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Abstract

Pervasive context-aware software is an emerging kind of application. Smart personal digital as-

sistants and RFID-based location sensing software are two examples. Many of these systems register

parts of their context-aware logic in the middleware. On the other hand, most conventional testing

techniques do not consider such kind of application logic. This paper proposes a novel family of testing

criteria to measure the comprehensiveness of their test sets. It stems from context-aware data flow

information. Firstly, it studies the evolution of contexts, which are environmental information relevant

to an application program. It then proposes context-aware data flow associations and testing criteria.

Corresponding algorithms are given. It uses a prototype testing tool to conduct experimentation on an

RFID-based location sensing software running on top of context-aware middleware. The experimental

results show that our approach is applicable, effective, and promising.

1 Introduction

Radio Frequency Identification or RFID is widely considered as an enabling technology ranging from

Internet payment systems to supply chain management. For example, Wal-Mart 1 in USA, Metro 2 in
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Europe, and Hutchison Ports 3 in Asia are implementing their RFID solutions. “These companies were

attracted to RFID because it held out the potential of offering perfect supply chain visibility — the ability

to know the precise location of any product anywhere in the supply chain at any time.” 4 Because of the

emerging importance of RFID technology, the testing of their software applications is essential. 5 Since

precise location tracking of products (such as within an area of one square meter) is desirable and yet

unattainable [19], it is difficult to determine whether the imprecision is caused by a fault in the software,

hardware, or both. Moreover, although researchers [29] are tackling the test oracle problem for the software

part, little progress has been reported in the literature on software test adequacy, “a criterion that defines

what constitutes an adequate test” and one of the most important research problems in software testing [35].

In this paper, we shall focus on the study of the measurement problem in software test adequacy for

context-aware applications. We propose a novel family of context-aware data flow test adequacy measure-

ment criteria for context-aware middleware-centric applications. We apply and evaluate our proposal in an

RFID-based location sensing program on a context-aware middleware [32, 33] with a published estimation

algorithm [19]. The experimentation shows that our approach is very promising.

Pervasive computing [6, 17, 21, 29, 34] has two core properties, namely context awareness and ad hoc

communication. The context-aware property enables an application to acquire and reason about environmen-

tal attributes known as contexts. Based on the contextual information, the application can react impromptu

to changes in the environment. The ad hoc communication property facilitates mobile interactions among

components of the application with respect to the changing contexts. For example, a “polite” phone for car

drivers by Motorola Labs will transfer an ongoing call to the speaker phone when entering a car park, route

calls to a voice mailbox in complex driving situations, and call a pre-defined emergence number if an airbag

has been deployed 6.

Many existing proposals for pervasive computing, such as [6, 34], are middleware-centric. One of the

major reasons is that the middleware-centric multi-tier architecture favors the development and configuration

of pervasive computing applications in terms of the separation of concern in a highly dynamic and compo-

sitional environment, in which the middleware transparently acquires, disseminates, and infers the contexts

on behalf of the applications over ad hoc networks. For the purpose of brevity, we shall limit ourselves

in this paper to the study of context-aware middleware-centric systems. We shall refer to a context-aware

middleware-centric program simply as a CM-centric program.

A component of an application hence interacts with the middleware or other components of the ap-

plication via a clear, loosely coupled and context-aware interface residing in the middleware. Although

context-aware middleware can handle the ad hoc communication property, the other core property — the

context-aware property — requires the collaboration of application components; otherwise, an application

may not be context-aware. In the rest of the paper, an application function directly invoked by a middleware

will be referred to as an adaptive action.

Because of such a common design in context-aware systems, the program logic of a CM-centric program

normally spans over the application tier and the middleware tier. Firstly, a context-aware interface at the

middleware tier may invoke an adaptive action whenever the middleware detects the interesting contexts

registered in the interfaces by the CM-centric program. Secondly, the invoked adaptive action would serve

as an entry of the CM-centric program at the application tier to react to the interesting contexts. Thirdly, other

3 Source: M. Roberti, “RFID Container Seals Deliver Security, Value”, RFID Journal (October 31, 2005), available at

http://www.rfidjournal.com/article/articleview/1965/1/1/.
4 Source: “What is RFID”, RFID Journal, available at http://www.rfidjournal.com/article/articleview/1339/1/129/.
5 See, for example, the scope of Sun’s RFID Test Center in Dallas, Texas available at

http://www.sun.com/software/solutions/rfid/testcenter/.
6 Source: R. M. Gardner, “Technology solutions toward improved driver focus”, Panel on Technology and Distracted Driving,

International Conference on Distracted Driving, Toronto, Canada, October 2–5, 2005.

2



actions of the CM-centric program will utilize the results of the adaptive actions to provide tailored services

to its users. Since black box testing techniques do not consider the structural organization of program units

in a context-aware system with middleware support, they are intuitively less effective than their white box

counterparts in detecting faults specific to context-aware systems designed by the above approach. We shall,

therefore, restrict ourselves in this paper to white-box testing techniques.

The structural organization of program logic poses challenges to white-box testing of CM-centric pro-

grams, since it would be inadequate to consider the program structure of the components in the application

tier alone. The program logic resided in the context-aware interface would be overlooked, and similarly

for the interactions between the middleware and the CM-centric program. Our previous work [29] has

succinctly shown that conventional structural testing techniques are not effective to detect faults for context-

aware software for this reason. Thus, it is desirable to enhance existing test adequacy criteria for the purpose.

The main contributions of the paper are as follows: (i) This paper is among the earliest ones: To our

best knowledge, there is no published work in investigating the test adequacy problem for pervasive context-

aware middleware-centric programs. (ii) New types of data flow associations are formalized to capture the

context-aware dependencies specific to pervasive CM-centric programs. (iii) A novel family of data flow

test adequacy criteria to measure test set quality and corresponding algorithms are proposed accordingly.

(iv) The proposed family of adequacy criteria is evaluated on the Cabot platform, a pervasive context-aware

middleware system [32, 33]. Our prototype testing tool automatically generates adequacy test sets according

to our family of adequacy criteria. Evaluation of the fault-detection rates of these test sets indicates that our

approach is effective and promising.

The rest of the paper is organized as follows: Sections 2 and 3 outline the technical preliminaries

and testing challenges of CM-centric programs, respectively. Next, Section 4 will present our novel data

flow associations followed by our testing criteria to measure the test sets comprehensiveness in Section 5.

Section 6 evaluates our proposal by an RFID-based experimentation. This is followed by discussions, a

review of related work, and the conclusion in Sections 7, 8, and 9.

2 CM-Centric Programs

2.1 Fundamentals

In this section, we formally explain the fundamentals on which our testing proposal relies. We formalize our

model based on common designs in contemporary CM-centric projects and technologies [6, 17, 21, 29, 34].

A context of an entity characterizes its environmental attributes. An entity can be of diverse granularities

such as a composite component, an object, or a pattern. Without loss of generality, we assume that C denotes

the set of all context variables and Vc denotes the domain of values applicable to the context variable c. The

commonly agreed baseline of a context is a key-value pair [7]. Its formal definition is as follows:

Definition 1 (Context) A context is an ordered couple 〈c, v〉, where c is a context variable and v is a value

in Vc.

The middleware continually detects all the context changes by assigning an instance value v to a context

variable c [33]. Such detections and instantiations are transparent to applications atop the middleware.

Since every context variable is unique in a CM-centric program, any occurrence of a context variable in the

program will consistently give the same context evolution. Moreover, as we shall show later, the key-value

model is sufficient to capture the interesting data flow information among contexts. To maintain generality,

therefore, we shall refrain from using a more specific model.

Next, we formalize the notion of context-aware interaction between a middleware and an application. It

is a common design that the middleware tier contains a context reasoning component, whose applications
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Figure 1: Luminance control circuit example

can define a set of rules, known as situations, to describe the interesting conditions over context variables [6,

7, 21, 32, 34]. When an interesting condition is satisfied for a particular combination of values of context

variables, an adaptive action in the application will be invoked mechanically by the middleware. We assume

that the middleware uses the standard event-condition-action (ECA) approach (as in [1, 18], for instance)

to invoke the adaptive actions. In the rest of the paper, we refer to the above process as a context-aware

adaptation.

