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ABSTRACT
The next generation of embedded systems will be dominated by
mobile devices, which are able to deliver communications and rich
multimedia content anytime, anywhere. The major themes in these
ubiquitous computing systems are applications with increased user
control and interactivity with the environment. Therefore, the stor-
age of dynamic data increases, thus making the dynamic memory
allocation of heap data at run time a very important component with
heavy energy consumption. In this paper, we propose a novel script,
which heavily customizes the dynamic memory allocator according
to the target application domain and the underlying memory hier-
archy of the embedded system. The dynamic memory allocator
resides in the middleware level or in the Operating System level
(whenever it is available). The result of our script and automated
tools is the reduction of energy consumption by 72% on average
and the reduction of the execution time by 40% on average, which
is demonstrated with the use of 1 real life wireless network appli-
cation and 1 multimedia application.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose and
Application-Based Systems; D.4 [Software]: Operating Systems;
E.1 [Data]: Data Structures

General Terms
Design, Performance

Keywords
Middleware, Dynamic Memory Allocation, Heap Data, Embedded
Systems, Low-Energy Consumption
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1. INTRODUCTION
In the last years there has been a trend towards embedded con-

sumer devices to achieve the paradigm of rich multimedia content
anytime, anywhere. These systems implement complex multime-
dia applications (e.g., MPEG21) and wireless network protocols.
Increased interaction with the user and the environment have in-
creased the demand for Dynamic Memory (DM from now on) al-
location subsystems, which can cope with the variation in run-time
memory needs (e.g., scalable frame input and unpredictable net-
work traffic) of the aforementioned applications in the most effi-
cient way. Inefficient DM allocation support leads to decreased
system performance and increased cost in energy and memory foot-
print due to increased memory allocation and access needs.

The basic functions of a DM allocator are the allocation and
deallocation of memory blocks. Allocation is the mechanism that
searches for a block big enough to satisfy the request of a given ap-
plication and deallocation is the mechanism that returns this block
to the available memory of the system in order to be reused later.
In real, dynamic applications the blocks are requested and returned
in any order, thus creating ”holes” among used blocks [3]. These
holes constitute what is known as memory fragmentation. There-
fore, a successful DM allocator has to prevent or deal with frag-
mentation in an efficient way or else it will run out of memory.

Many DM allocation solutions are available today for general
purpose systems. These are activated with the standardized mal-
loc/free functions in C and the new/delete operators in C++. Sup-
port for them is already available at the Operating System (O.S.)
level [3]. Each of these DM allocators provides a general solution
that ignores the special de/allocation behavior and fragmentation
outlook of the application that needs them or the underlying mem-
ory hierarchy. The same approach is followed in embedded sys-
tem designs, which rely solely on their embedded O.S. (e.g., Enea
OSE [9] or uCLinux [8]) for DM allocation support.

The use of O.S. based, general-purpose DM allocation usually
has an unacceptable overhead in embedded designs, considering
the limited resources and hard real-time constraints of embedded
systems. Therefore, in order to achieve better results, application-
customized DM allocators are needed [4, 6]. Note that they are best
realized in the middleware and not in the platform hardware which
would require undesired platform changes for each application (do-
main) target. Furthermore, parameterized configurations of the cus-
tomized DM allocation designs are needed in order to give wider
design choices and enable exploration of the available trade-offs
(i.e., energy, memory footprint, performance). This exploration in-
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cludes pruning of the huge parameter space and provides only the
interesting Pareto-optimal configurations. These configurations are
considered Pareto-optimal if no other configurations exist which
have better results in both metrics explored (e.g., memory footprint
and accesses) [5].

The exploration of different DM allocator designs is a very big
design effort (both in complexity and required time). Without a sys-
tematic design flow and tools the embedded system designer is not
able to correctly profile dynamic applications and arrive at an effi-
cient DM allocation design. Furthermore, he is not able to explore
the DM allocation parameters, due to the fact that thousands of dif-
ferent DM allocator configurations are possible. Finally, simulation
and implementation support for different memory hierarchies uti-
lized by the DM allocator would prove to be challenging and very
time consuming.

In this paper, we introduce a novel, systematic script (extended
from our earlier publications) and tool support to automatically cre-
ate and explore the trade-offs in the DM allocation parameters in
order to provide energy-efficient designs. With our new fully au-
tomated technique we generate energy-efficient DM allocator con-
figurations for the embedded system designer to use according to
the application’s specific needs. Finally, we have implemented this
technique to two new dynamic multimedia and wireless network
applications. The paper is organized as follows. In Section 2, we
describe some related work. In Section 3, we detail the main causes
of memory consumption by the DM allocator. In Section 4, we
briefly summarize our script and its different steps. In Section 5,
we present the parameters which are explored automatically in the
DM allocators with the use of our tool. In Section 6, we describe
the memory hierarchy architecture of current embedded platforms
that we consider available for our script. Later, in Section 7, we
introduce our real case studies and present the experimental results
obtained. Finally, in Section 8, we draw our conclusions.

