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Abstract. The µ-calculus is a powerful tool for specifying and verifying
transition systems, including those with both demonic (universal) and
angelic (existential) choice; its quantitative generalisation qMµ [17,29,9]
extends that to probabilistic choice.

We show here that for a finite-state system the logical interpretation of
qMµ, via fixed-points in a domain of real-valued functions into [0, 1], is
equivalent to an operational interpretation given as a turn-based gam-
bling game between two players.

The equivalence sets qMµ on a par with the standard µ-calculus, in that
it too can benefit from a solid interface linking the logical and operational
frameworks.

The logical interpretation provides direct access to axioms, laws and
meta-theorems. The operational, game- based interpretation aids the in-
tuition and continues in the more general context to provide a surpris-
ingly practical specification tool — meeting for example Vardi’s challenge
to “figure out the meaning of AFAX p” as a branching-time formula.

A corollary of our proofs is an extension of Everett’s singly-nested games
result in the finite turn-based case: we prove well-definedness of the min-
imax value, and existence of fixed memoriless strategies, for all qMµ
games/formulae, of arbitrary (including alternating) nesting structure.

1 Introduction

The standard µ-calculus, introduced by Kozen [20], extends Boolean dynamic
program logic by the introduction of least (µ) and greatest (ν) fixed-point opera-
tors. Its proof system is applicable to both infinite and finite state spaces; recent
results [47] have established a complete axiomatisation; and it can be specialised
to temporal logic. Thus it has a simple semantics, and a proof theory.

But its operational significance can be more elusive: general µ-calculus ex-
pressions can be difficult to use, because in all but the simplest cases they are
not easy on the intuition. Alternating fixed points can be especially intricate;

⋆ An earlier and much-abridged version appeared in Proc. LPAR 2002, Tbilisi [23].
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and even the more straightforward (alternation-free) temporal subset has prop-
erties (particularly “branching-time properties”) that are notoriously difficult to
specify, as Vardi points out [45].

Stirling’s “two-player-game” interpretation alleviates this problem by pro-
viding an alternative and complementary operational view [43].

The quantitative modal µ-calculus acts over probabilistic transition systems,
extending the standard axioms from Boolean- to real values; and it would benefit
just as much from having two complementary interpretations. Our goal in this
paper is to identify them, and to give the proof of their equivalence, over a finite
state space: one interpretation (defined earlier [29,17,9]) generalises Kozen’s by
lifting it from the Booleans into the reals; the other (defined here) generalises
Stirling’s.

Our principal contribution here is thus the definition of the Stirling-style but
quantitative interpretation, and the proof of its equivalence to the Kozen-style
quantitative interpretation.3 We show also that memoriless strategies suffice, for
both interpretations, again when the state space is finite.

The Kozen-style quantitative interpretation is based on our earlier exten-
sion [19,34] of Dijkstra/Hoare logic to probabilistic/demonic programs (corre-
sponding to the ∀ modality): it is a real-valued logic based on “greatest pre-
expectations” of random variables, rather than weakest preconditions of predi-
cates. It can express the specific “probability of achieving a postcondition,” since
the probability of an event is the expected value of its characteristic function,4

but it applies more generally to other cost-based properties besides. Although the
specific approach, i.e. with its explicit probabilities — may be more intuitive, the
extra generality of a full quantitative logic seems necessary for compositionality
[24].

Converting predicates “wholesale” from Boolean- to real-valued state func-
tions — due originally to Kozen [18] and extended by us to include demonic
(universal) [34] and angelic (existential) [22] nondeterminism — contrasts with
probabilistic logics using “threshold functions” [3,35] that mix Boolean and nu-
meric arguments: the uniformity in our case means that standard Boolean iden-
tities in branching-time temporal logic [2] suggest corresponding quantitative
laws for us [30], and so we get a powerful collection of algebraic properties “for
free.” The logical “implies” relation between Booleans is replaced by the stan-
dard “≤” order on the reals; false and true become 0 and 1; and fixed points
are then associated with monotonic real - rather than Boolean-valued functions.
The resulting arithmetic logic is applicable to a restricted class of real-valued
functions, and we recall its definition in Sec. 3.

3 The quantitative Kozen interpretation has been given earlier [17,29,9]; we review it
here.

4 See Sec. 5.5 for an example of this.
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Our Stirling-style quantitative interpretation is operational, and is based on
his earlier strategy-based game metaphor for the standard µ-calculus. In our
richer context, however, we must distinguish nondeterministic choice — both
demonic and angelic — from probabilistic choice: the former continues to be
represented by the two players’ strategies; but the latter is represented by the
new feature that we make the players gamble. In Sec. 4 we set out the details.

In Sec. 5 we give a worked example 5 of the full use of the quantitative aspects
of the calculus, beyond simply calculating probabilities.

The main mathematical result of this paper is given in Sec. 6, though much
of the detail is placed in the appendices.

Stirling showed that for non-probabilistic formulae the Boolean value of the
Kozen interpretation corresponds to the existence of a winning strategy in his
game interpretation. In our case, strategies in the game must become “optimal”
rather than “winning”; and the correspondence is now between a formula’s value
(since it denotes a real number, in the Kozen interpretation) and the expected
winnings from the zero-sum gambling game (of the Stirling interpretation). Since
the gambling game described by a formula is a “minimax,” we must show it to be
well-defined (equal to the “maximin”): in fact we show that both the minimax
and the maximin of the game are equal to the Kozen-style denotation of the
formula that generated it.

We also prove that memoriless strategies suffice.
Both proofs apply only to finite state spaces.

The benefit of our proved equivalence is to set the quantitative µ-calculus on
a par with standard µ-calculus in that a suitable form of “logical validity” cor-
responds exactly to an operational interpretation. As with standard µ-calculus,
a specifier can use the operational semantics to build his intuitions into a game,
and can then use the general features of the logic — whose soundness has been
proved relative to the logical6 semantics — to prove properties about the spe-
cific application. For example, the sublinearity [34] of qMµ — the quantitative
generalisation of the conjunctivity of standard modal algebras — has been used
in its quantitative temporal subset qTL to prove a number of algebraic laws
corresponding to those holding in standard branching-time temporal logic [30].

Preliminary experiments have shown that the proof system is very effective
for unravelling the intricacies of distributed protocols [39,31]. Moreover it pro-
vides an attractive proof framework for Markov decision processes [32,11] — and
indeed many of the problems there have a succinct specification as µ-calculus
formulae, as the example of Sec. 5 illustrates. In “reachability-style problems”
[7], proof-theoretic methods based on the logic presented here have produced
very direct arguments related to the abstraction of probabilities [33], and even
more telling is that the logic is applicable even in infinite state spaces [7]. All of
which is to suggest that further exploration of qMµ will continue to be fruitful.
5 using both PRISM [21] and Mathematica©r

6 We also call this the denotational semantics.
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In the following we shall assume generally that S is a countable state space
(though for the principal result we restrict to finiteness, in Sec. 6). If f is a
function with domain X then by f.x we mean f applied to x, and f.x.y is (f.x).y
where appropriate; functional composition is written with ◦, so that (f◦g).x =
f.(g.x). We denote the set of discrete probability sub-distributions over a set X
by X: it is the set of functions from X into the real interval [0, 1] that sum to no
more than one; and if A is a random variable with respect to some probability
space, and δ is some probability sub-distribution, we write

∫
δ A for the expected

value of A with respect to δ.7 In the special case that δ is in X and A is a
bounded real-valued function on X , in fact

∫
δ
A is equal to

∑
s:S A.s× δ.s.

2 Probabilistic transition systems and µ-calculus

In this section we set out the logical language, together with some details about
the probabilistic systems over which the formulae are to be interpreted.

Formulae in the logic (in positive8 form) are constructed as follows:

φ =̂ X | A | 〈K〉φ | [K]φ | φ1⊓φ2 | φ1⊔φ2 | φ1✁G✄φ2 | (µX · φ) | (νX · φ) .

– Variables X are of type S → [0, 1], and are used for binding fixed points.
– Terms A stand for fixed functions in S → [0, 1].
– Terms K represent finite non-empty sets of probabilistic state-to-state tran-

sitions in R.S (see below), with 〈·〉 and [·] forming respectively angelic-
(existential-) and demonic (universal) modalities from them.

– Terms G describe Boolean functions of S, used in ✁ (“if”) G ✄ (“else”) style
[16].

It is well known that such formulae can be used to express complex path-
properties of computational sequences. In this paper we interpret the formulae
over sequences based on generalised probabilistic transitions9 in what we call
R.S, the functions t in S → S$ where S$ is just the state space S with a special
“payoff” state $ adjoined. Thus S$ is the set of sub-distributions over that, so
that the elements t of R.S give the probability of passage from initial s to final
(proper) s′ as t.s.s′; any deficit 1−

∑
s′ t.s.s

′ is interpreted as the probability of
an immediate halt with payoff

t.s.$/(1−
∑

s′:S

t.s.s′) .10 (1)

7 Normal mathematical practice is to write
∫
Adδ, but that greatly confuses the roles

of bound and free variables: it makes the distribution (measure) variable δ in dδ
free in the expression; but in the analogous

∫
f(x)dx of analysis, the independent

variable x in dx is bound.
8 The restriction to the positive fragment is for the usual reason: that the interpre-
tation of any expression (λX · φ), constructed according to the given rules, should
yield a monotone function of X.

9 They correspond to the “game rounds” of Everett [10].
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The relational element




s
1/4
−→ H

s
1/4
−→ T

s
2/5
−→ $


 in R.S, with its deficit of 1/10, denotes the

transition shown,

s �
�

✲1/4 H · · ·

✲1/4 T · · ·
❅
❅

✲1/2 $0.80

in which the transition probabilities now sum to
one. In particular, the probability of transition
to $ is 1/2, which makes the expected immedi-
ate payoff equal to 1/2 × 0.80 = 2/5 as given
explicitly in the relation.

Since H,T are states, they may lead further: no matter where they lead, however, the
expected reward of the subtrees rooted there cannot exceed one, and so our encoding
ensures both that the transition probabilities from s sum to one exactly (since the
probability of transition s 7→ $ is 1/2 = 1 − (1/4 + 1/4) by definition), and that the
expected reward from this tree (rooted at s) cannot exceed one either (since the actual
reward $0.80 is defined just so that 2/5 = 0.8× 1/2 will hold).

The tree does not continue on from the payoff state $0.80.

More generally, a “normal” transition, i.e. with
∑

i pi = 1, can effectively be “α-

discounted” by using the elements (s
αpi−→ si, s

0
−→ $) or (s

αpi−→ si, s
1−α
−→ $).

Fig. 1. Example of payoff-state encoding

See Fig. 1 for an example.
This formulation of the payoff — i.e. “pre-divided” by its probability of oc-

currence — has three desirable properties. The first is that the probabilistically
expected halt-and-payoff is just t.s.$, i.e. is given directly by t. The second prop-
erty is that we can consider the probabilities of outcomes from s to sum to one
exactly (rather than no more than one), since any deficit is “soaked up” in the
probability of transit to payoff, which simplifies our operational interpretation.

The third property is that transitions preserve one-boundedness in the follow-
ing sense. Define the set of expectations ES (over S) to be the set of one-bounded
functions S → [0, 1]. If A in ES gives a “post-expectation” A.s′ expected to be
realised at state s′ after transition t, then the “pre-expectation” at s before
transition t is

t.s.$ +

∫

t.s

A , where the sub-distribution t.s under
∫

is re-
stricted to states in S proper.11

It is the expected value realised by making transition t from s to s′ or possibly $,
taking A.s′ in the former case and (1) in the latter. That this pre-expectation is

10 If
∑

s′:S t.s.s′ is one, then t.s.$ must be zero, because elements of S$ sum to no more
than one. In that case we define the actual — and expected — payoffs both to be
zero.

11 To avoid clutter we will assume this restriction where necessary in the sequel.
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also one-bounded, i.e. is in ES, allows us to confine our work to the real interval
[0, 1] throughout.

Hence computation trees can be constructed by “pasting together” applica-
tions of transitions t0, t1, . . . drawn from R.S, with branches to $ being tips.12

The probabilities attached to the individual steps then generate a distribution
over computational paths (which is defined by the sigma-algebra of extensions
of finite sequences, a well-known construction [12]).

We use the relation ≤ — “everywhere no more than” between expectations
(thus replacing “implies”):

A ≤ A′ iff (∀s:S · A.s ≤ A′.s) .

In our interpretations we will use valuations in the usual way. Given a formula
φ, a valuation V does four things: (i) it maps each A in φ to a fixed expectation in
ES; (ii) it maps each K to a fixed, non-empty finite set of probabilistic transitions
in R.S; (iii) it maps each G to a predicate over S; and (iv) it keeps track of
the current instances of “unfoldings” of fixed points, by including mappings for
bound variables X . (For notational economy, in (iv) we are allowing V to take
over the role usually given to a separate “environment” parameter.)

We make one simplification to our language, without compromising expres-
sivity. Because the valuation V assigns finite sets to all occurrences of K, we
can replace each modality 〈K〉φ (resp. [K]φ) by an explicit maxjunct ⊔k:K{k}φ
(resp. minjunct ⊓k:K{k}φ) of (symbols k denoting) transitions k in the set (de-
noted by) K. We do this because our interpretations conveniently do not distin-
guish between 〈K〉 or [K] when K is a singleton set.

