

DETECTING INCREASES IN FEATURE
COUPLING

USING REGRESSION TESTS

by
Olivier Giroux

School of Computer Science
McGill University, Montreal

February 2007

A THESIS SUBMITTED TO MCGILL UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER OF SCIENCE

Copyright © Olivier Giroux, 2007.

 i

ABSTRACT

Repeated changes to a software system can introduce small

weaknesses such as unplanned dependencies between different parts

of the system. While such problems usually go undetected, their

cumulative effect can result in a noticeable decrease in the quality of a

system. We present an approach to warn developers about increased

coupling between the (potentially scattered) implementation of different

features. Our automated approach can detect sections of the source

code contributing to the increased coupling as soon as software

changes are tested. Developers can then inspect the results to assess

whether the quality of their changes is adequate. We have

implemented our approach for C++ and integrated it with the

development process of proprietary 3D graphics software. Our field

study showed that, for files in the target system, causing increases in

feature coupling is a significant predictor of future modifications due to

bug fixes.

 ii

RÉSUMÉ

Chaque modification appliquée à un système logiciel peut y

introduire de nouvelles failles telles que des dépendances structurelles

entre ses éléments unitaires. Il peut être difficile de percevoir ce

processus de dégradation de la qualité puisque qu’il n’implique pas

nécessairement une dégradation fonctionnelle. Nous présentons ici

une nouvelle technique permettant à l’ingénieur logiciel de comprendre

l’impact de ses modifications sur les dépendances structurelles dans le

contexte des fonctionnalités du système. Notre approche automatisée

identifie les éléments logiciels ainsi potentiellement dégradés dès que

le logiciel est soumis à sa procédure de vérification habituelle.

L’ingénieur peut alors inspecter les résultats de notre analyse pour

déterminer si la qualité de la modification appliquée est adéquate.

Nous avons déployés notre système dans un environnement logiciel

graphique 3D privé sous C++. Notre étude démontre que, pour ce

système, l’addition de dépendances structurelles est un précurseur de

modifications rectificatrices dans le futur.

 iii

ACKNOWLEDGEMENTS

I first wish to thank my supervisor Martin Robillard for his

tremendous help, without whom I probably would have faltered and

settled for less. As far as I am concerned Martin personifies excellence

in research.

It is clear to me that this whole adventure would never have taken

off without Gerald Ratzer’s gift to me of opportunity and patience.

Gerald had a compelling vision of what my path could be and he often

nudged me in the right direction after removing barriers that had laid in

the way. I very much enjoyed the years we worked together at the

school, and I know we made a difference to the thousands of students

we worked with.

On a personal note I am grateful for the patience of the people who

need to put up with me on a daily basis. I know I imposed quite a bit of

stress on Mirianne, my lovely wife. The support of my wife and family

was a necessary ingredient.

Finally, I also wish to thank Harold Ossher and the anonymous

reviewers of our published paper for their thorough and insightful

comments.

This work was supported by an NSERC Discovery Grant and would

not have been possible without the support of NVIDIA Corporation.

 iv

TABLE OF CONTENTS

ABSTRACT... i

RÉSUMÉ...ii

ACKNOWLEDGEMENTS .. iii

TABLE OF CONTENTS...iv

LIST OF TABLES... 6

LIST OF FIGURES... 7

Chapter 1 Introduction.. 9

1.1 Example of code decay via coupling..................................10

1.2 Beyond functional verification ..12

1.3 Our focus ...13

1.4 Structure of this dissertation...15

Chapter 2 Background ... 16

2.1 Coupling...17

2.2 Analysis Techniques ..18

Chapter 3 Feature Coupling Detection Technique 21

3.1 Basic Concepts ..22

3.2 Feature Implementation ...23

3.3 Feature Association ...27

3.4 Coupling-Increasing Components (CIC)29

3.5 Discussion..31

Chapter 4 Case Study.. 33

4.1 The Covers Relation ..35

4.2 The Exercises Relation ..35

 5

4.3 Sparse Matrix Strategy...37

4.4 Feature Implementations ...39

4.5 Feature Coupling Analysis ...40

4.6 Discussion..43

Chapter 5 Empirical Results... 46

5.1 Feature Implementation Vectors ..46

5.2 CIC Sets...49

5.3 Performance ..51

5.3.5 Summary...54

5.4 Validation Study ...54

5.5 Discussion..57

Chapter 6 Qualitative Analysis ... 59

6.1 Initial observations from the case study59

6.2 Evaluation of the evidence ...62

6.3 Coupling detected in the target system..............................64

6.4 Discussion..65

Chapter 7 Conclusion... 67

References... 70

Appendix A Exercises and Covers Aggregation implementation.... 75

A.1 Dependencies not included here75

A.2 Aggregate.hpp ...76

A.2 Aggregate.cpp ...81

 6

LIST OF TABLES

Table 1: Covers matrix for the example program 26

Table 2: ExercisesT matrix for the example program 26

Table 3: Feature implementation for the example program............ 26

Table 4: Feature association for the example program.................. 28

Table 5: Resource Requirements .. 54

Table 6: Feature coupling increase as a Predictor of Bugs............ 56

Table 7: Usefulness of reported components................................. 63

 7

LIST OF FIGURES

Figure 1: Coupling and Impact Sets ... 10

Figure 2: Implementation Product .. 25

Figure 3: Conceptual alignment of features in a feature space 27

Figure 4: Coupling-Increasing Condition .. 29

Figure 5: Coupling-Increasing Component Algorithm..................... 30

Figure 6 : Implementation Diagram.. 33

Figure 7: Excerpt from a system log .. 36

Figure 8: Sensitivity Threshold... 42

Figure 9: Effect of the β parameter on noise detection 47

Figure 10: Sample feature implementations................................... 48

Figure 11: Effect of β on the size of CIC sets................................. 49

Figure 12: Effect of α on the size of CIC sets 50

Figure 13: Number of file changes between revisions.................... 51

Figure 14: Complete tool report showing coupled features 61

 8

 9

Chapter 1
Introduction

Successful software requires a maintenance investment that can

dwarf that of its initial development. The long life and large install base

that come with success typically combine to expose flaws and impose

unforeseen requirements on a software system. For example, the early

success of Internet browsers in the late 1990’s revealed how poorly

their original design accounted for security and pushed the issue to the

forefront of user concerns [7].

These factors put pressure on software development organizations

to keep up with customers' changing expectations, resulting in continual

modifications to a software code base. As evidence of this situation,

the issue tracking systems for large open-source software projects

typically include thousands of completed modifications. Conversely, the

discontinuation of regular modifications to a software system is a sign of

abandonment [26].

Many factors influence the quality of changes to a system, including

developer experience, familiarity with the system, time constraints, and

the quality of the system's design. In general, these practical

considerations often lead to suboptimal changes that slightly deteriorate

the quality of a code base [5, 12, 26], a phenomenon referred to as

code decay [12].

Software modifications that do not cause any regression faults, may

instead expose some subtle implementation details that were previously

hidden. Later versions of the system may come to depend on the

details, thus making the previously-encapsulated code more difficult to

change [25]. In other words, in a well-encapsulated system a wide

 10

variety of changes can be made to one module without affecting

another, whereas in a system with poor encapsulation one must

understand the impact of each change across all modules that may

depend on components affected by the change.

This dependency relationship, called coupling [29], is a likely agent

of code decay because it can make it harder to further modify the

system.

1.1 Example of code decay via coupling

Modifications to a system exhibiting low coupling tend to be simple

because the developer needs only consider the impact on a few

modules to understand the scope of his modification (Figure 1, left). In

this example, a change made to a module of the system may impact

two more modules due to coupling, but existing encapsulation prevents

more modules from being directly impacted.

Figure 1: Coupling and Impact Sets

Software module Changed module
Dependency (coupling) Impacted modules
New dependency

Version N Version N+Δ

Δ

 11

With the introduction of new coupling dependencies in the system,

the number of modules potentially impacted by any change increases

(Figure 1, right). In order to perform a correct modification to the new

system, a developer would now need to consider the impact of the

change on a larger set of related modules, resulting in both a higher

change cost and higher risk of introducing functional regressions.

Any system must exhibit some amount of coupling, or the system’s

modules cannot communicate with one another. However, the

introduction of unplanned coupling further increases the burden on

developers in many ways:

1. The system as a whole becomes more difficult to understand

because new unplanned behavior can emerge from inter-

dependencies, including new defects.

2. Each module is more difficult to understand because other

modules must also be understood together, resulting from the

breakdown of encapsulation, while certain module compositions

may become unworkable.

3. It is more difficult to verify and test the behavior of the new

system, lowering the effectiveness of unit testing, and possibly

relying heavily on more expensive integration testing to protect

from defects.

Finally, not all developers may be aware when additional coupling is

introduced in the system. Eventually, developers may each view the

same system differently and will be more at risk of introducing

inconsistencies leading to defects. Even the system’s original

architects may no longer understand the system as a whole.

 12

1.2 Beyond functional verification

It is not easy to define code decay operationally because it is, at its

core, a human problem. A simple formulation of code decay could

follow a “black box” approach, combining both human and technological

aspects of the problem by asking three high-level questions about the

evolution of a software project:

1. Is the cost of making changes to the system increasing over

time?

2. Is the time required to complete changes inflating?

3. Is the quality of the software deteriorating?

An affirmative answer to any of these questions could be evidence

of code decay, but each may be difficult to assert by engineers and

managers in the field. Belady and Lehman analyzed empirical data

gathered during the development of OS/360 at IBM [5] with the goal to

build a model of software development that accounted for these factors.

The data they presented suggests that the three signs of decay above

were present throughout the long evolution of OS/360.

Unfortunately, once the effects of code decay become readily

apparent, it may prove more expensive to remedy the situation than to

abandon the system and start anew. However it may be possible to

detect potential symptoms, or risk factors of code decay. If assessed

by developers early enough, the decay may be corrected at a lower

cost.

The intuition that guided the research described in this thesis is that

an increase in the amount of overlap in the implementation of different

features (functional requirements) can be a symptom of code decay

(i.e., if it is unplanned), and that such situations should be automatically

detected and reported to developers for closer inspection.

 13

Unfortunately, the implementation of features is not always neatly

encapsulated in a single module [17, 24], a situation which precludes

the trivial use of standard automated coupling metrics to detect this

symptom.

1.3 Our focus

This dissertation shows that the execution of test suites may be

used to detect signs of increased overlap between the implementation

of features as a sign of code decay. To compute the overlap we look

for the implementation of features in code using Feature Location

techniques. Feature location is a form of reverse engineering whereby

high-level concerns (features) are mapped to low-level components

(code) through either an interactive or variably automated process,

based on mining or instrumentation data. Existing automated feature

location techniques (see Chapter 2) serve as the foundation of our

work.

We believe that if feature location tools help developers understand

aspects of software architecture in practice, the evidence used to

document the architecture should be a relative invariant of the system.

That is to say that software architecture is expected to be highly inertial

in a software system undergoing maintenance. Insofar as the

abstractions and inter-dependency of feature implementations are

elements of the software architecture, they too should be relatively

invariant in that phase of the software lifecycle.

By automatically determining feature locations across changes to

the system as they are applied on the source repository, we can inform

developers of violations to the invariance. Our technique computes

Feature Associations, the degree of codependence between the

implementations of separate features, and reports on potentially

 14

harmful variations between versions of the system. When increased

associations between the implementation of different features are

detected, the parts of the code contributing to the evidence obtained

are retrieved and reported to the developer.

