
Combining Audio and Video to Predict Helpers’ Focus of 
Attention in Multiparty Remote Collaboration on Physical Tasks

Jiazhi Ou, Yanxin Shi, Jeffrey Wong, Susan R. Fussell, Jie Yang 
School of Computer Science 
Carnegie Mellon University  

Pittsburgh, PA 15213 
{jzou, yanxins, jeffreyw, sfussell, yang+}@cs.cmu.edu 

   
ABSTRACT 
The increasing interest in supporting multiparty remote 
collaboration has created both opportunities and challenges for the 
research community. The research reported here aims to develop 
tools to support multiparty remote collaborations and to study 
human behaviors using these tools. In this paper we first introduce 
an experimental multimedia (video and audio) system with which 
an expert can collaborate with several novices. We then use this 
system to study helpers’ focus of attention (FOA) during a 
collaborative circuit assembly task. We investigate the 
relationship between FOA and language as well as activities using 
multimodal (audio and video) data, and use learning methods to 
predict helpers’ FOA . We process different modalities separately 
and fusion the results to make a final decision. We employ a 
sliding window-based delayed labeling method to automatically 
predict changes in FOA in real time using only the dialogue 
among the helper and workers. We apply an adaptive background 
subtraction method and support vector machine to recognize the 
worker’s activities from the video. To predict the helper’s FOA, 
we make decisions using the information of joint project 
boundaries and workers’ recent activities. The overall prediction 
accuracies are 79.52% using audio only and 81.79% using audio 
and video combined.  

Categories and Subject Descriptors 
H5.3. Information interfaces and presentation (e.g., HCI): Group 
and organizational interfaces – collaborative computing, 
computer-supported collaborative work 

General Terms 
Algorithms, Experimentation, Human Factors, Languages. 

Keywords 
Focus of Attention, Computer-Supported Cooperative Work, 
Multimodal Integration, Remote Collaborative Physical Tasks 

1. INTRODUCTION 
Physical collaborative tasks are tasks in which two or more people 
interact with 3D objects in the real world. In this research, we 

focus on instructional tasks, in which helpers offer expertise and 
guidance to workers who perform the actual tasks. For example, 
in distance education, a physics teacher might use video and audio 
to simultaneously instruct several students located in different 
remote classrooms on how to do electronic experiments. 

Most previous studies of remote physical collaboration focus on 
two-party collaboration (e.g., [8][11][13][14][15]). To extend this 
work to multiparty collaboration, we face many new challenges. 
Focus of attention (FOA) is one example. FOA is a perceptual 
variable that indicates the action, object, or person to which 
someone is attending [2]. In two-party collaborations, to identify 
FOA, one must figure out on which area in a visual space the 
helper is focusing (e.g., instruction manual, task objects, worker’s 
face). In a multiparty collaboration, the helper also switches FOA 
back and forth among different workers. In this paper, we 
examine helpers’ allocation of FOA among multiple workers. 

The study of FOA in remote multi-party collaboration has both 
theoretical and practical impacts. By analyzing a helper’s FOA, 
we can understand how he/she allocates time and attention among 
multiple collaborators. Although scene-oriented video systems 
have been proven very useful in remote two-party collaboration 
on physical tasks ([8][11][13]), problems such as bandwidth 
limitations and limited display size may arise when one helper 
assists multiple remote workers simultaneously.  As a result, the 
helper may not be able to see all workers’ workspaces at the same 
time. A solution is to allow the helper to switch views among 
workspaces as needed, such that the focal workspace is allocated 
maximal bandwidth and display space. If a system can predict the 
helper’s desired FOA in real time, it can automatically switch 
display windows to provide the right visual information at the 
right time.  

Much research has been directed to tracking and analyzing FOA 
in other domains. Although a person’s visual attention is not 
necessarily his/her actual FOA, eye gaze or head pose has been 
commonly used as a good estimation of FOA ([5] [17]). However, 
commercial eye trackers are expensive and intrusive. Some 
research systems are non-intrusive but less accurate. There is 
some related work on predicting FOA in multi-party face-to-face 
meetings (e.g., [12][18]). In Stiefelhagen et al.’s work [18], the 
inputs are the video from a panoramic camera and/or audio, and 
the output is the participants’ FOA in the meeting.  