Based on this understanding of context-aware adaptation, we formulate the concept of a situation as

follows:

Definition 2 (Situation) A situation is a triple 〈C, p, Act〉, where C is a set of context variables that the

situation subscribes, p is a triggering condition whose variables are in C, and Act is an adaptive action to

be invoked by the middleware if and only if p is evaluated to be true, denoted by p(C) ≡ true. A situation is

said to be satisfied if p(C) ≡ true; otherwise it is said to be outstanding.

To enable context awareness, a context reasoning component at the middleware will receive the updates

of the subscribed context variables from the context detection component [32, 33, 34]. When a situation is

satisfied, the middleware will invoke an adaptive action. We assume that such a mechanism is spontaneous.

We further assume an interleaving semantics for concurrent executions of multiple actions, as in the case of

RCSM [34] and the Cabot middleware [32, 33]. Without loss of generality, each situation will be bound to

at most one adaptive action, as in Definition 2. 7 Before we introduce the motivation example, we formally

define CM-centric programs as follows:

Definition 3 (CM-Centric Programs) A Context-Aware Middleware-Centric Program, or CM-centric

program for short, is a triple 〈C, U, S〉, where C is a set of context variables, U is a set of adaptive actions,

and S is a set of situations such that, for every situation s = 〈Cs, p, Act〉 ∈ S, Act ∈U and Cs ⊆C.

When a standard program is seen as a set of program units, a CM-centric program extends it by taking

also its context-aware interfaces into account. Hence, we assume that all interactions of a CM-centric

program with its environment are made through the context-aware interfaces.

2.2 A Motivation Example

In this section, we outline a fragment of a sample CM-centric program, which is a smart streetlight applica-

tion [29] implemented on the Cabot middleware platform, to be used as a running example. The application

scenario is as follows:

Consider a system of smart streetlights that collaborate to illuminate a city zone. It includes

two features. (i) Every visitor can personalize their favorite level of illumination irrespectively

7 A situation involving multiple actions can be considered as a set of situations, each of which is associated with one adaptive

action.
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of their location within the zone. (ii) At the same time, the system maximizes energy savings

by dimming unnecessary streetlights. When there is no visitor nearby, a streetlight will turn

itself off. When a visitor walks toward a particular streetlight, the light detects the visitor and

brightens itself. A streetlight nearby may dim itself if the closest light has provided sufficient

illumination. Another streetlight may not dim, however, if there are other visitors requiring

illumination. Because of the interference from other light sources and the presence of other

visitors nearby, the resulting illumination for the visitor may differ from the favorite level.

Finally, the system assumes that the effective distance for any streetlight to serve a visitor is

at most 5 meters.

The basic feature of the smart streetlight application is to adjust the power supply of a streetlight. It is

supported by a luminance control circuit as illustrated in Figure 1. The current I of the circuit can be adjusted

and computed according to Ohm’s Law I = Voc/(r + R) from the open-circuit voltage Voc as well as the

fixed resistance r and the variable resistance R of the streetlight. The output power of the streetlight can then

be computed using the formula P = kI2r, where k is a constant determined by the physical characteristics of

the streetlight.

Apart from adjusting the power, the application also implements a few context-aware adaptive actions,

which depend on situations. Let us concentrate on three particular situations: when the system detects a

visitor nearby (svisitor nearby), when the illuminance is lower than the favorite level (slow illuminance),

and when the illuminance is higher than the favorite level (shigh illuminance). Their implementations are

shown in Tables 1(c), 1(d), and 1(e), respectively, in a tabular format for the ease of understanding.

Take the situation low illuminance in Table 1(d) as an example. The middleware defines slow illuminance
as a triple 〈Clow, plow, incCurrent〉. Clow contains all the context variables that will be referenced or

updated in the triggering condition and/or the adaptive action. The set of context variables used in plow,

namely, {E f , Ev, d}, is a subset of Clow. Whenever the values of E f , Ev, and d satisfy plow, the middleware

will invoke the adaptive action incCurrent. The situations svisitor nearby and shigh illuminance are

defined in a similar way in Tables 1(c) and 1(e), respectively.

Thus, the set of situations Sstreetlight for the application is {slow illuminance, shigh illuminance,

svisitor nearby}. Similarly, the set of context variables used in the application scenario, as listed in

Table 1(a), is given by Cstreetlight = {Voc, I, Imax, R, Ev, E f , d}. The set of adaptive actions Ustreetlight is

{incCurrent, decCurrent, computIllum}. In this way, the CM-centric program is 〈Cstreetlight, Ustreetlight,

Sstreetlight〉. Cabot distinguishes a context variable, say Imax, from the local variable in an adaptive action

by adding a prefix “$” to the latter, as in $Imax.

The system works as follows:

(1) When a streetlight detects a visitor within a distance of 5 meters, as specified as the triggering condition

in Table 1(c), the situation svisitor nearby is satisfied. The corresponding adaptive action computIllum

in Table 1(c) will be invoked to compute the following in sequence: (i) the current of the circuit for the

given situation based on Ohm’s Law, (ii) the output power of the streetlight, and (iii) the illuminance of

the incident light at the visitor’s location.

(2) Similarly, the situations slow illuminance and shigh illuminance will both determine whether the ac-

tual illuminance satisfies the visitor’s favorite level. A satisfaction of slow illuminance means insuffi-

cient illuminance; it causes the middleware to invoke the adaptive action incCurrent, which increases

the current by reducing the adjustable resistance.

(3) In the same way, a satisfaction of shigh illuminance causes the middleware to invoke decCurrent,

which leads to the opposite effect. The adjustment will end if the corresponding triggering condition
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is satisfied. Because of the instability of location sensing [19, 33], however, the sensed distance d may

vary even if the locations of both the visitor and the streetlight are fixed. Thus, the context values of Ev,

R, I, and P may oscillate.

3 Testing Challenges

In this section, we report on our study in identifying three kinds of obstacle that hinder the effective

application of standard data flow testing criteria [35] to CM-centric programs because of context-awareness.

Context-Aware Faults: Our previous study [29] uses a program fragment to show that conventional

data flow adequacy criteria are inadequate to expose a context-aware-related fault in CM-centric programs,

resulting in the overlooking of a context-aware subcondition. In brief, the context-aware condition with a

missing subcondition may fail to invoke an adaptive action and may, in turn, force a test case to miss out a

def-use association. As a result, a superfluous test case may need to be added to a “non-redundant test suite

with respect to a specific data flow adequacy criterion.

Environmental Interplay: CM-centric programs use sensors, which may be physical or software-

based, to interact with the dynamic surroundings and capture raw data for contexts. For instance, in the

smart streetlight example, the context variable d, which denotes the distance of a visitor from a streetlight, is

collected via the sensed location of the visitor. The sensed location is in turn computed from certain raw data

captured by the location sensing subsystem. In the RFID case, the raw context is the signal strength [19]

received from different RFID tags attached to the visitor. The possible walking trails of the visitor are,

however, unpredictable. They are not predefined in programming logic. In addition, different sensors

may oversee the same surrounding environment. The surrounding environment may change as a result

of the invoked adaptive actions, such as incCurrent( ) to brighten a streetlight. Some raw data of contexts

are, therefore, correlated in an unforeseeable manner. As a result, an adaptive action may invoke follow-

up adaptive actions through their interactions with the environment. The conventional def-use association

model does not cover this aspect.