2. RELATED WORK
Currently, there are many O.S. based, general-purpose DM allo-

cators available. Successful examples include the Lea allocator in
Linux based systems [3], the Buddy allocator for Unix based sys-
tems [3], and variations of the Kingsley allocator in Windows XP
or CE [11, 10], FreeBSD, and Symbian based systems. Slightly dif-
ferent versions of these allocators exist for their embedded system
O.S. counterparts and they provide reasonable performance and de-
fragmentation support for some applications (e.g., Enea OSE [9]
and uCLinux [8]). In contrast with these ’off the shelf’ DM al-
location solutions, our approach provides highly customized DM
allocators, fine tuned to the embedded application. For example,
instead of using a generic O.S. based DM allocator for 2 different
applications, our approach provides 2 highly specialized energy-
efficient DM allocators.

Also, other frameworks exist to customize allocators to meet
specific DM allocation needs. In [12], a DM allocator that al-
lows defining multiple memory regions with different disciplines
is presented. However, this approach cannot be extended with new
functionality and is limited to a small set of user-defined functions
for memory de/allocation. In [6], the abstraction level of customiz-
able memory allocators has been extended to C++. Additionally,
the authors of [4] propose an infrastructure of C++ layers that can
be used to improve performance of general-purpose allocators. Fi-
nally, work has been done to propose several garbage collection
algorithms with relatively limited performance overhead [13, 14].
Contrary to these frameworks, which are limited in flexibility, our
approach is systematic and is linked with our tools, which automate
completely the process of custom DM allocator construction. Also,

we provide additional customization support for energy efficiency,
which is very important for embedded systems, on top of the usual
performance and memory footprint metrics.

In addition, research has been performed to provide efficient
hardware support for DM allocation. [15] presents an Object Man-
agement Extension (i.e., OMX) unit to handle the de/allocation of
memory blocks completely in hardware using a variation of the
classic binary buddy system. [16] proposes a hardware module called
SoCDMMU, which tackles the global on-chip memory de/allocation
to achieve a deterministic way to divide the memory among the
processing elements of SoC designs. However, the operating sys-
tem still performs the management of memory allocated to a par-
ticular on-chip processor. All these proposals are very relevant for
embedded systems where the hardware can still be changed, while
our work is intended for any fixed embedded design architecture,
where customization can only be done at the O.S. or software level.

In contrast to our previously published work [1], which focuses
on the definition of the design space and abstract implementation
features, mostly, for lower memory footprint (i.e., fragmentation),
in this paper we focus on the fully automated exploration of the
implementation parameters and the development of an energy ef-
ficient design. With the use of our tool [2], we automatically ex-
plore a number of trade-offs between memory accesses, memory
footprint, energy consumption, and performance instead of focus-
ing in just a single metric. We prove that the achievable tradeoff
ranges are big enough to justify the exploration of the parameters
of the DM allocators. Finally, we exploit these trade-offs in order to
achieve the most energy efficient design (at the expense of memory
footprint).

3. ENERGY CONSUMPTION IN DYNAMIC
MEMORY ALLOCATION

As briefly mentioned in Sect. 1, the main function of the DM al-
locator is to allocate and de-allocate memory blocks at run-time, in
order to satisfy the memory requests of the applications. The main
concern of the DM allocator is to manage the memory space as ef-
ficiently as possible. Immediately, it becomes clear that this goal
deals with minimizing memory fragmentation. Memory fragmen-
tation is divided into internal and external memory fragmentation:

• On the one hand, when the application requests a memory
block from the DM allocator, which is smaller than the mem-
ory blocks available to the allocator, then a bigger block is
selected from the memory pool and allocated (as shown in
the upper part of Fig. 1). This results in wasted memory
space inside the allocated memory block. This space is not
used to store the application’s data and can not be used for a
future memory request. This is called internal fragmentation,
which is common in requests of small memory blocks [3].