We are interested in predicting FOA from modalities other than 
gaze. In physical collaborative tasks, the hypothesis that a 
person’s FOA is predictable from other modalities is in the spirit 
of research that has showed the strong correlation between the 
gaze of attention and task property, conversational content, and 
actions [15]. The work that is the most related to this paper is the 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ICMI’06, November 2–4, 2006, Alberta, Canada. 
Copyright 2006 ACM 1-59593-541-X/06/0011…$5.00. 
 



FOA prediction in two-party remote collaboration studied by Ou 
et al. [14], who designed an online puzzle task in which a helper 
instructed a remote worker on how to assemble puzzles. The 
helper’s FOA was predicted in real-time from conversational 
content and the worker’s actions with accuracies ranging from 
69.81% to 76.62%, depending on the difficulty of the puzzle. The 
problem discussed in this paper differs from most previous 
research in that it examines one-to-many remote communication.  

The remainder of the paper is organized as follows: in Section 2 
we describe the research problem and related work. In Sections 3, 
4, and 5, we present our algorithms for identifying addressees, 
recognizing workers’ activities, and performing multimodal 
integration. We report experimental results in Section 6 and 
discuss general conclusions and future work in Section 7. 

2. PROBLEM DESCRIPTION AND 
RELATED WORK 
In this research, our goal is to develop a multimedia system that 
supports multiparty remote collaborations on physical tasks in 
which a helper (expert) assists multiple workers (novices). The 
system is designed as follows. The helper and workers share audio 
communication channels. Each worker’s workspace is captured by 
a video camera and the video stream is fed into the helper’s 
workstation.  To save network bandwidth, only one workspace is 
displayed in full resolution at a time. In our current setup, the 
helper can switch manually among views of different workers’ 
workspaces. However, the switching process interferes with 
helpers’ ability to provide instructions.  Thus, we aim to develop a 
mechanism that enables the system to automatically switch among 
views of different workspaces based on a helper’s FOA. 
Furthermore, we aim to predict the helper’s FOA from dialogue 
between the helper and workers and from the workers’ activities.   

In this section, we first describe our prototype system that allows 
a helper to switch among views of different workspaces by a 
mouse click. We will use this system to collect the ground truth: 
multimodal data streams in remote multiparty collaboration that 
will be used to build models to predict a helper’s FOA. We then 
describe several issues related to predicting FOA in real time. At 
the end of this section, we give an overview of the algorithm we 
use to combine the inputs from different sources to predict FOA. 

2.1 Multiparty Remote Collaboration 
2.1.1 Experimental System 
In order to study multiparty collaboration, we built an 
experimental system that provides shared audio communication 
and separated video communication. A helper can select a display 
window using a mouse click. The system shows a live video 
stream from the selected workspace in the main window at high 
resolution (640 by 480 pixels). Video streams from other 
workspaces are displayed in much smaller windows (48 by 36 
pixels) at the bottom of the screen. The helper can get a vague 
sense of what is happening in the non-focal workspaces (e.g., 
whether there is movement present) by observing the small videos. 
To switch views, the helper clicks on the desired video window. A 
party-line audio system allows a conversation between the helper 
and one worker to be overheard by the other worker. In the 
current study, we simulate the scenario of a service center – a 
technical support staff member (the helper) might get calls from 
several customers (the workers) and help them simultaneously.  

 
Figure 1. A video system for multiparty remote collaboration. 

The large window shows the video of the focal worker’s 
workspace. The other worker’s video is shown in the small 

window at the bottom left. Helpers can switch views by 
clicking on the small window. The workspace appears at the 

top of the video and the pieces bay at the bottom. 
Figure 1 shows a screen shot of the interface. The task is to 
assemble an electronic circuit on a breadboard. The elements 
include IC chips, resistors, LEDs, capacitors, and wires. Similar to 
[11][15], the shared visual information can be divided into two 
areas: a pieces-bay that holds all the available elements and a 
workspace on which the circuit is assembled. 

