, etc [Ziv and Bruck, 1997,
Kalaiselvi and Rajaraman, 2000, Beck et al., 1994]. The pros and cons of these strategies
are discussed in [Silva and Silva, 1998]. Checkpointing can be synchronous or asynchronous.
In our setting where we consider only independent tasks, the simplest approach is asynchro-
nous checkpointing. Tasks take local checkpoints periodically without any coordination with
each other. This approach allows maximum component autonomy for taking checkpoints
and has no message overhead.

We propose a framework based on automatic program transformations to implement
fault-tolerance in distributed embedded systems. Our starting point is a fault-intolerant
system, consisting of a set of independent periodic hard real-time tasks scheduled onto a
set of fail-silent processors. The goal of the transformations is to obtain a system tolerant
to one hardware failure. One spare processor is initially free of tasks: it will run a special
monitor task, in charge of detecting and masking the system’s failures. Each transformation
will implement a portion of either the detection or the masking of failures. For instance,
one transformation will add the checkpointing code into the real-time tasks, while another
one will add the rollback code into the monitor task. The transformations will be guided
by the fault-tolerance properties required by the user. Our assumption that all tasks are
independent (i.e., they do not communicate with each other) simplifies the problem of con-
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Figure 1: System architecture.

sistent global checkpointing, since all local checkpoints belong to the set of global consistent
checkpoints.

One important point of our framework is the ability to formally prove that the trans-
formed system satisfies the real-time constraints even in the presence of one failure. The
techniques that we present (checkpointing, rollback, heartbeating, etc) are pretty standard
in the OS context. Our contribution is to study them in the context of hard real-time
tasks, to express them formally as automatic program transformations, and to prove formal
properties of the system after the transformations.

Section 2 gives an overview of our approach. In Section 3, we give a formal definition for
the real-time tasks and we introduce a simple programming language. Section 4 presents
program transformations implementing checkpointing and heartbeating. We present the
monitor task in Section 5 and extend our approach to transient and multiple failures in
Section 6. In Section 7, we illustrate the implementation of our approach on the embedded
control program of an autonomous vehicle. Finally, we review related work in Section 8 and
conclude in Section 9.

2 Overview of the proposed system

We consider a distributed embedded system consisting of p processors plus a spare processor,
a stable memory, and I/O devices. All are connected via a communication network (see
Figure 1). We make two assumptions regarding the communication and failure behavior of
the processors.

Assumption 1 The communication network is reliable and the transmission time is deter-
ministic.

Moreover, for the sake of clarity, we assume that the message transmission time between
processors is zero, but our approach holds for non-zero transmission times as well.
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Implementing Fault-Tolerance by Program Transformations 5

Assumption 2 All processors show omission/crash failure behavior [Jalote, 1994]. This
means that the processors may transiently or permanently stop responding, but do not pollute
the healthy remaining ones.

The system also has n real-time tasks that fit the simple-task
model of TTP [Kopetz, 1997]: all tasks are periodic and inde- | Initialize
pendent (i.e., without precedence constraints). More precisely, for each period T' do

. . . Read Inputs
the program of each task has the form described in Figure 2. Compute
Even though we present our method by assuming this simple- Update Outputs
task model, it can perfectly be applied to dependent tasks (i.e., | ong for each
with precedence constraints). Indeed, in Section 7, we give such
an application with static schedules made of dependent tasks and Figure 2: Program model of
deterministic and non-zero communication times, and we solve Periodic real-time tasks.
it with our method.

We do not address the issue of distribution and scheduling of the tasks onto the proces-
sors. Hence, for the sake of clarity, we assume that each processor runs one single task (i.e.,
n = p). Executing more than one task on each processor (e.g., with a multi-rate cyclic
execution approach) is still possible however.

Our approach deals with the programs of the tasks and defines program transformations
on them to achieve fault-tolerance. We consider programs in compiled form at the assembly
or binary code level, which allows us to evaluate eract execution times (EXET) of the basic
instructions, and hence the worst case execution times (WCET) and best case execution
times (BCET) of complex programs having conditional statements. We represent these three-
address programs using a small imperative language. Since the system contains only one
redundant processor, we provide a masking of only one processor failure at a time. Masking
of more than one transient processor failure at a time could be achieved with additional
spare processors (see Section 6).

Assumption 3 There exists a stable memory to keep the global state for error recovery
purposes.

The stable memory is used to keep the global state. The global state provides masking of
processor failures by rolling-back to this safe state as soon as a failure is detected. The stable
memory also stores one shared variable per processor, used for failure detection: the program
of each task, after transformation, will periodically write a 1 into this shared variable, while
the monitor will periodically (and with the same period) check that its value is indeed 1
and will reset it to 0. When a failure occurs, the shared variable corresponding to the
faulty processor will remain equal to 0, therefore allowing the monitor to detect the failure.
The spare processor provides the necessary hardware redundancy and executes the monitor
program for failure detection and masking purposes.

When the monitor detects a processor failure, it rolls back to the latest local state of the
faulty processor stored in the stable memory. Then, it resumes the execution of the task
that was running on the faulty processor, from this local state. Remember that, since the

RR n° 5919
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tasks are independent, the other tasks do not need to roll back to their own previous local
state. This failure masking process is implemented by an asynchronous checkpointing, i.e.,
processors take local checkpoints periodically without any coordination with each other.

The two program transformations used for adding periodic heartbeating / failure detec-
tion and periodic checkpointing / rollback amounts to inserting code at specific points. This
process may seem easy, but the conditional statements of the program to be transformed,
i.e., if branchings, create many different execution paths, making it actually quite difficult.
We therefore propose a preliminary program transformation, which equalizes the execution
times between all the possible execution paths. This is done by padding dummy code in
if branchings. After this transformation, the resulting programs have a constant execution
time. Then, checkpointing and heartbeating commands are inserted in the code at constant
time intervals. The periods between checkpoints and heartbeats are chosen in order to min-
imize their cost while satisfying the real-time constraints. A special monitoring program
is also generated from the parameters of these transformations. The monitor consists of a
number of tasks that must be scheduled by an algorithm providing deadline guarantees.

The algorithmic complexity of our program transformations is linear in the size of the
program. The overhead in the transformed program is due to the fault-tolerance techniques
we use (heartbeating, checkpointing and rollback). This overhead is unavoidable and com-
pares favorably to the overhead induced by other fault-tolerance techniques, e.g., hardware
and software redundancy.

3 Tasks

A real-time periodic task 7 = (5,T) is specified by a program S and a period T. The
program S is repeatedly executed each T units of time. A program usually reads its inputs
(which are stored in a local variable), executes some statements, and writes its outputs (see
Figure 2). Each task also has a deadline d < T that it must satisfy when writing its output.
To simplify the presentation, we take the deadline equal to the period but our approach
does not depend on this assumption. Hence, the real-time constraint associated to the task
(S,T) is that its program S must terminate before the end of its period T.
Programs are written in the following programming language:

S = x=A assignment
| skip no operation
| read(i) input read
| write(o) output write
| 51;5 sequencing
| if B then S; else Sy conditional
| fori=mnjtongdoS iteration

where A and B denote respectively integer expressions (arithmetic expressions on integer
variables) and boolean expressions (comparisons, and, not, etc), and n; and ns denote
integer constants. Here, we assume that the only variables used to store inputs and outputs
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Implementing Fault-Tolerance by Program Transformations 7

are ¢ and o. These instructions could be generalized to multiple reads and writes or to 10
operations parameterized with a port. This language is well-known, simple and expressive
enough. The reader may refer to [Nielson and Nielson, 1992] for a complete description.

The following example program Fac reads an unsigned integer variable and places it in
1. It bounds the variable ¢ by 10 and computes the factorial of 7, which it finally writes as
its output. Here, Fac should be seen as a generic computation simple enough to present
concisely our techniques. Of course, as long as they are expressed in the previous syntax,
much more complex and realistic computations can be treated as well.

Fac = read(i) ;
if 4> 10 then ¢ :=10; 0 :=1; else 0:=1;
for | =1 to 10 do
if ] <=1 then o0:=o0x*[; else skip;
write(o);

The simplest statement of the language is skip (the nop instruction), which exists on
all processors. We take the EXET of the skip command to be the unit of time and we
assume that the execution times of all other statements are multiple of EXET (skip). A
more fundamental assumption is that the execution times (be it EXET, WCET, or BCET) of
any statement (or expression) S can be evaluated. The WCET analysis is the topic of much
work (see [Puschner and Burns, 1999, Li et al., 2005] for instance); we shall not dwell upon
this issue any further.

For the remaining of the article, we fix the execution times of statements to be (in time
units) those of Table 1.