In the rest of this paper we shall therefore use the reduced language given by

φ =̂ X | A | {k}φ | φ1 ⊓ φ2 | φ1 ⊔ φ2 | φ1 ✁ G✄ φ2 | (µX · φ) | (νX · φ) .

We replace (ii) above in respect of V by: (ii’) it maps each occurrence of {k} to
a probabilistic transition in R.S.

3 Denotational interpretation:

qMµ generalises Kozen’s logic

In this section we recall how the quantitative logic for nondeterministic/probabilistic
sequential programs [19,34] — from which we inherit the use of expectations, and
the semantic definition ||{k}φ|| below — leads to a quantitative generalisation of
Kozen’s logical interpretation of µ-calculus, suitable for probabilistic transition
systems.

Let φ be a formula and V a valuation. We write ||φ||V for its meaning, an ex-
pectation in ES determined by the rules given in Fig. 2. Part of the contribution
of our previous work [29,30] is summarised in the following lemma.

12 We see below that tips are made by constant terms A as well.
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1. ||X||V =̂ V.X .
2. ||A||V =̂ V.A .
3. ||{k}φ||V .s =̂ V.k.s.$ +

∫
V.k.s
||φ||V .

4. ||φ′ ⊓ φ′′||V .s =̂ ||φ′||V .s min ||φ′′||V .s ; and
||φ′ ⊔ φ′′||V .s =̂ ||φ′||V .s max ||φ′′||V .s .

5. ||φ′
✁ G✄ φ′′||V .s =̂ ||φ′||V .s if (V.G.s) else ||φ′′||V .s .

6. ||(µX · φ)||V =̂ (lfp x · ||φ||V[X 7→x]
) where by (lfp x · exp) we mean the least

fixed-point of the function (λx · exp).
7. ||(νX · φ)||V =̂ (gfp x · ||φ||V[X 7→x]

) .

Note that in the valuation V[X 7→x], the variable X is mapped to the expectation x.

Fig. 2. Kozen-style denotational semantics for qMµ

Lemma 1. The quantitative logic qMµ is well-defined — For any φ in the
language, and valuation V, the interpretation ||φ||V is a well-defined expectation
in ES.

Proof. Structural induction: arithmetic, that our formulae express only mono-
tone functions, and that (ES, ≤) is a complete partial order. (Recall that ES is
[0, 1]-bounded.)

4 Operational interpretation:

qMµ generalises Stirling’s game

In this section we give an alternative account of formulae φ (of the reduced
language), in terms of a generalisation of Stirling’s turn-based game [43]. The
game is between two players, to whom we refer as Max and Min. As in Sec. 3, we
assume a probabilistic transition system R.S and a valuation V . Play progresses
through a sequence of game positions, each of which is either a pair (φ, s) where
φ is a formula and s is a state in S, or a single (y) for some real-valued payoff y
in [0, 1]. Following Stirling, we will use the idea of “colours” to handle repeated
returns to a fixed point.

A sequence of game positions is called a game path and is of the form
(φ0, s0), (φ1, s1), . . . with (if finite) a payoff position (pn) at the end. The initial
formula φ0 is the given φ, and s0 is an initial state in S. A move from position
(φi, si) to (φi+1, si+1) or to (y) is specified by the rules of Fig. 3.

A game path is said to be valid if it can occur as a sequence according to
the above rules. Note that along any game path at most one colour can appear
infinitely often:

Lemma 2. All valid game paths are either finite, terminating at some payoff
(y), or infinite; if infinite, then exactly one colour appears infinitely often.
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If the current game position is (φi, si), then play proceeds as follows:

1. Free variables X do not occur in the game — their role is taken over by “colours”
(see Cases 6–8 below.).a

2. If φi is A then the game terminates in position (y) where y = V.A.si.

3. if φi is {k}φ then the distribution V.k.si is used to choose either a next state s′

in S or possibly the payoff state $. If a state s′ is chosen, then the next game
position is (φ, s′); if $ is chosen, then the next position is (y), where y is the payoff
V.k.s.$/(1 −

∑
s′:S V.k.s.s′), and the game terminates.

4. If φi is φ
′ ⊓ φ′′ (resp. φ′ ⊔ φ′′) then Min (resp. Max) chooses one of the minjuncts

(maxjuncts): the next game position is (φ, si), where φ is the chosen ’junct φ′ or
φ′′.

5. If φi is φ
′
✁G✄φ′′, the next game position is (φ′, si) if V.G.si holds, and otherwise

it is (φ′′, si).

6. If φi is (µX · φ) then a fresh colour C is chosen and is bound to the formula φ[X 7→C]

for later use; the next game position is (C, si).
b

7. If φi is (νX · φ), then a fresh colour C is chosen and bound as for µ.c

8. If φi is a colour C, then the next game position is (φ, si), where Φ is the formula
bound previously to C.

The game begins with a closed formula — refer Item 1. above.
Infinite games result in there being a single colour C that occurs infinitely often; finite
games end in a payoff (y) for 0 ≤ y ≤ 1.

Fig. 3. Rules for playing probabilistic formula-game.

a Free variables do play a role in our more detailed analysis later (Fig. 5).
b This use of colours is taken from Stirling [43]; in App. A we formalise the operations
of choosing fresh colours and binding them to formulae. The colour device easy
determination, later on, of which recursion operator actually “caused” an infinite
path.

c The two kinds of fixed point are not distinguished at this stage: see Def. 1 below.



15 September 2003 Results on the quantitative µ-calculus qMµ 9

Proof. Stirling [43].

To complete the description of the game, one would normally give the win-
ning/losing conditions. Here however we are operating over real- rather than
Boolean values, and we speak of the “value” of the game. In the choices φ′ ⊔ φ′′

(resp. φ′ ⊓ φ′′) player Max (resp. Min) follows a strategy in which he tries to
maximise (minimise) a real-valued “payoff” associated with the game,13 defined
as follows.

Definition 1. Value of a path — The value of a path is determined by a fixed
function Val defined by cases as follows:

1. The path π is finite, terminating in a game state (y); in this case the value
Val.π is y.

2. The path π is infinite and there is a colour C appearing infinitely often that
was generated by a greatest fixed-point ν; in this case Val.π is 1.

3. The path π is infinite and there is a colour C appearing infinitely often that
was generated by a least fixed-point µ; in this case Val.π is 0.

In Sec. 6.1 we make precise this notion of “value of a game,” and its interac-
tion with strategies.

5 Worked example: investing in the futures market

5.1 Describing a game

Typical properties of probabilistic systems are usually cost-based, and to illus-
trate that we give an example involving money. Concerning general expected
values, it lies strictly outside the scope of “plain” probabilistic temporal logic.

An investor I has been given the right to make an investment in “futures,”
a fixed number of shares in a specific company that he can reserve on the
first day of any month he chooses. Exactly one month later, the shares will be
delivered and will collectively have a market value on that day — he can sell
them then if he wishes.

His problem is to decide when to make his reservation so that the subse-
quent sale has maximum value.14

The details are as follows:

1. The market value v of the shares is a whole number of dollars between $0
and $10 inclusive; it has a probability p of going up by $1 in any month,
and 1−p of going down by $1 — but it remains within those bounds. The
probability p represents short-term market uncertainty.

13 In fact attributing the wins/losses to the two players makes it into a zero-sum game.
14 At (+) in Sec. 7 we discuss the related problem of maximising profit.
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2. Probability p itself varies month-by-month in steps of 0.1 between zero and
one: when v is less than $5 the probability that p will rise is 2/3; when v is
more than $5 the probability of p’s falling is 2/3; and when v is $5 exactly
the probability is 1/2 of going either way. The movement of p represents
investors’ knowledge of long-term “cyclic second-order” trends.

3. There is a cap c on the value of v, initially $10, which has probability 1/2 of
falling by $1 in any month; otherwise it remains where it is. (This modifies
Item 1. above.) The “falling cap” models the fact that the company is in a
slow decline.

4. If in a given month the investor does not reserve, then at the very next
month he might find he is temporarily barred from doing so. But he cannot
be barred two months consecutively.

5. If he never reserves, then he never sells and his return is thus zero.

If it were not for Item 3., the investor’s strategy would be the obvious “wait
until v ≥ 9 ∧ p = 1 — however long that takes — and make a reservation
then.” But the falling cap defeats that, effectively discounting the payoff as time
passes.15 Below we consider more sophisticated strategies that take that into
account.

The situation is summed up by the transition system set out in Fig. 4:

– During each month there are three purely probabilistic actions that occur,
and their compounded effects determine a transition m, which we will call
month in our formula (to come);

– At the beginning of each month, the investor makes a maximising (angelic)
choice of whether to reserve; but, if he does not, then

– At the beginning of the next month, there is a minimising (demonic) choice
of whether he is barred.

The utility of our game interpretation in Sec. 4 is that we can easily use the
intuition it provides to write a formula describing the above system. The state
space is (v, p, c), and we use a transition

m =̂ v: = (v + 1) ⊓ c p⊕ (v − 1) ⊔ 0;

if v < 5 then p: = (p+0.1) ⊓ 1 2/3⊕ (p−0.1) ⊔ 0
elsif v > 5 then p: = (p−0.1) ⊔ 0 2/3⊕ (p+0.1) ⊓ 1
else p: = (p−0.1) ⊔ 0 1/2⊕ (p+0.1) ⊓ 1
fi;

c: = (c−1) ⊔ 0 1/2⊕ c
15 With the cap c fixed at $10 we know that from any state there is a non-zero proba-

bility, however small, of reaching v ≥ 9 ∧ p = 1 eventually; but, with the Zero-One
Law [15,27,25] for probabilistic processes, that means in fact that v ≥ 9 ∧ p = 1
will be reached eventually with probability one. So “waiting” would be the correct
strategy, because when v ≥ 9 ∧ p = 1 finally occurs, an immediate reservation is
guaranteed to pay $10 in a month’s time.
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Probability p
goes down ¯

Probability p 
goes up

Value v
goes up

Value v
 goes down ¯

Cap c
goes down ¯

Cap c
is unchanged

Transition m
models one month’s
stock-market activity

The thick arrow, “exploded” on the right, represents the effect of one month’s stock-
market activity: symbol ⊕ labels the probabilistic choices it entails. The share value
v may rise or fall, according to p; probability p itself may rise or fall, according to
long-term trends; and the capped value c of the stock may fall.

Reservation

Value v
delivered

Reservation 
   not made

represent transition m from above.Thick arrows

Reservation
allowed

Reservation 
     barred

made

This represents the non-deterministic choices available to the investor (maximising
player) and the market (minimising player). Symbol ⊔ represents the investor’s choice;
symbol ⊓ represents the market’s choice.

(The probabilistic choices occur “within” the thick arrows.)

Fig. 4. Futures trading on the stock market: example.
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to capture the effect of the large arrows.
We can then use our (reduced) logical language to describe the surrounding

angelic and demonic choices, including the “loop back” (fixed point) which gives
value zero (i.e. µ) if it never terminates. Using month to denotem, and a constant
expectation Sold16 to denote the function v̂ returning just the v component of
the state, we would write our formula as

Game =̂ (µX · {month}Sold ⊔ {month}(X ⊓ {month}X)) . (2)

5.2 Playing the game

Using the game interpretation, we can generate a probabilistic tree from the
transition system in Fig. 4 by duplicating nodes with multiple incoming arcs (as
inmonth), “unfolding” back-loops, and making minimising or maximising choices
as they are encountered. In this example, at each unfolding both the investor
I (making ⊔ choices) and the stock market M (making ⊓ choices whether to
impose a bar) need to choose between two ongoing branches — and their choice
could be different each time they revisit their respective decision points. Each of
I,M will be using a strategy.

For example (recalling Footnote 15), the investor I’s strategy (maximising,
he hopes) for dealing with the falling cap might be

wait until the share value v (rising) meets the cap c (falling),
and reserve then.

(3)

Waiting for v to rise is a good idea, but when it has met the cap c there is clearly
no point in waiting further.

And M ’s strategy (minimising, the investor fears) might be

bar the investor, if possible, whenever the shares’ probability p
of rising exceeds 1/2.

(4)

In general, let σI and σM be sequences (possibly infinite) of choices, like the
above, that I and M might make. When they follow those sequences, the game-
tree they generate determines a probability distribution over valid game paths
[12]. Anticipating the next section, let [[φ]]σI ,σM

V denote that path distribution17

as generated by I and M ’s choices. We can now describe I’s actual payoff as an
expected value

Y.σI .σM =̂

∫

[[φ]]
σI,σM
V

“the v-component of the final state” , (5)

with the understanding that the random variable in the integral’s body yields
zero if in fact there is no final state (because of an infinite path).
16 The Sold function should have codomain [0, 1], but to avoid clutter we have not

scaled it down here by dividing by 10.
17 The distribution is described explicitly by Def. 2 and Lem. 3 still to come.
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In some cases, the choices made by I and M can be memoriless, in the sense
that in identical situations (identical values of v, p, c in this case, and the same
position in the transition system) they will always make the same choice. Both
(3) and (4) above are memoriless.18

Memoriless strategies are particularly important for the efficient computation
of expected payoffs [11], and in Sec. 6 we show that they suffice for analysis of
qMµ formulae when the state space is finite — that is, informally, the players
gain no advantage by remembering where they have been.