Although visual attention might not always match FOA (e.g., a 
helper might talk to one worker while monitoring the activity of 
another worker), for our current purposes, we define the helper’s 
FOA as the workspace selected in the main window. 

2.1.2 Data Collection 
The data used in this paper are from 12 sessions of collaborative 
tasks with a total number of 36 participants. In each session there 
were three participants: a helper with background knowledge in 
circuit assembly, and two workers without circuit assembly 
experience. Each worker in a trial was asked to assemble a 
different circuit, as quickly and accurately as possible. 
Participants were in the same room but visually separated by 
barriers such that they could talk freely but not see each other. 
The helper used our video system to instruct both workers 
simultaneously. Workers’ tables were colored with either red or 
pale green so that the helper could easily differentiate them. Task 
time ranged from 8 minutes to 21 minutes. For each session, we 
recorded the conversation, the video streams from each workspace, 
and, for the helper, which video stream was selected as the FOA. 

2.2 Research Issues 
The focus of this paper is to explore the possibility of predicting 
the helper’s FOA from speech and video, which is related to the 
following four issues. 

2.2.1 Joint Projects 
Clark defines a conversation between two participants as a joint 
project, which consists of an entry, a body, and an exit process 
([3][7]). In multi-party collaborations, a joint project is entered 



when the helper starts communicating with one worker and ends 
when the helper switches and starts instructing another worker. 
An example is shown in Figure 2. (Here, we refer to the workers 
by their table color: red worker and green worker.) 

 

Figure 2. An example of switching joint projects. A joint 
project between a helper and the green worker is entered 

when they start talking and exited when the helper addresses 
the red worker. 

Because there is no communication between the two workers, the 
joint project in this task determines the worker with whom the 
helper is interacting. Research on face-to-face communication has 
indicated that a person’s gaze is closely linked to the speaker or 
addressee. Argyle estimated that in two-person conversations, 
people look almost twice as much while listening (75%) 
compared to speaking (41%) [1]. Vertegaal et al. found that in 
multi-party conversations, speakers looked at the person they 
were talking to 77% of the time and listeners looked at the speaker 
88% of the time [19]. We hypothesize that in remote collaboration, 
the switch of joint projects is correlated with FOA. 

2.2.2 Online Segmentation and Identification 
The multi-party collaboration process is a continuous stream of 
joint projects. Identifying joint projects will thus help us 
understand the communication structure. However, a joint project 
is a higher level unit, encompassing words and utterances, and not 
readily available as an input. We do not have information about 
the words after each time point because they have not been 
spoken. In this paper we address the problem of how to segment 
and identify joint projects in real time. This problem is related to 
automatic text or dialogue segmentation, which chops a stream of 
words (in text or conversation) into individual units, which can be 
topics [4], discourse [9], and dialogue-acts [10]. This is addressed 
in two ways. Each word is directly classified as one of these 
predefined units (e.g. [10]). This classification relies on topic-
specific words across the body of the unit. Alternatively, each 
word position can be classified as either a boundary, which can be 
unit specific, or a non-boundary ([4][9]). This process relies on 
the features surrounding the boundary. Because the physical tasks 
of different workers are similar (but not identical), we opt for the 
latter method – segmenting the joint projects and then identifying 
them with the boundaries. 

Topic segmentation has been studied over the last decade. 
Beeferman and colleagues proposed a feature-based exponential 
model for topic segmentation in text [4]. Features include the 
likelihood from an adaptive language model, cue words that 
appear in the previous few words or sentences, and cue words that 
appear in the next few words or sentences. A feature selection 
technique was applied to select the features with top most gains. 

Galley et al. extended the idea of feature-based classification and 
added acoustic features such as silences, overlaps, and speaker 
change [9]. We call these strategies offline segmentation because 
given a potential boundary, features can be extracted from both 
before and after it. 