Context-Aware Control Flow: A context-aware middleware triggers an adaptive action when a sit-

uation is satisfied. It involves a situation-related control flow relationship between the middleware and

the program units. Although it is clearly the responsibility of the middleware that invokes the adaptive

action, it is hard to identify the exact cause of the invocation, such as specific program statements or

specific sensor signals that trigger a change of contexts resulting in the situation being satisfied. This is

best illustrated by an example. Consider a scenario where a visitor walks near a smart streetlight. The

favorite level of illuminance E f and the distance d are continuously sensed by the middleware. At the same

time, computIllum is continuously invoked to compute the illuminance Ev at the visitor’s location. As long

as their values satisfy the triggering condition (E f −Ev > ε)∧ (d ≤ 5), incCurrent will be invoked by the

middleware. It is very difficult to enumerate all possible control flow traces for the invocation of an action

and to compute the full set of traditional data flow associations. As a tradeoff, our approach captures def-use

associations between pairwise invoked adaptive actions. The relevant criterion is defined in Section 5. The

evaluation in Section 6 indicates that this approach is still very effective.

4 Data Flow Associations

4.1 Conventional Def-Use Associations

The terminology of our proposed data flow criteria closely resembles that of conventional approaches in [11,

14, 22]. We shall first summarize the latter in this section. We model a standard program in an application as
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Table 1: Excerpts of program details for streetlight example

(a) Contexts used in sample application:

Context Description

Voc voltage of open circuit

I current

Imax maximum current allowed

R adjustable resistance

Ev illuminance of incident light at visitor’s location

E f visitor’s favorite level of illuminance

d distance between visitor and streetlight

(b) Constants used in sample application:

Constant Description

ε maximum tolerance between Ev and E f

k physical constant for output power

r fixed resistance of streetlight

Rmax upper bound of adjustable resistance

(c) Code fragment for situation visitor nearby:

Situation visitor nearby = 〈Cin, pin, computIllum〉
Contexts Cin = {d,Voc,R, I, Imax,Ev}
Triggering condition pin ≡ (d ≤ 5)
Adaptive action computIllum {

$Voc = Voc;

$R = R;

I = $Voc/(r +$R);
$P = k ∗$I ∗$I ∗ r;

$d = d;

Ev = $P/($d ∗$d);
}

(d) Code fragment for situation low illuminance:

Situation low illuminance = 〈Clow, plow, incCurrent〉
Contexts Clow = {E f ,Ev,d, I, Imax,R}
Triggering condition plow ≡ (E f −Ev > ε)∧ (d ≤ 5)
Adaptive action incCurrent {

$I = I;

$Imax = Imax;

if ($I < $Imax) & (R > 0)
R = R−1;

}

(e) Code fragment for situation high illuminance:

Situation high illuminance = 〈Chigh, phigh,decCurrent〉

Contexts Chigh = {E f ,Ev,d,R}

Triggering condition phigh ≡ (Ev −E f > ε)∧ (d ≤ 5)

Adaptive action decCurrent {
if (R < Rmax)

R = R+1;

}
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Figure 2: Control flow graph of program unit incCurrent

n0: entry


n1: $I = I


n2: $I_max = I_max


n3: ($I < $I_max) & (R > 0)


n4: R = R - 1


n5: exit


a control flow graph (CFG) G = (N,E), where N is a set of nodes and E is a set of edges. For instance, the

CFG of the program unit incCurrent (in Table 1(d)) is shown in Figure 2. We assume that every CFG starts

with a unique entry node. A complete path is a path in the CFG starting from the entry node and ending

at an exit node [11]. The storage of the value to a variable v, such as the occurrence of v on the left-hand

side of an assignment statement, is a definition (or def ) of v. A usage (or use) of a variable v refers to the

fetching of a value of v, such as an occurrence of v on the right-hand side of an assignment statement or in

a predicate of a statement [14].

A sub-path 〈ni, . . . , n j〉 in a CFG is said to be definition-clear with respect to the variable x when none

of ni, . . . , n j defines or undefines x [11]. A def-use association is defined as a triple 〈x, nd , nu〉 such that the

variable x is defined at node nd and used at node nu, and there is a definition-clear sub-path with respect to x

from nd to nu, exclusively [11]. For the ease of presentation, we define a predicate def clear(〈x, nd , nu〉) to

be true if and only if 〈x, nd , nu〉 is a def-use association.

A complete path πx is said to cover a def-use association 〈x, nd , nu〉 if a sub-path of πx from node nd to

node nu, exclusively, is a definition-clear path with respect to x [11]. Thus, if any of the definitions can reach

a use in a CFG from the entry node of CFG via a def clear path, a def-use association is identified. The

set of all reaching definitions at node n in CFGi is denoted by RDi(n) The techniques and algorithms for

computing reaching definitions have been studied extensively in the literature [12, 13]. We shall not repeat

them in this technical report.

4.2 Context-Aware Definitions and Uses

For a standard program, the conventional def-use associations presented in Section 4.1 aim at relating a

definition of a variable to a use of the variable via a definition-clear sub-path. A CM-centric program

extends a standard program with a set of context variables and a set of situations. The data flow associations

need to be extended accordingly.

A context variable is a special type of variable. It serves as an ordinary variable in a standard program

and, at the same time, is used for exchanging contexts with the pervasive environment. In this section, we

examine the definitions and usages of variables and, in particular, context variables.
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4.2.1 Definitions of Variables

According to existing proposals of context-aware systems [34, 32], a context variable can be defined and

updated via either an assignment statement or sensing the environmental contexts. They are described as

follows:

Type 1: An update via an assignment statement refers to the occurrence of a variable in a statement

that stores the value of the variable. It coincides with the definition of a variable in the conventional def-use

association [11]. Consider the statement “n12 : Ev = $P/($d ∗ $d)” of the program unit computIllum in

Table 1(c), where Ev is a context variable. The occurrence of Ev is said to be a definition of the context

variable Ev.

Type 2: An environmental update, or an update by sensing environmental contexts, is achieved

through the environmental context acquisition module of the context-aware middleware. It is analogous

to updating the content of a memory location (or a variable) of a program through an external means. It is

not attained by an explicit programming construct in a program unit, such as an assignment operator. The

“definition” of a variable in conventional def-use association cannot capture this type of update.

We further observe that every context variable is unique in a CM-centric program. Hence, every

occurrence of such a variable anywhere in the program refers to the same value. When an update of a

context variable v is made, any reference to v in any statement will immediately be changed. We therefore

extend the definition of a variable for conventional def-use associations to take the above observations on

context variables into account as follows:

Definition 4 (Definitions (def) of Variables) A definition or def of a variable v is an occurrence of v (i) in

a statement where a value is assigned to v, or (ii) in a statement where v is a context variable that can be

instantiated by the sensing environmental contexts.

For simplicity, we refer to a definition of a context variable c as a context definition, denoted by defc. We

further use Defc to represent the set of all the context definitions of the context variable c in the program.

4.2.2 Usages of Variables

We continue to examine the usages of variables in a CM-centric program. For ordinary variables, the

conventional definition of usage of a variable strictly applies. We do not observe any difference. For context

variables, a usage occurrence of a context variable can occur in either a program unit or a situation. We

call them action use and situation use, respectively. They correspond to the only two types of position for

developers to code the reference of a variable in a CM-centric program. They are further elaborated as

follows:

An action use coincides with the conventional definition of a use of a variable. It refers to an occurrence

of a context variable in a statement that fetches the value of the variable, such as on the right-hand side of

an assignment statement.

A situation use is the usage of a context variable in the triggering condition of a situation. For instance,

in the situation slow illuminance in Table 1(d), all the occurrences of the context variables E f , Ev, and d

are situation use. Note that a situation use can be recorded only if the corresponding situation is satisfied;

otherwise the usage is not observable.

Definition 5 (Usages (or Uses) of Variables) A usage or use of a variable v is an occurrence of v (i) in a

statement that fetches the value of v (known as action use), or (ii) in the triggering condition of a situation

if v is a context variable (known as situation use).

