Visualization of Bone Weights

Jorn Loviscach*
Hochschule Bremen

Figure 1: Stripe patterns facilitate to read off the weight ratio (left).
Ellipsoids illustrate the distribution of the weights (middle). To dis-
play the weight ratio, the vertices may be shifted to the correspond-
ingly averaged spatial position (right).

1 Introduction

This work presents a set of visual helpers that aid in the editing of
smooth skinning (a.k.a. skeleton subspace deformation), see Fig-
ure 1. These visualizations can easily be integrated with standard
3D software to leverage the skills of trained animators, in contrast
to disruptive solutions such as [Mohr et al. 2003].

For smooth skinning, every vertex is equipped with weights that
control the influence of the bones. Current 3D software allows to
paint bone weights onto the mesh’s surface. It displays the weights
for one single bone at a time or it applies a different color to every
bone and blends these colors appropriately. Even in the latter case,
the ratio of the weights, which is the most important quantity, is
hard to read off. For instance, it’s not intuitively clear which color
results from a 30 : 70 mix of blue and yellow. Furthermore, some
software does not immediately adjust the painted weights to sum to
one for every vertex. In the latter case, vertices may be influenced
equally, even though they are displayed with different colors.

2 Method

The user applies weights with a tool that acts more like an air-
brush than like a paint brush: The weight of a specified bone is
boosted, the other weights are cut to immediately enforce normal-
ization. Like most real-time applications, the system stores up to
four bone indices plus four corresponding weights per vertex. If a
vertex already contains four non-zero weights and the user tries to
assign a fifth bone, the bone with the smallest weight is replaced.

Weight ratios are represented by stripe patterns. Whereas patterns
would be easy to apply via a 2D post-process, this work features
patterns applied onto the 3D surface, because they enhance com-
prehension and do not lead to shower-door effects. In contrast to
many other pattern types such as dots, stripe patterns facilitate an
accurate read-off and allow to emphasize geometric features such

*e-mail: jlovisca@informatik.hs-bremen.de

as curvature direction. Stripe patterns work well even if three or
four bones are blended, see the chest of the character in Figure 1.

Since the mesh may not yet possess texture coordinates, the stripes
are generated through a local alignment process in four rendering
passes on the GPU. The first pass computes the animated vertex
positions and normals and stores them in textures. The second pass
computes the local per-vertex direction of maximum curvature. A
local plane wave is formed perpendicular to this direction. The third
rendering pass continuously adjusts the phases of these local plane
waves to minimize the misfit between neighbors. This relaxation
method is adapted from [Loviscach 2006]. The fourth rendering
pass determines the phase of the blended linear waves per pixel and
converts it to the corresponding color of the stripe pattern. To keep
the clarity of the colors, no antialiasing is applied.

The user can interactively control the width of the stripe pattern.
Furthermore, the width depends on the distance to the viewer: All
stripes have a similar width on the screen. Thus, near parts of the
surface show more detail; distant parts do not suffer from aliasing
due to small patterns. To reveal further details of the weight assign-
ment, the phase of the stripe pattern may be animated.

The bones can be displayed as ellipsoids approximating the distri-
bution of the positions and weights of the vertices. This allows for
instance to easily check for symmetry between left and right limbs.
The ellipsoids are described and rendered as deformed unit spheres.
The deformation of the unit sphere’s vertices and the corresponding
deformation of its normals are handled in a vertex shader.

The colors of the bones are optimized for maximum local contrast,
where “locality” is defined through the approximating ellipses. This
operation is applied continuously, so that the colors adapt to the
user’s actions. The high contrast allows to apply lighting on top of
the coloring, as opposed to the display in standard software.

The ratio of the weights can be illustrated spatially: The vertices
may be moved to the weighted average of the centers of the bones
according to the weights. Thus, one can quickly spot outliers. The
motion is done as an animation to show which vertex goes where.

3 Results

Even though four rendering passes are required to display the stripe
patterns, this method runs at highly interactive speed: The first three
passes write into textures and produce only one pixel per vertex of
the original mesh. The method also lends itself to real-time texture
generation, e. g., for hatching. The representation by ellipsoids and
by weighted position averages helps to “debug” smooth skinning.

References

LovVISCACH, J. 2006. Wrinkling coarse meshes on the GPU. Com-
puter Graphics Forum 25, 3, in press.

MOHR, A., TOKHEIM, L., AND GLEICHER, M. 2003. Direct ma-
nipulation of interactive character skins. In SI3D ’03: Proceed-
ings of the 2003 symposium on Interactive 3D graphics, 27-30.