We present the novel concept of feature coupling, as well as a

feature coupling detection technique. Our approach is based on a

dynamic analysis of a software system as it undergoes regression

testing. It can be completely automated and fully integrated in the

software development process of an organization. With our technique,

developers work as usual but when their changes are committed and

tested, the execution of the test suite is monitored, analyzed, and

compared with information obtained from the regression testing of a

previous version of the code.

We have implemented our technique and applied it to a real-world

code base consisting of more than 100 000 lines of C++ source code

exercised by thousands of tests. Our experience with this technique

showed that its computational overhead is low enough to integrate it in

the build and test cycle of the organization and that it produces reports

that are easy to understand and convenient to use by developers. A

study of the target system using our technique also demonstrated that

files contributing to increases in feature coupling were significantly more

likely to be modified by future bug fixes, hence reinforcing the

assumptions forming the basis for our technique. Our contributions

include a description of our automatic technique for the detection of

increases in feature coupling and a detailed account of our experience

with this technique in the field.

 15

1.4 Structure of this dissertation

In Chapter 2, we describe foundational work. In Chapter 3, we

provide the details of our technique for detecting increases in feature

coupling. We then describe our application of the technique in Chapter

4 and our initial experience with the technique along with a validation

study in Chapter 5. We present a qualitative analysis in Chapter 6 and

finally conclude in Chapter 7.

 16

Chapter 2
Background

The seminal work that motivated this research is the investigation of

code decay in a large-scale phone switching system conducted by Eick

et al. [12]. In their study of the 15-year history of the system, Eick et al.

analyzed a number of decay indices such as the span of changes

(number of files touched), which is shown to increase as the software

evolves. Although this study motivated our research by providing

evidence of code decay, our decay assessment strategy differs from

Eick et al.'s code decay indices in that we do not analyze the history of

the code, but rather immediate differences between versions. This

difference in strategy is mainly due to different research goals. While

Eick et al. sought to provide evidence of long term decay, we were

interested in preventing such decay by providing an early warning

system.

When the architecture of a system can be stated explicitly, the effect

of code decay on software architectures can also be construed as the

introduction of differences between an intended and an actual

architectural design. A number of approaches have been proposed to

detect inconsistencies between intended and actual designs. For

example, Murphy et al. proposed software reflexion models, a

technique allowing developers to easily model the architecture of a

system and to automatically verify the conformance of the actual

system to the posited architecture based on a static analysis of the

system [23]. Sefika et al. proposed to establish the conformance of a

system to design-level rules (e.g., an implementation of the Mediator

design pattern [15]) using a combination of static analysis and dynamic

 17

analysis [27]. More recent developments in this area include

ArchJava [1], an extension to Java allowing developers to specify the

architecture of a system directly in the code (and to automatically verify

the conformance of the code to the architecture), and the IntensiVE

environment [20], which allows developers to document regularities

(patterns) in the structure of a system, check whether the patterns hold

as the system evolves, and report discrepancies between documented

and observed patterns to developers. Although the motivation behind

our approach (to mitigate code decay) is the same as the one pursued

with the work describe above, our strategy was different. While the

conformance verification approaches rely on a precise, coarse-grained,

and explicitly-specified architectural model, our present approach relies

on an approximate, fine-grained model that can be (partly or

completely) inferred automatically from the test suite.

2.1 Coupling

The coining of the term “coupling” is attributed to Stevens [29], who

defines it as “inter-relations between modules” that make the system

more difficult to understand, change and correct, increasing the

complexity of the whole. Stevens’ definition was focused on the

dominant paradigm of his time, but was later ported to Object-Oriented

Programming by Coad and Yourdon [10], who added class inheritance

and friendship as evidence of coupling.

Chidamber and Kemerer further extended the object-oriented

definition of coupling with the popular Coupling Between Objects (CBO)

metrics [8, 9], which influenced many recent works on coupling. CBOs

form the basis for work on static [4] and dynamic [22] coupling. The

CBOs have also been independently related to change-proneness in

many publications [4, 6, 11, 32].

 18

2.2 Analysis Techniques

A large number of approaches have been proposed that involve the

analysis of a running program for purposes that range from the broad

(e.g., program understanding [3]) to the very specific (e.g., impact

analysis [18]). In this space, a few approaches relate more closely to

our work through either their relationship to coupling analysis or their

reliance on the concept of feature.

2.2.1 Coupling detection techniques

Arisholm et al. investigated how dynamic coupling measures can

help assess various properties of a software system [2]. The dynamic

measures studied by Arisholm et al. include characterizations such as

the number of messages sent by each object, the number of distinct

methods invoked by each method, etc. This work does not take into

account the notion of feature as a separate entity that can span multiple

modules. Nevertheless, the results of this study are consistent with

ours (as reported in Chapter 5), in that "dynamic export coupling

measures were shown to be significantly related to change

proneness" [2, p. 505].

Mitchell and Power later contrasted the predictions of static coupling

metrics such as CBOs with Arisholm’s dynamic inter-relation metrics

between objects instances [21]. They found that dynamic metrics

reveal a different picture than static metrics. As a result they propose

that the results are best interpreted in the context of coverage

information.

2.2.2 Feature location techniques

Although the main focus of this research is not specifically the

location of features in source code, the technical foundations for this

work have benefited from a number of dynamic analysis-based feature

 19

location techniques. We conclude this survey of related work with a

description of feature location techniques that have inspired the design

and implementation of our approach.

The Software Reconnaissance technique developed by Wilde et al.

identifies features in source code based on an analysis of the execution

of a program [31, 32]. Software Reconnaissance determines the code

implementing a feature by comparing a trace of the execution of a

program in which a certain feature was activated to one where the

feature was not activated. Wilde at al. also proposed a second

formulation of Software Reconnaissance where components are

attributed implementation scores based on the frequency of their

occurrence in a test suite, and the frequency of their occurrence

together with the feature to locate [31]. This definition is the basis for

our feature association calculations.

Eisenberg and De Volder extended Software Reconnaissance by

devising more sophisticated heuristics for determining component

implementation scores [14]. They combine both of Software

Reconnaissance's formulations by requiring the user to provide sets of

exhibiting and non-exhibiting tests, and then performing multiple

probabilistic analyses on them. They combine the result of the analyses

into a final implementation score which is used to assign components to

a feature.

Eisenbarth et al. [13] proposed a different extension to the ideas of

Wilde et al., by producing the mapping between components and test

cases using mathematical concept analysis. Their approach, however,

requires more human intervention than would be practical for our

application.

 20

The approach developed by Licata et al. [19] finds “Feature

Signatures” by comparing execution traces of tests over consecutive

versions of a program. A feature signature is a group of tests, assumed

to correlate well with features, that exercised a given portion of the

changed code. Feature signatures account for the features affected by

the changes spanning two program versions, and serve both as a

feature-location and a change-characterization mechanism. By

summarizing feature signatures into impact size histograms, Licata et

al. show that feature signatures are able to distinguish between

localized and infrastructure changes. By clustering changed code

blocks with similar signatures, they also show that feature signatures

can locate cross-cutting feature code over the entire span of the

modified program.

A final use of feature signatures draws more analogy to our work.

Feature signatures may be used to investigate the structure of tests:

they can describe the relationship between tests as a concept

lattice [28]. Licata et al. assume that tests map directly to features,

hence their lattice simultaneously expresses feature relationships and

resembles our concept of feature associations. Although both locate

features in the source code by matching code blocks exercised by

similar features through dynamic analysis, the essential distinction is

that feature signatures rely on code differences between program

versions to reveal features, whereas feature associations rely on the

differences between tests.

 21

Chapter 3
Feature Coupling Detection Technique

Measures of coupling in software have traditionally been used to

diagnose different conditions in software systems, such as the need for

refactoring for more thorough validation activities [2]. In a similar

perspective, we base our coupling detection technique on the following

hypothesis: Given that a system implements a number of features, any

increase in the association between the implementation of two features

may indicate locations where unplanned dependencies have been

introduced. This technique was first described in a paper presented at

the 14th ACM SIGSOFT International Symposium on the Foundations

of Software Engineering [16].

In this work, we use the term “feature” to refer to a cohesive set of

the observable properties of a software system (e.g., as would

correspond to the functional requirements). For example, a word

processing software would typically include features such as “spell

checker”, ”auto save”, and “undo”. For a number of practical reasons,

the implementation of features does not always align with module

boundaries, and is instead scattered throughout the basic

decomposition of the system [17, 24]. For example, the functionality to

“undo” commands typically involves code that is scattered throughout

the implementation of each undoable command in the system.

Although the idea of detecting increases in the coupling between

features is conceptually simple, its practical realization must account for

the numerous and complex ways in which different (and potentially

scattered) sections of a software system can interact. For example,

statically establishing data dependencies between sections of code

 22

requires complex, computationally expensive, and potentially imprecise

calculations.

To investigate a technique that would apply to large, deployed

software systems, we chose to estimate feature interactions using a

probabilistic model based on test coverage information. Our technique

associates features with tests, and tests with implementation

components. By recording whether the overlap between components

implementing different features increases as a regression test suite is

applied to a new version of a system, we can determine which sections

of the code cause the increases. We hypothesize that such sections

may contribute to code decay and should be inspected by developers to

ensure that the changes do not introduce undesirable weaknesses in

the code. In the rest of this section, we present the details of our

technique.

3.1 Basic Concepts

The following concepts are important to our analysis algorithm. The

most basic concepts are that of a program version, a component, a

feature, and a test.

Definition 1 (Program Version). A program version P=(C,F,T) is

the combination of a set C of components, a set F of features, and a

set T of tests.

Definition 2 (Component). Given a program version P=(C, F, T), a

component c ∈ C is an entity of the program represented by P whose

execution can be detected as part of the execution of a test t ∈ T.

Components can be defined to represent different constructs, such

as lines of code, procedures, basic blocks, etc… Although practical

considerations influence the selection of a component granularity, our

 23

approach is technically independent from the specific choice

component types.

Definition 3 (Feature). Given a program version P=(C, F, T), a

feature f ∈ F is a functionality of the program expressed such that it is

possible to unambiguously determine whether a test t∈ T exercises f.

Definition 4 (Test). Given a program version P=(C, F, T), a test t ∈

T is an execution of a subset of the program represented by P that

exercises a set of features Ft and covers a set of components Ct, where

Ft ⊆ F and Ct ⊆ C. We have exercises(t,f) if t exercises f, and

covers(t,c) if c is executed as part of t.

It follows from the last two definitions that the association between

features and tests is many-to-many. In other words, it is not necessary

for a feature to be uniquely associated with a test.

In practice, the binary relation exercises can be obtained in a

number of ways, including through manual inspection, feature location

techniques, or others. In the context of our approach we assume that

this relation exists and that the information is available as part of a

software project. Section 3.2 describes one way to automatically

generate the exercises relation. As for the covers relation, the

components covered by individual tests can be determined from the

execution of a test using straightforward instrumentation techniques

(see Section 3.1).

3.2 Feature Implementation

We estimate the association between different features in two steps.

First, we estimate how strongly each component is associated with the

implementation of a feature. We call this estimate the feature

implementation. Second, and based on the feature implementation, we

 24

estimate the strength of the association between the implementation of

different features. We call this last estimate the feature association.

The calculations of the feature implementations and associations

are based on linear algebra. Given a program version P = (C,F,T), we

model the exercises relation as a matrix of size |T| × |F| where the

row/column tuple (t,f) is 1 if t exercises f and 0 otherwise. Similarly, we

model the covers relation as a matrix of size |T| × |C| where the

row/column tuple (t,c) is 1 if t covers c and 0 otherwise.

