A Stylized Cartoon Hair Renderer

Jung Shin
University of Canterbury
Christchurch, NZ

jung.shin@hitlabnz.org

ABSTRACT

This paper describes a new hair rendering technique for
Anime characters. The overall goal is to improve current cel
shaders by introducing a new hair model and hair shader.
The hair renderer is based on a painterly rendering algo-
rithm which uses a large amount of particles. The hair
model is rendered twice: first for generating the silhouettes
and second for shading the hair strands. In addition we
also describe a modified technique for specular highlighting.
Most of the rendering steps (except the specular highlight-
ing) are performed on the GPU and take advantage of recent
graphics hardware. However, since the number of particles
determines the quality of the hair shader, a large number
of particles is used which reduces the performance accord-

ingly.

Categories and Subject Descriptors

1.3.3 [Computer Graphics|: Picture/Image Generation;
1.3.3 [Computer Graphics]|: Three-Dimensional Graphics
and Realism.Color, shading, shadowing, and texture

Keywords
Cartoon Shading, Hair Rendering, Stylized Rendering

1. INTRODUCTION

Hair plays an important role in Anime, the Japanese version
of Animation. The hair is not only one of the most impor-
tant visual features for human beings in real life, but also
for human beings in comics, cartoons, and Anime. After
eyes, the hair is the feature that best shows the characters’
individuality [13]. Hairstyle says a lot about personality and
is characterized by the simplification of the hair strands and
shading, the black outlines, and by special specular high-
lighting. The hair is a crucial feature used to distinguish
between different cartoon characters, especially in Anime
(cf. figure 1). There has been significant research on im-
proving the photo-realistic rendering quality of hair [2, 7],
however, there has been little research on cartoon hair.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACE 06, June 14-16, 2006, Hollywood, California, USA.
Copyright 2006 ACM 1-59593-380-8 /06/0006 ...$5.00.

Michael Haller
Upper Austria University of
Applied Sciences, Austria

haller@fh-hagenberg.at

R. Mukundan
University of Canterbury

Christchurch, NZ
mukund@-cosc.canterbury.ac.nz

Figure 1: Real Anime examples (a-b) and results of
our algorithm (c-d).

The aim of this paper is to produce high quality Anime hair
images by using a sophisticated hair model. We mainly focus
on:

e an easy hair model for efficient Anime rendering,

e the generation of outlines for the hair strands,

hair shading with a modified toon diffuse shading, and

e an efficient specular zigzag highlighting, characteristic
of Anime hair.

After an overview of related work, in section 2, we demon-
strate our approach, including the presentation of the hair
model, the creation of the silhouettes, the diffuse shading,
and the charactestic zigzag specular highlighting. Note that
our approach is based heavily on OpenGL extensions pro-
vided by the latest computer graphics hardware. Perfor-
mance tests and results are discussed in section 4. Finally,
we conclude the paper with directions for future work.



2. RELATED WORK

It is still difficult to render over 100,000 hair strands in real-
time. Therefore, the hair model is an essential part of the
hair shader. A good overview of different hair models are
presented in [10].

Noble and Tang use NURBS surfaces for their hair geometry
[15]. In [9], the hair is modeled in 2D NURBS strips, where
the visible strips are tessellated and warped into U-shape
strips. In contrast, Kim and Neumann use an optimized
hierarchy of hair clusters [6]. Mass-Spring based hair models
[17] are commonly used for hair simulation, because they are
simple and efficient to use.

However, previous publications in hair modeling have mainly
been focused on impressive computer-generated hair simu-
lation and rendering with realistic and photo-realistic be-
havior (cf. [19]). Several papers have been published to im-
prove the appearance, dynamic and self-shadowing of hairs
[7, 2], and the model of human hairs [6]. However, fewer re-
searchers have focused on cell-based (cartoon) hair models
[11, 15, 3]. Mao et al. present an interactive hairstyle mod-
eling environment for creating non-photorealistic hairstyles
[11]. Their system includes a user-friendly sketch interface
which generates hairstyles that can be sketched by model-
ers. Hairstyles are simply generated by sketching free-form
strokes of the hairstyle silhouette lines. The system auto-
matically generates the different hair strains and renders
them in a cartoon, cel animation style. A similar approach
with good results has been presented in [18]. Coté et al.
introduce a polygon-based technique to recreate an inking
technique [3]. The system provides an intuitive interface to
assist artists and produces cartoon-like hair using a hatching
technique.