We denote a situation use of a context variable c by susec and an action use by ausec. The set of uses,

the set of situation uses, and the set of action uses of c are denoted by Usec, SUsec, and AUsec, respectively.
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4.2.3 Update-Uses of Variables

It is apparent from Definitions 4 and 5 that a context definition and a usage of the same context variable may

occur in the same statement. Consider, for instance, the context variable d in the code in Table 1(c). Suppose

the current value of d sensed by the middleware is d0, where d0 ≤ 5. Thus, the triggering condition is satisfied

and computIllum is invoked. Let us focus on the statement $d = d. Suppose there is an environmental

update of the variable d immediately before the execution of this statement. The value of the variable d

in the statement no longer depends on the previous value d0. Instead, it will depend on the environmental

update.

Such a scenario of an environmental update followed by a usage occurrence of the same variable is

possible if a context variable appears in the triggering condition of a situation, in a statement that fetches

the value of the variable, or in the predicate of a statement. As a result, an occurrence of an environmental

update can be determined from the source code by determining a usage occurrence of a context variable.

We refer to such an occurrence of the environmental update as an update-use occurrence and define it as

follows:

Definition 6 (Update-Use Occurrences of Variables) An update-use occurrence of a context variable c

is an occurrence containing a context definition defc and a context use usec of c, where defc refers to the

instantiation of c due to the sensing of environmental contexts.

For simplicity, the set of context definitions of a context variable c involving update-use occurrences

will be denoted by UDefc. The set of other context definitions of c will be denoted by ODefc. Thus, Defc =

UDefc ∪ ODefc, and UDefc ∩ ODefc = /0.

4.2.4 Context-Aware Flow Graph

We would like to adapt the concepts in data flow testing to test CM-centric programs. Based on the

observations in Sections 4.2.1 to 4.2.3, we define a Context-aware Flow Graph (CaFG) to describe the

control and data flow information in a CM-centric program. The procedure for constructing a CaFG as well

as its components for a CM-centric program 〈C, U, S〉 is as follows:

Step 1: Every program unit Act∈U is modeled as a CFG. 8 We denote the CFG as GAct = (NAct, EAct).
A sample CFG is shown in Figure 2.

Step 2: Each situation s = 〈Cs, p, Act〉 ∈ S is modeled as a CFG referred to as a situation graph and

denoted by Gs = (Ns, Es). It consists of the entry node, an exit node, a predicate node representing the

triggering condition p, and a node that follows the true branch of the predicate node and invokes the adaptive

action Act. A sample situation graph for the situation slow illuminance is shown in Figure 3.

Step 3: For every node n in a given CFG or situation graph that contains at least one update-use

occurrence, n is marked as an update-use node. We denote the set of all update-use nodes as NAct. If the

context definitions are represented at the node level, then Nuu =
S

c∈C UDefc. Each update-use node n∈Nuu
is the entry point to a subgraph called an update-use subgraph and denoted by Gn = (Nn, En).

The update-use subgraph consists of the entry node, an exit node, nodes that we shall call use nodes, and

phantom nodes. A sample update-use subgraph for the update-use node n2 of Figure 2 is shown in Figure 4.

A use node, depicted as a standard rectangle, is annotated with the original statement of the update-use

node but does not represent an update-use occurrence. For each update-use occurrence, a phantom node

representing an environmental update is introduced. A control flow edge, which we call a phantom control

flow, will connect the entry node via a phantom node to the corresponding use node. Another phantom

8 Other researchers model a standard program as a CFG [11, 22].
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Figure 3: Situation graph of slow illuminance

s0: entry


s1: (E_f - E_v > epsilon) & (d <= 5)


s2: incCurrent


s3: exit


control flow edge will directly connect the entry node to the use node. When entering the subgraph, one

may choose whether or not to visit a phantom node, that is, whether or not to have an environment update.

Step 4: We also add an edge from every node containing a context definition to the predicate note of the

corresponding situation graph of the context definition. We refer to this edge as a cross-boundary context-

aware data flow. We denote the set of such edges as Ecc. Examples of cross-boundary context-aware data

flows will be given in Section 4.3.2.

Now we can have the following definition of CaFG.

Definition 7 (Context-Aware Flow Graph) A context-aware flow graph (CaFG) with respect to a

CM-centric program 〈C, U, S〉 is a directed graph G = (N, E) such that

N =





[

Act∈U

NAct



∪

(

[

s∈S

Ns

)

∪

(

[

n∈Nuu

Nn

)

and

E =





[

Act∈U

EAct



∪

(

[

s∈S

Es

)

∪

(

[

n∈Nuu

En ∪Ecc

)

where Nuu is the set of all update-use nodes.

Figure 5 shows the CaFG of the streetlight application program. Note that situation graphs are created

for slow illuminance and svisitor nearby. Update-use subgraphs are also created for the update-use nodes

n2, n11, n16, s1, s5, and s9 involving the context variables E f , Voc, d, and Imax. Directed edges with hollow

arrows represent the invocation relationships among graphs.

4.3 Def-Use Associations for CM-Centric Programs

We are interested in determining the definition-usage relationships in a CM-centric program with a view to

conducting data flow testing. In this section, we discuss the data flow associations that we find to be special

to context variables in CM-centric programs. For ordinary variables, we adopt the conventional approach to

compute data flow associations (see Section 4.1).

Variables in a CM-centric program can appear in program units, in situations, or both. There are, by ex-

haustion, three types 9 of def-use association to link up a definition and a usage of a variable:

9 The type of def-use association such that the definition occurrence appears in a situation and the usage occurrence of the same

variable appears in a program unit is analogous to type (DU1), because definition occurrences appearing in situations can only be

update-use occurrences.
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Figure 4: Update-use subgraph of node n2 in Figure 5

$I_max = I_max


entry


$I_max = I_max


<environmental update>


I_max


exit

control flow


phantom control flow


phantom node


update-use node


Type (DU1): Both a definition occurrence and a usage occurrence of a variable appear in a situation.

Type (DU2): A definition occurrence of a variable appears in a program unit and a usage occurrence appears

in a situation. Type (DU3): Both occurrences are within program units. We elaborate on each of these types

below.

4.3.1 Def-Use Associations of Type (DU1)

We recall that the only way to update a context variable in a situation is through an environmental update,

and the only way to specify a reference of a context variable in a situation is via a usage occurrence of

the variable. Hence, type (DU1) refers to an update-use of a context variable c in a node ns followed by

a situation use of c in a node ne such that there is a definition-clear path with respect to c from ns to nd .

We note that every context variable in a CM-centric program is unique. An environmental update of c will

affect all occurrences of this variable, which should include its occurrence in node ne. The only possible

definition-clear path is, therefore, 〈ne, ne〉. Thus, the definition-usage association is 〈c, ne, ne〉, where ne

is a triggering condition of a situation. In Figure 3, for example, the def-use associations of type (DU1)

include: 〈E f , s1, s1〉 and 〈d, s1, s1〉. The corresponding situation graphs are included as components of the

CaFG in Figure 5. For the update-use subgraph of the predicate node s1, for instance, the above two def-use

associations are 〈E f , p13, p15〉 and 〈d, p14, p15〉, respectively.

4.3.2 Def-Use Associations of Type (DU2)

Type (DU2) refers to the case when a definition occurrence of a variable appears in a program unit and a

usage occurrence of the same variable appears in a situation. In this type of def-use association, the data

flow goes out of the boundary of the program unit in which the definition occurrence appears. We refer to

this kind of data flow as cross-boundary context-aware data flow, which was introduced in Section 4.2. As

adaptive actions are autonomously invoked by their respective situations, we cannot derive explicit control

dependencies between different program units. The cross-boundary context-aware data flow provides a

means for us to capture the def-use associations of variables that have definition and usage occurrences in

different program units.