W W w

EXET(skip) = BCET(skip) = WCET(skip)
EXET(read) = BCET(read) = WCET(read)
EXET(write) = BCET(write) = WCET(write) =
EXET(z := e) = BCET(z :=¢) = WCET(z :=¢) =
EXET(S1;52) EXET(S7) + EXET(S3)
BCET(S71;52) BCET(S7) + BCET(S2)
WCET(S51;52) = WCET(S1) + WCET(S2)
WCET(if B then S; else Ss) 1 + max(WCET(S1), WCET(S2))
BCET(if B then S; else S3) 1+ min(BCET(S1), BCET(SQ))
EXET(for i = ny to ng do S) (ng —nq + 1) x (3 + EXET(S))
BCET(for i = nj to ny do S) (ng —n1+1) x (34 BCET(S))
WCET(for ¢ = nj to ng do S) = (n2—n1+1)x (3+ wWCET(S))

Table 1: Exact, worst case, and best-case execution times of our programming language’s
statements.

Of course, when the EXET of a statement is known, it is also equal to its WCET and its
BCET. The above figures are valid for any “simple” expressions e or b. Using temporary
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8 Ayav, Fradet & Girault

variables, it is always possible to split complex arithmetic and boolean expressions so that
they remain simple enough (as in three-address code). The WCET (resp. BCET) of the
for statement is computed in the same way, by replacing EXET by WCET in the right-hand
part (resp. BCET); same thing for the ;.

With these figures, we get WCET(Fac) = 84. In the rest of the article, we consider the
task (Fac,200), that is to say Fac with a deadline/period of 200 time units.

The real-time property for a system of n tasks {(S1,T41),...,(Sn,Ty)} is that each task
must meet its deadline. Since each processor runs a single task, it amounts to:

Vie{1,2,..,n},WCET(S;) < T; (1)

The semantics of a statement S is given by the function [S] : State — State. A
state s € State maps program variables V to their values. The semantic function takes a
statement .S, an initial state so and yields the resulting state s; obtained after the execution
of the statement: [S]so = s;. Several equivalent formal definitions of [.] (operational,
denotational, axiomatic) can be found in [Nielson and Nielson, 1992].

The IO semantics of a task (S,T) is given by a pair of streams

(ila-”ain)---);(017~-~70n7~-~)

where i, is the input provided by the environment during the kth period and oy is the last
output written during the kth period. So, if several write(o) are performed during a period,
the semantics and the environment will consider only the last one. We also assume that
the environment proposes the same input during a period: several read(i) during the same
period will result in the same readings.

For example, if the environment proposes 2 as input then the program

read(i); 0 := i; write(0); read(i); 0 := 0 % i; write(o)

produces 4 as output during that same period, and not (2,4). Assuming the sequence of
integers as inputs, the IO semantics of Fac is:

(0,1,2,3,4,5,6,7,8,9,10,11,12,...), (0, 11,21, 31, 41, 51 6!, 71, 81,91, 10!, 10!, 10!, .. .)

4 Automatic program transformations

Failure detection and failure masking rely on inserting heartbeating and checkpointing in-
structions in programs. These instructions must be inserted such that they are executed
periodically. We therefore transform a task program such that a heartbeat and a check-
point are executed every Ty p and Tcp period of time respectively. Conditional statements
complicate this insertion. They lead to many paths with different execution times. It is
therefore impossible to insert instructions at constant time intervals without duplicating the
code. To avoid this problem, we first transform the program in order to fix the execution
time of all conditional and loops to their worst case execution time. Intuitively, it amounts
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Implementing Fault-Tolerance by Program Transformations 9

to adding dummy code to conditional and loop statements. Such transformations suppose
to be able to evaluate the WCET of programs.. After this time equalization, checkpoints
and heartbeats can be introduced simply using the same transformation. To ensure timing
correctness in these transformations, we also assume the use of processors that do not have
complex behaviors such as pipelining and caching. This assumption is realistic since the
real-time embedded applications generally do not rely on these features.

A transformation may increase the WCET of programs. So, after each transformation 7,
the real-time constraint WCET(7 (S)) < T must be checked; thanks to our assumptions on
WCET, this can be done automatically.

4.1 Equalizing execution time

Equalizing the execution time of a program consists in padding dummy code in less expensive
branches. The dummy code added for padding is sequences of skip statements. We write
skip™ to represent a sequence of n skip statements: EXET(skip”) = n. This technique is
similar to the one used in “single path programming” [Puschner, 2002].

The global equalization process is defined inductively by the following transformation
rules, noted F. The rules below must be understood like a case expression in the program-
ming language ML [Milner et al., 1990]: cases are evaluated from top to bottom, and the
transformation rule corresponding to the first pattern that matches the input program is
performed.

Transformation rules 1

1. F[if B then S; else Sy] = if B then F[S;]; skip™a(0:02=01),
else F[S5]; skip™®* (0751*52);
with §; = WCET(F[S;]) fori=1,2

2. Flfori=mnj; tong doS] = fori=ny tony do FI[Y]
3. f[S];SQ] == ]:[51]7 .7:[52]
4. FI9] = S otherwise

Conditionals are the only statements subject to code modification (Rule 1). The transfor-
mation adds as many skip as needed to match the execution time of the other branch: hence
the max(0,d2 — d1) in the then branch. The “most expensive” branch remains unchanged,
while the “less expensive branch” ends up taking the same time as the most expensive one.
The transformation is applied inductively to the statement of each branch prior to this
equalization.

We now prove that, for any program .S, the best, and worst case execution times of F[S]
are identical:

Property 1 VS, BCET(F[S]) = WCET(F[S]) = EXET(F[S5]).

Proof: The proof is by induction on the structure of the program S.
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10 Ayav, Fradet € Girault

e Let S = if B then S; else S;. The induction hypothesis is that BCET(F[S;]) =
WCET(F[S1]) = EXET(F[S1]) = 01 and EXET(F[Ss]) = BCET(F[S2]) = WCET(F[Sa]) =
EXET(F[S2]) = 2. According to Rule 1 and Table 1, we thus have WCET(F[S]) =
1 + max (51 + max(O, (52 - (51), (52 + maX(O, 51 - 52))

Without loss of generality, assume that d; > o (the symmetrical case yields similar
computations). Then §; + max(0,d2 — d1) = 61 + 0 = 1, and d2 + max(0,; — d2) =
(52 + 51 — 52 = (51. Hence WCET(.F[SD =1 +max(51,51) =1+ 61.

Conversely, we also have BCET(F[S]) = 1+min (51 +max(0, d3 —01), 62 +max(0, o —
62)). Then, still by assuming that d; > d2, we also find BCET(F[S]) = 1+min(dy, ;) =
14 41.

In conclusion, BCET(F[S]) = WCET(F[S]) and therefore it is also equal to EXET(F[S]).
e Let S = for i = my to ny do S;. The induction hypothesis is that BCET(F[S;]) =
WCET(F[S1]) = EXET(F[S1]) = 6;. According to Rule 2 and Table 1, we thus have

EXET(F[S]) = (n2 —n1 +1) x (34 91). Since n; and ng are constant and by induction
hypothesis, this is also equal to BCET(F[S]) and WCET(F[S]).

e Let S = S1;52. The induction hypothesis is that BCET(F[S;]) = WCET(F[S1]) =
EXET(F|[S1]) = 61 and BCET(F[S2]) = WCET(F[S2]) = EXET(F|[S2]) = d2. According
to Rule 3 and Table 1, we thus have EXET(F[S]) = d; + 2. By induction hypothesis,
this is also equal to BCET(F[S]) and wCET(F[S]).

Thus, we conclude that for any S, BCET(F[S]) = WCET(F[S]) = EXET(FIS]). O

Furthermore, we also prove that the transformation F does not change the WCET of
programs:
Property 2 VS, WCET(S) = WCET(F[S]).
Proof: The proof is by induction on the structure of the program S.

e Let S = if B then S; else Sy. The induction hypothesis is that WCET(S;) =
WCET(F[S1]) = 01 and WCET(S2) = WCET(F|[S3]) = d2. According to Rule 1 and
Table 1, we thus have:

WCET(F[S]) = 14 max ((51 + max(0, d2 — d1), I3 + max(0,d; — (52))
= 1+max(max 51,514’527(51) max(52,52+51762))
= 1+ max (max 01, 02), max(da, 51))
(51,52

Moreover, according to Table 1, we also have WCET(S) = 1+max(WCET(S1), WCET(S5)).
By induction hypothesis, this is equal to 1 + max(d1, d2), that is WCET(F[5]).
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e Let S = for i = ny to ny do S;. The induction hypothesis is that WCET(S;) =
WCET(F[S1]). According to Rule 2 and Table 1, we thus have WCET(F[S]) = (nq
ny+1) X (3+WCET(F[S1])). Moreover, according to Table 1, we also have WCET(S) =
(ng —n1+1) x (3+WCET(S1)). By induction hypothesis, this is equal to WCET(F[S]).

e Let S = S1;52. The induction hypothesis is that WCET(S;) = WCET(F[S;]) and
WCET(S2) = WCET(F[S2]). According to Rule 3 and Table 1, we thus have WCET(F[S])
WCET(F[S51]) +WCET(F|[S2]). Moreover, according to Table 1, we also have WCET(S) =
WCET(S1) + WCET(S2). By induction hypothesis, this is equal to WCET(F[5]).