Our approach is based on the painterly renderer model pre-
sented by Meier in [12] where a large number of particles had
been used to simulating brush strokes paintings. Silhouettes
are a very important feature in many Non-Photorealistic
rendering (NPR) algorithms, especially in cartoon shading.
Interesting and efficient algorithms for artistic silhouettes
are proposed by [5, 16]. In [20] Wilson and Ma present
an algorithm where complex 3d objects are rendered in a
Pen-and-Ink style using hybrid geometry and image-based
techniques.

This paper concentrates on removing unnecessary detail of
the Pen-and- Ink style when the underlying 3D object is
complex. Current research in NPR is directed towards im-
proving toon shading to achieve a more toon-like rendering.
Nasr and Higgett introduce a new rendering shader to make
rendered objects not too glossy and shiny [14]. Anjyo and
Hiramitsu introduced cartoon style specular highlights to
make toon shading look more like cel animation [1]. In ad-
dition, Lake et al. present a real-time animation algorithm
for toon shading [8].

The most novel elements of our work include

e an efficient and easy-to-use hair model using particles
rendered on GPU,

e a silhouette renderer for the hair strands, and

e the combination of diffuse lighting with zigzag specular
highlighting effects.

3. PROPOSED APPROACH

In this paper, we mainly focus on the rendering of hair
patches. This section gives a brief overview of the hair
model and its physics. In most photorealistic hair shader
techniques, hundreds if not thousands of hairs are rendered
and animated. In contrast, our method uses a relatively
small amount of hair strands to generate a believable result.

An overview of the overall pipeline is depicted in figure 2.
The algorithm consists of three steps:

1. Creation of the hair model and hair strands by using
a billboard approach

2. Definition of the silhouette

3. Shading the hair strands with a diffuse and specular
lighting model

3.1 Hair Mod€
3.1.1 GPU based Particles

For rendering the hair strands, we implemented a special
particle system, where a single strand consists of multiple
particles. Alpha blended particles are placed at the gener-
ated points as screen-aligned billboards. Thus, our approach
generates a sparse-hair model using different particles that
are connected together by using a Catmull-Rom spline (cf.
figure 3). The points p1..pn are user-defined and match the
character’s head. Notice that the particles are based on a
spring-mass model. Moreover, we implemented simple colli-
sion detection with a sphere that represents the head. This
is used when the hair model is initialized and animated.

yul | ﬂ;\ 1=0
g, \

y \
i . P * ‘\Lwin'th

width -

-

@ p.."'

@) (b) ()

Figure 3: Creation of a hair strand: With user-
defined particles (a), we define a Catmull-Rom
spline on which the billboards are generated (b). Fi-
nally, the width of the billboard is re-sized to guar-
antee a better shape for the strand (c).

All generated particles are potential centers of the billboard
particles that generate the “surface” of the strand. Thus,
these particles will be used later to position the billboard
texture that composes the strand. Next, the billboard ver-
tices have to be generated. Similar to [4], this task is per-
formed on the GPU: The coordinates of the center of the



Hair Model

Silhouette

Diffuse

Highlight

Figure 2: Overall Rendering Pipeline.

billboard - which is the coordinate of the particle - is sent to
the vertex program four times, accompanied by the correct
texture coordinates needed for the strand texture. These
two coordinates can be used in combination to create each
corner of the billboard.

| f

Q

]
i
]

H_J
L shifixX

Figure 4: The billboard particles get re-sized by the
factor f.

Finally, the billboard size (with its user-defined width) gets
scaled by the factor

o [ (tshiftX)-
f= sm( 1+shiftX7r)

where ¢ ranges between 0 and 1. The user-defined shiftX
is the shift of the sine curve along the x-axis (cf. figure 4)
and has been defined by 0.2. It is to achieve the shape of a

hair strand shown in figure 4. However, different formulas
can be used to change the shape of the hair strands.

As a result, the size of the hair-clump billboard gets scaled
as depicted in figure 5.

Figure 5: The Hair Model: The simplified presen-
tation of the billboard model (a). The hair model
consists of 2,500 billboard particles.

Since the hair strands do not have a real geometry (as pro-
posed by [11]) and are defined by billboard particles, we have
to calculate the normals for further shading. Figure 6 shows
how both the tangents and the normals are calculated for
each billboard particle.