• On the other hand, when the application requests a memory
block from the DM allocator, which is bigger than the mem-
ory blocks available to the allocator, then these smaller mem-
ory blocks are not selected for the allocation (because they
are not continuous) and become unused ’holes’ in memory
(as shown in the lower part of Fig. 1). These ’holes’ among
the used blocks in the memory pool are called external frag-
mentation. If they become too small, then they can not satisfy
any request and they remain unused during the whole execu-
tion time of the application. External fragmentation becomes
more evident in requests of big memory blocks [3].

Therefore, all the design effort of the DM allocator usually fo-
cuses on preventing or dealing (if it can not be prevented) with
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Figure 1: Internal and External Memory Fragmentation

internal and external fragmentation. What is not always considered
in most embedded system designs, is that all the DM allocators
themselves play a significant role in the energy consumption of the
memory in the embedded system. There are three factors of the DM
allocator design that negatively influence the energy consumption
of the memory subsystem:

• By increasing the memory accesses: Each access to the phys-
ical memory by the DM allocator increases the total energy
dissipation of the memory. Increased memory accesses mean
increased energy consumption. When the application requests
a memory block from the DM allocator, then the DM alloca-
tor has to search inside its pools of free blocks to find a free
block of the requested size. The way that the pools are struc-
tured can make it very hard for the DM allocator to find this
memory block, thus increasing the memory accesses. For
example, it is easier to find a 10-KB memory block if you
have separated the blocks into one pool for blocks smaller
than 20-KB and one for blocks bigger than 20-KB, instead
of having a single pool for all the blocks. Also, the way that
the DM allocator searches inside a pool can affect the num-
ber of memory accesses it needs before it finds the correct-
sized free block. Finally, assisting de-fragmentation mecha-
nisms (like splitting blocks and coalescing blocks) increase
the memory accesses of the DM allocator.

• By increasing the memory footprint: Bigger memories in-
crease the energy cost per memory access. Therefore, if
the used memory footprint is bigger, it must be mapped on
bigger, more energy-hungry physical memories. It is clear
that the memory allocated by the DM allocator has a big-
ger memory footprint if the DM allocator can not prevent
(or fix) internal and external fragmentation. Also, the struc-
ture of the DM allocator itself contributes significantly to the
memory footprint. For example, a header for each block that
records the block size (e.g., for splitting purposes) can be
up to 4 bytes. If the applications requests blocks that are
smaller than 12 bytes, then the DM allocator’s memory foot-
print overhead is at least 25%.

• By wrong memory assignment: The data, that is mapped on
the bigger off-chip physical memories in a memory hierar-

chy, consumes much more energy per access than the data
that is mapped on the smaller on-chip memories of a memory
hierarchy. Therefore, if the data that is accessed most by the
application is not mapped in the less energy-hungry physical
memory, then the total energy consumption of the memory
increases dramatically. The DM allocator is responsible for
allocating all the data to specific memory blocks. In order
to minimize the energy consumption, the DM allocator must
assign the memory blocks to each memory component of the
memory hierarchy according to the data that they hold and
thus according to the frequency of the application accesses
to this data (i.e. according to the ’popularity’ of each block).

It becomes apparent that a certain DM allocator design can fre-
quently affect one or more of these factors in a negative way, thus
increasing energy consumption. Even worse, sometimes one fac-
tor can be in conflict with another factor (e.g., minimizing memory
accesses results in increasing the memory footprint), thus not mak-
ing it always clear which DM allocator design is better for energy
reduction. In this paper, we are going to balance these two factors
in order to achieve the most energy efficient DM allocator design.
We are going to balance them by exploiting the memory accesses
versus memory footprint trade-offs, which we will provide with our
Pareto-optimal designs.

4. TOOL AND SCRIPT OVERVIEW
Our tool and script enable the quick and efficient design of cus-

tom parameterized DM allocators for new dynamic embedded ap-
plications. It consists of four steps applied to each dynamic appli-
cation (as shown in Figure 2). The first step is the profiling of the
dynamic run-time behavior of the application. In the second step,
we provide the general design guidelines, according to our profiling
results, for an abstract DM allocator for our application. In the third
step, our tool explores the various possible configurations of the
abstract DM allocator designed in the previous step. The various
configurations can be explored with the alteration of the values of
the parameters introduced in this paper. Finally, in the fourth step,
our tool systematically explores a set of Pareto optimal DM allo-
cator configurations to be used by the embedded system designer
in order to achieve the most energy efficient design. Because our
methodology is systematic, we were able to develop the tools that
support our approach and enable the automation of the whole op-
timization process. The first 2 steps are reused from earlier work
by us [1]. In this paper, we introduce the 3rd and 4th novel steps in
our methodology and link them fully with the automated tools [2]
to support the parameter exploration and final implementation in
any possible memory hierarchy of our platform. The whole frame-
work enables us for the first time to automatically and heuristically
explore thousands of different custom DM allocators, instead of
just a couple of DM allocators formerly available in our libraries,
for real-life embedded applications, and to be able to arrive at truly
energy efficient solutions.

