
Progressive Volume Rendering of Unstructured Grids on Modern GPUs

Steven P. Callahan 1 Louis Bavoil 1 Valerio Pascucci 2 Cláudio T. Silva 1

1 Scientific Computing and Imaging Institute, University of Utah
2 Lawrence Livermore National Laboratory

Figure 1: A sequence of progressive volume rendering steps for the SF1 dataset consisting of about 14 million tetrahedra.

Abstract
We have developed a new progressive technique that allows real-
time volume rendering of large tetrahedral meshes. Our approach
incrementally streams portions of the mesh to a hardware-assisted
volume renderer and displays approximations that increase in qual-
ity until a full-quality rendering is achieved. The results of previous
steps are stored as image data and re-used in each subsequent refine-
ment, thus leading to an efficient rendering. Our interactive rep-
resentation of the dataset is efficient, light-weight, and high qual-
ity. The result is a level-of-detail framework for interactive explo-
ration of tetahedral datasets too large to render using conventional
approaches.

1 Introduction
Unstructured grids (e.g., tetrahedral meshes) are common in the
simulation domains such as computational fluid dynamics and
structural mechanics. The scale of these simulations has continued
to grow faster than current visualization techniques can visualize
them. Recent techniques such as the Hardware-Assisted Visibil-
ity Sorting (HAVS) algorithm [Callahan et al. 2005], have pushed
much of the direct volume rendering burden to the GPU. These ap-
proaches are capable of rendering datasets consisting of about one
million tetrahedra interactively. However, even larger datasets re-
quire level-of-detail (LOD) approaches for exploration. Our pro-
gressive volume renderer [Callahan et al. 2006] satisfies this re-
quirement by providing a reduced representation during interaction,
and incrementally refining the progressive image during idle frames
until the full-quality image is rendered. The idea is to provide a
rendering system that gives the same effect as the progresive trans-
mission of JPEG images over the web. In this sketch, we focus
on our algorithm for performing the progressive volume rendering
with programmable GPUs.

2 Overview
The HAVS algorithm works by sorting in both object-space and
image-space. In object-space, the triangles that compose the tetra-
hedral mesh are sorted by centroid and sent to the GPU. Upon ras-
terization, the fragments are sorted on the GPU in image-space us-
ing a fixed-size A-buffer implemented with textures called the k-
buffer. Finally, the fragments are composited into the framebuffer
using a 3D pre-integrated table that contains the volume integral.
The flexibility of this approach is exploited in a recent progressive
algorithm we have developed that is capable of rendering small por-
tions of the geometry in each pass.

During interaction, the boundary of the mesh is rendered by in-
serting front and back fragments of the boundary into the k-buffer.

Then, during each iteration of the progression, the next batch of
internal geometry is rasterized and accumulated in the k-buffer. In-
coming fragments are used along with the stored k-buffer entries to
find the two fragments closest to the viewpoint, which are compos-
ited into an off-screen framebuffer using their scalar values and the
distance between them. The front-most fragment is discarded, and
the remaining fragments are stored back in the k-buffer. Next, an
approximation for the rasterized portion is created by compositing
the off-screen framebuffer with the contribution of the gap between
the front and back fragments still in the k-buffer. Finally, the ap-
proximation is displayed and the off-screen framebuffer as well as
the k-buffer are maintained for subsequent iterations from the same
view. Once the user renews the exploration process through inter-
action, the off-screen framebuffer and the k-buffer are cleared and
the process begins again.

Our GPU implementation utilizes recent advancements in pro-
grammable hardware to keep incremental data in GPU memory. In
particular, Framebuffer Objects (FBOs) are used for offscreen ren-
dering and Multiple Render Targets (MRTs) are used at each pass
to read and write from textures. Our progressive renderer avoids
the problems associated with using these features without multiple
rendering passes over the geometry.

3 Conclusion
We have given a brief overview of the rendering aspect of our pro-
gressive volume rendering system for interactively exploring large
datasets. An important feature of our algorithm is that it uses pro-
grammable GPU features to maintain only a light-weight image
representation of the volume between rendering steps. Thus, the re-
sults of one increment in the progression are used in the subsequent
increment. In addition, our algorithm only renders each triangle in
the mesh once per viewpoint. This leads to an efficient LOD algo-
rithm that quickly converges to a full-quality image (see Figure 1).

Acknowledgments Partial support for this work was provided
by the NSF, DOE, IBM, and ARO. This work was performed under
the auspices of the U.S. DOE by LLNL under contract no. W-7405-
Eng-48.

References
CALLAHAN, S. P., IKITS, M., COMBA, J. L., AND SILVA, C. T. 2005. Hardware-

assisted visibility ordering for unstructured volume rendering. IEEE Transactions
on Visualization and Computer Graphics 11, 3, 285–295.

CALLAHAN, S. P., BAVOIL, L., PASCUCCI, V., AND SILVA, C. T. 2006. Progressive
volume rendering of large unstructured grids. Technical Report UUSCI-2006-019,
Scientific Computing and Imaging Institute, University of Utah.