5.3 The value of the game

As is usual in game theory, when the actual strategies of the two players are
unknown, we define the value of the game to be the the minimax over all strategy
sequences of the expected payoff — but it is well-defined only when it is the same
as the maximin, i.e. when in the notation of (5) we have

⊔σI
⊓σM

Y.σI .σM = ⊓σM
⊔σI

Y.σI .σM .

The equivalence proved in Thm. 1, to come, tells us that such games’ values
are indeed well-defined, and that although we use the game interpretation to
write down the formulae, we can use the logical interpretation ||Game||V to reason
about their values. Sometimes, as in this simple case, we can use the logical
interpretation to calculate an approximation directly.

Although the details of month are (deliberately) slightly messy, the structure
of the overall formula Game has been chosen (also deliberately) to be fairly
simple,19 and as such the fixed point can be approximated by iterating the
function

(λX · m ◦ v̂ ⊔ m.(X ⊓m.X))

beginning from the constant “bottom” function that is zero everywhere on the
state space.

Carrying out that calculation20 shows for example that if p is initially 0.5
and the cap c is 10, then the optimal expected sale-value for the investor is

initial share value: 0 1 2 3 4 5 6 7 8 9 10
optimal expected sale: 4.16 4.30 4.55 4.88 5.24 5.52 6.00 7.00 8.00 9.00 9.50

(6)

Even when the share value is only “moderately high,” we thus see there is nothing
to be gained by waiting, since the cap is likely to drop. For low initial values,
however, some benefit can be gained by delaying the reservation for a while.

18 Adding e.g. “but reserve immediately if v has fallen for five months in a row” to
Strategy (3) would give it memory.

19 It is in fact just a quantitative eventually in the temporal subset qTL of qMµ [30,29].
20 We used Mathematica©r for this example calculation, and the results were verified by

Gethin Norman, at Birmingham University (UK), using the PRISM model checker
[21] and MatLab©r. The scripts are available online [41].
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By comparison, the investor’s “seat-of-the-pants” strategy at (3) gives a sig-
nificantly lower expected return against “worst-case” play by M :

initial share value: 0 1 2 3 4 5 6 7 8 9 10
Strategy (3)’s yield: 3.68 3.79 3.97 4.17 4.29 4.17 4.16 4.65 5.61 6.78 9.50

From this we might guess that when v is at least $6 (and p, c are as given) it is
better to “reserve now” (as (6) suggests) than to follow Strategy (3) and wait.

5.4 Winning the game

Ideally we would like to be able to calculate both the value of the game and
the strategies to realise it, e.g. in this example we would like to be able to
offer “investment advice.” Even better than knowing that Strategy (3) can be
improved, as we have just seen it can, is knowing how to improve it.

In some cases, the logical interpretation can help by providing theorems that
allow formulae to be simplified [30] or abstracted, thus bringing an apparently
difficult formula within the range of probabilistic model-checkers [37].

For formulae with a particularly simple structure, we might even be able to
appeal to theorems— proved in the logic — which give maximising or minimising
strategies directly. In the case of Game, we do have such a theorem [29,25]:
paraphrased, it states in this case that the investor should

make an immediate reservation just when the expected value of
the stock in one month’s time is at least as great as the expected
value of the whole game played from this point.

(7)

Otherwise, he should wait.

The expected value of the stock in one month’s time is easily calculated: it
is just m.v̂.(v, p, c), where v, p, c are taken from the state “now.” (Note that the
function v̂, as an argument of m, will instead take the v-value of the state in one
month’s time.) Tabulated for p =̂ 0.5 and c =̂ 10 as at (6) above, that gives

initial share value: 0 1 2 3 4 5 6 7 8 9 10
expected share value
in one month:

0.50 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 9.50
(8)

Since the current values of v, p, c are known at the beginning of each month
(at the beginning of each turn, more generally), this maximising strategy can
be applied in practice provided the fixed-point can be approximated sufficiently
well. For our current game, comparing (6) and (8) confirms our guess above
about the problem with Strategy (3): instead of its recommendation, our initial
move should be “make an immediate reservation if v ≥ 6, otherwise wait.”

In general, if we follow (7) consistently we will realise at least the optimum
(6) over sufficiently many trials.
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5.5 Other games

Variations on (2) can describe the value of other, related games.
It might be for example that a client’s instructions are “get me the shares

when they’re worth at least $6,” and the investor’s aim is to maximise his chance
of doing that. Let atLeast6 denote the characteristic function21 of those states
where v ≥ 6; then

(µX · {month}atLeast6 ⊔ {month}(X ⊓ {month}X)) .

gives a lower bound for I’s probability of achieving v ≥ 6 with an optimal
strategy. By analogy with (7) — the same theorem applies — that strategy
should be

make an immediate reservation just when the probability of
achieving v ≥ 6 next month is at least as great as the optimal.

Below we tabulate the probabilities, giving for contrast the results of the
strategy “reserve when v ≥ 5 and p ≥ 0.5,” i.e. the intuitive approach of waiting
until the chance of achieving v ≥ 6 next month is at least even:

probability of achieving v ≥ 6

initial share value: 0 1 2 3 4 5 6 7 8 9 10
following optimal strategy: 0.25 0.29 0.34 0.41 0.46 0.50 0.56 1.00 1.00 1.00 1.00
following intuitive strategy: 0.25 0.28 0.33 0.37 0.42 0.50 0.50 1.00 1.00 1.00 1.00

We can see from the table that when v is $5 initially, the intuitive strategy
is optimal: “reserve now.” At $6, however, the optimal strategy — counter-
intuitively — is to wait.

5.6 More generally

In the next section we show that the techniques used in this example are valid
for all games — that is, that the value of any game of the form given in Sec. 4 is
well-defined, that it can be realised by memoriless strategies if the state space is
finite, and that its value corresponds exactly to the denotational interpretation
of Sec. 3.

For the current example, those results justified our using the denotational
interpretation to analyse Game, which in this simple case led to a direct calcula-
tion (6) of the optimal result, and the formulation of an explicit strategy (7) to
achieve it. For more complex formulae, the optimal payoff can be determined in-
directly using model-checking methods derived from Markov Decision Processes
(MDP ’s) [11].

For example, PRISM [21] is a probabilistic model checker which has support
for MDP ’s.22 It takes as input an occam-like [36] description of a transition sys-
tem, including both overlapping-guard style (traditional, in CSP [40] parlance
21 Recall Footnote 4.
22 It also handles discrete- and continuous-time Markov chains.
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“internal”) nondeterminism and (beyond occam/CSP) probabilistic choice con-
structs. Using BDD -based techniques it translates the input description into an
MDP, called f say.

Normally, the tool allows the verification of MDP ’s against specifications
written in the temporal logic pCTL [13]; in this case an extended version was
used that supports reward-based specifications. The rewards are evaluated by
approximating the least fixed-point of f⊓ or f⊔ by repeated applications be-
ginning from bottom (zero), where f⊓ or f⊔ interprets (all) non-probabilistic
nondeterminism as minimising, maximising respectively — i.e. “uni-modally”
— and the interpretation of the result as a measure of the minimum or max-
imum possible reward in a probabilistic/demonic or probabilistic/angelic game
is justified by Everett’s original work [10].

To deal with the “bi-modal,” minimax non-determinism of our example, the
PRISM -produced transition matrices for the MDP were exported, and used as
data for a MatLab©r program that performed the angelic/demonic calculations
explicitly; the results agreed with the calculations we had previously obtained
from Mathematica©r by coding up the qMµ formula (2) directly [41].

The justification in this more general case that the value can be interpreted
as the minimax expected reward of the original game is provided by our Thm. 1
below, extending Everett.

6 Proof of equivalence

In this section we give our main result, the equivalence of the operational,
“Stirling-game” and the denotational, “Kozen-logic” interpretations of qMµ for-
mulae. We formalise strategies in both cases, whether they can or cannot have
“memory” of where the game or transition system has gone so far, and the effect
of “minimaxing” over them.

To begin with, we fix a single pair of strategies: one maximising, one min-
imising.

6.1 Fixed strategies for the Stirling interpretation

Our first step will be to explain how the games of Fig. 3 can be formalised
provided a fixed pair of players’ strategies is decided beforehand.

The current position of a game — as we saw in Sec. 4 — is a formula/state
pair. We introduce two strategy functions called σ and σ, which will prescribe
in advance the players’ decisions to be taken as they go along: the functions are
of type “finite-game-path to Boolean,” and the player Min (resp. Max ), instead
of deciding “on the fly” how to interpret a decision point ⊓ (resp. ⊔), takes the
strategy function σ (resp. σ) and applies that to the sequence of game positions
traversed so far. The result “true” means “take the left subformula,” say.

These strategies model full memory, because each is given as an argument
the complete history of the game up to its point of use. (Note that the history
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includes the current state s.) We stipulate however that strategies are colour-
insensitive, since colours are not an artefact of the system itself:23 that is, we
assume that from any colour C it is possible to recover the identity of the variable
X for which it was generated, and any strategy treats game position (C, s) in a
history as if it were (X, s).24

We can now formalise our probabilistic extension of Stirling’s game. Rather
than see it as at our earlier Fig. 3, a linear sequence of moves interleaving max-
imising, minimising and probabilistic choices, we use our strategy functions to
present the game in two separated stages.

In the first stage we construct a (possibly infinite) purely probabilistic game-
tree, using the given formula φ, the initial state s and the pre-packaged strat-
egy functions σ, σ. The process is shown in Fig. 5, and clearly is derived from
the game of Fig. 3 given earlier: the difference is that in Fig. 5 the probabilis-
tic choices are “deferred” by our showing the whole tree of their possibilities,
whereas in Fig. 3 they are “taken as they come.” We write [[φ]]

σ,σ
V .s for the tree

generated by the process of Fig. 5.
For the second stage we play the purely-probabilistic game represented by

the tree just generated, and use the function Val of Def. 1, from valid game
paths to the non-negative reals, to determine the “payoff” as described at the
end of Sec. 4. Our “expected payoff” from the whole process is then the expected
value of this payoff function over the distribution of paths determined by that
game tree, formalised as follows. (Abusing notation, we write [[φ]]

σ,σ
V .s for the

probability distribution of paths determined by the tree, as well as for the tree
itself.)

Definition 2. Value of fixed-strategy Stirling game — The value of a game
played from formula φ and initial state s, with fixed strategies σ, σ, is given by
the expected value ∫

[[φ]]
σ,σ

V
.s

Val

of Val over the (probability distribution determined by the) game-tree [[φ]]
σ,σ
V .s

generated by the formula, the strategies and the initial state as shown in Fig. 5.
(The argument that this is well defined is given in Lem. 3 following.)

Lemma 3. Well-definedness of Def. 2 — The expected value of Val over game
trees is well-defined.

Proof. We must show (1) that [[φ]]
σ,σ
V .s generated as at Fig. 5 determines a sigma-

algebra, and (2) that Val is measurable over it. We use in several places that the

23 That is, since colours do not occur in the physical systems we are specifying, we are
not obliged to model strategies that take them into account.

24 Thus strategies do not depend on the actual colour value that was arbitrarily chosen
during a fixed-point step. All that matters is whether colours are the same or differ,
and which kind of fixed point (least or greatest) generated them.
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As for Fig. 3, the current game position is some (φ, s); but here we appeal to pre-
determined strategy functions σ, σ, and use a “current path” variable π, to construct
the whole probabilistic tree of possibilities rather than to play along one of its branches
as we go.

After each step, the path π is extended with (φ, s); it is initially empty. The formula
and state change as for Fig. 3, but according to the given strategies if appropriate.

1. If φ is a free variable X, make a single probability-one edge leading to tip (V.X.π.s).
2. If φ is A then make a single probability-1 edge leading to tip (V.A.s).

3. if φ is {k}Φ then make one edge for each state s′ having V.k.s.s′ non-zero, labelling
it with that probability, plus one more “payoff” edge if those probabilities sum to
less than one. For each s′ edge, add a child (Φ, s′); if there is a payoff edge then
add a child (y) where y is the payoff V.k.s.$/(1 −

∑
s′:S V.k.s.s′).a

4. If φ is Φ′ ⊓ Φ′′ (resp. Φ′ ⊔ Φ′′) then choose between Φ′ and Φ′′ depending on σ.π
(resp. σ.π): form a single edge of probability one to the next game position (Φ, s),
where Φ is the chosen ’junct Φ′ or Φ′′.

5. If φ is Φ′
✁ G✄ Φ′′, choose between Φ′ and Φ′′ depending on V.G.s: form a single

edge of probability one to the next game position (Φ, s), where Φ is the chosen
’junct.

6. If φ is (µX · Φ) then choose fresh colour C; make a single probability-one edge
leading to (C, s).

7. If φ is (νX · Φ) then (as for µ) choose fresh colour C; make a single probability-one
edge leading to (C, s).

8. If φ is colour C, extract the game position ((µ/νX · Φ), s′); make a single
probability-one edge leading to (Φ[X 7→ C], s).

App. A at (+) explains how the operations of choosing and binding colours are for-
malised in this denotational definition.

We write [[φ]]σ,σ
V .s for the tree generated, as above, from formula φ, strategies σ, σ and

initial state s.

Fig. 5. Tree-building process, with paths and strategies.

a If the probabilities over S sum to one then we do not add a payoff edge — so the
question of division by zero does not arise.
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tree is finitely branching, and that therefore it has only countably many nodes
(and hence only countably many finite paths).