The intuitions behind our definition of a feature implementation are

that a) a component implements a feature if it is covered by all tests

exercising the feature, and b) the strength of the implementation

relation is determined by the ratio of tests covering the component that

are associated with the feature over the ratio of all tests covering the

component. For example, if a component c1 is covered by 20 tests, and

all 5 tests for feature f1 cover c1, then we will say that that c1

implements f1 with a degree of 0.25. At the other end of the spectrum,

if c1 is covered by 20 tests, and all 20 tests for feature f1 cover c1, then

we will say that c1 implement f1 with a degree of 1.0. In order to

operationalize these intuitions, we define a vector operation we call the

implementation product. The implementation product is similar to a

standard dot product but makes provisions for intuitions a) and b)

above.

Definition 5 (Implementation Product). Given two vectors of size

n, a = (a1, a2, … an) and b = (b1, b2, …, bn), the implementation product

a ⊗ b is defined as

 25

⎪
⎩

⎪
⎨

⎧
≠≠∀≡⊗ ∑

∑
=

=

otherwise,0

00 if,
1

1
iin

i i

n

i ii ba
b

ba
ba ,

Figure 2: Implementation Product

With our definition of the implementation product, we can define a

matrix implementation product that works just like the standard matrix

multiplication except that the implementation product is used instead of

the dot product to multiply component vectors.

Definition 6 (Matrix Implementation Product). Let A = A[aik] be an

m × n matrix, and let B = B[bkj] be an n × s matrix. The matrix

implementation product A ⊗ B is the m × s matrix C = C[cij],where cij is

the implementation product of the ith row vector of A and the jth column

vector of B.

With the above definitions, we can now define a feature

implementation.

Definition 7 (Feature Implementation). Let exercises and

covers be the matrices corresponding to the exercises and covers

relations for a program version, respectively. Let exercisesT be the

transpose of exercises. We define a feature implementation FI as FI =

exercisesT ⊗ covers.

3.2.1 Example

We illustrate the calculation of a feature implementation with a small

example. Consider a simple program comprising four tests and seven

components. Table 1 shows the covers matrix for a program version

(for clarity we do not show the 0 values). We can assume that this

 26

information is obtained by running test programs with execution

instrumentation.

 C1 C2 C3 C4 C5 C6 C7
T1 1 1 1 1
T2 1 1 1 1
T3 1 1 1 1
T4 1 1 1

Table 1: Covers matrix for the example program

Additionally, individual tests exercise only a subset of the features of

the program. Table 2 shows the transpose of the exercises matrix.

This information can be provided along with the test suite, for example.

 T1 T2 T3 T4

F1 1
F2 1 1
F3 1
F4 1 1
F5 1

Table 2: ExercisesT matrix for the example program

Taking the implementation product of exercisesT and covers

produces the FI matrix, as shown in Table 3.

 C1 C2 C3 C4 C5 C6 C7
F1 0.5 0.25 0 0.33 0 0.5 0
F2 1 0.5 0 0 0 0 0
F3 0.5 0.25 0.5 0 0 0 1
F4 0 0.5 0 0.67 0 1 0
F5 0 0.25 0.5 0.33 1 0 0

Table 3: Feature implementation for the example program

 27

For example, taking the implementation product of row F1 in

exercisesT and column C1 in covers produces the value (F1, C1) =

1×1/(1+1) = 0.5 in FI. This value estimates that C1 implements F1 with

a degree of 0.5 since one other test not associated with F1 covers C1.

3.3 Feature Association

A feature association is a square matrix representing the degree of

association between the implementation of different features.

Definition 8 (Feature Association). Given a program version P =

(C,F,T) and its corresponding feature implementation FI, a feature

association FA is the square matrix of size |F| × |F| defined as the (true)

matrix product FA = FI •FIT.

The dot product between two feature implementation vectors

represents the cosine of the angle between them (multiplied by the

magnitude of each vector). Hence, the feature association matrix

models how strongly any two features “align” in a space of components

(Figure 3) where the components are the dimensions.

Figure 3: Conceptual alignment of features in a feature space

 28

The higher the association value for a pair of features, the larger the

number of components they share in their implementation or the more

important the shared components are to both features. In our

approach, we do not take into account the absolute value of feature

associations. Instead, we simply detect whether such values increase

as a system evolves.

3.3.1 Example

To complete our example, Table 4 shows the final feature

association for our example.

 F1 F2 F3 F4 F5
F1 0.67 0.63 0.31 0.85 0.17
F2 0.63 1.25 0.63 0.25 0.13
F3 0.31 0.63 1.56 0.13 0.31
F4 0.85 0.25 0.13 1.70 0.35
F5 0.17 0.13 0.31 0.35 1.42

Table 4: Feature association for the example program

From Table 4 we see that, for example, feature F1 is more strongly

associated with feature F2 than with feature F5. There are two things to

note from this table. First, a feature association matrix is in fact a

triangular matrix as the association relation is symmetrical. Second, the

values representing the association of a feature with itself vary between

features. This is simply a consequence of the fact that, for simplicity,

we have not normalized the feature implementation vectors (the row

vectors of the feature implementation matrix).

If we normalize the feature implementation vectors in Table 3, the

diagonal of the feature association matrix will contain only values of 1.

This operation is not a requirement for our technique however, and we

recommend that it be avoided in production environments where

 29

performance is a concern. Although normalization would not become

the bottleneck of the analysis, its cost remains significant and should be

avoided whenever possible.

3.4 Coupling-Increasing Components (CIC)

Coupling-Increasing Components (CIC) are the components that

contribute to an increase in the level of association between two

features. We obtain the set of CICs by comparing the feature

implementations and feature associations of two different program

versions.

To identify CICs, we first locate feature pairs whose association has

increased between two versions. We define an association to have

increased if the association between two features in a (more recent)

program version is greater than the association between the same

features in a previous program version by a certain multiplicative factor

α. The α factor is a parameter of our approach that can take values in

the interval [1..∞) (see Chapter 5).

Definition 9 (Coupling-increasing feature pairs). Given two

program versions P = (C,F,T) and P*=(C*,F*,T*), and their corresponding

feature association FA[faij] and FA*[faij
*], the coupling-increasing feature

pairs CIF[cifij] is a matrix of the same size as FA* where:

⎩
⎨
⎧ >

=
otherwise,0

 * if,1 ijij
ij

fafa
cif

α

Figure 4: Coupling-Increasing Condition

Definition 10 (Coupling-increasing components). Given two

feature implementations FI and FI* and a matrix of coupling-increasing

 30

features CIF, we define the set of coupling-increasing components of a

modified program P*=(C*, F*, T*) as the set of components contributing

to values in CIF. The set of CIC can be calculated with the following

algorithm:

 1: param: P*=(C*, F*, T*): Modified Program

 2: param: FI[fij] & FI*[fij*]: Feature

Implementations

 3: param: CIF[cifij]: Coupling-Increasing Features

 4: var: CIC={}: Coupling-Increasing Components

 5: for i = 1..|fi| (where fi is a row of FI)

 6: for j = 1..|fi|, i ≠ j

 7: if cifij = 1

 8: for k = 1..|fi|

 9: if fik* • fjk* > fik • fjk

10: CIC CIC ∪ c | c is the component

 corresponding to column k in FI

11: end if

12: end for

13: end if

14: end for

15: end for

16: return CIC

Figure 5: Coupling-Increasing Component Algorithm

Once the analysis is complete, we present the CIC set to the

developers, who will determine if the components are in fact

contributing to code decay.

 31

3.5 Discussion

The quality of the results produced by our algorithm is dependent on

the stability of feature associations in the absence of code decay. For

example, if changes that do not cause code decay in practice introduce

variations in associations, then our algorithm could produce false

positives. In general, the role of the parameter α is to stabilize the

algorithm, by making it more resilient to small variations in feature

associations. However, if α is set too high then important symptoms of

code decay could go unnoticed, and so the effective range of α is also

limited.

Essentially, variations in feature association are a factor of two main

phenomena: a) relevant variations due to an increase in feature

coupling (and potentially indicative of code decay), and b) irrelevant

variations due to imprecision in the computation of feature

implementations. The primary source of imprecision in the computation

of feature implementations is an insufficient number of tests exercising

certain features to obtain reasonable estimates of the components that

implement them. The importance of this imprecision will typically

diminish as the number of tests increases and the focus of tests

narrows to fewer features.

Finally, the inclusion of components in the CIC set implies the

existence of a mapping of components between system versions

(c ∈ C c* ∈ C*). In other words, given two feature implementation

matrices representing two different program versions, it is assumed that

a column in the matrix for one version represents the same component

as the corresponding column in the matrix for the other version. In

practice, this assumption requires special treatment when components

are added or removed between versions. Additionally, if using lines of

 32

code as components (commonly identified by file/line information), even

unchanged components may require remapping because of the

addition and removal of other components above them in the same file.

This bidirectional mapping between components of different program

versions is assumed to exist in the CIC algorithm, but the details are left

to the implementation (see Section 4.4.2).

 33

Chapter 4
Case Study

To investigate the feasibility and usefulness of our approach, we

implemented our technique and applied it to a proprietary 3D graphics

program developed at NVidia Corporation. The target system consists

of more than 100 000 lines of C++ code exercised by thousands of

tests, and each change is tested for regression before it is submitted to

the source repository. Although many parts of the implementation built

for this case study are generic enough to apply to a wide range of

software systems, practical considerations required us to tailor the

overall implementation to the environment of our target system.

Figure 6 : Implementation Diagram

Our current implementation (depicted in Figure 6) is designed to be

applied to all new changes made to our target system before they are

submitted to the source repository. To this end, our implementation

extends existing proprietary regression-testing infrastructure and

 Implementation
Analysis

Feature
Implementations

Coverage System Tests

Feature
Associations

Source
Repository

Association
Analysis

Coupling
Analysis

Coupling-Increasing
Components

 34

practices without interfering with the normal activities of software

developers. For our analyses, we defined components as the lines of

code of the system, as an approximation for C++ statements.

However, for practical reasons we aggregate the results by source files

for the final presentation to developers.

Our implementation works as follows. First, we obtain the test suite

from the source repository and compile the locally-modified program

with code instrumentation to produce statement coverage information

when executed. The test suite is then executed as usual, producing the

covers relation matrix that relates tests with components (see

Section 4.1). Executing the test suite on our target system also

produces the exercises relation matrix that relates tests with features

thanks to a different type of instrumentation that forms an integral part

of our specific target system (see Section 4.2).

As described in the previous section, the covers and exercises

matrices serve as input to the computation of feature implementations

and association analyses (see Section 4.3). Feature implementations

and associations are then marked for storage in the source repository

together with the current changes so that they can be versioned along

with the software and used in future analyses. To perform feature

coupling analysis (see Section 4.4), we recover the version of the

feature implementations and associations that match the previous

version of the program. The old and new associations are then

compared for increased associations and the CIC set is constructed

from the lines of code that caused the differences, as described in

Section 3.4. Finally, the lines of code are aggregated by files and the

set of coupling-increasing files is presented to the developer.

 35

In the rest of this section, we discuss key implementation issues

specific to each step of our approach.

4.1 The Covers Relation

We obtain the covers relation by instrumenting the program code to

automatically detect each line of code covered by each test. Inspired

by the work of Tikir and Hollingsworth [30], we designed our

instrumentation such that it removes itself once triggered, leaving the

original subroutines. This strategy greatly reduces the cost of

instrumentation, especially for code containing loops. This

characteristic of our implementation is in fact critical given the size and

heavy computational nature of the target system. We observed, as

also noted by Tikir and Hollingsworth, that the performance impact of

this type of instrumentation is low, increasing the run time by only

5~10% (see Section 5.3 for the details of the performance evaluation).