The user defined particle’s position is defined by p;(i =
1,2,..,n — 1). Obviously, the normal of a particle has to
face away from the center of the hair model. Let C be the
center of the hair model and H; is the normalized vector



Figure 6: Calculating the normal vector: (a) The
tangent vector and the vector with its origin in the
head’s center are used to calculate the right vector.
(b) The cross product of the right vector and the
vector T; are than used to calculate the normal vec-
tor.

facing away from C the center of the head. However, H;
cannot be used as a normal vector for the billboard particle,
because the particles do not necessarily have to be aligned
along the head’s surface. We therefore compute the tangent
vector T; which is simply calculated by p;—1 — p;. To get
the correct vector, we then calculate R; = T; x H;. Notice
that the vector H; has its origin in the head’s center and
is always pointing to the surface of the billboard (cf. fig-
ure 6(a). Finally, the normal vector N; is calculated by the
cross product of the normalized tangent vector T; and the
normalized right vector R; (cf. figure 6).

3.2 SortingtheHair Strands

After discussing the creation of the particles and the bill-
boards, this section mainly focuses on the rendering order
of the billboards. The rendering order of the strands is very
important to solve the depth issues and the root of the hair
strands plays an important role in determining this. We
sort the hair strands according to the distance from the eye
position to the root position of hair strands (cf. figure 7(a))
before rendering the individual particle billboards (b). This
prevents hair strands at the back of head from covering hair
strands at the front of the face.

In addition to the depth sorting, we also add a “relative”
depth value, which is applied to the different hair strands.
This is applied randomly at the beginning of the application
and influences the final rendering order of the individual hair
strands. The relative depth level (cf. figure 8(a)) is coded in
RGB-color values with three depth values (R = back, G =
middle, and B = front) and may change the rendering order
of the hair strands. Therefore, before the current strand
is rendered, the depth level of the two neighbors (the left
and the right neighbor) have to be checked. The neighbors
are determined by the root position of hair strands when
the hair model is initialized. If the left or right neighbor is
relatively behind the current hair strand (e.g. the current
hair strand’s color is green, but the right hair strand’s color
is blue), the neighbor strand has to be rendered firstly. The
pseudo-code for the recursive rendering algorithm can be

L: Left C: Current R:Right

Figure 7: (a) The rendering order of the particles de-
pending on the eye’s position. (b) Relative depth or-
der between the neighbors of the current hair strand
can still influence the final rendering order of the
hair strands.

described as follows:

for each hair strand
RenderRelativeOrder( current strand );

RenderRelativeOrder( strand ) {
if ( strand.isRendered())
return;
if ( strand.left.level < strand.level)
RenderRelativeOrder(strand.left);
if ( strand.right.level < strand.level)
RenderRelativeOrder (strand.right);

render (strand) ;

Finally, some of the hair strands get occluded by the body’s
geometry (e.g. the head). The depth test between the hair
billboards and the body is performed in the fragment shader.
In a first step, the depth of the particles are calculated in
the vertex shader.

vert2frag VPshader (app2vert IN) {
vert2frag 0OUT;

OUT.particleDepth = ((Particle_centerPosition.z /
Particle_centerPosition.w) +
1.0f) / 2.0f;

The reference depth map of the body is forwarded to the
fragment shader, where the depth test is performed. The
particle billboard has only been drawn if it is in front of the
3d geometry - thus, hair strands in the back of the head are
not drawn.



(c)

Figure 8: Hair Silhouettes using the relatively
sorted hair strands.

frag2app FPshader(vert2frag IN,
uniform sampler2D depthRef) {
frag2app OUT;

refDepth = tex2D(depthRef, IN.texCoordScreen);

// do not draw the particle if it is behind the
// phantom geometry (e.g. head)
if ( IN.particleDepth < refDepth ) {
0UT.color = ParticleColor;
}

As aresult, the hair strand billboards are sorted according to
their depth and relative position to their neighbor strands,
and rendered into a texture for further use in the fragment
shader (cf. next section). Note that the hair strands are
rendered twice: first for creating the silhouettes and second
for the diffuse lighting of the hair strands (cf. Section 3.4.1).

3.3 Renderingthe Silhouette

Using the rendering order of the hair strands and the refer-
ence image, we can easily calculate a simplified silhouette of
the hair strands. By applying a Sobel edge detection filter
on the reference texture, the necessary data can be found
for constructing the silhouettes (cf. figure 8(b)).