For (1) we appeal to the standard construction of path distributions from
trees: the basis elements are “cones” of paths all having a common (finite) prefix;
and the measure of a cone is the product of the probabilities found on the path
leading from the root to the end of the common prefix (equivalently, to the base of
the cone). The algebra is generated by closing the basis under countable unions
and complement (and hence countable intersections also).

For (2) we must show that for any real r the inverse image Val−1.(r,∞) is
in the algebra defined at (1), where (r,∞) is the open interval of reals above r.

We begin with the case 0 < r < 1, in which case the inverse image is the set
of all paths containing an infinite number of ν-colours plus all the (finite) paths
ending in an explicit s-tip with r < s. But since there are only countably many
finite paths in total, there are certainly only countably many (s)-tipped paths —
which we can therefore ignore.

Since each new colour (of either kind) is generated at some node of the tree,
there are only countably many ν-colours, and so we may concentrate on a single
ν-colour C.

For any i ≥ 0 the set Ci of paths with at least i occurrences of C is measurable,
since it is the union of all cones determined by finite prefixes ending in an ith

occurrence of C exactly. Then the set C∞ of paths containing infinitely many C’s
is just the countable-over-i intersection of all the Ci’s.

We finish by noting that for the case 1 ≤ r the inverse image is empty; and
for the case r = 0 it is just the set of all paths.

Although the game is played “all at once” in Fig. 3, note that the strategy
functions and the construction of Fig. 5 make it appear as if it is played in two
stages: first, we determine the strategies; second, we roll the dice. The point of
that is to allow us to use standard techniques of expected values in the second,
purely probabilistic stage, free of the complications of max/min-nondeterminism.
The strategy functions’ generality makes the two views equivalent.

6.2 Fixed strategies for the Kozen interpretation

Now that the value of a fixed-strategy game is defined, our second step is to
define fixed-strategy denotations: we augment the semantics of Sec. 3 with the
same strategy functions as above. For clarity we use slightly different brackets
|||φ|||

σ,σ
V for the extended semantics.
The necessary alterations to the rules in Fig. 2 are straightforward, the prin-

cipal one being that in Case 4, instead of taking a minimum or maximum, we
use the argument σ or σ as appropriate to determine whether to carry on with
φ′ or with φ′′.
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A technical complication is then that all the definitions have to be changed
so that the “game sequence so far” is available to σ and σ when required. That
can be arranged for example by introducing an extra “path-so-far” argument
and passing it, suitably extended, on every right-hand side.

The modified rules are given in full in App. A at Fig. 6.

6.3 Equivalence of the interpretations

We now have our first equivalence, for fixed strategies:

Lemma 4. Equivalence of fixed-strategy games and logic — For all closed
qMµ formulae φ, valuations V, states s and strategies σ, σ, we have

∫

[[φ]]
σ,σ

V
.s

Val = |||φ|||
σ,σ
V .s .

Proof. (sketch25) The proof is by structural induction over φ, straightforward
except when least- or greatest fixed-points generate infinite trees. In those cases
we consider approximations to the valuation function Val such that ValCn .π acts
as Val if path π contains less than n occurrences of colour C, otherwise returning
zero (resp. one) for the µ (resp. ν) cases respectively. Those n-approximants in
the game interpretation are shown by mathematical induction to correspond to
the usual n-fold iterates that approximate fixed points in the denotational inter-
pretation; and bounded monotone convergence [12] is used to distribute suprema
(for least fixed-points) through

∫
.

For similar distribution of the infima required by greatest fixed-points, we
subtract from one and again argue over suprema.

Lem. 4 will be the key to our completing the argument — in Sec. 6.4 to follow
— that the value of the Stirling game is well-defined when we take the minimax
over all strategies of the expected payoff, rather than just considering a fixed
pair. That is, in the notation of this section we must establish

⊓σ ⊔σ

∫

[[φ]]
σ,σ

V
.s

Val = ⊔σ ⊓σ

∫

[[φ]]
σ,σ

V
.s

Val . (9)

The utility of Lem. 4 is that it allows us to carry out the argument in a denota-
tional rather than operational context — we can avoid the integrals, games and
trees and simply use ||| · ||| and cpo’s instead.

In fact we show (9) to be even simpler — both sides are equal to the original
denotational interpretation, with its ⊓ and ⊔ operators still in the formula and
therefore no need for strategy functions at all. That is, we prove (9) by appealing
to Lem. 4 to move from

∫
’s to ||| · |||’s, and then we will establish the equality

⊓σ ⊔σ |||φ|||
σ,σ
V = ||φ||V = ⊔σ ⊓σ|||φ|||

σ,σ
V .

And so we will have that the game is indeed well-defined — and that ||φ||V is its
value.
25 A full proof is given in App. A.
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6.4 Full equivalence via memoriless strategies

for finite state spaces

In the previous section we handled maximising/minimising strategies by mod-
elling them explicitly as a fixed pair of “decision” functions chosen beforehand.
Here we show that the order in which they are chosen makes no difference:
whether max -before-min or the reverse, the Stirling-value of the game equals
the Kozen-value of the original formula, i.e. with the ⊔/⊓ operators still in place
and no explicit strategy functions.

A key step in that process is showing that, over a finite state space, there are
fixed “memoriless” strategies that “solve” a Kozen interpretation in the sense of
achieving its value by local decisions that depend only on the current state and
not on the history; such strategies are implemented by Boolean conditionals.

Our approach is a generalisation of an argument used by Everett, who treated
formulae with a single least fixed-point [10]; we have generalised it to deal with
multiple fixed points nested arbitrarily.

Let formula φG be derived from φ by the syntactic operation of replacing each
operator ⊓ in φ by a specific predicate symbol drawn from a tuple G of our choice,
possibly a different symbol for each syntactic occurrence of ⊓. This represents
replacing the general minimising strategy ⊓ by some specific memoriless strategy
(-ies) G that G denotes.

Similarly we write φG for the derived formula in which all instances of ⊔ are

replaced left-to-right by successive predicate symbols in a tuple G.

With those conventions, we will appeal to Lem. 11 of App. B that for all qMµ
formulae φ over a finite26 state space S, and valuations V , there exist (semantic)
predicate tuples G and G corresponding to the predicate symbols as above such
that ||φG||V′ = ||φ||V = ||φG||V′ , where V ′ is the technical extension of V that maps

the new symbols G,G to G,G respectively, and leaves all else unchanged.

For example, if the formula φ is

(µX · A1 ⊔ (νY · A2 ⊓ {k}(A3 ⊔ (X ✁ G✄ Y )))) ,

then we are saying we can find predicate tuples (G1) and (G1, G2) so that for
corresponding predicate-symbol tuples G =̂ (G1) and G =̂ (G1,G2) we can define

φG =̂ (µX · A1 ⊔ (νY · A2 ✁ G1 ✄ {k}(A3 ⊔ (X ✁ G✄ Y )))) and

φG =̂ (µX · A1 ✁ G1 ✄ (νY · A2 ⊓ {k}(A3 ✁ G2 ✄ (X ✁ G✄ Y ))))

— and then extend V to a V ′ that takes G1,G1,G2 to G1, G1, G2 respectively —
so that φG, φG and φ itself are all || · ||V′-equivalent. 27

26 Finiteness is needed in Case G of the lemma’s proof.
27 It is easy to show also that all three formulae are then || · ||V′ -equivalent to φG,G , but

we do not need that.
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The proof of Lem. 11 is by induction, intricate only in one case, which is where
we rely on Everett’s techniques [op. cit ].28 That part of the proof, together with
several preliminary lemmas, is given in Appendices B–D.

With it we show, first, that the Kozen interpretation is insensitive to the
order in which the strategies are chosen; then, from Lem. 4 we have immediately
that Stirling games are similarly insensitive — and thus our main result, that
the value of the game is the value of the denotation.

Lemma 5. Minimax equals maximin for Kozen interpretation —
For all qMµ formulae φ, valuations V and strategies σ, σ, we have

⊓σ ⊔σ|||φ|||
σ,σ
V = ⊔σ ⊓σ|||φ|||

σ,σ
V . (10)

Proof. From monotonicity, we need only prove lhs ≤ rhs.29 Note that from
Lem. 11 we have predicates G and G satisfying

||φG||V′ = ||φ||V′ = ||φG||V′ , (11)

with V ′ extending V as we have said, a fact which we use further below.
To begin with, using the predicates G from (11), we start from the lhs of (10)

and observe that

⊓σ ⊔σ|||φ|||
σ,σ
V = ⊓σ ⊔σ|||φ|||

σ,σ
V′ ≤ ⊔σ |||φG|||

σ
V′ , (12)

— in which on the right we omit the now-ignored σ argument — because (on the
left) formula φ does not refer to the extra symbols in V ′ and (on the right) the
⊓σ can select exactly those predicates G referred to in V ′ by G simply by making
an appropriate choice of σ.

We then eliminate the explicit strategies altogether by observing that

⊔σ |||φG|||
σ
V′ ≤ ||φG||V′ , (13)

because the simpler || ||-style semantics on the right interprets ⊔ as maximum,
which cannot be less than the result of appealing to some strategy function σ.

We can now continue on our way towards the rhs of (10) as follows:

||φG||V′ carrying on from (13)

= ||φ||V′ first equality at (11)

= ||φG||V′ second equality at (11)

≤ ⊓σ|||φG|||
σ
V′ as for (13) above, backwards and with inequality reversed

≤ ⊔σ ⊓σ |||φ|||
σ,σ
V , as for (12) above, backwards and with inequality reversed

and we are done. (Note that in the last step we were again able to use the fact
that φ is insensitive to the difference between the extended valuation V ′ and the
original valuation V.)

28 Unfortunately Everett’s work as it stands is less than we need, so although we borrow
his techniques we cannot simply appeal to his result as a whole.

29 Trivially ⊓σ ⊔σ |||φ|||σ,σ
V = ⊔σ ⊓σ ⊔σ |||φ|||σ,σ

V ≥ ⊔σ ⊓σ|||φ|||
σ,σ
V .
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The proof above establishes the duality we seek between the two interpreta-
tions, and our principal result:

Theorem 1. Value of Stirling game — The value of a Stirling game is well-
defined, and equals ||φ||V .

Proof. Lem. 4 and Lem. 5 establish the equality (9), for well-definedness; the
stated equality with ||φ||V occurs during the proof of the latter.

Finally, we have an even tighter result about the players’ strategies:

Lemma 6. Memoriless strategies — There exists a memoriless strategy G
which, if followed by player Max, achieves the value of the Stirling game against
all strategies of player Min. (A similar result holds for player Min.)

Proof. Directly from Lem. 11 and Thm. 1.

7 Conclusion

Von Neumann and Morgenstern [46] proved the minimax theorem for zero-sum
two-player games comprising one kind of play in a single game. Everett [10]
extended this to “least-fixed point” games, i.e. an unbounded number of plays
of a finite number of possibly different games that can recursively call each other
within a single “loop.” For the special case where those games are turn-based,
we have extended that result further to include both least- and greatest fixed
points, and arbitrary nesting.

Our reason for doing this was to introduce a novel game-based interpretation
for the quantitative µ-calculus qMµ over probabilistic/angelic/demonic transi-
tion systems, probabilistically generalising Stirling’s game interpretation of the
standard µ-calculus; we aimed to show it equivalent to our existing Kozen-style
interpretation of qMµ, and so to provide an “operational” semantics.

The equivalent interpretations are general enough to specify cost-based prop-
erties of probabilistic systems — and many such properties lie outside standard
temporal logic. The Stirling-style interpretation is close to automata-based ap-
proaches, whilst the Kozen-style logic (studied more extensively elsewhere [30])
provides an attractive proof system.

Part of our generalisation has been to introduce the Everett-style “payoff
states” $ into Stirling’s generalised games. Although many presentations of prob-
abilistic transitions (including our earlier work) do not include the extra state,
giving instead simply functions from S to S which in effect take the primitive el-
ements of formulae to be probabilistic programs, here our primitive elements are
small probabilistic games [10]. The probabilistic programs are just the simpler
special case of payoff zero. The full proof [28] of Lem. 11 makes that necessary,
since we treat the G/ν case via a duality, appealing to the G/µ case. But it is a
duality under which probabilistic programs are not closed, whereas the slightly
more general probabilistic games are closed. Thus we have had to prove a slightly
more general result.
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An interesting possibility for further work is the use of intermediate fixed
points, yielding say a value 0 < x < 1 rather than the fixed zero-for-least and
one-for-greatest that are traditional. For expectation transformer t we would
propose the definition

fixx.t =̂ lim
n→∞

tn.x , (14)

where x.s =̂ x, so that (for continuous t at least) µ.t, ν.t become the special cases
of zero and one for x, i.e. fix0.t and fix1.t. When t is purely probabilistic (thus
almost linear), it can be shown that (14) is meaningful (i.e. converges) for any
0 ≤ x ≤ 1, and agrees with µ, ν where it should.30

We do not know however whether convergence is guaranteed when t may
contain angelic or demonic nondeterminism.

The utility of fixx is when infinite behaviour is to attract a reward which is
neither zero nor one. In the game interpretation we would collapse Cases 2,3 of
Def. 1 to the single

2. The path π is infinite and there is a colour C appearing infinitely often that
was generated by fixx for some x; in this case Val.π is x.