Thus, we conclude that for any S, WCET(S) = WCET(F[S]). O

The transformation F applied on our example Fac produces the new program Facy:

Facy = F|Fac] =read(i);
if ¢ > 10 then ¢ :=10; 0 :=1; else 0 :=1; skip3;
for [=1to 10 do
if [ <=4 then o:=o0x*I[; else skip>;
write(o);

4.2 Checkpointing and heartbeating

Checkpointing and heartbeating both involve the insertion of special commands at appro-
priate program points. The special commands we insert are:

e hbeat sends a heartbeat telling the monitor that the processor is alive. This com-
mand is implemented by setting a special variable in the stable memory. The vector
HBT]1...n| gathers the heartbeat variables of the n tasks. The command hbeat in
task 4 is implemented as HBT[i] := 1.

e checkpt saves the current state in the stable memory. It is sufficient to save only the
live variables and only those which have been modified since the last checkpoint. This
information can be inferred by static analysis techniques. Here, we simply assume that
checkpt saves enough variables to revert to a valid state when needed.

Heartbeating is usually done periodically, whereas the policies for checkpointing differ.
Here, we chose periodic heartbeats and checkpoints. In our context, the key property is to
meet the real-time constraints. We will see in Section 5 how to compute the optimal periods
for those two commands, optimality being defined w.r.t. those real-time constraints.

In this section, we define a transformation Z! (S, ¢) that inserts the command c every T
units of time in the program S. It will be used both for checkpointing and heartbeating.
The parameter T" denotes the period whereas the time counter ¢ counts the time residual
before the next insertion. Because the WCET of the “most expensive” atomic statement of
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our language is 3 and not 1 (e.g., WCET(read) = 3), it is not in general possible to insert the
command c exactly every T time units. However, we will establish a bound on the maximal
delay between any two successive commands c inserted in S.

The transformation Z relies on the property that all paths of the program have the same
execution time (see Property 1 in Section 4.1). In order to insert heartbeats afterward, this
property should remain valid after the insertion of checkpoints. We may either assume that
checkpt takes the same time when inserted in different paths (e.g., the two branches of a
conditional), or re-apply the transformation F after checkpointing. Again, the rules below
must be understood like a case expression in ML.

Transformation rules 2

1. Z7(S,t) =S if EXET(S) < t
2. 1 (S, 1) = ¢IX(S,T —EXET(c) +t) ift<0
3. I (a,t) = a;c if 0 <t < EXET(a)

and a is atomic

ICT(Sl;SQ,t) = ICT(Sl,t);ICT(SQ,tl)

with t1 = t — EXET(S1) if EXET(S1) <
with t1 =T — EXET(c) —r if EXET(S1) = — EXET(c)) +r
with ¢ > 0 og <T—EXET())

5. IT(if b then S) else So,t) = if b then 71 (S1,t — 1) else I (S, t — 1)

6. ZI(for | =n; to ng do S,t) = Fold(ZX (Unfold(for | = ny to ny do S),t))

Rule 1 states that, when the statement S finishes before the next insertion time ¢ (i.e.,
EXET(S) < t), the transformation terminates and nothing is inserted. In all the other cases
(rules 2 to 6), the WCET of S is greater than ¢ and at least one insertion must be performed.

Rule 2 applies when the time counter ¢ is negative. This case may arise when the
ideal point for inserting the command c is “in the middle” of the boolean expression of a
conditional statement if . When ¢ is negative, the command must be inserted right away.
The transformation proceeds with the resulting program and the time target for the next
insertion is reset to T'— EXET(c) +t, that is, it is computed w.r.t. the ideal previous insertion
point to avoid any clock drift.

Rule 3 states that, when the program is an atomic command a (whose EXET is greater
than or equal to t), the command c is inserted right after a, that is (EXET(a) — ¢) units of
time later than the ideal point.

Rule 4 states that the insertion in a sequence S1;55 is first done in S;. The residual time
t1 used for the insertion in S is either (t — EXET(S;)) if no insertion has been performed
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Implementing Fault-Tolerance by Program Transformations 13

inside S; or (T — EXET(c) — r) if r is the time residual remaining after the ¢ + 1 insertions
inside Sy (i.e., if EXET(S1) =t + ¢(T — EXET(c)) + 7).

Rule 5 states that, for conditional statements, the insertion is performed in both branches.
The time of the test and branching is taken into account by decrementing the time residual
(t—1).

Rule 6 applies to loop statements. It unrolls the loop completely (thanks to the Unfold
operator), performs the insertion in the unrolled resulting program (hence the (S’|t") =
T (S8",t)), and then factorizes code by folding code in for loops as much as possible (thanks
to the Fold operator). The Unjfold and Fold operators are defined by the following trans-
formation rules:

Transformation rules 3

l:i=ny; S5 l:=n14+1;...1:==n9; §

1. Unfold(for | =n; to ng do S)
=ng+1;5;) = forl=n;tony+1do S

2. Fold((for Il = n; to ng do S);

Actually, it would be possible to express the transformation Z such that it minimally
unrolls loops and does not need folding. However, the transformation rules would be much
more complex, and we chose instead a simpler presentation involving the Fold operator.

Transformation rules 2 assume that the period T is greater than the execution time of
the command c, i.e., T' > EXET(c). Otherwise, the insertion may loop by inserting ¢ within
c and so on.

Property 3 In a transformed program IX (F(S),T), the actual time interval A between the
beginning of two successive commands c is such that:

T—e<A<T+e¢

with € being the EXET of the most expensive atomic instruction (assignment or test) in the
program. Please also note that for the first c inserted in the program, A is defined as just
the beginning time of c.

We formalize and prove property 3 in the appendix.
Checkpointing and heartbeating are performed using the transformation Z. Checkpoints
are inserted first and heartbeats last. The period between two checkpoints must take into

account the overhead that will be added by heartbeats afterward. The overhead added by

heartbeating during X units of time is TXh = with h = wcET(hbeat). So, if Top is the

HB
desired period of checkpoints, we must use the period T}, defined by the equation:

T, =T Teph / h _ , _ Tcp
Tup — Tup —h 14— —
HB—
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With these notations, the insertion of checkpoints and heartbeats is described by the fol-
lowing ML code:

let (S',~) = Thep (S, Thp) in
let ((S”;hbeat),—) :Ig;}éft(hbeat; S Typ) in
S":hbeat (k)

The first heartbeat is added right at the beginning of S’, the others are inserted by Z, then
the last heartbeat is replaced by hbeat(k). We can always ensure that S’ finishes with a
heartbeat by padding dummy code at the end. The command hbeat (k) is a special heartbeat
that sets the variable to k instead of 1, i.e., HBT]i] := k. Following this last heartbeat, the
monitor will therefore decrease the shared variable and will resume error detection when the
variable becomes 0 again. This mechanism accounts for the idle interval of time between
the termination of S” and the beginning of the next period. Hence, k has to be computed
as:

T — wCET(S”;hbeat
k‘:[ WCET(S"” ;hbea )w 3)
Tugp
After the introduction of heartbeats, the period between checkpoints will be T¢. » ( 1+ %

),

i.e., Tcp. More precisely, it follows from Property 3 that:

Property 4 The actual time intervals Acp and Agp between two successive checkpoints
and heartbeats are such that:

Tcp—€§A0p<TcP+E+E and Tup — < Apgp <Typ+e¢

Proof: The proof is based on Property 3. After transformation IcTh/Cefkpt(S, T¢.p), Property 3
gives: ) / /

Tep—e<Agp <Tgp+te (4)
Assuming the WCET of the most expensive atomic command of checkpt is less than or
equal to &, after the second transformation, Z,\7%, (hbeat; S’, T 5), Property 3 satisfies the
condition Typ — e < Agp < Typ + €. The second transformation, however, changes A'C p
given in Equation (4) to A¢p such that each portion with the time interval T, in the final

program will be inserted ngi 7 hbeat commands. Therefore, by following Equation (2),