As described before, we use a two-step re-arranging ap-
proach for sorting the hair strands (in the first step the
strands are sorted from the back to the front of the head; in

the second step the hair strands can be slightly re-arranged
according to the relative depth of their immediate neigh-
bors). This re-arrangement of hair strands can be causing
slight “jumping” effects especially near the root of the hair.
This could be minimized by selecting proper width for the
strands and proper relative depth.

(a) Original Silhouettes  (b) Original Silhouettes at

different eye position

(c) Intensity modified Silhou- (d) Intensity modified Sil-
ettes houettes at different eye po-
sition

Figure 9: Hair Silhouettes

However, a better solution is by fading out the intensity
of the silhouettes which are close to the root of the hair by
using a fading function. The intensity of the reference image
is modified by the following function.

f:m for all ¢ € [0,1]
2.0

Again, the variable ¢ represents the value from the first to
the last particle of a single hair strand. As the “jumping”
effects are most disturbing on the top of the head, we simply
fade out the hair strand on the root of the hair. The results
are shown in figure 9. Figures (a) and (b) demonstrate how
the silhouettes get changed, especially on the top of the
hair caused by the re-arrangement of the hair strands. In
contrast this effect can be hardly recognized by using the
fading function (cf. figures (c) and (d)).



3.4 Shading
3.4.1 Diffuse Lighting

Simplification of geometry and shading is important for gen-
erating Anime-characters. Similar to the silhouettes, we
use the reference image generated in the first step of the
pipeline. In contrast, the order of how the particles are
rendered within one hair strand is important for achieving a
nice diffuse lighting effect. Therefore, the billboard particles
need to be rendered from the furthest to the closest accord-
ing to the eye position. To achieve a better performance,
we simply sort the hair strands according to their distance
from the eye position to the root and tip of the hair strand.
The pseudo code shown below uses the following notation:
droot is the distance between the eye position and the root
of a single hair strand. disp is the distance between the eye
position and the tip of a single hair strand. The function
addToList adds the actual hair strand to the corresponding
rootList or tipList.

fori=0ton—1do

droot —— distance(EyePostion, RootCurrentHairStrand[i])

dyip < distance(EyePosition, TipCurrentHairStrand|i])
if droot < diip then
addToList(rootList, hair-strand][i])
else
addToList(tipList, hair-strand][i])
end if
end for

Figure 10: Diffuse Lighting with Texture Lookup

After sorting the hair strands, we can render the parti-
cles. First, the color of the body’s reference image is ren-
dered, then the particles are rendered. Again the depth test
is done in the fragment shader. However, diffuse shading
causes a problem (cf. Figure 10(c)). The combination of
the Painter’s algorithm with a step-function for the texture
generates unwanted shading effects. Therefore, we used a
different texture to generate the diffuse lighting (cf. Figure

10(a)).

3.4.2 Specular Lighting

In [1] Anjyo and Hiramitsu present a novel highlight shader
for cartoon rendering and animation. The specular high-
lights are an essential part of the Anime hair shading. In
Asian cartoons, the specular highlight of the hair is mostly
used to show the volume of the hair. We recognized that
in most characters, the current specular highlighting model
cannot be used. However, it does not always show the ac-

Figure 11: Calculating the specular term.

curate shininess of hair but the approximated areas of high-
lights. There are many different styles of cartoon specular
shapes and they are usually exaggerated and simplified. The
cartoon specular does not vary much depending on the eye
position.

Instead of using the traditional Blinn’s specular model, we
propose a new highlight shader for the 3D object. Instead,
our specular term is composed by using the tangent vector
T and the normal vector N of the hair strand billboard:

specular = Ks - lightColor - (maz(L e W, 0))*""e"*

where L is the direction towards the light source, and W a
“weighted” factor composed of the addition of the normal
vector N and the tangent vector 7. The vector W can be
expressed by the vectors N and T', and the weight value w:

Figure 12: The different weight values (a) weight =
0.0, (b) weight = 0.5, and (c) weight = 1.0 can influence
the position of the specular highlighting.

Figure 11 illustrates the specular model. Notice that the
weight value is user-defined and influences the final results
(cf. figure 12). As a result, the highlight can be moved from
the tip to the root of the hair strands by simply changing
the weight value from 0 to 1.



d‘ dni d
¢ o o
S
t o, e
,. d’s
? d 3 ®
| )
®
da% . my
®

(@ (b) (©)

Figure 13: The pipeline of the specular highlight:
after merging the particles (p;), we achieve potential
points m; (b) which are representing potential points
for creating the triangle mesh (c).