5. PARAMETERIZED CUSTOM DM // AL-
LOCATION SCRIPT AND TOOLS

In this section we first briefly explain steps one and two (they
are analyzed in detail in [1]). Then, we extensively analyze the
parameters that are explored in the 3rd step and the method of ex-
ploration. Finally, we explain the 4th step, which is the selection of
the Pareto-optimal configurations of DM allocators.
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Figure 2: Script flow and parameters

5.1 Dynamic Run-time Profiling
The first step of our approach is the profiling of the run-time

de/allocation behavior of the dynamic application under study. We
group the profiling data in sets according to the requests for blocks
that have the same size. In this way, we have a set of profiling data
for each one of the different-sized block requests. The profiling
data includes the average number of allocations and de-allocations
per different-sized block. It also includes the average lifespan of the
allocated blocks and the maximum number of same-sized blocks
allocated at any time [2]. It provides a lot of information about the
run-time memory footprint needed by the application and the tim-
ing of the allocations and de-allocations. All this profiling informa-
tion will help us to design the custom DM allocator in the second
step and focus our parameter exploration around certain values in
the third step. More details about the profiling tools designed to
assist the parameter exploration are analyzed in subsection 5.4.

5.2 Abstract Design of Custom DM Allocator
The second step of our approach is the abstract design of the

custom DM allocator. In this phase we evaluate the general design
decisions of our DM allocator according to the profiling data gath-
ered in the first step. For example, we evaluate the design of the
internal blocks that the DM allocator is going to use, the pools that
these blocks are going to be clustered in, whether we are going to
use defragmentation mechanisms like block coalescing and block
splitting, which fit algorithms to use and the order of the blocks
within the pools (detailed information can be found in [1]). These
decisions provide the template of the DM allocator, but they do
not indicate specific implementation characteristics. For example,
a decision might be taken in the second step to use defragmentation
mechanisms, but the designer will not know exactly how much to
defragment. The answer to this question involves a lot of trade-offs
and is explored with the use of our script in the third step.

5.3 Automated DM Allocator Parameter // Ex-
ploration

The third phase of our approach is the automated DM allocation
parameter exploration. In this subsection we first analyze the rel-
evant DM allocator parameters and then the method that our tool
uses to explore them automatically. We are going to show that
different configurations of DM allocator parameters will give very
big trade-offs between memory footprint, memory accesses, energy

Figure 3: Memory accesses and memory footprint Pareto curve
for Easyport buffering running for 12000 packets

consumption and performance. We can exploit those trade-offs in
order to achieve the most energy efficient design. The relevant DM
allocator parameters can be divided into three main categories (as
shown in Figure 2):

1.- The Pool parameters, which consist of the Number of gen-
eral pools and the Number of dedicated pools. These DM allocator
parameters are related to the abstract pools of memory blocks in-
side the DM allocators. All the modern DM allocator designs can
feature two types of pools to group memory blocks: At least one
”general pool” with memory blocks of various sizes and a variable
number of ”dedicated pools” (e.g., 0-32) to accommodate specific
dominant block sizes, frequently requested by the application. The
role of the different pool configurations is to prevent fragmentation.

The general pools are heaps with a pre-allocated number of free
blocks which are created from the initialization of the DM alloca-
tor. The dedicated pools are freelists which don’t release the freed
memory blocks back to the system, but keep them reserved for fu-
ture allocations. Each one of these two parameters can be set to
zero, which means that this type of pool will not be used at all,
or they can be set to any number to try to prevent fragmentation
at various levels of effectiveness. These parameters are of great
importance because they heavily affect all the explored metrics.

2.- The Fit algorithm parameters, which consist of the Max fit
size and the Depth of fit search. The second set of DM allocator
parameters is related to the fit policies. Their role is to prevent
fragmentation. Therefore, according to the fit policy used, the DM
allocator searches the blocks inside a pool to see if they fit (i.e., to
see if they are big enough to satisfy the request of the application).

The first of these parameters regards the maximum block size,
that has to be found with a fit policy, in order to qualify for a suf-
ficient fit (e.g., if the application requests a 10 KB block, a 150%
Max fit would mean that up to a 15 KB block is considered a good
fit for the DM allocator). The second implementation parameter re-
gards the number of memory blocks that should be searched inside
a pool to find a memory block of sufficient size (e.g., for a pool
with 200 blocks, a 25% search means that only the first 50 blocks
should be searched to find a sufficient sized block for a request).
These DM allocator parameters are important as well, because they
mostly affect the number of memory accesses of the DM manager
and the run-time performance.