In Figure 5, there are two cross-boundary context-aware data flow edges (n17, s1) and (n17, s5), which

indicate two def-use associations of this type, namely, 〈Ev, n17, s1〉 and 〈Ev, n17, s5〉.
We note that, for a def-use association involving a definition and a situation use of a variable c, the types

(DU1) and (DU2) correspond to the definitions of c by UDefc and ODefc, respectively. We combine the two

12



Figure 5: Context-aware flow graph of streetlight program

e1: entry


n1: $I = I


n2: $I_max = I_max


n3: ($I < $I_max) & (R > 0)


n4: R = R - 1


n5: exit


e2: entry


n6: $V_oc = V_oc


n7: $R = R


n12: E_v = $P / ($d * $d)


n11: $d = d


n10: $P = k * $I * $I * r


n9: $I = I


n8: I = $V_oc / (r + $R)


n13: exit


e3: entry


s1: (E_f - E_v > epsilon)


& (d <= 5)


s2: incCurrent


s3: exit


e4: entry


s4: d <= 5


s5: computIllum


s6: exit


control flow


cross-boundary context-


aware data flow


update-use node


incCurrent


CFG


computIllum


CFG


low_illuminance


situation graph


visitor_nearby


situation graph


types and define def-situ associations as follows:

Definition 8 (Def-Situ Associations) A def-situ association α for a context variable c is a triple 〈c, defc, susec〉
satisfying the following four conditions: (i) susec = 〈C, p, Act〉, (ii) c ∈ C, (iii) p(C) ≡ true, and

(iv) def clear(〈c, defc, susec〉) = true.

For the type (DU1), the condition def clear(〈c, defc, susec〉) in Definition 8 is always true because, in

an update-use subgraph of a predicate node in a situation graph, it is apparent that there is a definition-

clear sub-path from every phantom node (representing environmental update) to the corresponding use

node. For the type (DU2), if the value of a context variable c is synchronized in a CM-centric program

immediately after defc, the condition def clear(〈c, defc, susec〉) = true always holds as well, since the

predicate def clear(〈c, defc, susec〉) is equivalent to whether there exists a definition-clear sub-path from

defc to where c is synchronized.
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Figure 6: The def-situ associations algorithm

Algorithm COMPUTE DEF-SITU

Input The CaFG for a CM-centric program 〈C, U, S〉;
Output The set DEF-SITU of all def-situ associations;

Associate every node in the CaFG of every program unit

with the set of context definitions;

Associate every node in each situation graph with the

set of update-use occurrences and situation uses;

for each c ∈C

Collect UDefc, ODefc and SUsec;

if ODefc = /0
for each defc ∈ UDefc and each susec ∈ SUsec

if def clear(〈c, defc, susec〉) = true

Add 〈c, defc, susec〉 to DEF-SITU;

else

for each defc ∈ ODefc and each susec ∈ SUsec

if def clear(〈c, defc, susec〉) = true

Add 〈c, defc, susec〉 to DEF-SITU;

The algorithm to compute the set of def-situ associations for a CM-centric program 〈C, U, S〉 is given

in Figure 6. Suppose that the number of lexical tokens of the program is n and each evaluation of def clear

takes time m. It takes O(n) time to identify and collect all the context definitions, update-use occurrences,

and situation uses by scanning the CaFG. By keeping the sets of context definitions and situation uses in a

tree, it will take O(nlog(n)) time to construct the list or retrieve a record. In addition, the algorithm requires

that every context variable in the set C will be enumerated. Thus the algorithm will have a time complexity

of O(n+ |C|mnlog(n)), or simply O(|C|mnlog(n)).

4.3.3 Def-Use Associations of Type (DU3)

Type (DU3) corresponds to the circumstance where both the definition and the usage in a def-use association

occur within the same program unit. We divide this type into two subtypes:

Let subtype (a) represent the case where a context definition in a program unit (that is, an adaptive

action) Acti is referred by another program unit (another adaptive action) Act j via a definition-clear path.

We recall that a def-situ association α defines a cross-boundary context-aware data flow edge from a context

definition of a variable c in action Acti to a situation use of the variable in a situation. The association

requires the corresponding situation to be satisfied. Once the situation is satisfied, the associated adaptive

action, Act j should be invoked. We use the notation Acti
α

:⇒ Act j to indicate that Acti carries out the context

definition of the triple α and Act j is invoked by the situation that receives the situation use of α.

In general, an adaptive action or an environment may continue to enable the situation to be satisfied.

Hence, the middleware will continue to activate functions. Ideally, the middleware may invoke many,

possibly infinite, number of actions one after another, such as

Acti
α

:⇒ Act j

β
:⇒ Actk

γ
:⇒ ·· ·

while the values of the variables propagate from one action to another.

Since it is undecidable to determine whether a path is feasible or whether an execution is terminating, we

compute in a pairwise manner the related data flow associations between two consecutive calls of adaptive
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actions, that is, between two program units with an
α

:⇒ relationship. For every relationship Acti
α

:⇒ Act j, the

execution order that can be statically identified is that Act j is invoked only if defc (the context definition of

α) is executed. Hence, we first compute the set of all reaching definitions at defc in the CFG of Acti, and

denote the set by RDi(defc). Then, if any of the definitions can reach a use in Act j from the entry node of

Act j via a def clear path, a def-use association is identified.

In Figure 5, 〈I, n13, n1〉 is an example of subtype (a). It is derived from the relationship visitor nearby
〈Ev,n17,s1〉

:=⇒ low illuminance, in which I is a reaching definition at n17 and can reach n1 via a def clear sub-

path (n17, s1, s2, n1, n1).
Subtype (b) corresponds to the case where a definition occurrence in a program unit is being referred in

the same program unit. We would like to argue that the set of def-use associations derived using conventional

approaches may not be sufficient to reflect the context-aware nature of data flows even within a program

unit. Consider the variable $I in the program unit incCurrent. By intraprocedural data flow analysis, such

as computing the set of reaching definitions at each node of the CFG) [11, 13, 35], we can easily derive

the def-use associations du1 = 〈$I, n1, (n3, n4)〉 and du2 = 〈$I, n1, (n3, n5)〉. 10 As discussed above, since

the definition of $I in n1 depends on the value of I, which has a context definition in the program unit

computIllum, we can use backward tracing to find two sub-paths π1 = (n17, s1, s2, n0, n1, n2, n3, n4) and

π2 = (n17, s1, s2, n0, n1, n2, n3, n5) that covers du1 and du2, respectively.

However, if there is a certain program unit Act that contains a context definition defI of I whose set of

reaching definitions contains n1, the executions of π1 and π2 are not sufficient to cover all the data depen-

dency cases of $I, because computIllum and Act impose different contexts to the execution of incCurrent.

Consequently, the sub-paths π′
1 = (defI, s1, s2, n0, n1, n2, n3, n4) and π′

2 = (defI, s1, s2, n0, n1, n2, n3, n5)
are also needed to track the definition of I inside Act.

As a result, we find it necessary to derive def-use associations of subtype (b) with respect to each def-

situ association. In other words, if Acti
α

:⇒ Act j, each def-use association du within the program unit Act j

is annotated with α, which means that there exists a sub-path π from Acti to Act j containing α such that π

covers du. If there are two def-situ associations α and β, both covering du but each involving a different

sub-path, then du should be split into two def-use associations of subtype (b), one annotated with α and the

other annotated with β.

In Figure 5, for the relationship visitor nearby
α

:⇒ low illuminance, where α = 〈Ev, n17, s1〉, the def-

use associations of subtype (b) include 〈$I, n1, (n3, n4)〉 and 〈$Imax, n2, (n3, n4)〉, to name a few.

Combining the two subtypes in (DU3), we formally define pairwise context-aware def-use association

as follows:

Definition 9 (Pairwise DU Associations) A pairwise context-aware def-use association (or simply a pair-

wise du association) du with respect to (i) two program units Acti and Act j and (ii) a def-situ association

α = 〈c, defc, susec〉 such that the relationship Acti
α

:⇒ Act j holds, is of one of the following two types:

(a) du = 〈c′, defc′ , auc′〉 in which defc′ is from Acti, auc′ is from Act j, defc′ ∈ RDi(defc), and

def clear(c′, e j, auc′) = true, where e j refers to the entry node of Act j.