The covers matrix produced by our coverage instrumentation can be

very large. Thousands of tests executing over hundreds of thousands

of lines of code will produce hundreds of millions of entries in this

matrix. Fortunately, covers matrices are naturally sparse and contain

some simple patterns, such as groups of components that are always

covered together. We reduced the effective size of the stored data by

indexing, storing, and analyzing these groups of components as a

single entity. The core implementation of this technique is described in

Section 4.3, with C++ source provided in Appendix A (the “Aggregate”

class).

4.2 The Exercises Relation

Ideally, the features exercised by individual tests in the test suite

would be documented alongside and versioned with the test suite. In

practice, we found that this information was not consistently available.

 36

In our target system, each test is relatively complex and exercises

many features, often leaving only vague and informal references to the

dominant feature to be encoded in the test name. In some cases, even

the names were misleading, due to the test’s ultimate purpose changing

over time.

To recover the exercises relations, we relied on execution logs

produced by our target system as it executes (Figure 7: Excerpt from a

system log). These execution logs form an integral part of the target

system and are different from our instrumentation system. The primary

purpose of the execution logs is to assist in the analysis of inputs given

to the system, both manually by developers and through automated

tools. Built by the developers alongside the system’s functionality, the

logs provide extensive details about the execution of the system,

including a fine-grained description of the functionalities exercised in

the program during its execution. For example, the logs produced by

our target system are analogous to a trace of user interactions that

could be generated by a word processor, logging the commands

invoked by the users through menus and buttons (e.g., spellchecking,

justification, etc…).

PRIMITIVE_TYPE = TRIANGLE_STRIP
BLEND_MODE = WRITE_SRC_ONLY
USING_FMAD = TRUE
USING_TEX2 = TRUE
ENABLE_L1_WRITE_THROUGH = FALSE
...

Figure 7: Excerpt from a system log

 37

Since the exact details of the logging feature are proprietary, for the

purpose of this thesis we abstract the logging feature as a module that

produces a list of the commands called on the graphics software. We

collected these logs for each test and matched the functionality they

referenced to features, hence reconstructing the exercises relations

between tests and features. The main consequence of this strategy is

that it produces a very fine-grained definition for features, yielding more

than ten thousand features for our target system. However, this

strategy supports a completely automatic recovery of the exercises

matrix, which is a critical element of the feasibility of our approach. This

strategy for mapping features to tests is a parameter of our approach

that may not be directly realizable for all target systems (see

Section 4.5).

Although the number of features detected remains much less than

the number of lines of code in the system, our feature identifier tokens

are much larger than a simple integer and their analysis produces

physical data sets of similar size when stored uncompressed. Like the

covers matrices, exercises matrices are also naturally sparse and their

cost can be made manageable using the same grouping strategy (see

Section 4.3).

4.3 Sparse Matrix Strategy

We implemented our sparse compression strategy in an abstracted

module in order to reuse it for both covers and exercises matrices. The

“Aggregate” class implementation is provided in Appendix A and

deserves an expanded commentary because it is essential to our

implementation. Two concerns influenced its design: efficiency of final

storage in space (exploiting sparseness) and run-time performance of

the compression algorithm. In order to share a core implementation

 38

we abstracted the matrix’s major index (tests), dubbed “key” in the

sources, and the minor index (line of code, or feature), dubbed “name”.

The output of the compression operation is a pair of data structures,

a set of sets of keys and a map of names to [pointers to] sets of keys.

The first is the set of unique groups of keys (tests) to which names

(lines of code, or features) are associated, hence unique compressed

(sparse) columns, while the second is the transpose of the association

(covers, exercises) table.

Two additional indirections were later added to improve run-time

performance significantly: space-inefficient temporary working sets and

unique name/key tables.

Firstly, in order to accelerate operations on the data structure, an

additional map of names to sets of keys is used to accumulate many

small operations into larger transactions. When a change is applied to

a named entry, this map is first populated with a copy of its associated

key set, and subsequent changes are applied there rather than in the

final data structure. This allows changes localized around a name to be

performed on a smaller, faster structure. At the end of the process, the

Aggregate (Aggregate::compressKeySets) folds all the copies in this

map back into the main data structure by searching for and assigning

matching sets, creating new sets or destroying unused sets.

Secondly, a pair of string tables alters the actual data structures to

use pointers to names (dubbed name handles) and pointers to keys

(key handles) instead of names and keys proper (both strings). This

change is functionally transparent for operations that only require

names and keys to be equality-comparable, which dominate the

compression aspects of the technique. Not surprisingly, we observed

the difference in performance between using string comparisons and

 39

pointer comparisons to be very significant (around two orders of

magnitude). The reduction in storage size also achieved with this

optimization was not as significant.

4.4 Feature Implementations

The implementation of the computational support for feature

implementations as described in Section 4.2 gives rise to a matrix

product of staggering size if the sparseness is not exploited. To

compute the implementation of a feature, the associated exercises test

group1 for the feature is used as the reference test set. All test groups

from the covers relations are then compared to the reference test set.

If all tests from the reference test set are found in the covers test group,

then all components associated to it are added to the implementation of

the feature. The implementation value of each of these components is

then calculated as the size of the reference test set over the size of the

test group (see Definition 5). This process produces as output a set of

tuples of components and implementation values, representing the non-

zero values of the feature implementation vectors.

Even in their compact form, the feature implementation vectors

remain large and dominated by components with very low

implementation scores (e.g., components that are covered by all tests).

To increase the performance of our feature coupling analysis, we limit

the size of feature implementation vectors to 200 components, and

truncate the less significant components. The components truncated in

this manner vary from feature to feature, leaving a selection of the 200

1 The groups are seen in the sparse matrix, as mentioned in 4.1.

 40

highest-degree components for each individual feature, and resulting in

a sparser (but not smaller) feature implementation matrix.

The choice of 200 as the length of implementation vectors is based

on experience with applying feature location techniques on our target

system. Manual inspection of the most important features of the target

system showed that implementation vectors typically had a clear signal

contained in the first 50-100 components (see Section 5.1). This

measurement is likely a property of our target system and should be

evaluated again for each different system.

The tradeoff of this optimization strategy is that the components

removed in this manner will also vary from program version to program

version. As a result, features insufficiently exercised by the test suite

will appear to make significant feature implementation losses and gains

between versions. Although in principle the low implementation values

of the truncated components means that they should not affect the end

result (the computation of CICs), in practice we have found that this

process introduces noise that warrants additional filtering during

coupling analysis (see Section 4.5).

Finally, even though it is not required by our algorithm, we normalize

our implementation vectors after truncation. As a result the

implementation products are themselves normalized and provide useful

meaning to associations when debugging the implementation of

coupling analysis.

4.5 Feature Coupling Analysis

Our implementation of feature coupling analysis is faithful to the

algorithm described in Section 3.4. However, use of the technique in

the field required the development of an additional noise filtering

 41

support, and support for the mapping of components and features

across program versions.

4.5.1 Eliminating Noise

The set of tests used to validate changes made to our target system

varied greatly depending on the scope of the changes performed.

Current practices for our target system call for executing a “sanity” test

suite instead of the much larger “full” test suite when changes are

deemed at low risk of causing functional regressions. As a result, we

encountered many cases where some features were insufficiently

exercised to reliably identify the components implementing them (in

other words, resulted in significant noise in the feature implementation

matrix). We solved this problem by adding a filtering pass to the

algorithm described in Section 3.4.

We employ two different filtering methods to reduce the effect of

noise at the feature coupling analysis phase. First, the algorithm’s

sensitivity threshold α eliminates insignificant variations in associations.

For our target system, values as small as α=1.1 provided an

appropriate baseline for noise reduction. We determined this value

heuristically by estimating how much a feature association should

increase before being considered significant. This initial estimate was

assessed empirically and found to be adequate for our initial

investigation of the approach (see Section 5.2).

Second, we defined an analysis on individual feature

implementations to discard variations resulting from noisy feature

implementation vectors that do not appear to reliably associate a

feature to its implementation. Specifically, we define a noisy

implementation vector as one whose components are all more or less

equally relevant, such that no component is significantly more important

 42

than any other. As in Section 3.4, we parameterized the significance

detected with a sensitivity threshold β, such that a feature

implementation vector (of components) [ci] is noisy if the following

predicate holds (the overbar denotes the mean and σ the standard

deviation):

()ccci βσ<−

Figure 8: Sensitivity Threshold

Implementation vectors that show clear features locations in the

source code share a characteristic shape where components vary

significantly in implementation values (see Section 5.1). The sensitivity

threshold uses the standard deviation to select only implementation

vectors that contain significant differences in implementation values.

4.5.2 Mapping Components with Program Versions

We identify our components (lines of source code) with unique

indices in the covers and feature implementation matrices. The indices

are derived from file names (indexed in a file name table) and line

numbers. This choice is convenient when gathering covers relations,

but problematic during feature coupling analysis because changes to

the source code cause source lines to move (potentially including

unchanged source lines). To allow the comparison of feature

implementation matrices during feature coupling analysis, we build a

(line number line number) map for each file of the system between

program versions, by applying the UNIX diff utility to the different

versions of the files and accumulating the additions and subtractions of

lines to find the mapping of old line numbers to new line numbers.

 43

Our implementation uses this mapping to link components in the

new version to those of the old version, ignoring removed components

and assuming that new components previously held implementation

scores of zero (i.e., that they were never covered). This assumption is

reasonable, since it shows new components with nonzero feature

implementation values as implementation gains, and allows them to

contribute correctly to feature coupling analysis.

4.5.3 Mapping Features with Program Versions

Features can also vary between program versions, though they are

far more stable than components. In all cases where algorithms

manipulate features we refer to them by an index in a table of feature

names, for instance when referring to features in the exercises or

feature implementation matrices. Because features change over time,

the table of features that we build for our analysis (see Section 4.2) also

changes over time and indices in the exercises and feature

implementation matrices of different program versions are incompatible.

To enable the comparison of features of different program versions, we

search for the names of features from one program version’s feature

table in the other program version’s feature table. We note the pair of

indices in a one-way mapping from new to old indices and use the

mapping during feature coupling analysis whenever we compare new

features with old features.

4.6 Discussion

The most sensitive aspects of the implementation of our approach

revolve around the definition of components and features. Selecting

components as functions instead of source code lines, and coarse-

rather than fine-grained features, would simplify the feature coupling

analysis significantly. With fewer, larger features, the noise elimination

 44

process may not be necessary, since each feature is more likely to

have been sufficiently exercised by the test suite. Using functions as

components would simplify the mapping of components between

versions. However, for our application, our choice of definitions for

components and features was influenced mostly by the concern that the

implementation of features may be scattered across different functions.

Lines of code were a natural fit for comparison and integration of the

results of coupling analysis with other tools of the existing infrastructure

surrounding the target system. The data we collect subsumes the data

function-level instrumentation produces: we have the flexibility to

recover function coverage from our data through very simple analysis of

the source code to support functions as components in the coupling

analysis.

The granularity of features was also dictated by the existing

infrastructure, through the level of detail of the existing execution logs.

For our definition of features, alternatives consisted mostly of the

manual mapping of tests to features, a choice that was simply not

practical, requiring too much human intervention to scale up to the size

of the test suite. In practice, execution logs are not uncommon in the

field, and we expect that our approach can be replicated for systems

with logging features, although the quality of the results will necessarily

vary depending on the details of the logging data produced. In the

cases where it is not feasible to instrument the program in this manner,

then the mapping of tests to features must be provided by some other

means, such as formal documentation or as an integral part of the test

suite. However, for some software systems that are under active

development it may be reasonable to install instrumentation that

produces execution logs detailing the features in use.