3.- The Defragmentation parameters, which consist of the Num-
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ber of pools with coalescing and splitting, the Max coalesced size
and the Min split size. The third set of DM allocator parameters
is related to the coalescing and splitting mechanisms of the DM
allocator. The role of these mechanisms is to try to reduce frag-
mentation. This means that they can merge two smaller blocks into
a larger one to satisfy a big request (and thus reduce external mem-
ory fragmentation). Similarly, they can split one larger block into
two smaller ones to re-use the smaller block in another request (and
thus reduce internal fragmentation).

The first two of the parameter sets define the number of pools
which include coalescing and splitting support. Additionally, the
size of the minimum and maximum block sizes that can be pro-
duced by a split or merge are implementation parameters (e.g., a 64
KB Max block size means that two adjacent blocks in memory of
50 KB and 20 KB can not be coalesced because their sum would be
bigger than 64 KB). The different maximum and minimum block
sizes can adjust the level of defragmentation use and effectiveness
of our DM allocator. In general, increase of these DM allocator
parameters tend to reduce memory footprint and increase memory
accesses.

After the second step (i.e., abstract design of custom DM allo-
cator), our tool is ready to explore the various number of DM allo-
cator configurations in the third step. This is done by altering the
values of the parameters in the custom DM allocator. It is clear
that the number of different configurations can easily explode. We
have introduced 8 different parameters and by using combinations
with even just 3 different values for each parameter, we already end
up with 6561 different configurations. Obviously, there is no way
for an embedded system designer to create, implement and test so
many DM allocator configurations without the full automation sup-
port that we provide for the first time in this paper. The depth level
of the exploration can be adjusted by the designer according to his
design time budget. For example, as shown in the upper part of
Figure 3, we provide the experimental results for 3 different depth
levels of exploration (exploration of 100000, 10000 and 1000 dif-
ferent DM allocators). We evaluated that by adjusting the depth
level of explorations by one order of magnitude, we manage to ob-
tain up to 10% further reductions for each evaluated metric. The
exploration can be guided heuristically to reduce the number of the
total simulations by using the guidelines in [1].

We have developed a framework to automatically create, map in
the memory hierarchy and compile any number of DM allocator
configurations (lower right box in Figure 4). The only input that
must be given to our tool are the arrays with the parameter values
that we want to explore for the different configurations (lower left
box in Figure 4). The upper left box in Figure 4, shows that we
can implement the DM allocator configurations in any memory hi-
erarchy, just by telling to the tool which pools should be mapped
in every level of the memory hierarchy. For example, we only have
to declare that one dedicated pool for 74-byte blocks should go
to the L1 64 KB scratchpad memory, one general pool and one
dedicated pool for 1500-byte blocks should go to the 4 MB main
memory. Our tool will take care of the implementation of the DM
allocator to support the mapping of these pools in the correspond-
ing memory hierarchy. In fact, we have developed a C++ library
with more than 50 different modules (upper right box in Figure 4),
which can be linked in any way with the use of templates and MIX-
INS inheritance to create custom DM allocators. The tool works in
a plug-and-play manner and there is no need to alter the dynamic
application’s source code, which calls the appropriate DM allocator
from the library.

Figure 4: Tool flow for automated parameter exploration

5.4 Automated Pareto-optimal Configurations
Selection

The final step of our script is the automated selection of Pareto-
optimal configurations. Because we now need absolute numbers,
this step in our script becomes partly platform dependent. We in-
deed need some assumptions concerning the data memory organi-
zation to compute the quantitative data (see also Section 5). This
step involves the simulation (i.e., execution) of our dynamic ap-
plication for each one of the different DM allocator configurations
(lower right box in Figure 4). These configurations were already
defined, constructed and implemented automatically in the previ-
ous step. In the context of evaluating the simulations, we have ex-
tended the profiling tools, introduced in Subsection 5.1. Thus, we
can test and profile all the different DM allocator configurations for
the defined memory hierarchy, and get results for mem. accesses,
mem. footprint and energy consumption for each level of the mem-
ory hierarchy. The results are provided either on a GUI (see Fig-
ure 5) or in a format easy to import to Excel or Gnuplot. With
these results, the embedded system designer can construct different
graphs and tables with the various metrics that are important for the
embedded system (e.g., energy consumption vs execution time as
shown in the Figure 8 and the experimental results shown in Fig-
ure 7). In practice, the entire Pareto set can contains quite a large
number of points (thousands) so the tool allows the designer to ef-
fectively prune this to the parts of the Pareto range that is of most
interest. Then, the Pareto-optimal curves to evaluate the trade-offs
of the configurations (as shown in Figure 8) can be provided au-
tomatically with the use of our tool (lower right box in Figure 4).
The tool (written in Perl and OCAML) parses all the experimental
results data and provides Pareto-optimal curves for the chosen met-
rics. We should note the significance of our quick parsing (less than
20 seconds) of the profiling data, which can reach even Gigabytes
for one single configuration.