(b) du = 〈x, defx, usex〉 in which both defx and usex occur in Act j, and defx ∈ RD j(usex).

According to Definition 9, since every pairwise du association is strictly related to a def-situ association,

the computation of pairwise du associations can be founded on Algorithm COMPUTE DEF-SITU of Fig-

ure 6. Figure 7 shows the algorithm to compute the set of pairwise du associations with respect to a specific

10 For predicate uses inside a program unit, we adopt the standard representation of predicate use or p-use [11, 35].
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Figure 7: The pairwise du associations algorithm

Algorithm COMPUTE PAIRWISE-DU

Input A def-situ association α = 〈c, defc, susec〉 such that

Acti
α

:⇒ Act j;

Input Gi and G j, respective CFGs for Acti and Act j;

Output The set PAIRWISE-DU(α) of all pairwise du

associations with respect to α;

RDi(defc) = the set of reaching definitions at defc in Gi;

for each variable c′ such that there exists defc′ ∈ RDi(defc)
for each node nd in G j

if nd has a use of c′ and def clear(c′, e j, nd) = true

// Note: e j is the entry node of Act j

Add 〈c′, defc′ , nd〉 to PAIRWISE-DU(α);
for each node nd in G j

RD j(nd) = the set of reaching definitions at nd in G j;

for each variable x that has a use at nd

if x has a definition defx in G j such that defx ∈ RD j(nd)
Add 〈x, defx, nd〉 to PAIRWISE-DU(α);

def-situ association. We use n′ and |C′| to denote, respectively, the number of lexical tokens and the number

of involved context variables in a program unit. The evaluation of def clear in this algorithm corresponds

to the computation of reaching definitions at a node in a program unit and has time complexity of O(n′). If

we assume that the set of reaching definitions for every node of every CFG is already available, and each

evaluation of def clear takes time m, then the algorithm takes at most O(|C′|mn′2) time to compute the set of

pairwise du associations for each def-situ association. In general, to obtain all the pairwise du associations

of a CM-centric program, all the reaching definitions can be computed in advance in one go, with a time

complexity of O(n2), where n is the total number of lexical tokens in the program. By considering the

complexity of the algorithm COMPUTE DEF-SITU, the time complexity for obtaining all the pairwise du

associations will be O(n2 + |C|mnlog(n)+ |C|mn2), or simply O(|C|mn2).

5 Test Adequacy Criteria

To measure the quality of a test set for a CM-centric program, we define in this section our test adequacy

criteria using the data flow associations described in Section 4. First of all, we recall that a test adequacy

criterion C1 is said to subsume a test adequacy criterion C2 if every test set that satisfies C1 will also satisfy

C2 [35]. This term will be used in the rest of the paper.

According to Definition 3, a CM-centric program differs from a standard program by having a set of

context variables and a set of situations. Our first test adequacy criterion is to exercise every situation at

least once. Whenever a situation is satisfied, the middleware will invoke the corresponding adaptive action.

On the other hand, an adaptive action may be invoked by another adaptive action. Hence, a test set that

covers all adaptive actions does not necessarily cover all situations.

Criterion 1 (All Situations) A test set T satisfies the all-situations criterion for a CM-centric program

〈C, U, S〉 if and only if, for each situation s ≡ 〈C′, p, Act〉 in S, the complete path of at least one test case t

in T includes the predicate node of s such that p(C′) ≡ true.

We refine the all-situations criterion to cover all def-situ associations, whose definition is as follows:
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Figure 8: Subsumption hierarchy of context-aware test adequacy criteria

all-pairwise-du-associations

↓
all-def-situ-associations

↓
all-situations

Criterion 2 (All Def-Situ Associations) A test set T satisfies the all-def-situ-associations criterion for a

CM-centric program 〈C, U, S〉 if and only if, for every def-situ association α obtained from the algorithm

COMPUTE DEF-SITU, there is at least one test case t in T such that def clear(α) = true.

We note that a usage occurrence in a situation should either be an update-use or have a corresponding

context definition in a program unit. Moreover, according to condition (iii) of Definition 8, the corresponding

situation should be satisfied. Hence, a test set satisfying the all-def-situ-associations criterion should also

satisfy the all-situations criterion. In this connection, the all-def-situ-associations criterion subsumes the

all-situations criterion.

We further refine the above criterion by linking up a definition occurrence and a usage occurrence in

two adaptive actions through a situation. If the above criterion is seen to address type (DU2), then we want

our third criterion to address type (DU3). In brief, for every def-situ association α, this criterion requires an

adequate test set to exercise all pairwise du associations that are relevant to α. It is simple to observe from

condition (i) of the following definition that the criterion subsumes the all-def-situ-associations criterion.

Criterion 3 (All Pairwise DU Associations) A test set T satisfies the all-pairwise-du-associations crite-

rion for a CM-centric program 〈C, U, S〉 if and only if the following two conditions are satisfied: (i) T

satisfies the all-def-situ-associations criterion; and (ii) for every pairwise du association du obtained from

the algorithm COMPUTE PAIRWISE-DU(α), there is at least one test case in T such that def clear(du) =

true.

We note that the definition of α can be generalized to be a series of adaptive actions. By so doing, more

general form of the above two criteria can be developed. The extension is not difficult.

For completeness, we also include the all-outstanding-situations criterion that requires all situations of a

CM-centric program to be outstanding. While intuitively simple, it can nevertheless detect the context-aware

faults discussed in Section 3 (Testing Challenges).

Criterion 4 (All Outstanding Situations) A test set T satisfies the all-outstanding-situations criterion

for a CM-centric program 〈C, U, S〉 if and only if, for each situation s ≡ 〈C′, p, Act〉 in S, the complete path

of at least one test case t in T includes the predicate node of s such that p(C′) ≡ false.

Figure 8 shows the subsumption hierarchy for the family of test adequacy criteria defined in this section.

The individual relationships have been discussed above.

6 Evaluation

This section reports on the experimentation results of our test adequacy criteria, namely, all-situations, all-

def-situ-associations and all-pairwise-du-associations. We also benchmark our proposal against Frankl and

Weyuker’s all-uses criterion [11]. Furthermore, the study is also a novel attempt to test RFID-based systems.

Our prototype testing tool automates the test set generation and evaluation processes.
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6.1 Experimental Design

We use Cabot [32] and its evaluation application as our testbed. The testbed consists of a middleware sup-

porting context-aware reasoning and triggering, and an application implementing the LANDMARC RFID-

based location sensing algorithm [19]. Datagram-based communications are adopted for transmission of

contexts at runtime. Cabot continually collects radio frequency strength signals (context values) from

various RFID tags. Based on the different radio frequency strength signals and other environmental contexts,

the middleware triggers different adaptive actions to allow the application to estimate the location of a

tracking tag.

Our experiment focuses on the testing of the LANDMARC application. We use the original implemen-

tation as the golden version to check for failures of the faulty versions. The experiment consists of three

steps.

Firstly, our tool generates 40 test sets for each adequacy criterion given in Section 5. For comparison

purpose, we also generate 40 test sets based on the standard all-uses criterion [10, 11, 14]. The test cases

are randomly selected from a test pool containing 8 000 radio frequency strength signal data collected from

different locations of tracking tags from online RFID sensor networks. Since full coverage of testing criteria

is infeasible in practice, an upper bound on the number trials in selecting test cases is set for each criterion. A

test set generation process thus stops when full coverage is achieved or the upper bound has been reached. A

test case that increases the coverage of the criterion concerned will be added to the adequacy test set. It also

reports the percentage of coverage. Our automated method to select test cases is similar to that described

in [14].

Figure 9 shows the algorithm that our tool uses to generate test sets for the all-pairwise-du-associations

coverage. The algorithm accepts the test pool and a hashtable dua as inputs and produces an adequacy test

set as output. dua is a hierarchical hashtable having an entry for each def-situ association, as well as an

entry for each pairwise du association related to the respective def-situ associations. For a sequence of test

cases, dua is covered in a cumulative way; the test cases will achieve full coverage when all the pairwise du

associations in dua are marked as covered.