 45

A final sensitive choice is the granularity in time at which our

technique is applied. The comparison of very distant versions of the

target system can produce large differences, while the comparison of

very close versions, very few. In order to pinpoint specific changes as

causes of decay, our preference is for the comparison of close

versions. In turn this increases the risk of failing to recognize very slow

increases in coupling. A simple attempt to mitigate this effect could

involve multiple comparisons against variably-distant versions in the

repository – this is a viable option for a future implementation.

 46

Chapter 5
Empirical Results

The applicability of our feature coupling detection technique is

based on a number of assumptions that can only be validated

empirically. Specifically, we rely on the fact that, in practice:

1. Feature implementation vectors meaningfully associate components

with features;

2. The CIC sets produced are usable by developers;

3. The computational cost of the approach is acceptable;

4. The symptoms detected by the approach have value.

To help determine whether these assumptions held in the case of

our target system, we applied our approach to 13 different versions of

our target system distributed over a three-month period, to simulate the

analysis of weekly development releases. Because of practical

constraints on the computational resources available for this research

project, we limited the number of tests executed on the 13 versions of

the system to the “sanity” subset of the tests. This subset was

previously selected using the execution logs to identify the smallest

subset of tests from the “full” test suite that exercised 95% of the same

features.

5.1 Feature Implementation Vectors

To be able to determine coupling-increasing components, we need

to be able to reliably associate components with features. In our

approach, the association between a feature and its components is

modeled with a feature implementation vector (a row in the feature

implementation matrix). For the purpose of our approach, we consider

 47

that a feature implementation vector is useful if it clearly identifies

certain components as associated with a feature. In our approach the

parameter β determines if a feature implementation vector is "good

enough" to be used in the computation of CICs (see Section 4.5.1).

As an initial investigation we measured the relative number of

significant versus noisy implementation vectors in our feature

implementation matrix, given different values of β. We consider an

implementation vector to be noisy if the predicate of Section 4.5.1 holds

and significant otherwise. Figure 9 shows the relative number of

significant vectors in the matrix for different values of β. For each value

of β, each bar represents the value for one of the 13 versions of the

program we analyzed.

0

20

40

60

80

100

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

Significance Parameter

Si
gn

ifi
ca

nt
 %

Figure 9: Effect of the β parameter on noise detection

The results of significance testing vary smoothly as β changes.

However, groups of features that exhibit similar implementation vector

distributions cause local discontinuities as they pass or fail the

significance test together. This grouping effect can be caused equally

by similarity at the source level or by using poorly differentiated tests.

 48

We selected β=1.5 for our system because we felt it provided

adequate protection from noise without eliminating weaker evidence in

feature implementation vectors. For this value of β, we observed that

(on average) 56% of feature implementation vectors were rejected

when executing the “sanity” test suite. Executing the “full” test suite

reduces this number to 25%, strengthening our intuition that more

thorough testing of features reduces noise in the feature

implementation matrix.

In the process of selecting a value for β, we manually looked at the

value distributions in feature implementation vectors. To illustrate this

phenomenon, Figure 10 shows the value distribution of both a

significant (solid line) and noisy feature implementation (dotted line),

sorted by decreasing degree values.

0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200

Components

Im
pl

em
en

ta
tio

n
Sc

or
e

Figure 10: Sample feature implementations

For the significant feature implementation, the figure shows a few

very relevant components that stand out from a long tail of less relevant

components. For the noisy feature implementation vector, we see

 49

instead an almost straight line, with no component being more or less

associated with a feature than others. In general, we find that noisy

vectors usually correspond to features that are insufficiently exercised

by tests.

5.2 CIC Sets

The characteristics of CIC sets matter in our approach since this is

the information directly reported to developers. If CIC sets contain

large numbers of source locations scattered throughout the system, the

developers will be overwhelmed with information. The size of CIC sets

is affected by the parameters α and β, which determine whether

association changes constitute valid symptoms to be reported, and the

usefulness of feature implementation vectors, respectively. To assess

their sensitivity to α and β for our system, we measured the CIC sets

produced from 13 target revisions of the system (yielding 12 CIC sets).

Since our approach automatically aggregates CIC sets by source file,

we present our results at this level of granularity.

0

5

10

15

20

25

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

β-values, α=1.1

Si
ze

 o
f P

E
C

 se
t (

fil
es

)

Figure 11: Effect of β on the size of CIC sets

 50

Figure 11 shows the impact of the β parameter on the size of CICs

(number of files) for a fixed value of α. Note that in general increasing

the value of β decreases the number of CICs.

0

5

10

15

20

25

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

α-values, β=1.5

Si
ze

 o
f P

E
C

 se
t (

fil
es

)

Figure 12: Effect of α on the size of CIC sets

Figure 12 shows the effect of α on the size of CIC sets for a fixed

value of β=1.5. We observed that the number of coupling-increasing

files produced remains largely stable for changing values of α. We

surmise that the spikes in the graph represent versions exhibiting

significant increases in some feature associations.

 51

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12

Program Versions

C
ha

ng
ed

 F
ile

s

Figure 13: Number of file changes between revisions

Except for two versions of the system, we find that the number of

files reported as coupling-increasing to be manageable (often under five

files). This observation makes it reasonable to expect that a developer

could inspect the complete list of files reported to evaluate whether the

last changes to each file could have been suboptimal. To provide a

better context for this interpretation, Figure 13 shows the number of

files changed between each version considered. As can be seen from

this last figure, feature coupling analysis can help narrow the focus of

the developer to a number of files about ten times lower than the overall

number of changed files.

5.3 Performance

Our approach is only feasible if it can be applied without incurring

overhead that would severely disrupt the normal activities of

developers. In general, thanks to the various optimizations described in

Section 4, we found that our implementation of the approach exhibited

acceptable performance characteristics for its intended use. In the rest

 52

of this section, we discuss the performance characteristics and

tradeoffs corresponding to the different steps of our approach. Unless

otherwise noted, the experimental machine for our performance

assessments was an IBM T42 Thinkpad laptop computer with a 1.86

GHz Pentium-M processor and 2 GB of physical memory. The analysis

implementation was written in C++, compiled using Visual Studio 2005

(with optimizations enabled) and executed on Windows XP SP2.

For our target system, using the “sanity” test suite comprising 70

tests, the entire analysis process requires about 2 minutes. For larger

test suites, comprising several thousand tests, the process completes in

less than 2 hours.

5.3.1 Executing the Test Suite

In our environment, tests execute on dedicated computer nodes that

exploit parallelism between tests and reduce testing latency by sharing

nodes between all developers. This system allows developers to test

their changes for regression within minutes or hours, depending on the

size of the test suite used.

The only part of our approach that affects the testing phase is the

line coverage instrumentation, which increases the execution time by

5~10% and requires additional storage requirements to store line

coverage information. Roughly 300KB of disk space per test is

required, with the data compressed with zlib2 as it is written.

5.3.2 Recovering the Exhibits & Covers Relations

We merged the recovery of the exhibits and covers matrices into a

single process, centered on the recovery of test-related information

2 http://www.zlib.net/

 53

from the file system where it is written during the execution of the

regression test suite. The computational cost of this operation grows

linearly with the number of tests, components and features.

On the experimental machine, this phase represents about 1.5

second of computation per test, which is mostly due to file system

management (seeking and opening files), I/O (reading), decompression

(zlib), decoding the file format, and memory management. This

process is the most time-consuming because it is performed serially.

This entire process completed after less than 3 minutes for all versions

of the program, using the “sanity” test suite, but typically took more than

one hour on larger test suites.

When this process has completed, the output is written to a single

file, roughly 20MB in size for our target system, containing both the

exhibits and covers matrices in their compressed form.

5.3.3 Computing Feature Implementations

The time required to compute feature implementations is solely

bounded by the processor speed. The computational cost of this

operation in our implementation grows linearly with the number of

features, components and tests. Although the algorithm does not take

tests into account, our implementation compresses the covers and

exhibits matrices using test groups. The computational cost introduced

by test groups grows linearly with the number of tests in the worst case.

However, the practical compression of data (and data processing) we

get from working with test groups more than makes up for any added

performance cost.

For our target system this processing step executes at a rate of

about 50 features per second. The output is an in-memory feature

implementation matrix that requires about 2KB per feature of memory.

 54

5.3.4 Feature Associations and Coupling Analysis

The computational time required for calculating feature associations

and to perform feature coupling analysis grows quadratically with the

number of features, but is positively impacted by the truncation of

implementation vectors to constant lengths. This decouples both

operations from the specific number of components, resulting in a

constant-time operation. Furthermore, the small size of the vectors

means that the processor can process almost 100 000 of our

implementation products every second. The entire coupling analysis

phase takes just 10 seconds on the experimental machine.

5.3.5 Summary

All analyses were performed on an IBM T42 Thinkpad laptop

computer with a 1.86 GHz Pentium-M processor and 2 GB of physical

memory. The following table summarizes the resource requirements of

applying our technique:

 Overhead
Time

Overhead
Memory

Overhead
Storage

Testing 5~10% - 300Kb/Test
Aggregation 1.5s/Test 2Kb/Component ~20Mb

Location 0.02s/Feature 2Kb/Feature -
Association 10s 2Kb/Feature -

Table 5: Resource Requirements

In our environment, the total time required to run the test suite itself

dominated the cost of applying our approach thereafter.

5.4 Validation Study

For our initial assessment of our approach, the final question we

wanted to answer was whether the files identified with our approach

 55

were actually responsible for code decay. This question is a difficult

one given that code decay is an abstract concept that is difficult to

operationalize [6]. As a starting point, we decided to work with the

weaker hypothesis that files identified with our approach correlate with

files touched by future bug fixes. To determine whether this hypothesis

held in our case, we built contingency tables recording, for each file in

our target system and each version of the system, whether the file was

flagged as coupling-increasing or not, and whether the file was touched

by bug fixes afterwards or not. This strategy is similar to previous

studies of dynamic coupling, which have also used future changes as

the dependent variable for empirical evaluation [2]. With this data, a

standard statistical procedure (the chi-square test of independence) can

determine whether increased feature coupling is a predictor of future

bug fixes.

For this experiment, we considered all the source files of the system

for the 12 revisions used in the rest of our investigation. A file was

considered to be "coupling increasing" at a given version of the

program if it appeared in the CIC set produced by the application of our

technique to that version, using α=1.1 and β=1.5. To determine

whether a file was associated with future bug fixes or not, we searched

the issue tracking database. A file was considered "buggy in the future"

for a version of the program if it was involved in at least one bug fix in

the following 4 months.

 56

Versio
n

Coupling
Buggy

Coupling
Not Buggy

Not Coupling
Buggy

Not Coupling
Not Buggy

1 2 0 302 837
2 7 0 299 835
3 4 0 292 845
4 1 0 295 845
5 14 8 274 845
6 0 0 257 884
7 2 3 240 896
8 11 6 227 897
9 5 3 227 906
10 0 0 235 906
11 0 0 234 907
12 0 0 234 907

Table 6: Feature coupling increase as a Predictor of Bugs

Table 6 shows our aggregated contingency tables. Each row

corresponds to one versions of the system. Columns 2 to 5 present, for

each version, the number of files with the characteristics listed in the

header. For example, version 5 of the system comprised 14 files

identified as both coupling-increasing and buggy in the future.

To ascertain whether there is some truth in our hypothesis, that

feature coupling is a predictor of bugs in a software system, we

performed a chi-quare test of validity. This test is used to reject a null-

hypothesis, in this case that feature coupling has nothing to do with

bugs in software systems, by computing the probability (“p-value”) that

the results would be purely due to chance.