The memory footprint measured in this step is the memory re-
served by the DM allocator to satisfy the requests of the application
and its internal mechanisms. The memory accesses counted consist
of those used by the DM allocator to allocate the dynamic memory,
as well as the application’s accesses to this dynamic memory. No
accesses to instruction memories are measured in this paper since
we do not focus on any concrete architecture and moreover the data
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Figure 5: Graphical User Interface of the automation tool

accesses are the most important factor to optimize for new dynamic
applications [7]. Finally, the energy estimations are made with the
use of an updated version of the CACTI model [17]. This is a com-
plete energy/delay/area model for embedded SRAMs that depends
on memory usage factors (e.g., size, internal structure or leaks) and
factors originated by memory accesses (e.g., number of accesses or
technology node used). We use the .13 μ technology node. Note
that any other model for a specific memory hierarchy can be used
just by replacing this energy estimation module in the tools.

6. EVALUATED EXPERIMENTAL
PLATFORM

In modern embedded systems, due to their energy-efficient na-
ture, the most typical memory architecture available consists of
several memory levels (e.g L1, L2, etc.), which makes profit from
the locality of memory accesses in real-life dynamic applications
(as shown in figure 6)):

- First, a main on-chip memory where the main part of DM is
de/allocated (also called in the DM context as main heap). This part
of the DM memory is cacheable; thus, hardware-controlled caches
can be used to optimize the accesses to the most frequently ac-
cessed locations of DM in smaller on-chip memories very close to
the processor, as with statically allocated data. A discussion of the
influence of different caches policies for DM locality is outside the
scope of this paper and more details can be found in our previous
publications. In any case, our DM allocation script achieves sig-
nificant reductions in the overall memory accesses (see Section 7
for Pareto-optimal results in real, dynamic applications). Hence,
all types of cache mechanisms and optimizations benefit from our
script for DM allocation and are complimentary to our work. So we
can claim that our optimization can be considered as a precompiler
step that is fully platform-independent and aims at the middleware
of our embedded system design.

- Second, software controlled on-chip SRAM memories (i.e.,
scratchpad memories) are available to the DM manager in order
to directly de/allocate parts of the DM (i.e., additional auxiliary
heaps) in small on-chip memories instead of using on-chip hard-
ware controlled caches. The DM in scratchpads is not cacheable
and copies in main memory do not exist. Therefore, a different
address-range than the main memory is devoted to the scratchpad
memories.

In the Pareto-space explorations shown in the experimental re-
sults of this paper we consider one level of on-chip hardware-controlled
cache and main memory sizes in the range of 1 MB to 8 MB, to be
closer to current embedded devices. The scratchpad memories can
vary between the sizes of 4 to 128 KB. To limit the exploration time

Figure 6: Our custom Dynamic Memory Allocator realized in
the Middleware

for realistic size candidates of memories, multiple-of-two sizes are
the only explored candidates (e.g., 4, 8, 16, etc. in scratchpads).
However, the number of possible solutions in the implementation
of the DM allocator is large and can easily be covered with our
proposed automated flow in a few hours (see Section 7). More-
over, note that the modifications of the memory sizes and number
of memory layers in the memory hierarchy to be explored with our
tools (in case any other concrete memory hierarchy of embedded
systems needs to be evaluated) requires a very limited effort (i.e.,
1-2 days for a PC workstation running simulations without the need
of human interaction). Note that in the case of trying to do the same
without our proposed script and automated tools, it would take a
skilled embedded systems designer more than a month.

7. CASE STUDIES AND EXPERIMENTAL
RESULTS

We have applied the proposed script and automated tool support
to two real case studies that represent different wireless network
application and digital processing domains:

7.1 Easyport buffering application
The first case study presented is the Easyport wireless network

application produced by Infineon [18]. Easyport features packet
and ATM cell processing functionality for data and voice/data Inte-
grated Access Devices (IADs), enterprise gateways, access routers,
and Voice over IP (VoIP) gateways. Easyport dynamically allo-
cates the packets it receives from the Ethernet channels in a mem-
ory before it forwards them in a FIFO way. In the context of the
parameterized DM allocator experimental results, we emulated the
aforementioned buffering of the packets, which is the most mem-
ory intensive function of the Easyport application. To run realistic
simulations of Easyport, we used a variety of typical packet traffic
traces provided by Infineon.