Performing segmentation and identification online, using only 
information before the current word, is very different from offline 
segmentation. Take [4]’s WSJ features as an example: The top 5 
features are whether a specific word (“INCORPORATED,” 
“SAYS,” etc.) appears after the current word, which means that 
this future information is most discriminative in classifying a 
boundary or non-boundary. If only the previous information can 
be used, the boundary word (with label 1) will not contain these 
important words and the non-boundary words afterwards will 
include them as features and consequentially a classifier will not 
make use of these words to classify a boundary. To overcome this 
problem, we propose a sliding window-based delayed labeling 
method, which will be discussed in detail in Section 3. 

2.2.3 Multimodal Integration 
Because our experimental system is video-based, we can use 
multimodal input to predict the helper’s FOA. The workers’ 
workspaces and activities are captured by the video. By analyzing 
the video, the worker’s actions can be extracted. Ou et al. showed 
that the worker’s actions are important clues to FOA in two-party 
remote collaboration [14]. In this paper we extend these findings 
to multi-party collaboration. 

2.2.4 Problem Definition and Algorithm Overview 
Let {(w1, id1), (w2, id2), …, (wN, idN)} be a sequence of words, 
where wi is the ith spoken word with the speaker identification idi,; 
{{frame11, frame12, …, frame1T}, {frame21, frame22, …, 
frame2T}, …{frameD1, frameD2, …, frameDT}} be the sequences of 
frames sampled from the workers’ video, where framedt is the dth 
worker’s frame over the working area at time t; and {g1, g2, …, gN} 
be the sequence of the helper’s FOA, which is defined as the 
worker whose video appearing in the main display, right after 
word wi. The goal is to predict gi from {(w1, id1), (w2, id2), …, (wi, 
idi)} and {{frame11, frame12, …, frame1t}, {frame21, frame22, …, 
frame2t}, …{frameD1, frameD2, …, frameDt}}, where t is the time 
before word wi. The error rate of speech recognition varies 
depending on users and environment. In the current study we 
focus on the effect of message content on FOA and w1, …, wN are 
transcribed words. To align the words with the helper’s FOA and 
workers’ activities we ran a speech recognizer to label their exact 
starting and ending time. 

We address this problem by breaking it into three components 
(Figure 3): online joint project segmentation and identification 
(OSI), worker activity recognition, and multimodal integration. 
The OSI module takes the word stream as input, determines at 
each word wi whether there is a joint project boundary, and 
outputs the identity of the joint project jpi as one of the workers, 
jpi∈ {worker1, worker2, …, workerD}. The worker activity 
recognition module recognizes the recent activity for each worker. 
The multimodal integration module combines the outputs of the 
OSI and activity recognition modules and generates the predicted 
FOA at that time. Details of each module will be presented in the 
following sections. 

[A joint project is entered] 

Helper: And for the green worker, can you plug the IC 
chip 4049 in the middle, across column 25 and column 26 
with the notch facing upward as well.  
Green Worker: Okay. 
[The joint project is exited, a new joint project is entered] 
Helper: Okay, red worker well done. Okay. Can you 
connect can you find a resistor that is yellow … 



 

3. ONLINE JOINT PROJECT 
SEGMENTATION AND IDENTIFICATION 
3.1 A Sliding Window Based Delayed 
Labeling Method 
A number of statistical methods for text segmentation are based 
on a window method – for each potential boundary Bi, features Fi 
are extracted from a window of words surrounding it, and the 
label Li is set to 1 (boundary) or 0 (non-boundary). The set {(Fi , 
Li)} is then used to train/test a classifier. This method can not be 
directly applied to online joint project segmentation, because (a) 
the words after the current word are not available yet, and (b) the 
characteristic words for different joint project are statistically 
similar so that we can only detect boundaries instead of topics, 
leading to a label bias problem (the number of boundaries are 
relatively small compared with non-boundaries). We propose a 
new delayed labeling method to overcome these problems. 

In each word position wi we define a window wini, which contains 
the information of L words in the history (see Figure 4): 

wini = {{wi},{wi-1, jpi-1, idi-1}, …, {wi-L+1, jpi-L+1, idi-L+1}}, 

where wi is the current word, and {wi-k, jpi-k, idi-k} is a triplet for 
word wi-k where idi-k is the speaker identity and jpi-k is the 
predicted joint project.  