Because of low values in the first two columns3, we could only

perform a chi-square test of independence for versions 5 and 8.

3 The chi-square test is generally considered invalid (but not necessarily failed) if a cell value is

lower than 5.

 57

However, for both versions 5 and 8 the chi-square test indicates a

statistically significant relation between the "coupling increasing" and

"buggy in the future" variables (p ≤ 0.001, or 0.1%). In other words, our

feature coupling increase metric is possibly a good predictor that a file

will be touched by a bug fix in the future.

Manual inspection of the files identified as coupling-increasing

showed that these files did correspond to code units judged by the

developers of the system to be in need of preventative maintenance.

Although not surprising, these initial results can already serve to

confirm informal observations about the perceived deteriorated state of

the coupling-increasing files. Additional research should help improve

the precision with which our technique can identify problematic code

locations.

5.5 Discussion

Our experience with the current implementation of our feature

coupling increase detection technique has allowed us to answer many

practical questions regarding the assumptions stated at the beginning

of this section.

First, we were able to determine that our approach could clearly

identify feature implementation vectors that strongly associate features

with components. Empirical evidence shows a "natural" distinction

between significant and noisy feature implementations. By being able

to select and use only "good" feature implementations, we can increase

the overall quality of the results produced. However, due to the filtering

of noisy feature implementation vectors, some significant feature

coupling increases might go undetected simply because the test suite is

not able to accurately factor out a feature. When combined with a test

 58

selection strategy, it might be advisable to favor or simply add tests that

improve feature coverage.

Second, our experience showed that, when aggregated into files,

the size of CIC sets constitutes a manageable amount of information for

developers. Although we found the size of CIC sets to vary depending

on the values of the α and β parameters, the main factor determining

the size of CIC sets is the nature of the actual program versions

analyzed.

Third, our implementation of the proposed approach demonstrated

that it can be used at a reasonable cost (10% slowdown for the

execution of the test suite plus a few minutes of additional

computation). As such, the total cost will vary greatly based on the size

of the test suite executed. However, as in the case of testing, the

quality of the results will increase with the number of tests. More

experience should help determine in which situations the benefits of the

approach are worth the cost.

Finally, we were able to obtain evidence that files identified as

coupling-increasing with our approach are more likely to be touched by

bug fixes than randomly-selected files. Although we construe this initial

result as confirming evidence of the assumptions underlying our

approach, our interpretation is subject to the usual threats to validity

that must be considered for quantitative studies of this type. In our

case, an important consideration is that the phenomenon of code decay

might not be adequately measured by the single occurrence of bugs in

a file.

 59

Chapter 6
Qualitative Analysis

We present a qualitative analysis using the results of the empirical

study described in Chapter 5. We manually inspected the report of our

tool for one of the studied revisions, and comment on our findings

based on our 4-year experience with the system.

Through this analysis we sought to qualify the strengths and

weaknesses of our approach, and determine if the approach is helpful

at finding recently-modified code that needs the attention of

programmers. Also, in keeping with our initial motivation, we looked for

concrete signs of code decay in the coupling-increasing components

identified by our tool. These signs would consist primarily of new or

modified components that make the system more complex to

understand, hence making further changes more difficult, based on our

experience with the system.

6.1 Initial observations from the case study

Over the three-month period analyzed, four out of five result sets

returned by our tool pointed at the same module, the implementation of

one of the key execution kernels that make up the system. This kernel

decodes and executes instructions that are part of the input to the

system, and thus directs the overall system’s operation. The results

showed that certain instructions and independent features of the kernel

itself became more tightly coupled than before. Figure 14 shows the

 60

complete report4 resulting from the application of our analysis between

versions #4 and #5, separated by 6 days and 99 file modifications.

The report includes the names of coupled feature pairs whose

association scores have increased due to a change in the system, and

the association score prior to and after the change. The report ends

with the names of the components (source files of the target system’s

code base) that form the body of evidence for the increased association

scores. These are components whose contributions to the association

score have themselves increased for at least one of the feature pairs

mentioned in the report.

C2R & RAM association INCREASED: 10.1% -> 22.8%

C2R & SAM association INCREASED: 10.1% -> 22.8%

R2C & RAM association INCREASED: 10.1% -> 22.8%

R2C & SAM association INCREASED: 10.1% -> 22.8%

SM & ATE association INCREASED: 43.2% -> 92.9%

SM & BCA association INCREASED: 36.7% -> 85.2%

SM & BCB association INCREASED: 36.7% -> 85.2%

SM & BCG association INCREASED: 36.7% -> 85.2%

SM & BCR association INCREASED: 36.7% -> 85.2%

SM & R2A association INCREASED: 35.8% -> 77.4%

TEX & RAM association INCREASED: 9.3% -> 20.2%

TEX & SAM association INCREASED: 9.3% -> 20.2%

VSIII & ATE association INCREASED: 43.5% -> 93.2%

VSIII & SM association INCREASED: 38.0% -> 96.2%

VSIII & GE association INCREASED: 38.5% -> 81.6%

VSIII & GMOVC association INCREASED: 38.5% -> 81.6%

VSIII & GORC00 association INCREASED: 38.5% -> 81.6%

VSIII & GORC01 association INCREASED: 38.5% -> 81.6%

4 Note that the names of features and components (files) presented in this chapter have been

changed (shortened) to bear resemblance to their real names without revealing them.

 61

VSIII & GORC02 association INCREASED: 38.5% -> 81.6%

VSIII & GORC03 association INCREASED: 38.5% -> 81.6%

VSIII & GOT association INCREASED: 38.5% -> 81.6%

VSIII & BCA association INCREASED: 36.7% -> 85.5%

VSIII & BCB association INCREASED: 36.7% -> 85.5%

VSIII & BCG association INCREASED: 36.7% -> 85.5%

VSIII & BCR association INCREASED: 36.7% -> 85.5%

VSIII & RAM association INCREASED: 9.0% -> 21.2%

VSIII & SAM association INCREASED: 9.0% -> 21.2%

VSF & ATE association INCREASED: 43.5% -> 93.2%

VSF & SM association INCREASED: 38.0% -> 96.2%

VSF & GE association INCREASED: 38.5% -> 81.6%

VSF & GMOVC association INCREASED: 38.5% -> 81.6%

VSF & GORC00 association INCREASED: 38.5% -> 81.6%

VSF & GORC01 association INCREASED: 38.5% -> 81.6%

VSF & GORC02 association INCREASED: 38.5% -> 81.6%

VSF & GORC03 association INCREASED: 38.5% -> 81.6%

VSF & GOT association INCREASED: 38.5% -> 81.6%

VSF & BCA association INCREASED: 36.7% -> 85.5%

VSF & BCB association INCREASED: 36.7% -> 85.5%

VSF & BCG association INCREASED: 36.7% -> 85.5%

VSF & BCR association INCREASED: 36.7% -> 85.5%

VSF & RAM association INCREASED: 9.0% -> 21.2%

VSF & SAM association INCREASED: 9.0% -> 21.2%

vcf.cpp v.cpp c.h rec.cpp rec.h

cbr.h ls.h ct.cpp ct.h cs.cpp

cp.cpp ccf.cpp tfco.cpp cbr.cpp b2o.cpp

cs2o.cpp ps.h tvt.cpp tvst.cpp tvsh.cpp

tt.cpp tarf.h

Figure 14: Complete tool report showing coupled features

The features VSF, VSIII, BCA, BCB, BCG, BCR, GORC00-03, GE,

GMOVC, GOT, SM and ATE are features of the execution kernel itself.

They control its behavior at the beginning and end of the program

execution, and affect how input data is processed. The features TEX,

RAM, SAM, C2R, R2C and R2A are instructions that the execution

 62

kernel interprets as commands when found in the inputs to the system.

The analysis report thus reveals the addition of coupling between

various features of the kernel and its instruction set.

6.2 Evaluation of the evidence

The report contained some surprising results, both in terms of the

feature associations, and the components presented.

From experience, we could discount a number of components

because they were not meaningfully related to the features listed in the

report.

Component Useful Related Features in Set
vcf.cpp
v.cpp

rec.cpp
c.h

No None

rec.h Yes R2C, C2R
cba.h
ls.h No None

ct.cpp
ct.h Yes R2C, C2R

tarf.h Yes TEX, R2A, RAM, SAM
cs.cpp Yes R2C, C2R
cbr.cpp No None
cp.cpp
ccf.cpp Yes R2C, C2R

tfco.cpp
b2o.cpp
cs2o.cpp

Yes TEX

ps.h No None
tvt.cpp
tvst.cpp
tvsh.cpp

Yes VSF, VSIII, GE, GMOVC, GOT, GORC00-
03

tt.cpp Yes VSF, VSIII, GE, GMOVC, GOT, GORC00-
03, R2C, C2R, R2A, TEX, RAM, SAM

 63

Table 7: Usefulness of reported components

Table 7 lists the components from the report of Figure 14, and

denotes for each component whether we believe (from experience) it

was useful to reason about the reported coupling, and which features

are related to it.

Similarly the ATE, BCA, BCB, BCG and BCR features are not

related the components listed in the report. Overall, 8 out of 22

components and 5 out of 20 features in the report appear uncorrelated

to the rest of the evidence presented. We believe both types of errors

are due to testing with a test suite of insufficient size (the “sanity” set

described in Section 4.5.1).

In Sections 3.4, 4.3, 4.5.1 and 5.1 we discussed the effects of

insufficient testing of features, and described mechanisms we put in

place to minimize the effect of noisy data. The sensitive portion of our

approach centers on our application of a modern feature location

technique, which produces relatively inaccurate results when applied on

indiscriminate inputs. Together, the α (Section 3.4) and β factors

(Section 4.5.1) form a tunable heuristic that diminishes the impact of

noise in the feature-location data, but cannot truly eliminate it. The best

way to control noise is to better condition the inputs to feature location,

such using larger suites of tests that are more closely focused on

features.

We attribute two types of errors in the report to noisy feature-

location data:

1. Incorrect components were attributed some of these features

(which ones is not specified in the report) because other features

that are implemented by these components are also present in

 64

the tests that were run. This is also why VSF and VSIII report

the same coupling gains with the same features. These two

features must be used together to function properly, so the

feature location technique assigns the same components to both

(there is no exclusivity between features, only between tests).

2. Incorrect coupling is attributed to the features ATE, BCA, BCB,

BCG and BCR because they are always exercised in the “sanity”

tests where SM, VSF and VSIII are also exercised, preventing

our feature location technique from properly separating them.

The association score is not 100% because the reverse is not

true (ATE, BCA, BCB, BCG and BCR are also tested without

SM, VSF and VSIII). The change in association which ultimately

caused the report to include this data was due to a change in the

test suite, not the system, causing them to be tested together.

Both of these types of errors call for using the full test suite with our

approach, rather than the “sanity” subset used in our empirical study.

However, our experience with the target system allowed us to quickly

identify these artifacts and ignore them.

6.3 Coupling detected in the target system

The report’s findings on TEX, RAM, SAM, R2C and C2R were

correct. Upon closer inspection of the system code, the TEX, RAM,

SAM, R2C and C2R features form a group of associated features that

share some of their implementations: the TEX feature requires special

information to operate which the RAM, SAM, R2C and C2R features

provide in the input to the target system. This association was always

present (formerly 9~10%), but changes made between versions #4 and

#5 increased the proportion of shared code (~20%).