Using the first step of our script, we profile the Easyport appli-
cation. The dynamic behavior profile shows that Easyport uses a
big variety of block sizes (up to 59 different sizes) ranging from 66
bytes (i.e., acknowledgement packets) up to 54 KB. The memory
is allocated in bursts and most of the data remains allocated for a
very short period. Additionally, the maximum number of concur-
rently allocated blocks is 647. Finally, the blocks mostly allocated
are the 1514-byte blocks (38% of total allocations on average) and
the 66-byte blocks (22% of total allocations on average).

Using the second step of our script, we design an abstract cus-
tom DM allocator for our application. Following the methodology
described in [1], we decide to use multiple block sizes for our allo-
cator (because we have 59 different requested sizes), to have some
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pools per block size (because we want to prevent some fragmen-
tation and take advantage of the more commonly requested block
sizes) and to support coalescing and splitting (because with bursty
allocation behavior and so many requested sizes we will not be able
to completely prevent fragmentation). Finally, we have FIFO dou-
bly linked lists to support the FIFO allocation behavior of Easyport.

Next, using the novel third step of our script, we automatically
explore the parameters for this custom DM allocator. In our ex-
ploration, 2 to 20 values are considered for each parameter in this
application, which were chosen based on the average values of the
allocated blocks (i.e., profiling data in step one). For the pool pa-
rameters, we have explored combinations of 1-2 general pools and
0-4 dedicated pools. For the dedicated pools we have chosen the
66-byte and approximately 1514-byte blocks, which were the ones
indicated as dominant by the profiling. For the fit parameters, we
have explored combinations of 4 different levels for Max size fit
and 20 different levels of Depth of fit search (5%, 10%, 15%, etc.).
Finally, for the Defragmentation parameters, we have considered
combinations of 0-2 pools with coalescing support, 0-2 pools with
splitting support, 15 different values of Max coalesced size and 15
different values of Min split size. For validation purposes, 106496
different DM allocator configurations were created, implemented
in the platform (described in Section 6) and evaluated (for less con-
figurations, the exploration could be guided heuristically using the
guidelines in [1]). We have explored storing blocks with size be-
low 75 bytes in a general pool and the possible use of a dedicated
pool for 66-byte blocks in L1 memory. In our Pareto-optimal ex-
perimental results, we have used 32-64 KB of L1 memory and 1-4
MB of main memory. The automatic creation, implementation and
evaluation of each configuration of DM allocator for Easyport took
approximately 2 minutes in a Pentium IV running on 1800 MHz.

We have obtained a range in the total memory footprint of a
factor 11 and for the memory accesses of a factor 54 within all
the available DM allocator configurations (as shown in Figure 3).
Then, we have used our tool to parse all the configurations to pro-
duce the Pareto-optimal configurations. We conclude that we have
15 Pareto-optimal configurations. We can decrease the total amount
of memory footprint up to a factor of 2.9 and the memory accesses
up to a factor of 4.1 within all the Pareto-optimal DM allocator
configurations.

By taking advantage of the provided pareto-optimal trade-offs,
we can decrease the total memory energy consumption by 72.82%
on average and the execution time by 39.74% on average (as shown
in Figure 7). The trade-off is an increase of 14.32% in memory
footprint.

Furthermore, variations of the general-purpose allocators, i.e.,
Kingsley, for WindowsCE-based embedded systems [10], Lea 2.7.1
for Linux-based embedded systems [3] and Enea OSE [9], were
also tested to compare its behavior with our custom allocators (de-
picted in Figure 7), which shows that our energy-efficient solution
improves upon their results by up to 82.02% in energy consumption
(compared to WindowsCE) and 64.92% in execution time (com-
pared to Enea OSE). Generally, the configurations which use more
pools, small Depth of fit search and minimal coalescing and split-
ting support tend to have smaller memory footprint and more mem-
ory accesses and vice versa. This is something that we have already
anticipated (as explained in Subsection 5.3) and the unbalanced re-
sults between those two factors leads to the high energy consump-
tion of the O.S. based DM allocators.

