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Abstract

The replacement (or collection or choice) axiom scheme BB(Γ) as-
serts bounded quantifier exchange as follows:

∀i< |a| ∃x<aφ(i, x) → ∃w ∀i< |a|φ(i, [w]i)

where φ is in the class Γ of formulas. The theory S1
2 proves the scheme

BB(Σb
1), and thus in S1

2 every Σb
1 formula is equivalent to a strict Σb

1

formula (in which all non-sharply-bounded quantifiers are in front).
Here we prove (sometimes subject to an assumption) that certain the-
ories weaker than S1

2 do not prove either BB(Σb
1) or BB(Σb

0). We
show (unconditionally) that V 0 does not prove BB(ΣB

0 ), where V 0

(essentially IΣ1,b
0 ) is the two-sorted theory associated with the com-

plexity class AC0. We show that PV does not prove BB(Σb
0), assuming

that integer factoring is not possible in probabilistic polynomial time.
Johannsen and Pollet introduced the theory C0

2 associated with the
complexity class TC0, and later introduced an apparently weaker the-
ory ∆b

1 − CR for the same class. We use our methods to show that
∆b

1 − CR is indeed weaker than C0
2 , assuming that RSA is secure

against probabilistic polynomial time attack.
Our main tool is the KPT witnessing theorem.

http://arxiv.org/abs/cs/0409015v1


1 Introduction

We are concerned with the strength of various theories of bounded arithmetic
associated with the complexity classes P, TC0, and AC0. Our goal is to show
that some of these theories cannot prove replacement, which is the axiom
scheme

∀i< |a| ∃x<aφ(i, x) → ∃w ∀i< |a| φ(i, [w]i). (1)

(where φ(i, x) can have other free variables). We use BB(Γ) to denote re-
placement for all formulas φ in a class Γ (usually Σb

0 or Σb
1). Replacement is

also sometimes known as “collection” (eg. [11]) or “choice” (eg. [20]). We
begin by briefly describing the main theories of interest.

The language of first order arithmetic that we use is

{0, 1,+, ·, <, |x|, (x)i, [x]i, x#y}.

Here |x| is the length of x in binary notation, (x)i is the ith bit of x, [x]i
is the ith element of the sequence coded by x, and x#y is 2|x|·|y|. All our
theories in this language are assumed to include a set of axioms BASIC fixing
the algebraic properties of these symbols; see [2, 11] for more detail.

In the first order setting we will look at BB(Σb
0), or “sharply bounded

replacement”. A sharply bounded or Σb
0 formula is one in which every quan-

tifier is bounded by a term of the form |t|. A Σb
1 formula is a sharply bounded

formula preceded by a mixture of bounded existential and sharply bounded
universal quantifiers. A strict Σb

1 formula is a sharply bounded formula pre-
ceded by a block of bounded existential quantifiers.

The strongest theory we look at is S1
2 [2], defined as BASIC together with

“length induction”, that is the LIND axiom

φ(0) ∧ ∀x< |a| (φ(x) → φ(x+ 1)) → φ(|a|) (2)

for all Σb
1 formulas φ.

S1
2 proves BB(Σb

1), and hence for every S1
2-formula φ there is a strict-Σb

1

formula φ′ such that S1
2 proves (φ ↔ φ′). This fact may have influenced

Buss’s [2] original decision not to choose strict Σb
i as the standard definition

of Σb
i . The general definition allows Buss to prove [2] Thm 2.2 showing that

if a theory T+ extends T by adding Σb
1-defined function symbols then Σb

1

formulas in the extended language are provably equivalent to Σb
1formulas in

the original language. This result may not hold if Σb
1 is taken to be strict

Σb
1 and T does not prove replacement. We show here that certain weaker
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theories (likely) do not prove replacement. For these theories, strict Σb
1 is a

more appropriate definition, and extensions by Σb
1-defined functions must be

handled with care.
The first order theory we will use most often is PV [4] (called PV1 in [11]

and QPV in [5]). This is defined by expanding our language to include a
function symbol for every polynomial time algorithm, introduced inductively
by Cobham’s limited recursion on notation. These are called PV functions,
and quantifier free formulas in this language are PV formulas. One way to
axiomatize PV is BASIC plus universal axioms defining the new function
symbols plus the induction scheme IND

φ(0) ∧ ∀x<a (φ(x) → φ(x+ 1)) → φ(a)

for open formulas φ(x). However it is an important fact that PV is a universal
theory, and can be axiomatized by its universal consequences [2, 5].