In the logical interpretation we would use (14) just above.
+ For the investor of Sec. 5 it might be that his reservation costs some fixed $x,

so that infinite behaviour (never reserving) is awarded $x rather than zero (i.e.
he keeps his money). A more advanced use would be that he seeks to maximise
his profit,31 defined to be the difference v1 − v0, where v0 is the market value
v when he reserves, and v1 is its value one month later (when the shares are
delivered, and he can sell). Because v1 − v0 could be negative, we would shift-
and-scale to transform the expectations into the range [0, 1], with the effect that
the zero awarded for “never reserves” would be transformed to 0.5.

8 Related work

Probabilistic temporal logics, interpreted over nondeterministic/probabilistic tran-
sition systems, have been studied extensively, most notably by de Alfaro [6],
Jonsson [14], Segala [42] and Vardi [44]. Condon [4] considered the complex-
ity of underlying transition systems like ours, including probabilistic- (but 1/2⊕
only), demonic- and angelic choice, but without our more general expectations
and payoffs. Monniaux [26] uses Kozen’s deterministic formulation together with
demonic program inputs to analyse systems via abstract interpretation [5].

The pCTL of Aziz [1] and Hansson and Jonsson [13] provides a threshold
operator which allows properties such as “φ is eventually satisfied with proba-
bility at least 0.75,” where the underlying distribution is over execution paths.
30 Using a constant expectation x is necessary, as limn→∞ tn.e does not converge in

general if expectation e may vary over the state.
For example let S =̂ {0, 1} and take t to be (the transformer corresponding to)

s: = 1−s for s ∈ S, with e.s =̂ s; then tn.e.s = (s+ n)mod 2.
31 Recall Footnote 14.
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Similarly Narasimha et. al. [35] use probability thresholds, and restrict to the
alternation-free fragment of the µ-calculus; for that fragment they do provide an
operational interpretation which selects the proportion of paths that satisfy the
given formula. Their transition systems are deterministic.

Though the quantitative µ-calculus has received much less attention, its use
of expected values allows a greater variety of expression — in particular, it can
specify properties that are inherently cost-based.

Huth and Kwiatkowska [17] for example use real-valued expressions based
on expectations, and they have investigated model-checking approaches to eval-
uating them; but they do not provide an operational interpretation of the logic,
nor have they exploited its algebraic properties [30].

De Alfaro and Majumdar [9] use qMµ to address an issue similar to, but not
the same as ours: in the more general context of concurrent games, they show
that for every LTL formula Ψ one can construct a qMµ formula φ such that
||φ||V is the greatest assured probability that Player 1 can force the game path
to satisfy Ψ .

The difference between de Alfaro’s approach and ours can be seen by consid-
ering the formula Ψ =̂ (µX · {k}atB ⊔ {k}X) over the transition system

V .k =̂ (s: = A 1/2⊕ s: = B) if (s = A) else (s: = A)

operating on state space {A,B}. (In fact formula Ψ expresses the notorious
AFAXatB [45] in the temporal subset [30] of qMµ, where V .atB.s is defined to
be 1 if (s = B) else 0 . Player 1 can force satisfaction of Ψ with probability one in
this game, since the only path for which it fails (all A’s) occurs with probability
zero; so de Alfaro’ construction yields a different formula φ such that ||φ||V = 1.

Yet ||Ψ ||V for the original formula is only 1/2, which is the value of the Stirling
game played in this system. It is “at each step, seek to maximise (⊔) the payoff,
depending on whether after the following step ({k}) you will accept atB and
terminate, or go around again (X).” Note that the decision “whether to repeat
after the next step” is made before that step is taken. (Deciding after the step
would be described by the formula (µX · {k}(atB ⊔X)).) The optimal strategy
for Max is of course given by ΨatA =̂ (µX · {k}atB if atA else {k}X).

Finally, our result Lem. 6 for memoriless strategies holds for all qMµ formulae,
whereas (we believe) de Alfaro et. al. treat only a subset, those formulae encoding
the automata used in their construction.

More recently, de Alfaro has given theorems for equivalence of game- and de-
notational interpretations of quantitative µ-calculus formulae for “discounted”
two-player games, provided the formulae are “strongly deterministic” [8]. Strongly
deterministic is a syntactic criterion that restricts to formulae that avoid the dif-
ference we illustrate above: that is, their game-value, as we define it, and their
“proportion of paths LTL-satisfying” value (as above) are in agreement.32 Dis-
counted (turn-based) games, in our terms, are a special case of our Everett-style
32 The restriction also excludes for example the case study of Sec. 5, where our interest

is genuinely in a game’s minimax value, rather than in the probability of satisfying
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payoff states in which the probability of transition to $ is the complement 1−α
of the discount factor α, as illustrated in Fig. 1.

References

1. A. Aziz, V. Singhal, F. Balarinand R.K. Brayton, and A.L. Sangiovanni-Vincentelli.
It usually works: The temporal logic of stochastic systems. In Computer-Aided
Verification, 7th Intl. Workshop, volume 939 of LNCS. Springer Verlag, 1995.

2. M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching time. Acta
Informatica, 20:207–226, 1983.

3. Andrea Bianco and Luca de Alfaro. Model checking of probabilistic and nondeter-
ministic systems. In Foundations of Software Technology and Theoretical Computer
Science, volume 1026 of LNCS, pages 499–512, December 1995.

4. A. Condon. The complexity of stochastic games. Information and Computation,
96(2):203–224, 1992.

5. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(2):511–547, 1992.

6. Luca de Alfaro. Temporal logics for the specification of performance and reliability.
In STACS ’97, volume 1200 of LNCS, 1997.

7. Luca de Alfaro. Computing minimum and maximum reachability times in proba-
bilistic systems. In Proceedings of CONCUR ’99, LNCS. Springer Verlag, 1999.

8. Luca de Alfaro. Quantitative verification and control via the mu-calculus. In
Proceedings of CONCUR ’03, LNCS. Springer Verlag, 2003.

9. Luca de Alfaro and Rupak Majumdar. Quantitative solution of omega-regular
games. In Proc. STOC ’01, 2001.

10. H. Everett. Recursive games. In Contributions to the Theory of Games III, vol-
ume 39 of Ann. Math. Stud., pages 47–78. Princeton University Press, 1957.

11. J. Filar and O.J. Vrieze. Competitive Markov Decision Processes — Theory, Al-
gorithms, and Applications. Springer Verlag, 1996.

12. G.R. Grimmett and D. Welsh. Probability: an Introduction. Oxford Science Pub-
lications, 1986.

13. H. Hansson and B. Jonsson. A logic for reasoning about time and probability.
Formal Aspects of Computing, 6(5):512–535, 1994.

14. Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6:512–535, 1994.

15. S. Hart, M. Sharir, and A. Pnueli. Termination of probabilistic concurrent pro-
grams. ACM Transactions on Programming Languages and Systems, 5:356–380,
1983.

16. C.A.R. Hoare. A couple of novelties in the propositional calculus. Zeitschr. für
Math. Logik und Grundlagen der Math., 31(2):173–178, 1985.

17. Michael Huth and Marta Kwiatkowska. Quantitative analysis and model checking.
In Proceedings of 12th annual IEEE Symposium on Logic in Computer Science,
1997.

18. D. Kozen. Semantics of probabilistic programs. Journal of Computer and System
Sciences, 22:328–350, 1981.

19. D. Kozen. A probabilistic PDL. In Proceedings of the 15th ACM Symposium on
Theory of Computing, New York, 1983. ACM.

an LTL specification. The special case treated in Sec. 5.5 can however be expressed
in pCTL.



15 September 2003 Results on the quantitative µ-calculus qMµ 27

20. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

21. M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model
checker. In T. Field, P. Harrison, J. Bradley, and U. Harder, editors, Proc. 12th
International Conference on Modelling Techniques and Tools for Computer Perfor-
mance Evaluation (TOOLS ’02), volume 2324 of LNCS, pages 200–204. Springer
Verlag, April 2002.

22. A.K. McIver and C.C. Morgan. Demonic, angelic and unbounded probabilistic
choices in sequential programs. Acta Informatica, 37:329–354, 2001. Available at
[38, at PPT2].

23. A.K McIver and C.C. Morgan. Games, probability and the quantitative µ-calculus
qMu. In Proc. LPAR, volume 2514 of LNAI, pages 292–310. Springer Verlag, 2002.

24. A.K. McIver, C.C. Morgan, and J.W. Sanders. Probably Hoare? Hoare probably! In
A.W. Roscoe, editor, A Classical Mind: Essays in Honour of CAR Hoare. Prentice-
Hall, 1999.

25. Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof for
Probabilistic Systems. Springer Verlag, 2004. To appear.

26. David Monniaux. Abstract interpretation of probabilistic semantics. In Inter-
national Static Analysis Symposium (SAS ’00), volume 1824 of LNCS. Springer
Verlag, 2000.

27. C.C. Morgan. Proof rules for probabilistic loops. In He Jifeng, John
Cooke, and Peter Wallis, editors, Proceedings of the BCS-FACS 7th Re-
finement Workshop, Workshops in Computing. Springer Verlag, July 1996.
//www.springer.co.uk/ewic/workshops/7RW.

28. C.C. Morgan and A.K. McIver. Proofs for Chapter 11. Draft presentations of the
full proofs can be found via entry Games02 at the web site [38].

29. C.C. Morgan and A.K. McIver. A probabilistic temporal calculus based on ex-
pectations. In Lindsay Groves and Steve Reeves, editors, Proc. Formal Methods
Pacific ’97. Springer Verlag Singapore, July 1997. Available at [38, at PTL96].

30. C.C. Morgan and A.K. McIver. An expectation-based model for probabilistic
temporal logic. Logic Journal of the IGPL, 7(6):779–804, 1999. Available at [38,
at MM97].

31. C.C. Morgan and A.K. McIver. pGCL: Formal reasoning for random algorithms.
South African Computer Journal, 22, March 1999. Available at [38, at pGCL].

32. C.C. Morgan and A.K. McIver. Cost analysis of games using program logic. In
Proc. of the 8th Asia-Pacific Software Engineering Conference (APSEC 2001),
December 2001. Abstract only: full text available at [38, at MDP01].

33. C.C. Morgan and A.K. McIver. Almost-certain eventualities and abstract prob-
abilities in the quantitative temporal logic qTL. Theoretical Computer Science,
293(3):507–534, 2003. Available at [38, at PROB-1]; earlier version appeared in
CATS ’01.

34. C.C. Morgan, A.K. McIver, and K. Seidel. Probabilistic predicate transformers.
ACM Transactions on Programming Languages and Systems, 18(3):325–353, May
1996. Available at [38, at PPT].

35. N. Narasimha, R. Cleaveland, and P. Iyer. Probabilistic temporal logics via the
modal mu-calculus. In Proceedings of the Foundation of Software Sciences and
Computation Structures, Amsterdam, number 1578 in LNCS, pages 288–305, 1999.

36. The occam programming language.
//directory.google.com/Top/Computers/Programming/Languages/Occam.

37. PRISM. Probabilistic symbolic model checker.
//www.cs.bham.ac.uk/∼dxp/prism.



28 AK McIver and CC Morgan

38. PSG. Probabilistic Systems Group: Collected reports.
//web.comlab.ox.ac.uk/oucl/research/areas/probs/bibliography.html.

39. M.O. Rabin. The choice-coordination problem. Acta Informatica, 17(2):121–134,
June 1982.

40. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1998.
41. Scripts for calculations of futures game example.

//www.cse.unsw.edu.au/∼carrollm/qmu.
42. Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time

Systems. PhD thesis, MIT, 1995.
43. Colin Stirling. Local model checking games. In CONCUR ’95, volume 962 of

LNCS, pages 1–11. Springer Verlag, 1995. Extended abstract.
44. Moshe Y. Vardi. A temporal fixpoint calculus. In Proc. 15th Ann. ACM Symp. on

Principles of Programming Languages. ACM, January 1988. Extended abstract.
45. M.Y. Vardi. Branching vs. linear time: Final showdown. In Seventh International

Conference on Tools and Analysis of Systems, Genova, number 2031 in LNCS,
April 2001.

46. J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1944.

47. I. Walukiewicz. Notes on the propositional mu-calculus: Completeness and related
results. Technical Report BRICS NS-95-1, BRICS, Dept. Comp. Sci., University
Aarhus, 1995. Available at //www.brics.aaudk/BRICS/.

A Full proof of Lem. 4 from Sec. 6.1

Lem. 4 Logic/game equivalence of fixed-strategy interpretations states that

For all closed qMµ formulae φ, valuations V , states s and strategies σ, σ,
we have ∫

[[φ]]
σ,σ

V
.s

Val = |||φ|||
σ,σ
V .s , (15)

where Val is given by Def. 1, the tree-building semantic function [[·]] is as
given in Fig. 5, and the strategy-extended denotational semantics ||| · ||| is
given at Fig. 6 below.

Proof. We use structural induction over a stronger hypothesis including explicit
paths (at (16) below), straightforward except when least- or greatest fixed-points
generate infinite trees; in each case the current formula will be φ, and its con-
stituent formula(e) will be Φ (with primes if necessary). During the proof we
formalise the use of strategies in both interpretations, extending both semantic
functions with a “path” argument of type Π , say, which records the steps as
the formula is decomposed and is used in the ⊔(⊓) case as the argument to the
strategy σ(σ).

The tree construction within the inductive argument introduces two new fea-
tures: (a) that the current tree may in fact be a subtree, depending from some
path π:Π in the overall tree corresponding to the original formula; and (b) that
even though the whole tree is built from a closed formula, we must consider
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free variables in the inductive argument because it descends into the body of
fixed-points.