T/C p+ Tjgi’ ™ .h leads to T p, i.e., the desired value of checkpointing interval. Although we
take into account heartbeating in the first transformation, the heartbeating command hbeat
is invisible to the first transformation. The worst case occurs in the boundary condition of
Equation (2) when a heartbeat is inserted just before a checkpoint command. In this case,
Tc p is shifted upwards by h. In the best case, this shift is zero. Therefore, by shifting up the

lower and upper bounds of Acp with [0, 2], we finally derive Top—c < Acp < Top+e+h. O
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As pointed out above, the transformation Z requires the period to be bigger than the
cost of the command. For checkpointing and heartbeating we must ensure that:

Ttp > WCET(hbeat) and  Typ > WCET(checkpt)
To illustrate these transformations on our previous example, we take:

EXET(hbeat) =3 EXET(checkpt) =10 Tcp =80 Typ =10

3+xTlp

So, we get T p = 80 — 555

ie., Thp =56 and IS

checkpt

(Facy, 56) produces:

Facy = read(i);
if ¢ > 10 then i := 10; 0 := 1; else o0 := 1; skip?;
for =1 to 6 do
if | <=1 then o:= 0 *I; else skip®;
l:=7; if | <= then checkpt; 0 := o * [; else checkpt; skip?;
for =8 to 10 do
if [ <=1 then 0:=0x*I; else skip>;
write(o);

A single checkpt is inserted after 56 time units, which happens within the conditional
of the Tth iteration of the for loop. The checkpoint is inserted exactly at the desired point
in both branches of the conditional. The transformation proceeds by unrolling the loop,
inserting checkpt at the right places. Portions of the code are then folded to make two
for loops.

For the next step, we suppose, for the sake of the example, that checkpt, which takes 10
units of time, can be split in two parts checkpt = checkpt,;checkpt, where checkpt; and
checkpt, take respectively 7 and 3 time units exactly. In other words, the largest WCET of
an atomic instruction remains 3 (it would be 10 if checkpt was atomic). We add a heartbeat
as a first instruction and, in order to finish with a heartbeat, we must add 5 skip at the
end. The transformation Z;}0.,. (Faca, 10) inserts a heartbeat every 10 time units and yields:

Facs =hbeat; read(i);
if i > 10 then i := 10; hbeat; o0 := 1; else 0 := 1; hbeat; skip?;
for [=1to6do
if [ <=1 then hbeat; 0 := 0 *[; else hbeat; skip?;
l:=T7;if | <=1 then hbeat; checkpt,; hbeat; checkpt,; 0 := 0 *[;
else hbeat; checkpt,; hbeat; checkpt,; skip3;
for =8 to 10 do
hbeat; if | <=1 then o:=o0x*]; else skip3;
write(o); hbeat; skip®; hbeat;
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Notice that the exact interval between any two successive hbeat is always equal to 10
time units, except at two points:

e Between the hbeat located between checkpt; and checkpt,, and the hbeat located
inside the second for loop, the interval is 12 time units. This is due to the fact that
when the transformation 7 reaches the second for loop, the residual time ¢ is equal
to 9; hence the hbeat cannot be inserted right away, the 7 transformations enters the
for body and the time residual becomes 12. So the hbeat is inserted at the beginning
of the for body. To avoid a clock drift, the residual time ¢ at this point is reset to
8 since the hbeat should have been inserted 2 time units earlier. Unfortunately, the
next hbeat cannot be inserted after 8 time units, the reason being similar; instead it
is inserted after 10 time units.

e Between the last but one hbeat and the last hbeat, the interval is 8 time units. Indeed,
the residual time after inserting the last but one hbeat is 8 time units. Since we are
at the end of the program and we want to terminate with a hbeat, we insert a skip®
to match the desired residual time which is equal to 8 — EXET(hbeat) =8 —3 =5 at
the end of the hbeat.

In Facs, the checkpoint is performed after 83 units of time in both branches, which
is inside the [80,86) interval of Property 4. Finally, since WCET(Fac3) = 143 and the
period is 200, Equation (3) gives [22°=13] = 6, so the last hbeat must be changed into
hbeat(6). Figure 3 illustrates the form of a general program (i.e., not Facs) after all the
transformations:

T
Ay Ay Ay Ay Ay Ay Ay An A

|
¢
|
|
<t < < < < < < <

checkpt
hbeat (3)
idle

hbeat

A, A

Figure 3: Program with checkpointing and heartbeating.

5 Implementing the monitor

A special program called monitor is executed on the spare processor. As already explained,
the monitor performs failure detection by checking the heartbeats sent by each other task.
The other responsibility of the monitor is to perform a rollback recovery in case of a failure.
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In our case, rollback recovery involves restarting the failed task on the spare processor from
its latest state stored in the stable memory. In the following subsections, we comprehensively
explain heartbeat detection and rollback recovery actions, together with the implementation
details and conditions for real-time guarantee.

5.1 Failure detection

The monitor periodically checks the heartbeat variables HBTJi] to be sure of the liveness
of the processor running the tasks 7;. For a correct operation and fast detection, it must
check each HBTYi] at least at the period Ty p,. Since each processor (or each task) has
a potentially different heartbeat period by construction, the monitor should concurrently
check all the variables at their own speed. A common solution to this problem is to schedule
one periodic task for each of the n other processors. The period of the task is equal to the
corresponding heartbeating interval. Therefore, the monitor runs n real-time periodic tasks
I'; = (Det;, Tup,), with 1 <4 < n, plus one aperiodic recovery task that will be explained
later. The deadline of each task I'; is equal to its period Ty p,. The program Det; is:

Det; = HBTJi] := HBT[i] - 1;
if HBT[i] = —2 then run Rec(i);

When positive, HBTi] contains the number of Ty g, periods before the next heartbeat
of 7;, hence the next update of HBT[i]. When it is equal to —2, the monitors decides that
the processor ¢ is faulty, so it must launch the failure recovery program Rec. When HBTi]
is equal to —1, the processor i is suspected but not yet declared faulty. Indeed, it might just
be late, or HBT[i] might not have been updated yet due to the clock drift between the two
processors.

In order to guarantee the real-time constraints, we must compute the worst case failure
detection time «; for each task 7;. Since the detector is not synchronized with the tasks, the
heartbeat send times (o )r>0 of 7; and the heartbeat check times (0}, )r>0 of Det; may differ
in such a way that Vk > 0, |0, —0},| < T, The worst case is when o, — 0}, >~ Typ, and 7;
fails right after sending a heartbeat: in such a case, the detector receives this heartbeat one
period later and starts suspecting the processor i. Hence, it detects its failure at the end
of this period. As a result, at worst the detector program detects a failure after 3 x Ty p.
Remember that the program transformation always guarantees the interval between two
consecutive heartbeats to be within [Ty p,, Tup, + €).

Let L, and L,, denote respectively the times necessary for reading and writing a heartbeat
variable, let &; be the maximum time drift between Det; and 7; within one heartbeat interval
(& < Tup,), then the worst case detection time «; of the failure of task 7; satisfies:

o <3(Tup, +e+&)+Lr+ Ly (5)

Finally, the problem of the clock drift between the task 7; that writes HBTJi], and the
task Det; that reads HBTJi], must be addressed. Those two tasks have the same period
Tup,, but since the clocks of the two processors are not synchronized, there are drifts. We
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assume that these clocks are quasi-synchronous [Caspi et al., 1999, meaning that any of the
two clocks cannot take the value true more than twice between two successive true values
of the other one. This is the case in many embedded architectures (e.g., TTA and FlexRay
for automotive) [Rushby, 2001]. With this hypothesis, 7; can write HBTJ[i] twice in a row,
which is not a problem. Similarly, Det; can read and decrement HBT[i] twice in a row,
again which is not a problem since Det; decides that 7; is faulty only after three successive
decrements (i.e., from 1 to —2).