 65

A survey of changes made to the target system’s architectural

specification over the same period of time showed that the design of

these features (TEX, RAM, SAM, R2C, C2R) was altered to meet

constraints external to the target system, coming from other groups in

the enterprise. These changes increased the co-dependence of these

features by design, but our approach nonetheless recovered this

information and hence validates the changed implementation of the

features. This shows that a tool reporting on feature coupling can be

used to validate the architecture via both positive and negative results.

6.4 Discussion

The technique we have presented here cannot discern between

features coupled at the implementation level and features coupled by

the tests that exercise them. This is to say that if two features are

always exercised in the same tests, our feature location step will

produce the same set of implementation components for both. If one

feature must always be tested with another, but the opposite is not

required, one of the sets will be a subset of the other and the

association score will not be 100%.

While this can be the result of insufficiently-discriminated testing of

the features of the system, it can also result from inter-dependencies at

a higher-level than features: use-cases. While two features could be

used separately, it may simply make no sense to do so: a resource

acquisition (e.g. opening a file) should always be followed by a release

of the resource (e.g. closing the file).

This type of tight inter-dependency between features that may not

share much code would be very difficult to find without a dynamic test-

driven analysis such as ours. Architects of the system would still be

able to predict the coupling, but only when factoring-in extensive

 66

experience with the nature of the inputs of the system in the field.

These were found to naturally emerge in the results of our study

(surrounding VSF/VSIII), providing additional insight into the system

and its use-cases.

 67

Chapter 7
Conclusion

One important challenge for organizations involved in software

maintenance is to ensure that the repeated modifications applied to a

software system do not result in a gradual decay of the system's code

base. Unfortunately, symptoms of code decay can be difficult to detect

in the short term, and clear evidence may only appear once it is too late

to easily remedy the situation.

In an attempt to mitigate this problem, we proposed to analyze a

system for symptoms of potential decay with every execution of a

regression test suite. Our technique is based on the assumption that an

increase in the level of association between the implementation of two

features may indicate the introduction of unplanned dependencies, and

constitutes a symptom of potential code decay. By analyzing the

execution of regression tests, we automatically determine the degree of

coupling between features based on the sections of code they execute

in common. With this information, we can then identify any section of

code that contributes to an increase in feature coupling between two

different versions of a system.

We assessed the feasibility of our approach by implementing it and

integrating it with the development environment of a proprietary 3D

graphics software comprising over 100 000 lines of C++ source code.

This experience provided us with valuable insights about the

engineering tradeoffs required to integrate feature coupling increase

detection with regression testing in practice. For example, we were

able to measure the tradeoff between the size of the test suite used

 68

(which impacts execution time) and the proportion of features that can

be located with enough accuracy to be analyzed for coupling increases.

Our experiments helped confirm that source files identified with our

approach may be in need of preventative maintenance. A small

experiment showed that files identified by our approach were

significantly more likely to be affected by change requests in the future.

Based on our experience with the target system, we were able to find

significant results in coupling reports.

We will soon be deploying a new implementation of this approach in

a larger production environment. With this new system we hope to

achieve a higher level of confidence in the reports by leveraging the full

test suite and applying the analysis at a finer change granularity (daily).

This new implementation added little extra cost to an ongoing effort to

implement test-case selection techniques by sharing much of the same

input data.

Intermediate results generated by our approach are also valuable on

their own merits, and will deserve further attention. For example, the

feature location data generated by our approach could be used to

accelerate the progress of programmers new to the group. Navigation

aids centered on the source code could allow them to quickly learn

where features are implemented, and which tests exercise them. The

feature information collected on the test suite can be also used help the

system’s architects reason about functional coverage of tests. As an

added benefit, the regular application of our technique will automatically

refresh this information, preventing it from ever becoming stale.

Although we expect that additional experimentation will help us

better understand the link between increased feature associations and

code decay, we conclude that detecting increases in feature coupling

 69

as part of regression testing is a feasible and promising approach for

maintaining the quality of software systems.

 70

References

[1] J. Aldrich, C. Chambers, and D. Notkin. ArchJava: Connecting

Software Architecture to Implementation. In Proceedings of the 24th

International Conference on Software Engineering, pages 187-197,

2002.

[2] E. Arisholm, L.C. Briand, and A. Føyen. Dynamic coupling

measurement for object-oriented software. In IEEE Transactions on

Software Engineering, 30 (8), pages 491-506, 2004.

[3] T. Ball, The concept of dynamic analysis. In Proceedings of the 7th

European Software Engineering Conference and 7th ACM SIGSOFT

Symposium on the Foundations of Software Engineering, pages 216-

234, 1999.

[4] V.R. Basili, L.C. Briand, and W.L. Melo. A validation of object-

oriented design metrics as quality indicators. In IEEE Transactions on

Software Engineering, 22(10), pages 751-761, 1996.

[5] L. A. Belady and M. M. Lehman. A model of large program

development. In IBM Systems Journal, 15(3), pages. 225-252, 1976.

[6] L.C. Briand. Empirical investigations of quality factors in object-

oriented software. In Empirical Studies of Software Engineering: An

International Journal, 3(1), pages 65-117, 1999.

[7] L. F. Cranor. Internet Privacy. In Communications of the ACM,

42(2), pages 28-38, 1999.

 71

[8] S.R. Chidamber and C.F. Kemerer. A Metrics Suite for Object

Oriented Design. In IEEE Transactions on Software Engineering,

20(6), pages 476-493, 1994.

[9] S.R. Chidamber and C.F. Kemerer. Towards a Metrics Suite for

Object Oriented Design. In Proceedings of the Conference on Object-

Oriented Programming Systems Languages and Applications. pages

197-211, 1991.

[10] P. Coad and E. Yourdon. Object Oriented Analysis. Yourdon

Press, Upper Saddle River, NJ, USA, 1991. 233 pages.

[11] J. Eder, G. Kappel, and M. Schrefl. Coupling and cohesion in

object-oriented systems. Technical Report 2/93, Department of

Information Systems, University of Linz, Linz, Austria, 1993.

[12] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron and A. Mockus.

Does code decay? Assessing the evidence from change management

data. In IEEE Transactions on Software Engineering, 27(1),

pages 1-12, 2001.

[13] T. Eisenbarth, R. Koschke, and D. Simon. Locating features in

source code. In IEEE Transactions on Software Engineering, 29(3),

pages 210-224, 2003.

[14] Eisenberg and K. De Volder. Dynamic feature traces: finding

features in unfamiliar code. In Proceedings of the 21st International

Conference on Software Engineering, pages 337-346, 2005.

[15] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design

Patterns – Elements of Reusable Object-Oriented Software. Addison-

Wesley Longman Inc., Reading, MA, 1995.

 72

[16] O. Giroux and M. P. Robillard. Detecting Increases in Feature

Coupling using Regression Tests. In Proceedings of the 14th ACM

SIGSOFT International Symposium on the Foundations of Software

Engineering, pages 163-174, 2006.

[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,

J.-M. Loingtier, and J. Irwin. Aspect-Oriented programming. In

Proceedings of the European Conference on Object-Oriented

Programming, pages 220-242, 1997.

[18] J. Law and G. Rothermel, Whole program path-based dynamic

impact analysis. In Proceedings of the 25th International Conference on

Software Engineering, pages 308, 2003.

[19] D. R. Licata, C. D. Harris and S. Krishnamurthi. The feature

signatures of evolving programs. In Proceedings of the 18th IEEE

International Conference on Automated Software Engineering,

pages 281-285, 2003.

[20] K. Mens and A. Kellens. Towards a framework for testing

structural source-code regularities. In Proceedings of the 21st IEEE

International Conference on Software Maintenance, pages 679-682,

2005.

[21] A. Mitchell and J.F. Power. A study of the influence of coverage on

the relationship between static and dynamic coupling metrics. In

Science of Computer Programming, 59(1-2), pages 4-25, 2006.

[22] A. Mitchell and J.F. Power. Using Object-Level RunTime Metrics

to Study Coupling Between Objects. In Proceedings of the 2005 ACM

Symposium on Applied Computing, pages 1456-1462, 2005.

 73

[23] G.C. Murphy, D. Notkin, and K. J. Sullivan. “Software Reflexion

Models: Bridging the Gap Between Design and Implementation.” In

IEEE Transactions on Software Engineering, 27(4), pages 364-380,

2001.

[24] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N degrees

of separation: multi-dimensional separation of concerns. In

Proceedings of the 21st International Conference on Software

Engineering, pages 107-119, 1999.

[25] D. L. Parnas, On the criteria to be used in decomposing systems

into modules. In Communications of the ACM, 15(12) pages 1053-

1058, 1972.

[26] D. L. Parnas. Software aging. In Proceedings of the 16th

International Conference on Software Engineering, pages 279-287,

1994.

[27] M. Sefika, A. Sane, R.H. Campbell. Monitoring compliance of a

software system with its high-level design models. In Proceedings of

the 18th International Conference on Software Engineering, pages 387-

396, 1996.

[28] G. Snelting. Concept analysis—a new framework for program

understanding. In Proceedings of the 1998 ACM SIGPLAN-SIGSOFT

Workshop on Program Analysis for Software Tools and Engineering,

pages 1-10, 1998.

[29] W.P. Stevens, G.J. Meyers and L.L. Constantine. Structured

Design. In IBM Systems Journal, 13(2), pages 115-139, 1974.

 74

[30] M. M. Tikir and J. K. Hollingsworth. Efficient instrumentation for

code coverage testing. In Proceedings of the 2002 International

Symposium on Software Testing and Analysis, pages 86-96, 2002.

[31] N. Wilde, J. A. Gomez, T. Gust, and D. Strasburg. Locating user

functionality in old code. In Proceedings of the Conference on Software

Maintenance, pages 200-205, 1992.

[32] N. Wilde and M.C. Scully. Software Reconnaissance: mapping

program features to code. In Journal of Software Maintenance:

Research and Practice, 7(1), pages 49-62, 1995.

[33] F.G. Wilkie and B.A. Kitchenham. Coupling measures and change

ripples in C++ application software. In The Journal of Systems and

Software, 52(2), pages 157-164, 2000.

 75

Appendix A
Exercises and Covers Aggregation implementation

A.1 Dependencies not included here

This code depends on one support library developed within NVIDIA, and many libraries that are either

standardized (ISO+IEC-14882/STL) or are available in the public domain (www.boost.org)(www.zlib.net).