The first feature (a) affects the use of the strategy functions: when resolving
a ⊓-choice, say, the path passed to the history-dependent minimising strategy
σ must be the path from the overall root, that is the current path within the
subtree appended to the path π from which the whole subtree depends.Thus we
supply a path as an extra argument to the tree-generating function, that is we
write [[φ]]

σ,σ
V .π.s, following the convention that π does not include the current

position (φ, s).33 If π is omitted (as in the statement of the lemma) then it is
taken to be the empty path 〈〉.

+ The explicit path argument also provides a neat formalisation of the colour
operations: we simply let the colours be subscripted variables, creating colour
Xi from bound variable X where i is the length of the path π at the point the
fixed-point formula binding X is encountered. Then to look up colourXi at some
later point π′ extending π, we simply take the ith element of π′ — it will contain
a fixed-point formula — and we construct Φ[X 7→ Xi] for the formula retrieved.

Strategies achieve colour-insensitivity by ignoring the subscript, treating po-
sition (Xi, s) as just (X, s).

For the second feature (b) we assume that all free variables X in the current
formula are defined in the valuation V , taken to functions of typeΠ → S → [0, 1];
note that these functions deliver real values, not subtrees. If we encounter X
when building the tree from current path π and state s, we look up the value
X in V to get a function f , and then insert the leaf node (f.π+.s) directly into
the tree at that point, where π+ is path π routinely extended (as in Fig. 6 for
the Kozen semantics) with the current game position, in this case (X, s). The
intention is that the stored function f “short-circuits” the continued play from
(X, s) after path π+: it simply supplies the value directly.

Note that our extended tree-building looks up free variables X in the valua-
tion V ultimately to give a real number x which is inserted as a leaf-node (x),
whereas colours Xi refer to position i in the path π to give a formula Φ[X 7→Xi]

from which the tree-building then continues. A summary of the process was
shown in Fig. 5, and the game was given in Fig. 3).

The extended Kozen semantics |||φ|||
σ,σ
V .π.s also accepts strategy sequences σ, σ

and a path argument π, and in the definitions the path argument is routinely

33 The alternative approach of passing pre-determined strategy sequences — for ex-
ample, an infinite sequence of Booleans each meaning “go left” or “go right” and
consumed as it is used — is not available to us.

Normally one argues that such sequences achieve full access to the history because,
in pre-selecting say true or false for a given position in the strategy sequence, one
has already made all the earlier selections — and from those the formula/state that
the current Boolean must deal with can in principle be determined. In our case the
probabilistic choices are taken as the game is played, and the current formula/state
cannot be predicted: thus the strategy functions take an explicit path argument in
order to look back and see how earlier probabilistic choices were resolved.
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1. |||X|||
σ,σ
V =̂ V.X .

2. |||A|||
σ,σ
V .π.s =̂ V.A.s .

3. |||{k}Φ|||
σ,σ
V .π.s =̂ V.k.s.$ +

∫
V.k.s
|||Φ|||

σ,σ
V .π+ .

4. |||Φ′ ⊓ Φ′′|||
σ,σ
V .π =̂ |||Φ′|||

σ,σ
V .π+ if σ.π+

|||Φ′′|||
σ,σ
V .π+ otherwise.

5. |||Φ′
✁ G✄ Φ′′|||

σ,σ
V .π.s =̂ |||Φ′|||

σ,σ
V .π+.s if V.G.s

|||Φ′′|||
σ,σ
V .π+.s otherwise.

6. |||(µX · Φ)|||
σ,σ
V .π =̂ (lfp x · |||Φ|||

σ,σ
V[X 7→x]

).π+

7. |||(νX · Φ)|||
σ,σ
V .π =̂ (gfp x · |||Φ|||

σ,σ
V[X 7→x]

).π+

8. (Colours are not used in ||| · ||| semantics.)

The extra argument π is a sequence of game positions, called a path; in each case path
π+ is defined to be π extended with the game position (φ, s), where φ is the entire
formula on the left-hand side.

Note that in Case 1 the value V.X retrieved from the environment is applied to the
current path and state; in Case 2 however, only the state is used.

The strategy functions σ, σ are passed the current path when required (in Clause 4,
where we give only the ⊓/σ case).

The type of x in the fixed-point clauses (6,7) is path to state to [0, 1].

Fig. 6. Path/strategy-extended Kozen semantics; compare Fig. 2.

extended step-by-step so that it simulates the path that would be encountered
in the corresponding tree; see Fig. 6. Again, an omitted path defaults to empty.

The inductive argument thus treats the stronger hypothesis which includes the
above features; it is that for all qMµ formulae φ, valuations V , paths π, states s
and strategies σ, σ, we have

∫

[[φ]]
σ,σ

V
.π.s

Val = |||φ|||
σ,σ
V .π.s , (16)

provided all free variables in φ are mapped by V to functions of type Π → S →
[0, 1] and that all colours in φ are mapped to formulae by π. Our original goal
(15) is the case of (16) in which V defines only language constants and π is
empty.34

We now give a representative selection of the cases in the inductive argument.

34 Recall that neither colours nor free variables appear in the original formula, which
is why the specialisation of (16) to (15) is appropriate.
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Base case φ is X — From Fig. 5 we have that the game-subtree [[X ]]
σ,σ
V .π.s

is just the tip (V .X.π.s), which value we note from the typing of V given just
before (16) is indeed a real r, say, in [0, 1]; from Def. 1 of Val we then have that
the left-hand side of (16) has value r.

From Case 1 of Fig. 6 we have that the right-hand side is

|||X |||
σ,σ
V .π.s = (V .X).π.s ,

i.e. is r also.

Base case φ is A — Here the game-subtree [[A]]
σ,σ
V .π.s is just the tip (V .A.s),

which is correctly typed because V takes constant-expectation symbols to func-
tions in S → [0, 1]. The path is ignored.

From Case 2 of Fig. 6 we have that the right-hand side is |||A|||
σ,σ
V .π.s = V .A.s ,

in which again the path is ignored.

Inductive case φ is {k}Φ — The game-subtree [[{k}Φ]]
σ,σ
V .π.s has (φ, s) at its

root, and is extended by a finite number of branches, one to each possible next
state s′ plus one to the special payoff state $. Beneath branch s′, which has
probability V .k.s.s′, is the subtree [[Φ]]

σ,σ
V .π+.s′ where π+ is π extended with

(φ, s) to record the node just passed through; and branch $, which has probability
1−

∑
s′:S V .k.s.s′, is terminated by (y) where the real value y ∈ [0, 1] is the payoff

V .k.s.$/(1−
∑

s′:S V .k.s.s′) as at (1).

We now have

∫
[[φ]]

σ,σ

V
.π.s

Val

=
∫
[[{k}Φ]]

σ,σ

V
.π.s

Val

= for Val ′ derived from Val : see (†) below

V .k.s.$ + (
∑

s′:S V .k.s.s′ ×
∫
[[Φ]]

σ,σ

V
.π+.s′

Val ′ )

= Val ′,Val prefix-insensitive: see (‡) below

V .k.s.$ + (
∑

s′:S V .k.s.s′ ×
∫
[[Φ]]

σ,σ

V
.π+.s′

Val )

= V .k.s.$ + (
∑

s′:S V .k.s.s′ × |||Φ|||
σ,σ
V .π+.s′) structural induction

= V .k.s.$ +
∫
V.k.s

|||Φ|||
σ,σ
V .π+.s′

= |||{k}Φ|||
σ,σ
V .π.s Fig. 6

= |||φ|||
σ,σ
V .π.s .
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as required for this case.

† In the deferred justifications we are simply using the way in which expected
values operate over tree-based distributions. We note that the expected value
E of Val over a (sub-)tree T is the sum over its immediate children Ti of
the expected value Ei assigned to Ti times the probability pi labelling the
branch i that leads to it: that is, E =

∑
i pi × Ei. The expected values for

the children are calculated just as for the parent, except that as we examine
each child on its own, from its root, we must use the function Val ′ defined
Val ′.π′ =̂ Val.(“(φ, s) followed by π′”) instead of the original Val, to take ac-
count of the fact that we have passed through node (φ, s) before reaching the
child.

‡ We can however exploit the nature of our particular Val, that it is not affected
by adding finite prefixes to its argument; thus we can immediately replace Val ′

by Val again.
From that point on, the calculation of expected values

∫
Val behaves as above.

Inductive case φ is Φ′ ⊓ Φ′′ — The game-tree again has (φ, s) at its root, but

is extended with a single probability-one branch leading either to [[Φ′]]
σ,σ
V .π+.s

or [[Φ′′]]
σ,σ
V .π+.s depending on whether σ.π+ is true (take Φ′) or false (take Φ′′).

Note that the state is not changed, and that the strategy function is applied to
π+ (not π), so that it has access to the current formula and state.

Inductive case φ is (µX · Φ) — Here in Fig. 6(6) we appeal to ⊔-continuity35

to write the right-hand side as a limit

(⊔n · fn.0).π+.s where f.x =̂ |||Φ|||
σ,σ
V[X 7→x]

and 0.π′.s′ =̂ 0 for all π′ and s′,

after which we will show by mathematical induction that for all n, states s′ and
all extensions π′ of π+ we have

fn.0.π′.s′ =

∫

[[Φ[X 7→Xi]
]]
σ,σ

V
.π′.s′

ValXi

n (17)

for suitably defined approximants ValXi

n of Val, where Xi is the colour chosen
at position (φ, s) during the tree-building when the fixed-point formula was
encountered.

35 Because we have both least- and greatest fixed points, the justification of this as-
sumption is not the usual “continuity is preserved by the operation of taking fixed
points”: for example ⊔-continuity is not necessarily preserved by ν.

In fact we have analytic continuity, which over [0, 1] implies ⊔,⊓ continuity, from
Lem. 11: see the remark about its being maintained inductively, at (+) in the proof.
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Our overall conclusion will follow by taking limits on both sides, appealing
to bounded monotone convergence [12] to distribute through

∫
on the right.

Define ValXi

n .π′ for any path π′ to be just Val.π′ provided π′ contains fewer
than n occurrences of colour Xi; if however π

′ contains at least n occurrences of
Xi, define ValXi

n .π′ to be zero instead. We have (⊔n · ValXi

n ) = Val because for
all π′ with only finitely many Xi we have ValXi

n .π′ = Val.π′ for large-enough n;
and for those π′ with infinitely-many Xi we have zero in both cases.36

We now give the proof of (17), by induction over n: in Case 0, both sides are
zero.

In Case n+ 1, we reason that for all s′ and extensions π′ of π+ we have

fn+1.0.π′.s′

= f.(fn.0).π′.s′

= |||Φ|||
σ,σ
V[X 7→fn.0]

.π′.s′ definition f

=
∫

[[Φ]]
σ,σ

V[X 7→fn.0]
.π′.s′

Val structural induction37

=
∫

[[Φ]]
σ,σ

V[X 7→g]
.π′.s′

Val inductive appeal to (17) — for all extensions π′′ of π′,
and states s′′, define

g.π′′.s′′ =̂
∫

[[Φ[X 7→Xi]
]]
σ,σ

V
.π′′.s′′

ValXi
n

so that g = fn.0

=
∫

[[Φ]]
σ,σ

V[X 7→g]
.π′.s′

ValXi

n+1 Because Φ contains no Xi, and π′ extends π,

tree [[Φ]]
σ,σ
V[X 7→g]

.π′.s′ made from them

will contain no Xi’s either;

thus replacing Val by ValXi
n+1

will make no difference;
see (†) below.

=
∫

[[Φ[X 7→Xi]
]]
σ,σ

V
.π′.s′

ValXi

n+1 , see (‡) below

thus establishing the inductive case.

† For the first deferred justification, we note that Xi’s can come from only three
places: (1) from Φ itself (but Φ contains no Xi, since Xi was fresh); (2) from the
36 Here is where we use the fact that Val is defined to yield zero if a µ-colour occurs

infinitely often.
37 Here is where we use the extended hypothesis (16), rather than the original (15),

because Φ may contain free variable X. Also, we rely here on “for all V” being part
of the inductive hypothesis, since we are using V[X 7→ fn.0].
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interior of formulae retrieved from π by looking up other colours in Φ (but π
contains no “embedded” Xi either, again because it was fresh); or (3) from the
subsequent creation of colours (but they themselves will be fresh, different from
Xi, by construction — guaranteed by the fact that the length of π′ exceeds the
length of π and that the length determines the subscript of the any newly-created
colour).

That is the import of “choose a fresh colour” in the tree-building algorithm.

‡ For the final step we are claiming, roughly speaking, that at all the points in the
constructed tree where X occurs (left-hand side) or “used to be” (right-hand
side, now replaced by Xi), the function g was defined precisely so that it makes
no difference to the integral

∫
ValXi

n+1 whether we

1. look up variable X in V[X 7→g] to get g, which applied to the path π′′ and
state s′′ at that point gives a tip (g.π′′.s′′) directly, or

2. look up colour Xi in path π′′, to recover the formula Φ[X 7→Xi] and carry on
building the tree below.

That is, the value in the tip constructed at (1) is exactly the value realised from
the tree constructed at (2) by the integral

∫
ValXi

n+1.