7.2 MPEG4 Visual Texture Decoder // multi-
media application

Our second case study is the MPEG4 Visual Texture deCoder

Figure 7: Energy efficient DM allocator design results for Easy-
port buffering running for 12000 packets

(VTC) [19], which is in charge of still texture decoding. The central
part of this application is the wavelet transformer that produces an
RGB-output. Due to the phased-nature of this particular decoder,
several different intermediate buffers are dynamically de/allocated
where the intermediate results can be stored. This results in an
extensive use of DM that needs to be allocated and deallocated.
Different sized inputs were used to ensure the appropriateness of
the found custom DM allocators.

As the first step of our DM script dictates, the VTC kernel is pro-
filed to determine its dynamic behavior. As we have seen in sev-
eral dynamic multimedia software, the VTC application uses only
a few distinct DM block-sizes which ranged from 32 bytes to 2 MB
in size (14 in total). While the blocks spanned quite a large size-
range, they showed one distinct feature, most of them were powers
of 2. The maximum number of allocated blocks for a representative
input was 1841 blocks with a total memory requirement of 6.8 MB.
Then, the most allocated block-size was 1024 bytes and the most
accessed block-size was 2048 bytes.

Next, using the profiling information and according to the sec-
ond step of our script, a custom DM allocator is designed for this
application. First, separated memory pools are defined for the most
accessed block sizes (i.e., 5 out of 14), using FIFO single linked
lists [3]. Single linked lists suffice for these pools as no coalescing
or splitting is used (i.e., less memory overhead in the DM block
headers), thus accessing previous DM blocks in the lists are not
needed. Next, one or two different memory heaps are created to
simulate a system with main memory only or with scratchpad and
main memory. In this last case, only the 2048 byte blocks are al-
located onto the scratchpad, since they are the most accessed. So
we allow them to take up the whole space in the scratchpad for all
the sizes studied in our explorations (i.e., 4-128 KB). Hence, it did
not require coalescing or splitting. The main memory, however,
supports coalescing and splitting and therefore it was based on a
doubly-linked FIFO list.

In the last step of the exploration script, different configuration
parameters are explored. For the pool parameters, we explore be-
tween 0-6 separated memory pools for the most allocated block
sizes (i.e., 1024, 2048, 512, 256 and 128 Bytes in order). Then,
only 100% Depth of fit search (i.e., exact fit) was chosen for the
fit parameters due to the fact that the block-sizes were very differ-
ent [1]. As for the defragmentation parameters only the main mem-
ory pool needs to support coalescing and splitting due to the fact
that only blocks of 2048 bytes are allocated from the scratchpad.
Experiments were made to see how much coalescing and splitting
would affect DM footprint of the main memory pool (4 different
values of Max coalesced size and 4 different values of Min split
size), but the effects were minimal (variations of less than 5%).
Experiments for different scratchpad sizes (i.e., 4KB-128KB) indi-
cate that the effect of different L1 memory sizes are minimal (as
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Figure 8: Memory energy consumption and execution time
Pareto-optimal curve for VTC application

can be noted in Figure 8). In total, 40 configurations of different
DM managers needed to be evaluated to achieve the Pareto curve
of Figure 8. The creation, implementation and evaluation of all the
managers of took 13.3 hours in total. Furthermore, variations of the
general-purpose system of allocator, i.e., Kingsley, for Windows-
based embedded systems [10, 3] was also tested to compare its be-
haviour with our custom allocators (depicted in Figure 8), which
shows that our Pareto solutions reduce the energy consumption up
to 82.9% and the execution time up to 3.8%. In some cases indeed
the execution time range is small because the platform operation
effectively hides the influence of the additional memory accesses.

8. CONCLUSIONS
The use of dynamic applications has been lately increased in em-

bedded system designs. Therefore, the correct choice of a Dynamic
Memory Allocation subsystem becomes of great importance. Within
this context, new design methodologies and tools must be avail-
able to the designer in order to explore the trade-offs between the
various Dynamic Memory Allocation configurations and thus use
suitably the resources in these final embedded devices. In this pa-
per we have presented a new script and full automation support
(complete with Graphical User Interface) to explore the parameters
of Dynamic Memory Allocation subsystems, create and implement
the thousands of corresponding Dynamic Memory Allocators and
evaluate them with the use of trade-offs in a Pareto space. The
results achieved in real dynamic embedded applications show that
the designer can select between a wide choices of Pareto-optimal
Dynamic Memory Allocation configurations. By correctly exploit-
ing these trade-offs in the Pareto-optimal designs, we can achieve
a decrease of energy consumption by 72% on average and the re-
duction of the execution time by 40% on average, while having a
minor increase of 14% on average in memory footprint.
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