5.2 Rollback recovery

As soon as the monitor detects a processor failure, it restarts the failed task from the latest
checkpoint. This means that the monitor does not exist anymore since the spare processor
stops the monitor and starts executing the failed task instead. The following program
represents the recovery operation:

Rec (x) = FAILED := x;
restart (7, CONTEXT,);

where restart (7,, CONTEXT,) is a macro that stops the monitor application and instead
restarts 7, from its latest safe point specified by CONTEXT,. The shared variable FAILED
holds the identification number of the failed task. FAILED = 0 indicates that there is no failed
processor. FAILED = x € {1,2,...,n} indicates that 7, has failed and has been restarted on
the spare processor. The recovery time (denoted with 3) after a failure occurrence can be
defined as the sum of the failure detection time plus the time to re-execute the part of the
code after the last checkpoint. If we denote the time for context reading by L¢, then the
worst case recovery time [ is:

8=3 (THB +e+ max &) +Tcp + Ly + Ly + Lo + WCET(Det) + WCET(Rec)  (6)

5.3 Satisfying the real-time constraints

After the program transformations, the WCET of the fault-tolerant program of the task
(S8”,T), taking into account the recovery time, is given by Equation (7) below:

WCET(S) WCET(S)

WCET(S") = WCET(S)—&-{ J XWCET(checkpt)+( + 1) XWCET (hbeat)+/3

(7)
Note that this WCET includes both the error detection time and recovery time. One may
also be interested in the optimum values, T5p and T} g, i.e., the values that offer the best
trade-off between fast failure detection, fast failure recovery, and least overhead due to the
code insertion. If we combine Equations (7) and (6), we obtain a two-value function f of

Tcp Tug
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the form:

WCET(S) X WCET(checkpt) WCET(S) x WCET(hbeat
(S) x WOBT(checkpt) | WCET(S) X WORT(hbeat) oo o

(8)
where K is a constant (see Figure 4 for a 3 dimension plot of f with the numerical values of
the Fauc example). Note that neglecting the floor function in Equation (7) is for the purpose
of an explicit computation and yields approximate results. Since the least overhead due

Top. Tup) =
f(Tep, Tp) Tcp Tup

iy

Figure 4: f(Tcp, Tun).

to the code insertion means the smallest WCET for S”, we have to minimize f. Now, the
computation of its two partial derivatives yields:

of ~ WCET(S) X WCET(checkpt)

and or _
8Tcp N Tgvp 6THB B

WCET(S) x WCET(hbeat)

3_
Thg

(9)
Since the two second partial derivatives are positive in the (0, 4+00) x (0, +00) portion of the
space, the function f is conver and the optimal values T and T} 5 are those that nullify
the two first order partial derivatives . Hence:

of =0 = T!p=+/WCET(S) x WCET(checkpt) (10)
OTop |rpp=re,

of " 1
— =0 = Tgp=1/-WCET(S) X WCET(hbeat) (11)
OTus |1y, 3

With our Fac example, we get T¢ip = /84 x 10 ~ 28.98 and T 5 = /322 ~ 9.16. This
means that the values we have chosen, respectively 80 and 10, were not the optimal values.
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Equations (10) and (11) give the optimal values for the heartbeat and checkpoint periods.

In order to satisfy the real-time property of the whole system, the only criterion that should
be checked is:

f(TCPivTHBi) <Ti, V’iE{l,?,...,n} (12)

Removing the assumption of zero communication time just involves adding a worst case
communication delay parameter in Equations (5) and (6), which does not have an effect on
the optimum values, T p and T 5.

Finally, we give the following property in order for our framework to be completed and
sound.

Property 5 The real-time distributed system with the specifications drawn in this work can
always tolerate one failure respecting its real-time constraints.

Proof: The recovery time ( given in Equation (6) relies on fixed heartbeating and check-
pointing intervals (given in Property 4). Therefore, according to Condition (12), there exist
Tcp and Ty p such that the algorithm completes before its deadline against one failure. [J

5.4 Scheduling all the detection tasks

The monitoring application consists of n detector tasks plus one recovery task. Detector
tasks are periodic and independent, whereas the recovery task will be executed exactly once,
at the end of the monitoring application (when a failure is detected). Therefore, it can be
disregarded in the schedulability analysis. We thus have the task set I' ={(Det1,Tup,),
(Deta, Tup,), - -, (Dety, Thp,)} that must satisfy:

Vi e {1,2,...,n},WCET(Det;) < Typ,. (13)

Preemptive scheduling techniques such as Rate-Monotonic (RM) and Earliest-Deadline-
First (EDF) settle the problem. Both RM and EDF are the major paradigms of preemptive
scheduling, and basic schedulability conditions for them were derived by Liu and Layland
for a set of n periodic tasks under the assumptions that all tasks start at time ¢ = 0, relative
deadlines are equal to their periods and tasks are independent [Liu and Layland, 1973]. RM
is a fixed priority based preemptive scheduling where tasks are assigned priorities inversely
proportional to their periods. In EDF, however, priorities are dynamically assigned inversely
proportional to the tasks’ deadlines (in other words, as a task becomes nearer to its deadline,
its priority increases). For many reasons, as remarked in [Buttazzo, 2005], RM is the most
common scheduler implemented in commercial RTOS kernels. In our context, it guarantees
that T is schedulable if:

n

3 WORT(Deti) _ gg1/n _ 1 (14)

— Tup,
=1
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Under the same assumptions, EDF guarantees that I' is schedulable if:

n

Z WCET(Det;) <1

15
o (15)

i=1
The above schedulability conditions highlight that EDF allows a better processor utilization
while both are appropriate and sufficient for scheduling the monitoring tasks with deadline
guarantee.

6 Tolerating transient and multiple failures

We propose two extensions to our approach. The first one concerns the duration of failures.
Our framework tolerates one permanent processor failure. Relaxing this assumption to make
the system tolerate one transient processor failure (one at a time of course) implies to address
the following issue. After restarting the failed task on the spare processor, if the failure of
the processor is transient, it could likely happen that the failed task restarts too, although
probably in an incorrect state. Hence, a problem occurs when the former task updates its
outputs since we would have two tasks updating the same output in parallel. This problem
can be overcome by enforcing a property such that all tasks must check the shared variables
FAILED and SPARE so that they can learn the status of the system and take a precaution
if they have already been replaced by the monitor. When a task realizes that it has been
restarted by the monitor, it must terminate immediately. In this case, since there is no more
monitor in the system, the task terminates itself and restarts the monitor application, thus
returning the system to its normal state where it can again tolerate one transient processor
failure. The following code implements this action:

Rem; = if FAILED = i and SPARE # This Processor then
SPARE := T'his Processor; FAILED := (; restart monitor ;

where T'his Processor is the ID of the processor executing that code and restart monitor is
a macro that terminates the task and restarts the monitoring application. The shared vari-
able SPARE is initially set to the identification number of the spare processor. Assume that
the task ¢ has failed and has been restarted on the spare processor. When the previous
code is executed on the spare processor, it will see that even if FAILED is set to ¢, the task
should not be stopped since it runs on the spare processor. On the other hand, the same
task restarting after a transient failure on the faulty processor will detect that it must stop
and will restart the monitor. The code Rem; must be added to the program of 7; before the
output update:
write(o) = Rem;; write(o);

In order to detect any processor failure and to guarantee the real-time constraints, the
duration of the transient failure must be larger than the max of the failure detection times
a; (c.f. Equation 5 in Section 5.1).
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The second extension is to tolerate several failures at a time. We assumed that the
system had one spare processor running a special monitoring program. In fact, additional
spare processors could be added to tolerate more processor failures at a time. This does not
incur any problem with our proposed approach. The only concern is the implementation
of a coordination mechanism between the spare processors, in order to decide which one
of them would resume the monitor application after the monitor processor has restarted a
failed task 7;.

7 Application: the CYCAB vehicle

We illustrate the implementation of our program transformations on the embedded control
program of the CYCAB autonomous vehicle. First, in Section 7.1, we present the CYCAB
and show how a static schedule is created for its distributed architecture. The program
transformations on the CYCAB’s application are given in Section 7.2. Finally, results are
presented in Section 7.3.

7.1 Overview of the CYCAB and the AAA methodology

The CYCAB is a vehicle that was designed to transport up to two persons in downtown
areas, pedestrian malls, large industrial or amusement parks, and airports, at a maximum
speed of 30 km.h~! [Baille et al., 1999, Sekhavat and Hermosillo, 2000]. It is shown in Fig-
ure 5. The mechanics of CYCAB is borrowed from a small electrical golf car frame, already
produced in small series. The steering is made through an electrical jack mechanically linked
to the wheels. Each wheel motor block has its own power amplifier, driven by an MPC555
micro-controller. The communications between the nodes are made through a CAN serial
bus. The CAN bus has been designed specially for automotive applications and allows safe
communications in disturbed environment, with a rate of 1 Mbit.s~!. In normal opera-
tion, the architecture consists of two MPC555s and a PC board which drives the screen
and the hard disk. In the remaining of this article, we call these nodes F555, R555, and
ROOQOT respectively. In order to implement our program transformations, we have added
one more node, named MONITOR. The architecture graph of the CYCAB is therefore given
in Figure 6.

For the present case study, we consider the “manual-driving” application implemented
on the CYCAB. This application is distributed on the architecture using the SYNDEX tool
that supports the Algorithm Architecture Adequation methodology (AAA). The goal of this
methodology is to find out an optimized implementation of an application algorithm on an
architecture, while satisfying distribution constraints. AAA is based on graphs models to
exhibit both the potential parallelism of the algorithm and the available parallelism of the
multicomponent architecture. The implementation is formalized in terms of graphs trans-
formations [Grandpierre et al., 1999, Grandpierre and Sorel, 2003]. The algorithm graph of
this manual-driving application is given in Figure 7.