 
Figure 4. The window for current word. 

 

The labeling function of wini is defined as: 
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In other words, we delay the label of a boundary word wi to L 
consecutive words (which are all 1s). 

We use a Support Vector Machine (SVM) as the classifier. To 
train the SVM, we define N features and the N-dimension attribute 
vector of the current window wini is: 

attr_vector(wini) = ( f1(wini), f2(wini), …, fN(wini) ). 

By sliding the window we get the pairs {attr_vector(win1), 
label(win1)}, …, {attr_vector(winM), label(winM)}, which are used 
to train a classifier. 

The trained classifier is used to predict the current joint project 
online. Given a word wi at position i, we first use the window 
based method to generate the attribute vector and input it to the 
classifier, which outputs whether a boundary has occurred within 
the window. We then assign a joint project ID jpi to that word 
based on predicted boundary labels and the joint project ID of its 
previous word jpi-1. After that we slide the window one word 
forward to predict the joint project for the next word. For the first 
word we can assign a random label to it. (See Figure 5 for details.) 

In our algorithm, the joint project prediction error for one word 
will not be propagated, since our online algorithm includes the 
predicted joint project for the previous word as one feature in the 
attribute vector for SVM transition prediction for the current word. 
In this way, for example, if wi is a word in worker 1’s joint project, 
and predicted as in worker 2’s joint project, then at the first true 
transition after wi, our algorithm will not predict this transition, 
since its input attribute vector “tells” it that current joint project is 
“joint project of worker 1”. After this false prediction of a 
transition, the joint projects for the following words will be 
corrected. The random assignment for the first word is an example 
beneficiary of this stable model. We can randomly assign the joint 
project to the first word. If this assignment is wrong, it will be 
rectified when the algorithm sees the feature words of the correct 
joint project. 

3.2 Feature Selection 
There are two types of features we used to segment and identify 
joint projects: lexical features and non-lexical features. Bi-grams 

Online Joint Project 
Segmentation and 

Identification (OSI) 

Activity Recognition 

{(w1, id1), (w2, id2), …, (wi, idi)} 

{frame11, frame12, …, frame1t} 
…… 

 

Multimodal 
Integration 

Identity of the joint project JPi 

Worker 1’s recent activity 

Worker D’s recent activity 

Predicted FOA i
ĝ  

Figure 3. An Overview of the multimodal FOA prediction algorithm. wi is the ith spoken word with its speaker 
identification idi; {framed1, framed2, …, framedt} is the video sequence of the dth worker. 
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{frameD1, frame12, …, frameDt} 



are used as lexical features: 
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To avoid over-fitting, we collected all possible bi-grams from the 
training data and sorted them by information gain: 

)|()()( fLabelHLabelHfIG != , 

where H(Label) is the entropy of the label and H(Label | f) is the 
conditional entropy. Bi-grams having the top N information gains 
were chosen as lexical features. 
 

OSI Algorithm 

Training: 

Feature selection based on information gain; 

Generate attribute vectors attr_vector(wini) and label(wini) sliding window 
based delayed labeling method; 

Use {attr_vector(wini), label(wini)} pairs to train an SVM 

Output: Learned model, selected features 

Prediction: 

Input: Learned model, selected features functions, {(w1, id1), …, (wi, idN)} 

Read w1; 

Assign a random joint project, jp1 to w1: 

i := 2 

Do until all words have been processed: 

 Read wi; 

 Generate attribute vector, attr_vector(wini), by window method; 

 Predict by SVM, Labeli=1 if the window contains the transition 
boundary, Labeli=0, otherwise; 

 Assign JPi to wi by: 

 If  JPi-1==worker 1 

  If Labeli-1=0 and Labeli=1 

   JPi==worker 2 

  else 

JPi==worker 1 

  end if 

 else 

  If Labeli-1=0 and Labeli=1 

   JPi==worker 1 

  else 

JPi==worker 2 

  end if 

 end if 

 i := i + 1 

Output : { JP1, …, JPN} 

Figure 5. The online joint project segmentation and 
identification (OSI) algorithm. 