Of those libraries that are freely available, the following are required:

• STL <iostream>
• STL <fstream>
• STL <algorithm>
• STL <numeric>
• STL <memory>
• STL <string>
• STL <map>
• STL <set>
• Boost File System
• Zlib

Finally, for the sake of understanding the implementation code, the NVIDIA library can be assumed to
be a standard iostream-compatible implementation of binary streams exposing the following prototypes:

namespace stdext {

 class binary_ostream;
 class binary_ofstream; //: public binary_ostream

 76

 class binary_istream;
 class binary_ifstream; //: public binary_istream

 template < class Type >
 inline binary_ostream & operator<<(binary_ostream & s , Type const & b);

 template < class Type >
 inline binary_istream & operator>>(binary_istream & s , Type & b);
}

A.2 Aggregate.hpp
#ifndef NVTESTHUB_AGGREGATE_HPP_INCLUDED
#define NVTESTHUB_AGGREGATE_HPP_INCLUDED

namespace NvTestHub {

 typedef bool Value;

 typedef std::string Name;
 typedef std::set< std::string > Names;

 struct NameHandle {
 Name const& operator*() const {
 return *m_name;
 }
 Name const* operator->() const {
 return m_name;
 }
 bool operator<(NameHandle const& other) const {
 return m_name < other.m_name;
 }
 NameHandle & operator=(NameHandle const& other) {
 m_name = other.m_name;
 return *this;
 }
 NameHandle() : m_name(NULL) {

 77

 }
 protected :
 NameHandle(Name const* name) : m_name(name) {
 }
 friend struct Aggregate;
 private :
 Name const* m_name;
 friend inline stdext::binary_ostream & output(stdext::binary_ostream & s ,
NameHandle const& b) {
 return output(s , b.m_name);
 }
 friend inline stdext::binary_istream & input(stdext::binary_istream & s , NameHandle
& b) {
 return input(s , b.m_name);
 }
 };

 typedef std::pair< NameHandle , Value > Atom;
 typedef std::deque< Atom > AtomGroup;

 typedef std::string Key;
 typedef std::set< std::string > Keys;

 struct KeyHandle {
 Key const& operator*() const {
 return *m_key;
 }
 Key const* operator->() const {
 return m_key;
 }
 bool operator<(KeyHandle const& other) const {
 return m_key < other.m_key;
 }
 KeyHandle & operator=(KeyHandle const& other) {
 m_key = other.m_key;
 return *this;
 }
 KeyHandle() : m_key(NULL) {
 }

 78

 protected :
 KeyHandle(Key const* key) : m_key(key) {
 }
 friend struct Aggregate;
 private :
 Key const* m_key;
 friend inline stdext::binary_ostream & output(stdext::binary_ostream & s ,
 KeyHandle const& b) {
 return output(s , b.m_key);
 }
 friend inline stdext::binary_istream & input(stdext::binary_istream & s ,
 KeyHandle & b) {
 return input(s , b.m_key);
 }
 };

 typedef std::set< KeyHandle > KeySet;
 typedef std::set< KeySet > KeySets;

 struct KeySetHandle {
 KeySet const& operator*() const {
 return *m_keySet;
 }
 KeySet const* operator->() const {
 return m_keySet;
 }
 bool operator<(KeySetHandle const& other) const {
 return m_keySet < other.m_keySet;
 }
 KeySetHandle & operator=(KeySetHandle const& other) {
 m_keySet = other.m_keySet;
 return *this;
 }
 KeySetHandle() : m_keySet(NULL) {
 }
 protected :
 KeySetHandle(KeySet const* keySet) : m_keySet(keySet) {
 }
 friend struct Aggregate;

 79

 private :
 KeySet const* m_keySet;
 friend inline stdext::binary_ostream & output(stdext::binary_ostream & s ,
 KeySetHandle const& b){
 return output(s , b.m_keySet);
 }
 friend inline stdext::binary_istream & input(stdext::binary_istream & s ,
 KeySetHandle & b) {
 return input(s , b.m_keySet);
 }
 };

 typedef std::map< NameHandle , KeySetHandle > Coverage;

 struct Aggregate {

 typedef ::boost::shared_ptr< Aggregate > Pointer;

 typedef std::map< ::boost::filesystem::path , Pointer > Map;

 static Map const& aggregates();
 static Aggregate::Pointer const& load(::boost::filesystem::path const&);

 KeyHandle exchangeKey(Key const&);

 NameHandle exchangeName(Name const&);

 bool getValue(KeyHandle , NameHandle) const;
 void setValue(KeyHandle , NameHandle , bool);

 void merge(KeyHandle key , AtomGroup const& group);
 AtomGroup extractKey(KeyHandle , bool setNames = true) const;
 void erase(KeyHandle);

 KeySet const& extractName(NameHandle) const;

 Keys const& keys() const {
 return m_keys;
 }

 80

 Names const& names() const {
 return m_names;
 }
 KeySets const& keySets() const {
 return m_keySets;
 }

 void compressKeySets();

 void commit() const;

 private :
 static Map & aggregates_internal();

 void commitKeySets();

 Aggregate(::boost::filesystem::path const&);

 KeySetHandle exchangeKeySet(KeySet const&);

 ::boost::filesystem::path m_path;

 bool m_changed;

 Keys m_keys;
 Names m_names;
 KeySets m_keySets;

 std::map< NameHandle , KeySet > m_temporaryKeySets;
 Coverage m_coverage;
 };

}

#endif //NVTESTHUB_AGGREGATE_HPP_INCLUDED

 81

A.2 Aggregate.cpp
#include "stdafx.hpp"
#include "Aggregate.hpp"

namespace NvTestHub {

 Aggregate::Map const& Aggregate::aggregates() {
 return aggregates_internal();
 }

 Aggregate::Map & Aggregate::aggregates_internal() {
 static Map aggregates;
 return aggregates;
 }

 Aggregate::Pointer const& Aggregate::load(::boost::filesystem::path const& path) {

 Pointer & aggregate = aggregates_internal()[path];
 if(aggregate == NULL)
 aggregate = Pointer(new Aggregate(path));

 return aggregate;
 }

 typedef std::map< KeyHandle , Key > RemapKeys;
 typedef std::map< NameHandle , Name > RemapNames;
 typedef std::map< KeySetHandle , KeySet > RemapKeySets;

 Aggregate::Aggregate(::boost::filesystem::path const& path) : m_path(path) ,
 m_changed(false) {

 if(!::boost::filesystem::exists(m_path)) {
 std::cerr << "File not found [" << m_path.string()
 << "], will create a new database.\n";
 return;

 82

 }

 RemapKeys remapKeys;
 RemapNames remapNames;
 RemapKeySets remapKeySets;

 stdext::binary_ifstream f(m_path.string().c_str() , 9);
 f >> remapKeys;
 f >> remapNames;
 f >> remapKeySets;
 f >> m_coverage;

 std::map< KeySetHandle , KeySet > remappedRemapKeySets;
 for(RemapKeySets::const_iterator it = remapKeySets.begin();
 it != remapKeySets.end(); ++it) {
 KeySet keySet;
 for(KeySet::const_iterator kit = it->second.begin();
 kit != it->second.end(); ++kit)
 keySet.insert(exchangeKey(remapKeys[*kit]));
 remappedRemapKeySets[it->first] = keySet;
 }

 Coverage remappedCoverage;
 for(Coverage::const_iterator it = m_coverage.begin();
 it != m_coverage.end(); ++it)
 remappedCoverage.insert(std::make_pair(
 exchangeName(remapNames[it->first]) ,
 exchangeKeySet(remappedRemapKeySets[it->second])));

 swap(remappedCoverage , m_coverage);
 }

 void Aggregate::commit() const {

 if(!m_changed)
 return;

 RemapKeys remapKeys;
 RemapNames remapNames;

 83

 RemapKeySets remapKeySets;
 {
 size_t i = 0;
 for(Keys::const_iterator it = m_keys.begin(); it != m_keys.end(); ++it , ++i)
 remapKeys[&(*it)] = *it;
 }
 {
 size_t i = 0;
 for(Names::const_iterator it = m_names.begin();
 it != m_names.end(); ++it , ++i)
 remapNames[&(*it)] = *it;
 }
 {
 size_t i = 0;
 for(KeySets::const_iterator it = m_keySets.begin();
 it != m_keySets.end(); ++it , ++i)
 remapKeySets[&(*it)] = *it;
 }

 stdext::binary_ofstream f(m_path.string().c_str() , 9);
 f << remapKeys;
 f << remapNames;
 f << remapKeySets;
 f << m_coverage;
 }

 KeyHandle Aggregate::exchangeKey(Key const& key) {
 Keys::iterator it = m_keys.find(key);
 if(it == m_keys.end())
 it = m_keys.insert(it , key);
 return &(*it);
 }

 NameHandle Aggregate::exchangeName(Name const& name) {
 Names::iterator it = m_names.find(name);
 if(it == m_names.end())
 it = m_names.insert(it , name);
 return &(*it);
 }

 84

 KeySetHandle Aggregate::exchangeKeySet(KeySet const& keySet) {
 KeySets::iterator it = m_keySets.find(keySet);
 if(it == m_keySets.end())
 it = m_keySets.insert(it , keySet);
 return &(*it);
 }

 bool Aggregate::getValue(KeyHandle key , NameHandle name) const {

 //Get the name in the coverage database and its associated keyset
 Coverage::const_iterator it = m_coverage.find(name);
 if(it == m_coverage.end())
 return false;

 //If name exists then coverage value is simply the existence of the key in its set
 return it->second->find(key) != it->second->end();
 }

 void Aggregate::setValue(KeyHandle key , NameHandle name , bool value) {

 //Get the working set for this name
 std::map< NameHandle,KeySet >::iterator temporary = m_temporaryKeySets.find(name);
 if(temporary == m_temporaryKeySets.end()) {

 //Get the name in the coverage database and its associated keyset
 Coverage::iterator it = m_coverage.find(name);
 if(it == m_coverage.end())
 it = m_coverage.insert(it , std::make_pair(name ,
 exchangeKeySet(KeySet())));

 //Create a new working set, copied from the original set
 temporary = m_temporaryKeySets.insert(temporary , std::make_pair(it->first ,
 *it->second));

 //Assign the working set as this name's set
 it->second = &(temporary->second);
 }

 85

 //Modify the working set
 if(value)
 temporary->second.insert(key);
 else
 temporary->second.erase(key);

 m_changed = true;
 }

 void Aggregate::merge(KeyHandle key , AtomGroup const& group) {

 //Simply merge every entry into the database
 for(size_t i = 0; i < group.size(); ++i)
 setValue(key , group[i].first , group[i].second);
 }

 AtomGroup Aggregate::extractKey(KeyHandle key , bool setNames) const {

 AtomGroup g;
 for(Names::const_iterator it = m_names.begin(); it != m_names.end(); ++it) {
 Coverage::const_iterator cit = m_coverage.find(&(*it));
 if(cit == m_coverage.end())
 g.push_back(std::make_pair(setNames ? NameHandle(&(*it)) :
 NameHandle() , false));
 else
 g.push_back(std::make_pair(setNames ? NameHandle(&(*it)) :
 NameHandle() ,
 cit->second->find(key) != cit->second->end()));
 }
 return g;
 }

 void Aggregate::erase(KeyHandle key) {

 //First commit pending keyset changes
 commitKeySets();

 //Erase the key from all keysets that reference it
 while(1) {

 86

 bool erased = false;
 for(KeySets::iterator it = m_keySets.begin(); it != m_keySets.end(); ++it) {

 if(it->find(key) == it->end())
 continue;

 KeySet k = *it;
 k.erase(key);
 m_keySets.erase(it);
 m_keySets.insert(k);

 erased = true;
 break;
 }
 if(!erased)
 break;
 }

 //Erase the key from the key index
 m_keys.erase(*key);

 m_changed = true;
 }

 KeySet const& Aggregate::extractName(NameHandle name) const {
 static KeySet ks;
 Coverage::const_iterator cit = m_coverage.find(name);
 if(cit == m_coverage.end())
 return ks;
 return *cit->second;
 }

 void Aggregate::commitKeySets() {

 //Roll the temporary key sets into the main pool
 for(std::map< NameHandle,KeySet >::const_iterator it = m_temporaryKeySets.begin();
 it != m_temporaryKeySets.end(); ++it)
 m_coverage[it->first] = exchangeKeySet(it->second);

 87

 m_temporaryKeySets.clear();

 m_changed = true;
 }

 void Aggregate::compressKeySets() {

 //First commit pending keyset changes
 commitKeySets();

 KeySets keySets = m_keySets;
 for(Names::const_iterator it = m_names.begin(); it != m_names.end(); ++it) {
 Coverage::const_iterator cit = m_coverage.find(&(*it));
 if(cit == m_coverage.end())
 continue;
 keySets.erase(*cit->second);
 }
 for(KeySets::const_iterator it = keySets.begin(); it != keySets.end(); ++it)
 m_keySets.erase(*it);

 m_changed = true;
 }

}