PV and S1
2 are closely linked to the complexity class P. The provably total

Σb
1 (or even strict Σb

1) functions in these theories are precisely the polynomial
time functions. S1

2 is Σb
1-conservative over PV [2], but PV cannot prove the

Σb
1-LIND axiom scheme (2) for S1

2 unless the polynomial hierarchy (provably)
collapses [13, 3, 20].

First order theories are unsuitable for dealing with very weak complexity
classes such as AC0, in which we cannot even define multiplication of strings.
In this setting it is more natural to work with a two-sorted or “second order”
theory. V 0 is the theory described in the Notes [6], page 56. It is based on
Σp

0-comp [20] and is essentially the same as IΣ1,b
0 . The two sorts are numbers

and strings (finite sets of numbers). The axioms consist of number axioms
giving the basic properties of 0, 1,+, ·,≤, two axioms defining the “length”
|X| of a finite set X to be 1 plus the largest element in X , or 0 if X is
empty, and the comprehension scheme for ΣB

0 formulas. The ΣB
0 formulas

allow bounded number quantifiers, but no string quantifiers, and represent
precisely the uniform AC0 relations on their free string variables.

If we add to V 0 a function X · Y for string multiplication, we get a
theory equivalent to the first order theory Σb

0 − LIND. The number sort
would correspond to sharply bounded numbers and the string sort to “large”
numbers; the ΣB

0 induction available in V 0 would correspond to Σb
0 − LIND.

With this correspondence (known as RSUV isomorphism [18, 17]) in
mind, we consider V 0 and the first order fragments of S1

2 as fitting naturally
into one hierarchy of theories of bounded arithmetic. The only differences
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between the two approaches will be in the notation for strings and sequences.
(z)i = 1 in the first order setting corresponds to Z(i) or i ∈ Z in the second
order setting; [z]i corresponds to Z

[i] (see next paragraph).
In second order bounded arithmetic the replacement scheme (1) becomes

∀i<n ∃X<nφ(i, X) → ∃W ∀i<nφ(i,W [i]).

Here ∃X<nφ stands for ∃X(|X| < n ∧ φ) and W [i](u) is formally W (〈i, u〉)
where 〈i, u〉 is a standard pairing function (so W [i] is row i in the two-
dimensional bit array W ).

Our main results are that V 0 does not prove ΣB
0 replacement (uncondi-

tionally) and that, unless integer factoring is possible in probabilistic poly-
nomial time, PV does not prove Σb

0 replacement. (As mentioned above, S1
2

does prove Σb
0 replacement.)

We summarize our results with a picture of the structure of theories
between S1

2 and V0. An arrow on the diagram represents inclusion. To
the right of an arrow we give a sufficient condition for the two theories to
be distinct. A bold arrow indicates that this condition is true, and that the
theories in fact are distinct. To the left of an arrow we show the conservativity
between the two theories.

We will begin with the bottom of the diagram. We have already talked
about V 0 and PV. ∆b

1−CR was introduced by Johannsen and Pollett in [10]
to correspond to the complexity class TC0 of constant-depth circuits with
threshold gates. The Σb

1 functions provably total in ∆b
1 − CR are precisely

the uniform TC0 functions. The theory is defined as the closure of the BASIC
axioms and the LIND axioms for open formulas under the normal rules of
logical deduction together with the ∆b

1-comprehension rule: if we can prove
that a Σb

1 formula φ(x) is equivalent to a Πb
1 formula ψ(x), then are allowed

to introduce comprehension for φ,

∃w ∀i< |a| , (w)i = 1 ↔ φ(i).