In the algorithm, trace is a sequence of variable definition and usage occurrences that are recorded

when a test case is selected and forced to execute. For any individual pairwise du association covered, the

algorithm carries out two rounds of forward and backward searches to find out the corresponding definition-

clear path.11

It is worth noting that the construction of test sets for all-situations and all-def-situ-associations criteria

are byproducts of the algorithm EVALUATE PAIRWISE-DU.

Secondly, we create 50 faulty versions, each having one fault. There are 18, 11, 13, and 8 faults in

the context repairing logic, context-aware rules, situational application configuration, and estimation logic,

respectively. Simple faults such as data conversion format mismatches are excluded. All versions are assured

by an experienced software developer.

Finally, our tool applies all the generated test sets to all versions to evaluate their fault-detection capa-

bilities. For each adequacy criterion, the fault-detection rate [10] is defined as the ratio of the number of

corresponding adequacy test sets (each containing at least one test case that exposes the fault) to the total

number of corresponding adequacy test sets with respect to the criterion. For the purpose of comparison, we

use all 8 000 test cases from the test pool to test every faulty version. The corresponding percentage of failed

test cases denotes the failure rate of the version. Our tool also compares automatically the execution results

of faulty versions and that of the golden version. It computes the fault-detection rate for each criterion.

11 Suppose the average length of an execution trace is L and the number of context variables is |C|. Then, for each test case t

selected, the time cost to evaluate the coverage of t will be O(|C|L4). When the upper bound of the number of selected test cases is

N, the total time cost to generate a test set for the all-pairwise-du-associations criterion will be O(N · |C|L4).
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Figure 9: Algorithm for generating all-pairwise-du-associations adequacy test set

Algorithm EVALUATE PAIRWISE-DU

Input TestPool;

Input dua, the set of pairwise du associations;

Output TestSet for the all-pairwise-du-associations

criterion;

int i = 0;

while dua is not fully covered and i < UPPER BOUND

i++;

Randomly select a non-redundant t from TestPool;

Execute t to obtain trace;

for each element e f1 in forward search of trace

if e f1 is a situation use of context variable c

for each element eb1
in backward search from e f1

if eb1
is a definition of c

if dua contains an entry 〈c, eb1
, e f1〉

subdua = the set of pairwise du

associations of 〈c, eb1
, e f1〉;

SEARCH-DU(e f1 ,subdua);
if the coverage of dua increases

Add t to TestSet;

Procedure SEARCH-DU(e f1 ,subdua)
for each element e f2 in forward search from e f1

if e f2 is a usage occurrence of variable v

for each element eb2
in backward search from e f2

if eb1
is a definition of c

if subdua contains an entry 〈v, eb2
, e f2〉

Mark 〈v, eb2
, e f2〉 in dua as covered;

Table 2: Statistics of test sets generated according to different adequacy criteria

Coverage (in %) of generated

Criterion test sets (40 sets per criterion)

min. avg. max.

all-situations 96.3 99.4 100

all-def-situ-associations 93.8 96.6 99.2
all-pairwise-du-associations 86.7 87.1 87.4

all-uses 71.2 72.6 72.9

6.2 Data Analysis

Through the analysis by Algorithms COMPUTE DEF-SITU and COMPUTE PAIRWISE-DU, the LAND-

MARC testbed program has a total of 81 situations, 129 def-situ associations, 7682 pairwise du associa-

tions, and 177 def-use associations with reference to the standard all-uses criterion. Our tool generates 40

test sets for every test adequacy criterion. For the all-situations, all-def-situ-associations, all-pairwise-du-

associations, and all-uses adequacy criteria, we set the upper bound of number of selected test cases to be

300, 1000, 2000, and 2000. The generated test sets are summarized in Table 2. We note that the coverage

rate of all-pairwise-du-associations and all-uses are relatively low even if their test sets are selected from

2000 test cases. We infer that this is due to infeasible paths in the program units [10, 11].
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Table 3: Overall fault-detection rates

Type of Fault-detection rate of

faulty adequacy test sets

versions Criterion min. avg. max.

Situations all-situations 0.075 0.548 0.875

(10 faulty all-def-situ-associations 0.15 0.723 1.0
versions) all-pairwise-du-associations 0.175 0.878 1.0

all-uses 0.025 0.730 1.0
Actions all-situations 0.0 0.326 1.0

(25 faulty all-def-situ-associations 0.0 0.496 1.0
versions) all-pairwise-du-associations 0.05 0.617 1.0

all-uses 0.0 0.472 1.0

Total all-situations 0.0 0.389 1.0
(35 faulty all-def-situ-associations 0.0 0.544 1.0
versions) all-pairwise-du-associations 0.05 0.691 1.0

all-uses 0.0 0.546 1.0

After applying the entire test pool to all the 50 faulty versions, we find 8 faults which cannot be exposed

by any test case. In addition, there are 6 faulty versions that have failure rates higher than 0.95 and another

version with a failure rate of 0.34. A deeper investigation of these 7 highly detectable faults shows that all

of them are located on the key paths of the module to compute the final estimated tracking location, so that

they have high chances to be exposed. Since these 15 faulty versions may not be suitable for determining

the fault-detection capabilities of the adequacy test sets, they are discarded in the sequel. The remaining 35

faulty versions have failure rates within a range of 0.0003 to 0.06, with an average of 0.011.

We first compare the criteria irrespective of the failure rates of faulty versions. The overall fault-detection

rates of the three adequacy criteria are given in Table 3. All the faulty versions are further categorized

according to whether a fault is related to a situation or an action. Out of the 35 faulty versions, 10 and 25

belong to the respective category. For each category, the minimum, average, and maximum fault-detection

rates with respect to each criterion are computed. On average, the all-pairwise-du-associations criterion

gives the highest fault-detection rates.

In order to study the change of fault-detection rates with respect to failure rates, we present line plots of

the fault-detection rates of various adequacy criteria against the faulty version, as shown in Figure 10. The

35 faulty versions are sorted along the horizontal axis in ascending order of their failure rates. The vertical

axis scales the values of the fault-detection rates. The values for the same adequacy criterion are connected

to demonstrate the trend of fault-detection with the increase of failure rates. We find that the fault-detection

rates of the three criteria proposed in Section 5 generally increase with the increase of failure rates. On the

other hand, the fault-detection rate of the all-uses criterion fluctuates greatly, ranging from less than 0.1 to

nearly 1.0, along the middle segment of the failure rate.

A finer inspection of Figure 10 shows that the greatly fluctuating segment of the all-uses line starts

from the 12th faulty version and ends at the 26th faulty version, representing failure rates from 0.002 to

0.012. We therefore classify the 35 faulty versions into three intervals known as A, B, and C, partitioned

by the failure rates of 0.002 and 0.012. Figure 11 shows the fault-detection rates of the four criteria in

each of the intervals. We find that all the criteria are promising in interval C (with our three criteria almost

reaching full detection). In interval B, only all-pairwise-du-associations have a detection rate of more than

0.8, outperforming all-uses by 37%. In interval A, the fault-detection rate of every criterion is below 0.2 as

a result of the very low failure rate (average 0.0007). In particular, the effectiveness of all-uses drops most

rapidly in interval A to become the lowest among all criteria.
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Figure 10: Fault-detection rates of adequacy criteria with respect to failure rates

Figure 11: Fault detection rates with respect to different failure rate intervals

0.440)

For a better comparison of fault-detection effectiveness of different criteria, we carry out statistical

hypothesis testing [25] based on the collected data. The method is similar to that in [10]. When applying

a criterion to test a faulty version program, the experiments on different test sets are mutually independent.