User defined textures are used to achieve exaggerated, sim-
plified, and cartoon-style highlights. The specular hair model
has its own structure which is the same as the original hair
model but containing less points. Figure 14 shows the steps
to generate a stylised specular highlight.

Here we explain the merging and linking of specular points.
Our algorithm iterates over all strands and removes all par-
ticle links that have a larger value than the user defined
distance to each particles (cf. figure 13(a)). Consequently,
the particles of a single hair strand get merged (which is
the average value of the particles of a single group) into
one single particle (cf. figure 13(b)). Depending on the
user-defined threshold and the distance between the single
particles, one or more groups are generated. Finally, we ren-
der the highlight textures as a series of triangle strips which
are composed by the merged (averaged) particles (cf. figure

13(c)).

Notice that the linked specular texture needs more than just
one texture depending on the amount of particles that are
connected to generate one highlight. By using a single tex-
ture, the specular highlight gets stretched and/or squished
which results in unwanted artifacts. Figures 16(c) and 16(d)
shows two example results of multiple specular highlight
links with different lengths.

The different thresholds are defined by the user. The ad-
vantage is that the modeler can tweak the highlight to get
great results. However, it may require too many user inputs
(e.g. threshold value for the specular value, the minimum
distance between merging points, and the linking of different
textures) to generate nice renderings.

4. RESULTSAND FUTURE WORK

This system is implemented in C++ using OpenGL and
nVIDIA’s CG shader language. We tested our setup on a
Pentinum 4, 3.00 GHz, and an nVIDIA GeForce 7800 graph-
ics card with 256 MB. Figure 16 shows some results, where
the user easily changed the properties of hair to achieve the
different renderings.

(c)

Figure 14: The different pipeline steps for generat-
ing the specular highlight: firstly, all particles are
marked with a special specuar highlight threshold
(a). Potential particles are merged (b) and define
the triangle strip (c), which is used for rendering
the highlight texture (d).

The hair model was composed of 1,871 particles. However,
in total we had to render 3,742 particles per frame (once for
the silhouette and once for the diffuse shading). The number
of sample points used for the specular highlighting contained
737 particles. The size of reference buffer was defined by
the maximum resolution of 512 x 512. For the rendering of
the 3D model, we used a special cartoon renderer (which
improves the quality of traditional cartoon shader models)
by using reference buffers and 2D filters. However, the visual
improvements slow down the performance and the shader
for the model (without the hair shader) runs with 7.0 ~
7.5 frames per second. The hair shader (without rendering
the model) runs at 3.0 ~ 3.5 frames per second. Together,
both shaders are executed with 2.3 ~ 2.4 frames per second.
Instead of performance issues, we mainly wanted to improve
the rendering quality.

This paper presents a novel rendering method for cartoon
based hair models. By using a special hair model with par-
ticles, we demonstrate an efficient way to generate the out-
lines. Moreover, we present the lighting effects, describing
how to generate both the diffuse and specular lighting. Our
main goal of this study was to improve the rendering quality.
However, one of the most important steps is to improve the
rendering performance. Another important task is to solve
the restriction of using un-twisted hair strands. Unfortu-
nately, our approach does not allow twisted hair strands.



(c)

Figure 15: Stylized, specular highlighted hair tex-
ture with the corresponding texture.

Similar to the Painter’s algorithm with teethed surfaces, we
would have to split the individual hair strands. Finally, an-
other hot topic would be the automatic animation of hair
strands using a spring-mass model.

5. ACKNOWLEDGMENTS

The authors would like to thank Billy Chang for the great
character model. The work is partly sponsored by the EU-
New Zealand Pilot Cooperation in Higher Education under
the project title “Leonardo”.

6. ADDITIONAL AUTHORS

Mark Billinghurst, University of Canterbury, Christchurch,
New Zealand, billinghurst@hitlabnz.org

7. REFERENCES
[1] K. Anjyo and K. Hiramitsu. Stylized highlights for
cartoon rendering and animation. IEEE Computer
Graphics and Applications, pages 54-61, 2003.