 

There are two non-lexical features, finter and flastJP: 
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Examples of selected features are presented in Section 6.1 The 
OSI algorithm for the one-helper-two-worker condition is 
summarized in Figure 5. 

4. WORKER ACTIVITY RECOGNITION 
Workers’ activities in the circuit assembly task can be classified 
into one of three categories—idle, searching/picking up a part, 
and assembling a part on the breadboard—based on hand position 
in the video: none, pieces-bay, and workspace. (Figure 6) 

Sample Frame Worker’s Activity Hand Position 

 

Idle None 

 

Searching/picking 
up a part 

Pieces-bay 

 

Assembling a part Workspace 

Figure 6. Three categories of worker activity with 
corresponding hand positions. 

We applied background subtraction and modeled the background 
as a dynamic average of the previous frames: 
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where Bt is the updated background after the tth frame Ft is 
processed. α is the learning rate (α = 0.1 in our experiments). 

Given a new frame Ft+1, we first compute its foreground image 
FGt+1 by subtracting the background Bt: 
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Because an activity category depends on hand position 
(upper/lower/none) on the screen, we sum over the row elements 
of FGt+1 and use the resulting vector as the feature vector of the 
input frame: 

_ ( ) ( (1, ),..., ( , ))
j j

col vector F FG j FG h j= ! ! , 

where h is the image height. 

We then train a classifier with the feature vectors and 
corresponding labels (Idle/Searching/Assembling). The trained 
model is used to recognize the worker’s activity. Again we use 
SVM as the classifier. 



5. MULTIMODAL INTEGRATION 
The OSI identifies joint projects immediately after a word is 
spoken and provides information about the worker with whom the 
helper is interacting. A naïve way to predict FOA is to directly 
map the output of OSI to FOA, i.e., the prediction of FOA is 
changed whenever there is a change of joint projects. However, as 
noted earlier, a helper might visually attend to one worker while 
giving instructions to the other. This strategy might make 
collaboration more efficient when a helper assists multiple 
workers at the same time. In three out of the first five sessions, the 
number of FOA segments is only half the number of joint projects 
(see Table 1). In this section we present how we combined 
identified joint projects and workers’ activities to predict FOA. 

Table 1. Number of joint projects and FOA segments for the 
first five sessions in the study (with different participants). 

Session ID # of Joint Projects # of FOA Segments 

S01 24 12 

S02 14 6 

S03 14 20 

S04 25 10 

S05 30 39 
 
Because we did not have sufficient data to train sophisticated 
models such as hidden Markov models, we proposed a simple 
Winner-Takes-All strategy: when a switch of joint project is 
detected, we take the workers’ activities as inputs, predict the 
majority of the FOA in the started joint project, and label the FOA 
in the rest of the joint project as this majority. To train/test a 
classifier, we use features that summarize the recent activities of 
all workers at word wi. 

act_vector(wi) = (P1_Idle, P1_Searching, P1_Assembling, ……  PD_Idle, 
PD_Searching, PD_Assembling), 

where Pd_Activity is the percentage of time the dth worker is in 
Activity (Idle, Searching, or Assembling) over the last 10 seconds. 

We use a KNN classifier (K=3 in the experiments), which is 
memory based and effective when the size of training data is 
small. The distance metric is CHI-Square: 
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This algorithm is summarized in Figure 7.  

6. EXPERIMENTAL RESULTS 
We use the data collected from five sessions of the experiments to 
evaluate two individual modules (OSI, activity recognition) and 
the final FOA prediction performance. There are a helper and two 
workers in each session (D = 2). 

6.1 Joint Project Segmentation/Identification 
Experiments were conducted with a 12-fold cross validation: Each 
time, four sessions were used to train the model and the last 
session was used as the testing data. The SVM classifier was 
implemented by Chang and Lin [6]. The true joint project label for 
each word was coded by hand.  
 