Task execution times and communication times are given in Tables 2 and 4 respectively.
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Figure 5: The CYCAB vehicle.
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Figure 6: Architecture graph of the CYCAB application.
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Figure 7: Application graph of Cycab. A processor name written inside a task indicates a
processor constraint, i.e., that task must be scheduled onto that processor.

INRIA



Implementing Fault-Tolerance by Program Transformations 25

Table 2: Task execution times (ms) of the Cycab application algorithm.

] Task name || WCET on F555 | on R555 | on ROOT | on Monitor

FSAngle, FSPwm 0.3 00 00 00

jtk 00 0.3 00 00

RLinc, RRinc 00 0.2 o0 0

FLinc, FRinc 0.2 o0 o0 00

ctr_x, ctr_y, FS 0.6 0.6 0.6 00
Ipf x, Ipf y, speedl

sat2, ctrl rl, Ipf rl 0.2 0.2 0.2 0

ctrl rr,lpf rr,ctrl fl
Ipf fl, ctrl fr, Ipf fr

accell 0.3 0.3 0.3 %)

satl 0.3 0.3 0.3 o0
RLcurtis, RRcurtis 00 0.5 00 00
FLcurtis, FRcurtis 0.5 00 00 00
disp 00 0 0.5 0

Table 3: Task execution times (ms) of heartbeating and checkpointing.

Task name | WCET on F555 | on R555 [ on ROOT [ on Monitor |
hbeat1, cpl 0.06 00 00 0
hbeat2, cp2 00 0.06 00 00
hbeat3, cp3 00 00 0.06 00
monitorl, monitor2, monitor3
cpsavel, cpsave2, cpsaved 00 %) o0 0.06

Table 4: Communication times.
| Communication || Duration (ms) |

hbeat — monitor Appear = 0.12
checkpt — cpsave || Acpeckpr = 0.15
Other messages A=0.15

The AAA algorithm produces the static schedule shown in Figure 8. The real-time con-
straint is the completion time of the whole algorithm. Let S7, So, and S3 be the completion
times of three processors, F555, ROOT, and R555, i.e., WCET(S]), WCET(S2), and WCET(S3)
respectively. The completion time of the whole algorithm is therefore given by Equation (16)
below:

S = max(gl, §27 53) (16)
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Figure 8: Static schedule created by the SYNDEX tool (completion time=4.19 ms).

According to Figure 8, S; = 4.19, Sy = 3.05, S5 = 4.10, hence S = 4.19. The period of the
algorithm, i.e., the deadline, is set to 10 ms in this case study.

7.2 Applying program transformations

The heartbeating and checkpointing program transformations periodically insert heartbeat-
ing and checkpointing codes at the appropriate places in the static schedule of Figure 8,
while generating the monitor application for heartbeat checking and error recovery opera-
tions on the MONITOR processor. The graph representation of heartbeat and checkpoint
operations is given with Figure 9. We assume that all the tasks are atomic, i.e., heartbeat
and checkpoint codes cannot be inserted into the tasks, instead they can be placed between
the tasks. For example, according to Table 2, the execution time of the longest task, e
is equal to 0.6 ms. In fact, AAA suggests to divide tasks as much as possible to exhibit
more potential parallelism. Therefore, this approach simplifies the transformation while still
satisfying the properties. Moreover, checkpoint data to be stored will be much less since
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Figure 9: Application graphs for heartbeating and checkpointing. The two algorithms are
executed periodically with the periods Ty and Tep respectively.

checkpoints are taken only between the tasks, i.e., internal variables of tasks are not included
in the checkpoint data.

For a proper operation, each processor failure should be detected. Therefore, heartbeat-
ing and checkpointing transformations are independently applied to each processor. In order
to apply the transformations to a processor, we should fill the idle times between tasks with
no-operations. Let Sy, So, and S3 be the programs of processors F555, ROOT, and R555
respectively. For instance, the program of ROOT processor is as follows:

So = idle time; ctrl fl; Ipf fl; Ipf rr; disp;

Even though all idle times are filled with no-operations before insertion, task dependency
may cause new idle times after placing a checkpoint or heartbeat, since an insertion slightly
changes the static schedule. Hence, after each insertion, the resulting static schedule is
checked once more and all idle times are filled again before continuing with the next inser-
tion.

Before applying our transformations, we must also calculate the optimal heartbeating
and checkpointing periods by modifying the computations presented in the previous sections.
First, the worst case error detection time and the recovery time given with Equations (5)
and (6) can be expressed by Equations (17) and (18) below:

ai<THB,;+5+£i+Lr+Lw (17)

B=Tup+e+ jmax &+ Tep+ Ly + Ly + Lo + WCET(Det) + WCET(Rec) (18)

where n is the number of processors, A,, ., is the transmission time of the longest message
and Appeas is the transmission time of hbeat message. The reason why the “3” factor in
Equation (5) has been removed in Equation (17) is that the tasks monitor; are not scheduled
anymore with a Rate Monotonic policy (implying a complete lack of synchronization with
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the tasks hbeat;), but instead are scheduled statically by SYNDEX thanks to the data-
dependencies expressed in the application graphs of Figure 9 (implying a synchronization
between each task hbeat; and its corresponding task monitor;). The reasoning is the same
between Equations (6) and (18).

The costs of one checkpt and one hbeat to the completion time are respectively:

¢ = WCET(checkpt) + Acpeckpt
h = WCET(hbeat) + Anpeat

Note that the timing analysis presented here does not use any knowledge of the initial
static schedule and assumes the worst case, i.e., all processors and communication buses are
fully utilized. Therefore, h and ¢ are the maximum costs of one hbeat and checkpt. We
compute the completion time of the algorithm in the presence of one failure by Equation (19)
below:

& St _ S _ Sy _ S Sy Sz ,
fTep, Tup) =S+ TCPC+ TCPC+ Tom c+ Ton h+ Ton h+ Tn h+Typ+Top+K (19)

Similarly, f is the worst case completion time that may occur only if the initial schedule
given in Figure 8 has fully utilized processors and communication bus. The analysis considers
the worst case and it holds for any given schedule. Generally, and as in our case seen in
Figure 8, processors and communication buses will have idle times that might be filled by
hbeat tasks, checkpt tasks, and their communications. Therefore, the completion time is
expected to be less than the one given in Equation (19). In critical conditions, the analysis
can be relaxed by taking into account the static schedule so that the completion time can
be calculated precisely to check whether the deadline is met.

Using the partial derivatives, we obtain the optimum values for heartbeating and check-
pointing as follows:

Tép = \/(S_l + 82+ 83) x € (20)

Tip = \/(5_1 + 82+ 83) x h (21)

_ Taking into account the values given in Tables 3 and 4, we find that ¢ = 0.18 ms and
h = 0.21 ms. Therefore,

Trp = /(4194 3.05+4.1) x 0.21 = 1.54 ms
The =/(41943.05+4.1) x 0.18 = 1.42 ms

7.3 Results and discussion

If we apply the transformations to insert hbeat and checkpt tasks with the periods of T 5
and T%p respectively, we obtain the schedule given in Figure 10. For instance, the ROOT
processor will have the following task sequence after our transformations:
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checkpt ; hbeat ; nop?%; hbeat ; nop ; checkpt ; nop?®; ctrl fl; checkpt ; Ipf fl; Ipf rr;
disp; hbeat ;

In failure-free operation, the completion time of the new algorithm is 6.21 ms as shown in
Figure 10. The overhead of the fault-tolerance properties is therefore 6.21 — 4.1 = 2.11 ms.

Thanks to Equation (19), we prove that the deadline is always met in spite of one
processor failure. Figure 11, on the other hand, illustrates how the failure detection and
recovery operations are handled in one iteration of the algorithm.

We finally perform some tests to demonstrate the completion times, when failure recovery
is performed by the transformed application algorithm. Figures 12, 13, and 14 show the
completion times of the algorithm for 50 iterations, i.e., for 50 different failure times of the
processors. The first figure, for instance, presents the completion times against the failures
of F555, the second figure for R555 and so on. Processor failures are injected by software at
relative failure times that are sampled from the uniform distribution uniform(0, 70) ms.

8 Related work

Related work on failure detectors is abundant. On the theoretical side, Fisher et al. have
demonstrated that, in an asynchronous distributed system (i.e., no global clock, no knowl-
edge of the relative speeds of the processes or the speed of communication) with reliable
communications (although messages may arrive in another order than they were sent), if
one single process can fail permanently, then there is no algorithm which can guarantee
consensus on a binary value in finite time [Fisher et al., 1985]. Indeed, it is impossible to
tell if a process has died or if it is just very slow in sending its message. If this delayed
process’s input is necessary, say, to break an even vote, then the algorithm may be delayed
indefinitely. Hence no form of fault-tolerance can be implemented in totally asynchronous
systems. Usually, one assumption is relaxed, for instance an upper bound on the commu-
nication time is known, and this is exactly what we do in this paper to design our failure
detector. Then, Chandra and Toueg have formalized unreliable failure detectors in terms
of completeness and accuracy [Chandra and Toueg, 1996]. In particular, they have shown
what properties are required to reach consensus in the presence of crash failures. On the
practical side, Aggarwal and Gupta present in [Aggarwal and Gupta, 2002] a short survey
on failure detectors. They explain the push and pull methods in detail and introduces QoS
techniques to enhance the performance of failure detectors.