[2] F. Bertails, C. Menier, and M.-P. Cani. A practical
self-shadowing algorithm for interactive hair
animation. In GI ’05: Proceedings of the 2005
conference on Graphics interface, pages 71-78, School
of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada, 2005. Canadian
Human-Computer Communications Society.

[3] M. Coté, P.-M. Jodoin, C. Donohue, and
V. Ostromoukhov. Non-Photorealistic Rendering of
Hair for Animated Cartoons. In Proceedings of
GRAPHICON’0/, 2004.

[4] M. Haller and D. Sperl. Real-time painterly rendering
for mr applications. In GRAPHITE ’04: Proceedings
of the 2nd international conference on Computer
graphics and interactive techniques in Australasia and
South East Asia, pages 30-38, New York, NY, USA,
2004. ACM Press.

[5] R. D. Kalnins, P. L. Davidson, L. Markosian, and
A. Finkelstein. Coherent stylized silhouettes. ACM
Transactions on Graphics, 22(3):856-861, July 2003.

[6] T.-Y. Kim and U. Neumann. A thin shell volume for
modeling human hair. In CA ’00: Proceedings of the
Computer Animation, page 104, Washington, DC,
USA, 2000. IEEE Computer Society.

[7] M. Koster, J. Haber, and H.-P. Seidel. Real-time
rendering of human hair using programmable graphics
hardware. In CGI ’04: Proceedings of the Computer
Graphics International (CGI’04), pages 248-256,
Washington, DC, USA, 2004. IEEE Computer Society.

[8] A. Lake, C. Marshall, M. Harris, and M. Blackstein.
Stylized rendering techniques for scalable real-time 3d
animation. In NPAR ’00: Proceedings of the 1st
international symposium on Non-photorealistic
animation and rendering, pages 13-20, New York, NY,
USA, 2000. ACM Press.

[9] W. Liang and Z. Huang. An enhanced framework for
real-time hair animation. In PG ’03: Proceedings of
the 11th Pacific Conference on Computer Graphics
and Applications, page 467, Washington, DC, USA,
2003. IEEE Computer Society.

[10] N. Magnenat-Thalmann, S. Hadap, and P. Kalra.
State of the art in hair simulation. In International
Workshop on Human Modeling and Animation, pages
3-9, 2000.

[11] X. Mao, H. Kato, A. Imamiya, and K. Anjyo. Sketch
interface based expressive hairstyle modelling and
rendering. In CGI ’04: Proceedings of the Computer
Graphics International (CGI’04), pages 608—611,
Washington, DC, USA, 2004. IEEE Computer Society.

[12] B. J. Meier. Painterly rendering for animation. In
SIGGRAPH °96: Proceedings of the 23rd annual
conference on Computer graphics and interactive
techniques, pages 477484, New York, NY, USA, 1996.
ACM Press.

[13] H. Nagatomo. Draw your own Manga. Coade, 2003.

[14] N. Nasr and N. Higget. Traditional cartoon style 3d
computer animation. 20th Eurographics UK
Conference (EGUK ’02), June 11 - 13 2002. De
Montfort University, Leicester, UK, p. 122.

[15] P. Noble and W. Tang. Modelling and animating
cartoon hair with nurbs surfaces. In Computer
Graphics International, pages 6067, 2004.

[16] J. Northrup and L. Markosian. Artistic silhouettes: A
hybrid approach. In Ist International Symposium on
Non-Photorealistic Animation and Rendering
(NPAR’00), pages 31-37, Annecy, France, June 05 -
07 2000.

[17] R. E. Rosenblum, W. E. Carlson, and I. E. Tripp.
Simulating the structure and dynamics of human hair:
Modeling, rendering and animation. The Journal of
Visualization and Computer Animation, pages
141-148, 1991.



[18] E. Sugisaki, Y. Yu, K. Anjyo, and S. Morishima.
Simulation-based cartoon hair animation. In 13th
International Conference in Central Europe on
Computer Graphics, Visualization and Computer
Vision (WSCG’05), pages 117-122, 2005. Full Paper.

[19] P. Volino and N. Magnenat-Thalmann. Real-time
animation of complex hairstyles. IEEE Transactions
on Visualization and Computer Graphics,
12(2):131-142, 2006.

[20] B. Wilson and K.-L. Ma. Rendering complexity in
computer-generated pen-and-ink illustrations. In 3rd
International Symposium on Non-Photorealistic
Animation and Rendering (NPAR’04), pages 129-137,
2004.



Figure 16: Results