The multimodal integration algorithm 

Training: 

Do until all joint projects have been processed: 

Generate act_vector(wi), where wi is the ending word of the joint 
project; 

      Compute the majority of the FOA in the next joint project; 

      Save the pair (act_vector(wi), majority) into the memory 

Prediction: 

i := 1 

Do until all words have been processed: 

Read wi; 

Call OSI and get the predicted joint project jpi; 

if jpi ≠ jpi-1 

         Generate act_vector(wi); 

         Find the majority of FOA for the next joint-project use KNN 

          Label the FOA 
i
ĝ =majority 

else 

         
i
ĝ =

1
ˆ
!ig  

            end if 

Output: { 
1
ĝ , …, 

Nĝ  } 

Figure 7. The multi-model integration algorithm. 
One way to evaluate text segmentation is using the WindowDiff 
method [16]. However, because our focus is on how accurately 
the algorithm can identify joint projects, we use the percentage of 
time that the algorithm correctly identifies whether the current 
joint project involves worker 1 or worker 2 as our evaluation 
metric. For our baseline, we chose an algorithm that always 
assigns the joint project to the worker with whom the helper 
interacted  most frequently. As shown in Figure 8, our algorithm 
achieved a high accuracy in segmenting and identifying joint 
projects online, and was significantly better than the baseline (t[11] 
= 18.49, p<0.001). 

 
Figure 8. Accuracies of the OSI algorithm and the baseline. 

To understand the algorithm’s performance, we examined the 
lexical features automatically selected by OSI. Among 227 
candidates (bi-grams that appear more than three times in the 
training corpus) we chose the 25 features with the highest 
information gain. The number of features selected was determined 
by cross validation. Table 2 shows the top 10 features and 



indicates which ones are boundary words (indicating a boundary 
should exist L words before them) and which ones are not.  

Table 2. Top 10 selected features. 

Rank Bi-gram Type 
1 “red worker” Boundary 
2 “for red” Boundary 
3 “for green” Boundary 
4 “and for” Boundary 
5 “green worker” Boundary 
6 “find the” Boundary 
7 “<red/green> find” Boundary 
8 “and put” Non-Boundary 
9 “one of” Non-Boundary 
10 “step <digit>” Boundary 

 

Helpers often used the color of the workers’ tables to address 
them. (e.g., “And now, the red worker …”, “Step 2 for green …”) 
When helpers wanted to switch joint projects, they usually started 
by calling for the attention of the worker to whom they wanted to 
speak by using “red worker”, “green worker”, “for red”, and “for 
green”. The bi-gram “and for” is the first two words in “and for 
red/green (worker)” and is a good marker of the entry into a new 
joint project. The physical task can be decomposed into several 
steps, each of which can be further divided into two sub-steps: 
searching for a part, and putting it in the right place. Therefore, 
“step <digit>”, “find the”, “<red/green> find” always appear in 
the beginning of a joint project (boundary word) whereas “and 
put” appears in the middle (non-boundary word). Figure 9 shows 
an example of how some of these bi-grams were used. 
 

[The conversation with the last worker ends] 

Helper: Now Step 2 for red find the brown, black, orange 
resistor. 
[More details of the resistor] 
Helper: And put one end on number 2 of the IC … 

Figure 9. A short excerpt of conversation. Italicized words are 
bi-grams selected as features. “step 2”, “for red”, “find the” are 

markers of the beginning a joint project and “and put” is a 
marker of being within a joint project. 

6.2 Workers’ Activity Recognition 
We collected 61572 images from 24 workers in 12 sessions. To 
test activity recognition performance, we applied 10-fold cross 
validation. Overall accuracy in predicting the three classes was 
86.13%. The confusion matrix is shown in Table 3. The algorithm 
performs best in predicting the Assembling category, where the 
worker’s hand is positioned on the breadboard. 