Our program transformations are related to Software Thread Integration (STI). STI
involves weaving a host secondary thread inside a real-time primary thread by filling the
idle time of the primary thread with portions of the secondary thread [Dean and Shen, 1998|.
Compared to STI, our approach formalizes the program transformations and also guarantees
that the real-time constraints of the secondary thread will be preserved by the obtained
thread (and not only those of the primary thread).
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Figure 10: Fault-tolerant static schedule with heartbeating and checkpointing (completion
time is 6.21 ms).
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Figure 11: Example of a recovery when processor F555 fails (completion time is 6.79 ms).
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Figure 13: Completion times when processor ROOT fails (repeated 50 times).
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Figure 14: Completion times when processor R555 fails (repeated 50 times).

Other works on failure recovery include the efforts of reserving sufficient slack in dynamic
schedule, i.e., gaps between tasks due to the precedence, resources or timing constraints, so
that the scheduler can re-execute faulty tasks without jeopardizing the deadline guaran-
tees [Mossé et al., 2003]. Further studies proposed different heuristics for re-execution of
faulty tasks in imprecise computation models such that faulty mandatory sub-tasks may
supersede optional sub-tasks [Aydin et al., 2000]. In contrast, our work is entirely in the
static scheduling context.

Other related work on automatic transformations for fault-tolerance include the work
of Kulkarni and Arora [Kulkarni and Arora, 2000]. Their technique involves synthesizing
a fault-tolerant program starting from a fault-intolerant program. A program is a set of
states, each state being a valuation of the program’s variables, and a set of transitions.
Two execution models are considered: high atomicity (the program can read and write any
number of its variables in one atomic step, i.e., it can make a transition from any one state
to any other state) and low atomicity (it can’t). The initial fault-intolerant program en-
sures that its specification is satisfied in the absence of faults although no guarantees are
provided in the presence of faults. A fault is a subset of the set of transitions. Three
levels of fault-tolerance are studied: failsafe ft (in the presence of faults, the synthesized
program guarantees safety), non-masking ft (in the presence of faults, the synthesized
program recovers to states from where its safety and liveness are satisfied), and masking
ft (in the presence of faults the synthesized program satisfies safety and recovers to states
from where its safety and liveness are satisfied). Thus six algorithms are provided. In the
high atomicity model (resp. low), the authors propose a sound algorithm that is polyno-
mial (resp. exponential) in the state space of the initial fault-intolerant program. In the
low atomicity model, the transformation problem is NP-complete. Each transformation
involves recursively removing bad transitions. This principle of program transformation

RR n® 5919



34 Ayav, Fradet € Girault

implies that the initial fault-intolerant program should be maximal (weakest invariant and
maximal non-determinism). Such an automatic program transformation is very similar to
discrete controller synthesis [Ramadge and Wonham, 1987], a technique that has also been
successfully applied to fault-tolerance [Dumitrescu et al., 2004, Girault and Rutten, 2004].

In conclusion, Kulkarni et al. offer a comprehensive formal framework to study fault-
tolerance. Our own work could be partially represented in terms of their model, since our
programming language can be easily converted to the finite state automaton consisting of a
set of states and transitions. Moreover, our study complies well with their detector-corrector
theory presented thoroughly in [Arora and Kulkarni, 1998]. However, we deal explicitly with
the temporal relationships in the automatic addition of fault-tolerance by using heartbeating
and checkpointing/rollback as a specific detector-corrector pair. Therefore, defining and
implementing our system in terms of Kulkarni’s model might require much effort and be of
interest for future research.

9 Conclusion

In this paper, we have presented a formal approach to fault-tolerance. Our fault-intolerant
real-time application consists of periodic, independent tasks that are distributed onto proces-
sors showing omission/crash failure behavior, and of one spare processor for the hardware
redundancy necessary to the fault-tolerance. We derived program transformations that au-
tomatically convert the programs such that the resulting system is capable of tolerating one
permanent or transient processor failure at a time. Fault-tolerance is achieved by heartbeat-
ing and checkpointing/rollback mechanisms. Heartbeats and checkpoints are thus inserted
automatically, which yields the advantage of being transparent to the developer, and on a
periodic basis, which yields the advantage of relatively simple verification of the real-time
constraints. Moreover, we choose the heartbeating and checkpointing periods such that the
overhead due to adding the fault-tolerance is minimized. We also proposed mechanisms to
schedule all the detection tasks onto the spare processor, in such a way that the detection
period is the same as the heartbeat period. To the best of our knowledge, the two main
contributions presented in this article (i.e., the formalization of adding fault-tolerance with
automatic program transformations, and the computation of the optimal checkpointing and
heartbeating periods to minimize the fault-tolerance overhead) are novel.

This transparent periodic implementation, however, has no knowledge about the seman-
tics of the application and may yield large overheads. In the future, we plan to overcome
this drawback by shifting checkpoint locations within a predefined safe time interval such
that the overhead will be minimum. This work can also be extended to the case where
processors execute multiple tasks with an appropriate scheduling mechanism. On the other
hand, these fundamental fault-tolerance mechanisms can also be followed by other program
transformations in order to tolerate different types of errors such as communication, data
upsetting etc. These transformations are seemingly more user dependent, which may lead
to the design of aspect-oriented based tools.
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10 Appendix - Formalization and Proof of Property 3

Property 3 ensures that the transformation Z7 (S, T') inserts a command c after each T time
units (modulo ). This time interval is intuitively clear but not formalized. The standard
approach to formalize and prove Property 3 would be to define a timed semantics of pro-
grams (i.e., a semantics where time evolution is explicit) and then to show that the execution
of ZT(S,T) involves reducing c each T time units. In order to stick to our program trans-
formation framework, we rather explicit all the execution traces of a program, and we prove
by induction on all the possible traces that two successive commands c are always separated
by T time units (modulo ¢). For this, we define the function Traces which associates to each
program the set of all its possible executions. An execution is represented as sequences of
basic instructions ai;...a,. Basically, the Traces function unfold loops and replaces con-
ditionals by the two possible executions depending on the test. Formally, it is defined as
follows:

Transformation rules 4

1. Traces(a) = {a} if a is atomic

2. Traces(S1;S2) = {Ty;Ty | T1 € Traces(S1),Ta € Traces(S2)}
3. Traces(if b then Sy else So) = {skip;T | T € Traces(S1)U Traces(S2)}
4. Traces(for l =mn; tong do S) = Traces(Unfold(for I =mny to ny do 5))

The instruction skip in rule 3 above represents the time taken by the test, i.e., one time unit.
For any initial state, there is always a trace 7 in Traces(S) representing exactly the execution
of S. The important point is that such execution traces 7 have a constant execution time
(i.e., BCET(T) = WCET(T) = EXET(7)), and moreover we have for any 7:

BCET(S) < EXET(7) < WCET(S) and

BCET(S) = WCET(S) = EXET(7) = EXET(S) (22)

T € Traces(S) = {
We consider that Traces treats ¢ (the command inserted by the transformation 7) as an
atomic action.

We introduce the equivalence relation = to normalize and compare execution traces. The
relation is a syntactic equivalence modulo the associativity of sequencing. It also allows the
introduction of the dummy instruction void, similar to skip except that EXET(void) = 0.
The relation = is such that:

(T1572);73 = T15(72573) T = (void;T) = (7;void)

We generalize Property 3 to take into account any initial time residual before inserting the
first command c:

INRIA



Implementing Fault-Tolerance by Program Transformations 39

Property 6 Let S, c, t, and T be such that:

(0) BCET(S) = WCET(S) (1) EXET(c)+e<T
(2) t <EXET(S) (3) —e<t<T

Then N7 € Traces(ZX(S,t)), T = S1;¢;92...¢,S, (1 <n) and verifies:

t <EXET(S)) <t+e (Init)

T —e<EXET(;S;) <T+e (1<i<mn) (Period)

r—e <EXET(S,) <r If EXET(S)=t+q(T — EXET(c)) +r (End)
with 0 < ¢ and 0 < r < T — EXET(c)

Property 6 states than any execution trace of the transformed program starts by an
execution of ¢ (modulo ¢) time units before inserting the first command ¢. Then, the
execution inserts a ¢ every T time units (modulo ¢). After the last ¢, the program takes less
than r < T — EXET(c¢) unit of times to complete, r being the remaining of the division of
EXET(S) by (T — EXET(c)). This last condition is based on a periodic decomposition of the
execution of the source program S. It also ensures that there is no time drift. The property
relies on the four following conditions:

0. The program S should have been time equalized beforehand.

1. The period T must be greater than the execution time of the command ¢ plus the
execution time of the most expensive atomic action. This condition ensures that it is
possible to execute at least one atomic action between two ¢ and therefore the program
will make progress.