In more detail: we are in fact relying on an elementary property of
∫
F over

game-trees, for general F . Take any game-tree T , and describe subtrees of it as
pairs 〈π, U〉, where U is (also) a game-tree and π is the path leading from the
root of T to just before the root of U . Let T [〈π, U〉 7→ V ] be the tree resulting
from replacing that entire subtree by another tree V . We then have that

∫

T [〈π, U〉 7→ V ]

F =

∫

T

F −

∫

U

Fπ +

∫

V

Fπ , (18)

where Fπ.π
′ =̂ F.(π++ π′) for all π′.38 In effect, on the right we subtract

the contribution made by U and then add back the contribution made by V ,
but in each case we use Fπ over the sub-tree to compensate for the fact that
its contribution is made within (i.e. at π) the overall tree T . Furthermore, the
above holds for any countable pairwise-disjoint set of such substitutions done
simultaneously.39

Now for the final step in our proof above we reason backwards, from the
last expression — call it [‡] — to the second-last, [†], using an instantiation of
(18). We unify [‡] and the first term on the right-hand side of (18) by choosing

function F to be ValXi

n+1, and the tree T to be [[Φ[X 7→Xi]]]
σ,σ
V .π′.s′.

38 We write ++ for path concatenation.
39 We require that the set of all paths affected is measurable, which is why we require

countability of the subtrees.
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Now Tree T contains (at most) a countable number, k-indexed say, of “first
encounter of Xi from the root of T ” positions (Xi, s

k), and each is the final
element of some path πk containing no other Xi; below each πk is some subtree
Uk, which from our tree-construction procedure we know will be

[[Φ[X 7→Xi]]]
σ,σ
V .(π′ ++πk).sk , (19)

since Φ[X 7→Xi] is what is returned when we look up colour Xi and π′ ++πk is the
overall path that leads to this point. (Refer Case 8 of Fig. 5.) One-by-one we
will use these Uk’s as U in countably-many applications of (18).

For each k the function Fπ in (18), which we will call Fπk , will be (ValXi

n+1)πk

because of our choice above of F . But that is just ValXi

n , because πk contains
exactly one Xi (at its end) which “uses up” the +1 in the subscript n+1. Thus
for each k the second term on the right of (18) is the integral of ValXi

n taken
over Tree (19), viz.

xk =̂

∫

[[Φ[X 7→Xi]
]]
σ,σ

V
.(π′ ++πk).sk

ValXi

n . (20)

Now for the the third term we choose the V k (to replace Uk) to be the trivial
subtree comprising just a tip (xk); that makes

∫
(xk)

ValXi

n just xk again.

With the second and third terms in (18) equal, the first term on its own
(which we recall is [‡]) equals the left-hand side. Figures 7 and 8 illustrate the
trees occurring in the left- and right-hand sides of (18).

We will now show that the left-hand side of (18) is equal to [†]. The tree used
there (Fig. 7) is

T [〈π0, U0〉 7→ V 0, 〈π1, U1〉 7→ V 1 · · ·] ,

— i.e. the result of all the k-indexed substutitions done simultaneously — and
each V k is just the tip (xk). But the tree [[Φ]]

σ,σ
V[X 7→g]

.π′.s′ used in [†] is the same

except that it contains the tip (g.πk.sk) at those places. (The places agree be-
cause they are both determined by the occurrences of X in the original formula
Φ.)

Comparison of the definition of g (at [†]) — noting its arguments at each k
will be π′′ =̂ π′ ++πk and s′′ =̂ sk — and the definition of xk (at (20)) shows
those tip-values to be equal.

That concludes our justification of the final step above, and of our inductive
proof of (17) as a whole.

Using (17) we finish off the proof of this case as follows. Choose path π+

itself and state s; then with bounded monotone convergence we have
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π’

Current game position,
with variable X replaced

by fresh colour Xi .

(φ,s)

(x1)
(x 

2)

π 
2π 

1

Tips V 
1 and V  

2

replacing original
sub-trees U 

1 and U 
2

Original game
position.

(Φ[X→Xi ]  ,s’)

Fig. 7. Left-hand side of (18): tree T after subtrees Uk replaced by tips V k.

(⊔n · fn.0).π+.s

= (⊔n ·

∫
[[Φ[X 7→Xi]

]]
σ,σ

V
.π+.s

ValXi

n ) from (17) in the special case π′ = π+ 40

=
∫

[[Φ[X 7→Xi]
]]
σ,σ

V
.π+.s

(⊔n · ValXi

n ) bounded monotone convergence (∗)

=
∫
[[Φ[X 7→Xi]

]]
σ,σ

V
.π+.s

Val (⊔n · ValXi
n ) = Val

=
∫
[[φ]]

σ,σ

V
.π.s

Val .
tree-building step for µ (backwards);
Xi looks up Φ[X 7→Xi] in π+

where the final step is the one in which colour Xi was generated.

Inductive case φ is (νX · Φ) — This case is essentially the same as the µ-case
— we define the truncated valuations ValXi

n .π′ as before except that paths π′

with at least n occurrences of Xi are taken to one (rather than to zero).

A small complication however occurs in the use of bounded monotone conver-
gence, which requires the sequence of valuations to be monotone non-decreasing:

40 The equality (17) is for all extensions π′ of π+ because of its inductive proof: the
stronger hypothesis is used when defining g.
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π’

Current game position,
with variable X replaced

by fresh colour Xi .

(φ,s)

(Xi ,s  
1)

(Xi ,s  
2)

π 
2π 

1

First occurrence
of colour Xi

on path, at first
recursive call of X.

Possible further 
occurrences  of Xi.

Original game
position.

(Φ[X→Xi ]  ,s’)

Tree T

Tree U2

Tree U1

Fig. 8. Right-hand side of (18): tree T before subtrees Uk replaced by tips V k.

at the point corresponding to (∗) above we would in this case be arguing that

(⊓n ·

∫

[[Φ[X 7→Xi]
]]
σ,σ

V
.π+.s

ValXi

n ) =

∫

[[Φ[X 7→Xi]
]]
σ,σ

V
.π+.s

(⊓n · ValXi

n ) ,

where the terms are non-increasing. Since all the terms lie in [0, 1] however, we
can deal with it by subtracting from one throughout, before and after.

B Memoriless strategies suffice

over a finite state space

We show that for any formula φ, possibly including ⊓ and ⊔ strategy opera-
tors, there are specific state predicates (collected into tuples G and G) that can
replace the strategy operators without affecting the value of the formula. The
inductive proof is straightforward except for replacement of ⊔ within µ (and,
dually, replacement of ⊓ within ν). For this G/µ case we need several technical
lemmas and definitions; the other cases are set out at [28].
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Because the argument in this section is mainly over properties of real-valued
functions, we shift to a more mathematical style of presentation. Variables
f, g, . . . denote (Curried) functions of type expectation(s) to expectation, and
w, x, . . . are expectations in ES. For function f of one argument we write µ.f for
its least fixed-point.

Definition 3. Almost-linear — Say that an expectation-valued function f of
possibly several expectation arguments x, y, · · · , z is almost-linear if it can be
written in the form

f.x.y · · · .z =̂ w + g.x+ h.y + · · ·+ i.z , (21)

where w is an expectation and g, h, · · · , i are linear expectation-valued functions
of their single arguments.

Lemma 7. Every ⊓/⊔-free formula φ, possibly containing free expectation vari-
ables X,Y, . . . , Z, denotes an almost-linear function of the values assigned to
those arguments.

Proof. (sketch) What we are claiming is that the function

f.x.y · · · .z =̂ ||φ||V[x,y···z/X,Y ···Z]

can be written in the form given on the right at (21), provided φ contains no ⊓
or ⊔. This is a straightforward structural induction over φ, given in full at [28].

Definition 4. Almost less-than — For non-negative reals a, b, write a ≪ b
for a > 0 ⇒ a < b; write the same for the pointwise-extended relation over
expectations. Note that a < b implies a ≪ b implies a ≤ b on this domain.

Definition 5. ok functions — Say that an expectation-to-expectation function
f of one argument is ok if for all expectations x with x ≪ f.x we have that
x ≤ µ.f .

Lemma 8. If f is almost-linear then f is ok in each argument separately.

Proof. See Appendix D.

Lemma 9. All ⊓/⊔-free formulae φ denote ok functions of their free expecta-
tions X,Y, · · · , Z taken separately.

Proof. Lemmas 7 and 8.

The following result forms the core of Everett’s argument [10]; note it does
not depend on f ’s being ok.

Lemma 10. For any monotonic and continuous41 function f over expectations,
and any ε > 0, there is an expectation x such that

x ≪ f.x (22)

and lfp .f − ε ≤ x , (23)
41 This is continuity in the usual sense in analysis; see Footnote 53. With monotonicity

we have ⊔-continuity for f as well.
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where ε is the everywhere-ε expectation. That is, we can find an almost-increased-
by-f expectation x that approaches lfp .f as closely as we please from below.

Proof. Define a subset T of the state space S by

T =̂ {s:S | f.0.s = lfp .f.s} , (24)

so that the subset T is “the termination set for f ,” comprising those states at
which f reaches its fixed-point in just one step. Because S is finite we can proceed
by induction decreasing over these sets T determined by f , with the base case
therefore being when T is all of S.

We strengthen42 Condition (23) of the inductive hypothesis to read

lfp .f − ε ≤ x ≤ lfp .f . (23a)

Case T = S — Define x =̂ (lfp .f − ε) ⊔ 0 so that (23a) is satisfied trivially.
Since ε > 0 we have also that x ≪ lfp .f , and then from T = S and monotonicity
of f we reason

x ≪ lfp .f = f.0 ≤ f.x ,

sufficient for (22).

Case T ⊂ S — Pick s∗ from S − T , and for all x define

f∗
v .x =̂ f.x[s∗ 7→v] ,

that is the expectation that agrees with f.x everywhere except possibly at s∗ where
it takes the value v instead.43 Define also v∗ =̂ lfp .f.s∗, and note that v∗ > 0
because otherwise we would have s∗ ∈ T .44

We begin by showing two things about f∗
v . The first (a) is that “the termina-

tion set for f∗
v ” — that is T ∗

v =̂ {s:S | f∗
v .0.s = lfp .f∗

v .s} — is a strict superset
of T when v ≤ v∗, which will allow an appeal to the inductive hypothesis. The
second (b) is that the function lfp .f∗

v of v approaches lfp .f as v approaches v∗

from below, and attains it in the limit.

To show (a) we assume v ≤ v∗ and note first that

lfp .f∗
v ≤ lfp .f , (25)

because

f∗
v .(lfp .f).s = f.(lfp .f).s = lfp .f.s for s 6= s∗

and f∗
v .(lfp .f).s

∗ = v ≤ lfp .f.s∗ by assumption.
42 The extra condition x ≤ lfp .f is used at Footnote 52 in the subsidiary Lem. 12

below.
43 In the following argument we hold s∗ fixed, which is why to avoid clutter we can

omit it from the notation f∗
v . We will however vary v.

44 This fact is used at Footnote 47.
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That establishes f∗
v .(lfp .f) ≤ lfp .f , sufficient for (25) by the least-fixed-point

property.45

From (25) we show T ∪ {s∗} ⊆ T ∗
v by considering two cases:

Case s ∈ T : We have

f∗
v .0.s

≤ f∗
v .(lfp .f

∗
v ).s monotonicity

= lfp .f∗
v .s fixed point

≤ lfp .f.s (25)

= f.0.s s ∈ T

= f∗
v .0.s . s 6= s∗

Case s = s∗: We have

f∗
v .0.s

∗

= v definition f∗
v

= f∗
v .(lfp .f

∗
v ).s

∗ again definition f∗
v

= lfp .f∗
v .s

∗ . fixed point

Thus when v ≤ v∗ we have T ⊂ T ∪ {s∗} ⊆ T ∗
v , which establishes (a).

To show (b) we note first that lfp .f∗
v is a continuous function of v as v

increases.46 Thus we need only demonstrate that lfp .f∗
v∗ = lfp .f , since (25)

already shows that lfp .f∗
v is below lfp .f for v ≤ v∗. Again we consider two cases

(and appeal to (25) itself in the second case):

Case s 6= s∗: We have f.(lfp .f∗
v∗).s = f∗

v∗ .(lfp .f∗
v∗).s = lfp .f∗

v∗ .s .
Case s = s∗: We have

f.(lfp .f∗
v∗).s∗

≤ f.(lfp .f).s∗ by (25) in the special case v = v∗

= lfp .f.s∗ fixed point

= v∗ definition v∗

= f∗
v∗ .(lfp .f∗

v∗).s∗ definition f∗
v∗

= lfp .f∗
v∗ .s∗ . fixed point

Thus f.(lfp .f∗
v∗) ≤ lfp .f∗

v∗ , whence by the least-fixed-point property we have
lfp .f ≤ lfp .(f∗

v∗) which — with (25) again in the case v = v∗ — gives the
equality we need and establishes (b).

45 The least-fixed-point property states that f.x ≤ x implies lfp .f ≤ x for any monotonic
f over a cpo.

46 This general result — continuity of fixed-points — requires in this case that f∗
v is

⊔-continuous in v and that each f∗
v is itself ⊔-continuous, the former trivial and the

latter following from ⊔-continuity of f . It gives continuity over directed sets of v,
which we have because v is increasing.
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With (a) and (b) secure, we proceed to the main proof: we make a particular
choice of v and appeal to the induction hypothesis in respect of f∗

v to find an
expectation close to lfp .f∗

v , and we then show how to derive from that a suitable
expectation x satisfying (22,23a) as required for the function f in this case.