Table 3. The confusion matrix for activity recognition. 
Predict 

True Idle Searching Assembling 

Idle 87.87% 4.01% 8.12% 

Searching 16.40% 67.92% 15.68% 

Assembling 5.56% 0.98% 93.45% 

6.3 Focus of Attention Prediction 
In this section we present the results of our FOA prediction 
algorithm. The inputs of the algorithm, as discussed in Section 
2.2.5, are conversations between the helper and two workers and 
the workers’ video streams. We first used the OSI algorithm and 
activity recognition to extract higher level semantics from audio 
and video. We then combined the outputs, joint project ID and 
workers’ activity categories, to predict the helper’s FOA (either 
worker 1 or worker 2) online. The predicted FOA was then 
compared with the true worker ID, as indicated by which worker 
was in focus in the main window. As shown in Table 1, we found 
substantial variation among helpers–some switch FOA much 
more frequently than others. Thus, we built user dependent 
models: for each session we trained and tested the FOA prediction 
with 2-fold cross validation. Accuracy was measured by the 
percentage of time the predicted FOA matched the true FOA. We 
compared the performances of three models: 

• The baseline, which always predicts the output as the more 
frequent worker 

• Uni-modal method, which directly maps the predicted joint 
project to FOA 

• The proposed multimodal algorithm 

Overall accuracies are shown in Figure 10. Both the uni-modal 
(t[11] = 2.20, p=0.05) and multi-modal (t[11] = 4.28, p=0.001) 
methods were better than the baseline. The multi-modal method 
outperformed the uni-modal method (t[11] = 1.98, p=0.07). 

  
Figure 10. Accuracies of the baseline, uni-modal method, and 

multi-modal method. 
 

Combining audio and video leads to significant improvement 
when the joint project and FOA do not match well. The proposed 
algorithm decides whether there is a change in FOA when a new 
joint project is entered by using video information. For example, a 
helper might not need to focus on a worker whose hands are idle, 
or might want to continue watching a worker to ensure that a step 
is completed correctly after a joint project is exited. When joint 
project and FOA do match, our algorithm predicts changes in 
FOA at every joint project transition. Since these helpers did in 
fact change FOA at every joint project transition, both the 
proposed and baseline algorithms work well.  
We define an activity category as dominant if it comprised more 
than 66.6% of the sampled time period (the last 10 seconds). 
Because the number of FOA segments is smaller than the number 
of joint projects for S01, S02, and S04 (Table 1), when a new joint 
project was entered, the helper chose between switching FOA to 
the other worker or remaining with the current worker. We 



calculated switches vs. holds of FOA for times in which the 
Assembling activity was dominant at a joint project transition for 
S01, S02, and S04. When helpers held FOA, it was much more 
likely that the worker’s hand position was in the workspace than 
when they switched FOA to a new worker (Figure 11). This 
suggests that when a worker is busy assembling the circuit, the 
helper will continue gazing at that worker to ensure that the task is 
performed correctly, despite having switched to a new joint 
project with another worker. The classifier enhances the accuracy 
of FOA prediction by taking advantage of this phenomenon. 

 

Figure 11. Proportion of switches and holds of FOA at joint 
project transitions in which Assembling activity is dominant. 

7. CONCLUSIONS 
In this paper we analyzed and predicted helpers’ FOA in a 
multiparty remote physical collaborative task. We implemented a 
video based system to support one-to-many remote collaboration 
and collected multimodal data that we used to build FOA models. 
Dialogue and video were inputs to these models; and the helper’s 
FOA was the output. We presented three modules: a sliding 
window based delayed labeling method to segment and identify 
joint projects online; an activity recognizer based on an adaptive 
background model and an SVM; and a memory-based multimodal 
integration algorithm. Experimental results showed that our joint 
project identification (with an overall accuracy of 92.45%) and 
worker’s activity recognition algorithms (with an overall accuracy 
of 86.13%) were reliable. By combining their outputs, the 
multimodal integration algorithm achieved an accuracy of 81.79% 
in predicting the helper’s FOA online. 
There are several limitations to our study, which we plan to 
address in future work. First, we used party-line audio rather than 
a private line system. How the results will differ in a private-line 
system has to be explored. Second, because patterns of FOA vary 
among users, our FOA prediction model parameters are user 
dependant. When a new user comes, user enrollment and 
adaptation can be applied in practice. Finally, we make decisions 
only about joint project boundaries. With more data we can try to 
build finer-grained models to predict FOA. 
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