∆b
1−CR proves induction for sharply bounded formulas, so we can think

of V 0 as a subtheory of it. In fact [14] defines an extension VTC0 of V 0 by
adding an axiom for the function NUMONES(X) (which counts the number
of 1’s in the string X) and proves VTC0 is RSUV isomorphic to ∆b

1 − CR.
But VTC0 proves the pigeonhole principle, as represented by a ΣB

0 formula
PHP(X, n) [14], and V 0 does not [6]. Hence ∆b

1 − CR is strictly stronger
than V 0.
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PV

V0

∆b
1-CR

Σb
0-LIND +∆b

1 comprehension axiom

PH 6⊆ Σp
2
∩ Πp

2

factoring is hard

Σb
0-LIND + BB(Σb

0)

V0+ BB(ΣB
0 )

V0 6⊢ PHP

V0 6⊢ PHP

∀Σb
1

∀Σb
1

∀Σb
1

∀∃ΣB
0

∀Σb
1

∀Σb
1

PV + BB(||x||,Σb
0)

S1
2

PARITY /∈ AC0

RSA is hard

TC0 6= P

TC0 6= P

factoring is hard

PV + BB(Σb
0)
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The ∆b
1-comprehension rule is a derived rule of PV. This is because by

results in [2] if a formula φ is provably ∆b
1 in PV, then PV proves that the

characteristic function of φ is computable in polynomial time, and hence that
comprehension holds for φ. Thus PV is an extension of ∆b

1 − CR.
PV is separated from ∆b

1 − CR by the circuit value principle, which says
that “for all circuits C and all inputs x̄, there exists a computation of C on
x̄”. This is provable in PV, but under the assumption that P does not equal
uniform TC0 it is not provable in ∆b

1 − CR.
Turning now to the top of the diagram, [2] proves the ∀Σ b

1-conservativity
of S1

2 over PV. If PV + BB(Σb
0) proves S

1
2 , then PV ⊢ S1

2 [20] and hence the
bounded arithmetic hierarchy collapses to PV and the polynomial hierarchy
PH collapses to Σp

2 ∩ Πp
2 [20, 3].

The ∀∃ΣB
0 -conservativity of V 0 +BB(ΣB

0 ) over V
0 is from Zambella [20].

Σb
0−LIND+BB(Σb

0) was introduced in [9] by Johannsen and Pollett (where
they call it C0

2), and proved to be ∀Σb
1 conservative over ∆b

1 − CR in [10].
From these conservativity results it follows that V 0+BB(ΣB

0 ) does not prove
the pigeonhole principle and ∆b

1 − CR + BB(Σb
0) does not prove the circuit

value principle (unless P equals uniform TC0), which gives us the separations
between the three theories with replacement.

In the body of the paper we show the separations between the theories
with and without various kinds of replacement, using a similar argument in
all cases.

In section 2 we describe how our general argument goes. In section 3 we
use it together with the fact that parity is not computable in nonuniform
AC0 to separate V 0 from V 0 + BB(Σb

0).
In section 4 we show that if PV proves Σb

0-replacement, then factoring is
possible in probabilistic polynomial time. (This strengthens a result in [19]
where the weaker conclusion “RSA is insecure” was proved.) We observe
that this is true even if we look at weak versions of Σb

0-replacement, where
we code very short sequences of witnesses; for example BB(Σb

0, ||x||) in the
diagram is the scheme of replacement for sequences of double-log length:

∀i< ||a|| ∃y<aφ(i, y) → ∃w ∀i< ||a|| φ(i, [w]i).

The dotted line in the diagram represents the fact that if factoring is hard,
then all the theories BB(Σb

0, |x|), BB(Σ
b
0, ||x||), BB(Σ

b
0, |||x|||), . . . are dis-

tinct (in fact we show something slightly stronger than this). By a similar
argument, all these theories are distinct over V 0 (in place of PV), without
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any assumptions, but for the sake of tidiness we have not put this on the
diagram.