We choose v first. From (b) we can choose v < v∗ to achieve47

lfp .f − ε1 ≤ lfp .f∗
v ≤ lfp .f (26)

for any ε1 < ε we please.48

Now we appeal to the induction hypothesis: since T ⊂ T ∗
v , for any 0 < ε2 ≤

ε− ε1 we can find an xε2
v satisfying

lfp .f∗
v − ε2 ≤ xε2

v ≤ lfp .f∗
v (27)

and xε2
v ≪ f∗

v .x
ε2
v . (28)

From that we have immediately

lfp .f − ε
≤ lfp .f − ε1 − ε2 choice of ε2
≤ lfp .f∗

v − ε2 left-hand inequality at (26)

≤ xε2
v left-hand inequality at (27)

≤ lfp .f∗
v right-hand inequality at (27)

≤ lfp .f , left-hand inequality at (26)

which is our (23a) if we take x to be xε2
v .

All that remains is (22), for which we require xε2
v ≪ f.xε2

v — and indeed that
holds trivially everywhere except possibly at s∗: for if s 6= s∗ we have from (28)
that

xε2
v .s ≪ f∗

v .x
ε2
v .s = f.xε2

v .s . (29)

Thus all we are left with is to show that xε2
v .s∗ ≪ f.xε2

v .s∗, which unfortu-
nately is not true for all xε2

v satisfying (27,28). But, as we demonstrate in the
technical Lem. 12 proved in App. C below, for any ε2 > 0 it is possible to find an
ε∗2 with 0 < ε∗2 ≤ ε2 which retains the properties (27,28,29) above and satisfies

x
ε∗2
v .s∗ ≪ f.x

ε∗2
v .s∗ as well — and which thus completes the proof.

We can now sketch the proof of the main result of this section.

Lemma 11. Fixed strategies suffice — For any formula φ, possibly contain-
ing strategy operators ⊓/⊔, and valuation V, there are state-predicate tuples G/G
— possibly depending on V — such that

||φG||V = ||φ||V = ||φG||V .

47 Recall Footnote 44 to see this is possible. In fact only v ≤ v∗ is needed here, in the
main proof; the strictness of the inequality is used at Footnote 54 in Lem. 12 below.

48 Here we use finiteness of the state space, since the one ε1 applies for all states.
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Proof. (sketch) We give only the µ-case of an otherwise straightforward induc-
tion over the size of φ; a full proof may be found at [28].

Suppose we are considering the case where φ is a least-fixed-point (µX · Φ).
Let f be the function denoted by Φ with respect to a single expectation-valued
argument x supplied for the variable X, with the values of any other free variables
in Φ fixed by the environment V; for any G,G let functions fG and fG,G be derived
similarly from ΦG and ΦG,G.

Case G — We must show µ.f = µ.fG for some G;49 note that µ.f ≤ µ.fG
trivially, since f ≤ fG. Since Φ is smaller in size than φ, our inductive hypothesis
provides for any x a Gx so that fGx

.x = f.x; take x = µ.f and therefore choose
G so that fG.(µ.f) = f.(µ.f) = µ.f . Thus µ.f is a fixed-point of fG, whence
immediately µ.fG ≤ µ.f .

Case G — In this case must show µ.f = µ.fG for some G; again it is trivial

that µ.fG ≤ µ.f for any G.

For the other direction, in fact we show that for any ε > 0 there is a Gε such
that µ.fGε

≥ µ.f − ε — whence the existence of a single G satisfying µ.fG ≥ µ.f
follows from the finiteness of the state space (since the set of possible strategy
tuples for this f is therefore finite as well, and so there must be one that works
for all ε).

+ Because we know inductively that f is a minimax50 over strategy tuples G′,G
′

of almost-linear functions f
G′,G

′ , that those functions are continuous by construc-

tion, and that the minimax is finite because there are only finitely many strategy

tuples G′,G
′
for this f , we know that f is continuous itself, and by Lem. 10 we

therefore have an expectation xε with

µ.f − ε ≤ xε and xε ≪ f.xε . (30)

To get our result we need only show in addition that xε ≤ µ.fGε
for some Gε.

From our inductive hypothesis we can choose Gε so that f.xε = fGε
.xε,

whence from (30) we have xε ≪ fGε
.xε. But in fact fGε

is ok (see below), so
from Def. 5 we have xε ≤ µ.fGε

and we are done.

To see that fGε
is ok, we apply the argument of Case G,51 which gives us a

G′ with µ.fGε
= µ.fG′,Gε

. Now consider any x such that x ≪ fGε
.x .

Since fGε
.x ≤ fG′,Gε

.x we have x ≪ fG′,Gε
.x also — but we recall from Lem. 9

that fG′,Gε
is ok. Hence x ≤ µ.fG′,Gε

= µ.fGε
, and fGε

is ok as well.

49 Note that (µX · Φ)G is the same as (µX · ΦG) — it is syntactic substitution — so
that µ.(fG) is indeed the correct denotation.

50 An argument similar to that used in Lem. 5 makes this explicit.
51 That argument makes an appeal to the inductive hypothesis in respect of ΦGε

, a
smaller formula than φ. Note however it is not a subformula of φ, which is why we
do not use structural induction.
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C A technical lemma used in App. B

Lemma 12. In this technical lemma we continue the notation established within
the proof of Lem. 10; we show that for any ε2 > 0 there is an ε∗2 with 0 < ε∗2 ≤ ε2

and an x
ε∗2
v that together retain the properties (27,28,29) and in addition satisfy

x
ε∗2
v .s∗ ≪ f.x

ε∗2
v .s∗, as we require above.

Proof. In fact we find ε∗2 and x
ε∗2
v which together satisfy the stronger property

x
ε∗2
v .s∗ < f.x

ε∗2
v .s∗.

Suppose for a contradiction that, for all ε′2 ≤ ε2, every x
ε′2
v we could choose

satisfying Properties (27, 28) for f∗
v , that is lfp .f∗

v − ε′2 ≤ x
ε′2
v ≤ lfp .f∗

v and

x
ε′2
v ≪ f∗

v .x
ε′2
v , satisfied the inequality

f.x
ε′2
v .s∗ ≤ x

ε′2
v .s∗ (31)

as well — thus failing to have the property (28) for f at s∗ that we needed to
complete our proof of Lem. 10. As ε′2 approaches zero52 we would then have

from above that we can choose a sequence of x
ε′2
v ’s approaching lfp .f∗

v — and
so from the continuity53 of f we could take limits on both sides of (31), giving
f.(lfp .f∗

v ).s
∗ ≤ lfp .f∗

v .s
∗, and so we would have

F.v = f.(lfp .f∗
v ).s

∗ ≤ lfp .f∗
v .s

∗ = v , (32)

where on the left we are defining a function F of v for use below — our con-
tradiction will be achieved by considering a further property of F , beyond the
F.v ≤ v that we have at (32) already.

That property is v∗ ≤ lfp .F . To see that we argue by cases that

f.(lfp .f∗
lfp .F ) = lfp .f∗

lfp .F ,

which by the least-fixed-point property gives us lfp .f ≤ lfp .f∗
lfp .F . Then, applying

that inequality at s∗ itself, we have lfp .f.s∗ ≤ lfp .f∗
lfp .F .s

∗, whence

v∗

= lfp .f.s∗ definition v∗

≤ lfp .f∗
lfp .F .s

∗ immediately above

= f∗
lfp .F .(lfp .f

∗
lfp .F ).s

∗ fixed point

= lfp .F , definition: f∗
x .y.s

∗ =̂ x, for all x, y

as required. The two cases are

52 This is where we use the strengthening of the inductive assumption, the upper bound
on x in (23a): recall Footnote 42.

53 This is where analytical — rather than ⊔— continuity of f is used, since the sequence

of x
ε′2
v ’s is not necessarily increasing; recall Footnote 41.
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Case s 6= s∗: We have

f.(lfp .f∗
lfp .F ).s

= f∗
lfp .F .(lfp .f

∗
lfp .F ).s definition: f∗

x .y.s =̂ f.y.s, for all x, y and s 6= s∗

= lfp .f∗
lfp .F .s . fixed point

Case s = s∗: We have

f.(lfp .f∗
lfp .F ).s

∗

= F.(lfp .F ) definition F

= lfp .F fixed point

= f∗
lfp .F .(lfp .f

∗
lfp .F ).s

∗ definition f∗
·

= lfp .f∗
lfp .F .s

∗ . fixed point

That establishes the equality we used above, and completes the demonstration
that v∗ ≤ lfp .F .

Now from that and v < v∗ we have immediately54 that v < lfp .F also and,
since F is monotonic (it is constructed from monotonic pieces), by the least-
fixed-point property we have F.v 6≤ v — which contradicts (32). Therefore our
assumption must fail: there must be some 0 < ε∗2 ≤ ε2 for which not all choices

of x
ε∗2
v satisfying (27) satisfy (31) as well — that is, at least one will satisfy (28)

at s∗. That is the value we take.

D Proof of Lem. 8 from App. B

We prove in several stages that if f is almost-linear then f is ok in each argument
separately, beginning with some preliminary lemmas.

Lemma 13. Almost-feasibility — Let transformer f be almost-linear, and
suppose for some state s that f.0.y. · · · .z.s = 0, where wlog we concentrate on
the first argument of f . Then for any expectation x we have f.x.y. · · · .z.s ≤
(⊔s:S · x.s).

Proof. This is clear from the explicit form (refer Def. 3) that almost-linear trans-
formers take: if f.0.y. · · · .z.s is zero, then all non-x terms w.s, h.y.s, · · · , i.z.s in
f must be zero — that is, for those values y, · · · , z, s we have f.x.y. · · · .z.s = g.x.s
for some one-bounded linear transformer g, from which property of g we have
g.x.s ≤ (⊔s:S · x.s).

From now on we will fix the non-x arguments of f , and omit them for brevity.

Lemma 14. Stationary zeroes — Let transformer f be almost-linear, and
define its kernel K to be those states on which its fixed-point is zero: that is,
K =̂ {s:S | µ.f.s = 0}.

54 This is where the strictness is used: recall Footnote 47.
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Then in effect the probabilistic game f cannot escape from K: for any state
k in K and expectation x, we have

f.x.k = f.(x↓K).k ,

where (x↓K).s =̂ x.s if s∈K else 0 .

Proof. Because µ.f is non-zero everywhere outside K, and our state space S is
finite, there is an ε > 0 so that ε × x↓(S −K) ≤ µ.f whence, for k in K, we
have

f.(ε× x↓(S −K)).k ≤ f.(µ.f).k = µ.f.k = 0 .

From that, the almost-linearity of f and that ε > 0 we have f.(x↓(S−K)).k = 0.
Again using almost-linearity, we continue

f.x.k
= f.(x↓K + x↓(S −K)).k
≤ f.(x↓K).k + f.(x↓(S −K)).k almost-linearity

= f.(x↓K).k . f.(x↓(S −K)).k = 0, shown above

The opposite inequality is immediate from monotonicity.

Lemma 15. Almost-linear is almost ok— Let transformer f be almost-linear,
and suppose for some expectation x that x ≪ f.x . Then for all k in the kernel
K of f we have x.k = 0.

Proof. If x is not zero on K then K must be non-empty and there must be a state
k∗ in K at which x attains a non-zero maximum (⊔k:K · x.k). Then because
x ≪ f.x we have x.k∗ < f.x.k∗ = f.(x↓K).k∗ from Lem. 14.

Now f.0.k∗ ≤ f.(µ.f).k∗ = µ.f.k∗ = 0, since k∗ ∈ K,so that from Lem. 13
we have as well that f.(x↓K).k∗ ≤ (⊔k:K · x.k) . Taken together with the above,
that gives x.k∗ < (⊔k:K · x.k), contradicting the choice of k∗.

We can now proceed with the proof of Lem. 8; we assume x ≪ f.x.
First choose a real scalar ε > 0 so that

µ.f.s

x.s
≥

ε

ε+ 1
for all s with x.s 6= 0,

which is possible because S is finite, and note that (ε + 1)(µ.f) − εx ≥ 0 then
holds for all states — since when µ.f.s = 0 we have from Lem. 15 that x.s = 0
as well. In fact we can decrease ε still further, if necessary, to achieve

0 ≤ (ε+ 1)(µ.f)− εx ≤ 1 ,

sufficient to use the expression as a one-bounded expectation in the argument
below.

Now because f is almost-linear, as a function of x it is of the form w + g.x
for fixed expectation w and linear g.55 Applying f to our expression above, and
using linearity of g, we have
55 We absorb the fixed contributions h.y, · · · , i.z of other arguments into w.
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f.( (ε+ 1)µ.f − εx )
= w + g.( (ε+ 1)µ.f − εx )
= w + g.( (ε+ 1)µ.f ) − g.(εx) g linear

= w + (ε+ 1)(g.(µ.f)) − ε(g.x)
= (ε+ 1)w + (ε+ 1)(g.(µ.f)) − εw − ε(g.x)
= (ε+ 1)(f.(µ.f)) − ε(f.x)
≤ (ε+ 1)(µ.f) − εx , x ≤ f.x, because x ≪ f.x

so showing that (ε+ 1)(µ.f)− εx is a pre-least-fixed-point of f .
Thus by the least-fixed-point property we have

µ.f ≤ (ε+ 1)(µ.f) − εx ,

whence by arithmetic (rearranging, dividing by ε > 0) we have x ≤ µ.f .

Thus we have proved that all almost-linear transformers are ok.
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