While the testing results of different test sets follow a binomial distribution, the 40 test sets constitute

a sufficiently large sample to support the assumption that the average differences of fault-detection rates

between any two criteria are approximately normally distributed [25]. For any two criteria C1 and C2 under

comparison, let r1 and r2 be their respective fault-detection rates. In the following, we set the null hypothesis

as H0 : r1 ≤ r2 and the alternate hypothesis as H1 : r1 > r2 with a significance level of α = 0.05. We use

the notation C1 > C2 to denote the result that the null hypothesis r1 ≤ r2 can be rejected, meaning that r1 is

significantly higher than r2. In addition, we also use the notation C1 = C2 to represent the result that another

null hypothesis of neither r1 ≤ r2 nor r2 ≤ r1 can be rejected, meaning a comparable effectiveness of C1 and

C2 in detecting a certain fault.

Table 4 compares the effectiveness of different categories of criteria. The all-situations, all-def-situ-

associations, all-pairwise-du-associations, and all-uses criteria are denoted by Cs, Cds, Cpdu, and Cu, re-

spectively. The “Description” column lists the hypothesis tests that the category of faulty versions have

passed. For instance, the first row illustrates that the category Cpdu > Cu contains a total of 15 faulty

versions, in which the fault-detection rate of all-def-situ-associations is significantly higher than that of all-

uses. Moreover, the 15 faulty versions are classified into the three failure rate intervals shown in Figure 11.
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Table 4: Effectiveness comparison of different criteria

Number of faulty versions

Description Total Failure rate intervals

(A) (B) (C)

1 Cpdu > Cu 15 5 7 3

2 Cpdu = Cu 20 5 9 6

3 Cds > Cu 10 2 6 2

4 Cu > Cds 11 1 8 2

5 (Cpdu = Cu)∧ (Cpdu = Cds) 8 4 0 4

∧(Cds = Cu)
6 (Cpdu > Cds)∧ (Cpdu > Cs) 15 2 10 3

It is worth noting that any two of the categories given in Table 4 are not necessarily mutually exclusive.

7 Discussions

Our preliminary experimentation shows that our adequacy criteria are promising in measuring the quality

of test sets for CM-centric programs. Firstly, our technique has been demonstrated to effectively handle

faults related to contexts. As shown in Table 3, the all-pairwise-du-associations criterion has an average

fault-detection rate of 0.878 for detecting faults related to situations.

Secondly, among our three adequacy criteria, the all-pairwise-du-associations criterion demonstrates a

fault-detection rate which is higher than or equal to the standard all-uses criterion. The hypothesis test in

Table 4 supports that the former is statistically more effective than the latter in detecting 15 out of all the

35 faults, while the latter never outperforms the former. On the other hand, the all-def-situ-associations

and all-uses criteria have comparable fault-detection rates in general, with averages of 0.544 and 0.546,

respectively, as shown in Table 3. The 3rd and 4th rows in Table 4 also reflect the comparability.

The fluctuating behavior of the all-uses criterion shown in Figure 10 is interesting. Figure 11 shows that,

for faulty versions above the upper bound of interval B (with failure rates a little higher than 0.01), almost

every criterion looks promising and is close to full detection, while for faults with failure rates below the

lower bound of interval B (lower than 0.002), none of the four criteria seems effective. This observation is

further supported by hypothesis testing in the 5th row of Table 4, which shows that the three most effective

criteria demonstrate statistically comparable behaviors in almost half of the total faulty versions (8 out of

19) in intervals A and B. Furthermore, in interval B, the fault-detection rate of the all-uses criterion is by

no means steady. We have computed the standard deviations of the fault-detection rates for all the data flow

criteria reported. The one for the all-uses criterion is 0.443, which is almost twice as that of any of the other

three criteria. This phenomenon warrants further investigation.

We would also like to highlight potential threats to validity of the experiment. For internal validity, we

note that the experiment uses one program and fault types relevant to the program to evaluate our criteria.

Its test pool is based on 8 000 real RFID data only. The 8 faults that could not be exposed by any test case

might actually be detected by further testing if a larger test pool were available. In addition, our prototype

testing tool may contain faults, even though it has been “thoroughly” tested. More empirical studies are

warranted to further evaluate the proposal.
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8 Related Work

In this section, we review related literature on the testing of context-aware software systems. To do this,

we first brief review the background of Cabot [32, 33], the middleware on which our evaluation has been

conducted.

Context-aware computing is an important research topic of pervasive computing [24]. According to

the survey in [7], the Active Badge system [30] is the pioneer study. Since then, there are many proposals

such as Gaia, [23], RCSM [34], CARISMA [5], CARMEN [4], MobiPADS [6], and Cabot [32, 33]. Among

these, RCSM is the first general-purpose context-aware middleware proposal and Cabot is the first proposal

to support (in)consistency constraint checking in its middleware. Since Cabot is designed with the quality

assurance mind-set, it is a good platform for us to evaluate our testing proposal.

The prototype application of Cabot implements the RFID-based location sensing algorithm LAND-

MARC [19] and uses the middleware to context-sensitively adjust detected context information so as to

reduce the average errors of the sensed locations. This has been evaluated in previous work [32, 33]. In the

present work, Cabot with its LANDMARC implementation is used as the testbed. Details of the empirical

study have been described in Section 6.

In the rest of this section, we review the testing research for pervasive computing. To our best knowledge,

it is not plentiful. Axelsen et al. [3] propose a specification-based approach to test reflective software in an

open environment, and use a random selection strategy to produce test inputs. When the execution sequence

of any test input violates the specifications, it detects a failure. Flores et al. [8] apply temporal logic to

define contextual expressions in context-aware software. They then use a kind of category partitioning to

break up the temporal logic expressions. Intuitively, they require each partition to be covered. However,

their work does not provide test case generation guidelines. Our previous work [29] basically generates

multiple context tuples as test cases to check whether the outcomes satisfy isotropic properties of context

relations. It is a black-box approach with a focus on the test oracle problem. The proposal presented in

this paper is a program-based approach that does not rely on any specifications. It focuses on the test set

adequacy problem. It complements our previous work.

We also review constraint-based approaches as the context-aware interface can be regarded as a set of

constraints. Tai [27], among others such as [2, 16, 28, 31], investigate a rule-based approach to construct

predicate-based test cases. He focuses on specifications of programs consisting only of predicate rules.

These rules cannot trigger adaptive actions that may produce instant side effects to other parts of the same

expression. Jin and Offutt [15] propose a set of constraint-based test adequacy criteria for software systems

that need to interact with the environment. However, their target programs have explicit “system calls” to

identify the locations where the environment can affect the program or be affected. As we have explained

in Section 3, a context-aware middleware-centric application interacts with the environment in a much more

complicated way.

When compared with researches in test adequacy criteria of standard programs, our notions are in line

with them [11, 22]. Various empirical studies in conventional data flow testing are performed and evaluated

in [9, 10, 14]. Investigations on data flow testing at the integration level can be found in [12, 20].

9 Conclusion

Pervasive context-aware software is a novel kind of applications that challenges existing testing techniques.

In this paper, we have investigated the testing of context-aware middleware-centric pervasive applications.

We have formalized the notion of context-aware data flow entities. Based on them, we have proposed a

novel family of test adequacy criteria to measure the quality of test sets. Corresponding algorithms are
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given. We have also reported the experimentation results of an RFID-based location-sensing system, in

which we applied a testing tool to automate the construction of adequate test sets and the evaluation of test

results. The empirical results are promising.

Our approach is applicable and effective to pervasive computing. The context-aware program logic

normally spans over the application tier and the middleware tier. The part residing in the middleware

tier is ignored by conventional testing methods. Failures specific to context-aware features relevant to the

middleware is, therefore, difficult to be exposed by conventional testing techniques.

We plan to conduct more case studies on different applications on other platforms to further evaluate our

approach. For programs with very low failure rates (< 0.002), our experimentation shows that the results

are not very satisfactory. We plan to propose further testing techniques for programs with very low failure

rates.
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