2. The global execution time must be greater than ¢ (otherwise there is nothing to insert).

3. The time residual ¢ might be negative but no less than €. Otherwise, it would mean
that the ideal point to insert ¢ has been missed by more than ¢ time units.

Proof that Property 6 holds for positive time residuals. We prove that Property 6
holds for 0 < ¢ < T, by structural induction on S.

CAsE S =a: By hypothesis, 0 < t < EXET(a), so Z. (a,t) = a;c. The only execution trace
is a;c = a;c;void, which satisfies the property. Indeed:

e By definition of ¢, EXET(a) < e and, by hypothesis, 0 < ¢ and ¢t < EXET(a), therefore:

t <EXET(a) <t+e (Init)

e From EXET(a) =t + r with 0 < r < ¢ and EXET(void) = 0, it follows that:

r —e < EXET(void) <r (End)
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CASE S = 51;53: There are two sub-cases depending on t.

1. EXET(S1) < t: Therefore 1 (S1;592,t) = S1;Z1 (Sa,t — EXET(S])) because of rules 1
and 4.

Condition (2) enforces that ¢ < EXET(S1;S2) = EXET(S1) + EXET(S2), therefore
t — EXET(S1) < EXET(S3). Condition (3) enforces that ¢ < T and, by hypothe-
sis, EXET(S1) < t therefore 0 < ¢t — EXET(S;) < T — EXET(S;) < T. Hence, Sy
satisfies the induction hypothesis, and V7, € Traces(Z!(Se,t — EXET(S1))), 72 =
521;6922...¢52, (1 <n) and verifies:

t — EXET(S1) < EXET(S2,1) <t —EXET(S1) + ¢ (Init)
T —e <EXET(¢;S2,;) <T+e¢ (1<i<n) (Period)
r—¢& <EXET(S2,) <7 If EXET(S2) =t — EXET(S1) + ¢(T — EXET(c)) +r

with 0 < ¢ and 0 <r < T — EXET(c) (End)

Any execution trace 7 of Z1'(S1;5,,t) is made of an execution trace 7, of I (Sy,t)
followed by an execution trace 7o of Z!(S2,t — EXET(S1)). In other words, 7 =
71;52,1;¢;52,2 . . . ¢;S2 . The property is satisfied if ¢ < EXET(71;52,1) < t+¢, which fol-
lows from the fact that the Traces function satisfies the Property (22), i.e., EXET(71) =
EXET(S1), and the hypothesis EXET(S) < t.

2. t < EXET(S1): In this case, there will be at least one insertion of ¢ in Sy, after ¢ time
units, and possibly other insertions every T time units:

I7(S1:S2.t) = ZII(Si,t)Il (S2,t)
with EXET(S1) =t + q(T —EXET(c)) + 7, 0<¢, 0 <r <T —EXET(c))
t1 =T — EXET(c) — r

Since t < EXET(S]), S; satisfies the induction hypothesis and V7, € Traces(ZT(S1,t)),
71 =511;6512-..651,m (1 <m) and verifies:

t <EXET(S11) <t+e (Initq)
T —e <EXET(¢;81,) <T+e (I1<i<m) (Period;)
r —& < EXET(S1,,) <7 (End,)

The transformation is then applied on Sy with the time residual t; = T—EXET(¢;S1 ).
There are two sub-cases depending on the execution time of Ss.

(a) T — EXET(c) — r < EXET(S3):
This is condition (2) to apply the induction hypothesis on S2. Condition (3) is
—e < T — EXET(c) — r < T, which follows from the fact that EXET(c) and r are
positive and r < T—EXET(c)). By induction hypothesis, Vo € Traces(Z (Sa, T —
(EXET(c) + 7)), T2 = S2,1;¢;52.2 . .. ¢;52,, (1 < n) and verifies:

T — EXET(c) — r < EXET(S2,1) < T — EXET(¢c) —r+¢ (Inita)
T —e <EXET(¢;S2,;) <T+¢e (l<i<m) (Periods)
ry — € < EXET(S3,,) <7y If EXET(S,2) =T — EXET(c) — r + ¢2(T — EXET(c)) + 72

with 0 < g2 and 0 < ro < T — EXET(c) (Ends)
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Any execution trace 7 € Traces(ZX(S1;59,t)) is of the form:
T=2511;6512...¢51,m392,15¢;52,2 . .. ;52
We just have to check that T'—e < EXET(¢;S1,m;52,1) < T +¢ which follows from:

(Endy) r —¢& < EXET(S1,m) <7
(Inits) T — EXET(c) — r < EXET(S2,1) < T — EXET(¢c) —r +¢

We get T'— € < EXET(c¢) + EXET(S1 1) + EXET(S2,1) < T + ¢, and the combined
trace 7 satisfies the property.

(b) EXET(S2) < T — EXET(c) — r:
Any execution trace 7 € Traces(ZX(S1;59,t)) is of the form:

T=2511;6512...¢51,mT

Since EXET(S1) = t + q(T — EXET(c)) + r, exet(S51;52) = t + ¢(T — EXET(c)) +
r + EXET(S2) and 0 < r 4+ EXET(S2) < T — exect(c). We have to check that

r + EXET(S2) — ¢ < EXET(S1,m;72) < 7+ EXET(S2)

which follows directly from (End;) and the fact that the Traces function satisfies
the Property (22), i.e., EXET(72) = EXET(S3).

CASE S =if b then S; else S>. Recall that:
TZ7(if b then S; else Sy,t) = if b then Z7 (S;,t — 1) else Z. (Sy,t — 1)
Hence, traces are of the form 7 = skip; 51,156,512 . .. €;51,m Or T = skip;S52.1;¢;52,2 . . . €;52 .-

Since t > 0 and € < 1, we have t — 1 > —¢, so the induction hypothesis applies on S; (resp.
Ss). Therefore, Vi € Traces(ZX (Sy,t)), 71 = 51156812 .. ¢51,m (1 <m) and verifies:

t—1<EXET(S11)<t—1+c¢ (Inity)
T —¢e <EXET(¢;S1,) <T+e (1<i<m) (Periody)
r—& < EXET(S1,,) <7 If EXET(S)=t—1+¢(T —EXET(c))+r (End)

with 0 < g and 0 <r < T — EXET(c)

It follows that ¢t < EXET(skip;S1,1) < t + ¢ and the combined trace satisfies the property.
The reasoning is the same with Ss.

CASE S =forl=mn; tony do S: Recall that:

T (for | = ny to ng do S,t) = Fold(ZX (Unfold(for | = ny to ny do S),t))
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It follows that:

Traces(Fold(ZX (Unfold(for | = ny to ng do S),t)))
= Traces(ZX (Unfold(for | = ny to ny do S),t))
= Traces(ZX (1 :=nq; S;...,t))

c

The operator Unfold replaces for-loop by sequences of commands. This case boils down to
the already treated case S = S57;S55. O

Proof that Property 6 holds for negative time residuals. For —¢ < ¢t < 0 we have
IX(S,t) = ¢;ZT (S, T — EXET(c) + t). Since Property 6 holds for positive time residuals, it
follows from EXET(c) + ¢ < T and —e < t that T — EXET(c) + ¢ is positive and therefore
V7 € Traces(ZX (S, T — EXET(c) + 1)), T = S1;¢;52...¢;S, (1 <n) and verifies:

T — EXET(c) + ¢t < EXET(S1) < T —EXET(c) +t+¢ (Init)
T —e <BXET(;S;) <T+e (1<i<n) (Period)
r —e < EXET(S,) <r If EXET(S) =T — EXET(c) +t+ q(T — EXET(c)) + 7 (End)
with 0 < g and 0 <r < T — EXET(c)
The traces in Traces(Z1' (S, T — EXET(c) +t)) are of the form:
c;51;¢,99 ... ¢S, = void;c;S1;¢;52 ... ¢,
Since EXET(void) = 0 and, by hypothesis, —e < ¢t < 0, we have:

t < EXET(void) < t+e (Init)

It remains to show that the (Period) condition holds, i.e., T — ¢ < EXET(¢;S1) < T +¢e. We
have:
T — EXET(c) +t < EXET(S1) < T —EXET(c) +t+¢

Since EXET(¢;S1) = EXET(c) + EXET(S7) and —e < t < 0, we conclude:

T—e<T+t<EXET(¢;S1) <T+t+e<T+¢
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