The theory of strong ∆b
1 comprehension is like ∆b

1−CR, except that rather
than having a rule that if a formula is provably ∆b

1 then comprehension holds
for it, we have the “∆b

1 comprehension axiom scheme”

∀x (φ(x) ↔ ¬ψ(x)) → ∃w ∀i< |a| (φ(i) ↔ (w)i = 1) (3)

where φ, ψ ∈ Σb
1 (and may contain other parameters); so comprehension

holds for φ in a structure, if φ is ∆b
1 in that structure. The question is raised

in [10], whether this theory is strictly stronger than ∆b
1 −CR. We show that

it is, under a cryptographic assumption. We consider a principle not shown
on the diagram, which we call “unique replacement”. We show that if RSA is
secure against probabilistic polynomial time attack then PV does not prove
unique replacement, and that it follows that PV, and hence ∆b

1 − CR, does
not prove the ∆b

1 comprehension axiom scheme.
We have not looked for a separation between this last theory and Σb

0 −
LIND + BB(Σb

0).
A preliminary version of this paper appears in [7].

2 Witnessing with an interactive computa-

tion

First we recall a standard lemma.

Lemma 1 Over BASIC, Σb
0-replacement is equivalent to strict Σb

1-replacement.
Hence over PV, Σb

0-replacement is equivalent to replacement for PV formulas,
since PV proves that every PV formula is equivalent to a strict Σb

1 formula.
Similarly over V 0, ΣB

0 -replacement is equivalent to ΣB
1 -replacement, where

a ΣB
1 formula is a ΣB

0 formula preceded by a block of bounded existential string
quantifiers. �

Our main tool in this paper is the KPT witnessing theorem. We state it
here for PV, although it holds in a much more general form.

Theorem 2 [13] Let φ be a PV formula and suppose PV ⊢ ∀x ∃y ∀z φ(x, y, z).
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Then there exists a finite sequence f1, . . . , fk of PV function symbols such that

PV ⊢ ∀x ∀z̄, φ(x, f1(x), z1) ∨ φ(x, f2(x, z1), z2)

∨ . . . ∨ φ(x, fk(x, z1, . . . , zk−1), zk).

Proof Let b, c1, c2, ... be a list of new constants, and let t1, t2, ... be an
enumeration of all terms built from symbols of PV together with b, c1, c2, ...,
where the only new constants in tk are among {b, c1, ..., ck−1}. It suffices to
show that

PV ∪ {¬φ(b, t1, c1),¬φ(b, t2, c2), . . . ,¬φ(b, tk, ck)}

is unsatisfiable for some k.
Suppose otherwise. Then by compactness

PV ∪ {¬φ(b, t1, c1),¬φ(b, t2, c2), ...} (4)

has a model M . Since PV is universal, the substructure M ′ consisting of the
denotations of the terms t1, t2, ... is also a model for (4). It is easy to see that

M ′ |= PV + ∀y∃z¬φ(b, y, z)

and hence PV 6⊢ ∀x∃y∀zφ(x, y, z). �

Now choose a function f which can be computed in polynomial time
but which is hard to invert. Suppose PV proves the following instance of
replacement (which has a and y as parameters, and m = |a|):

∀i<m ∃u<a f(u) = [y]i → ∃w ∀j<mf([w]j) = [y]j.

We can rewrite this as

∃i<m ∃w ∀u<a , f(u) = [y]i → ∀j<mf([w]j) = [y]j.

Applying our witnessing theorem, we get k ∈ N and functions g1, . . . , gk and
h1, . . . hk (which have a as a suppressed argument), such that

PV ⊢ ∀z̄ <a ,

(f(z1) = [y]g1(y) → ∀j<mf([h1(y)]j) = [y]j)

∨ (f(z2) = [y]g2(y,z1) → ∀j <mf([h2(y, z1)]j) = [y]j)

∨ . . .

∨ (f(zk) = [y]gk(y,z1,...,zk−1) →

∀j <mf([hk(y, z1, . . . , zk−1)]j) = [y]j)

8



This allows us to write down an algorithm which given an input y (considered
as a sequence [y]0, . . . , [y]m−1) will ask for a pre-image of f on at most k
elements of y, and with this information will output a number w coding a
sequence of pre-images of all m elements of y.

The algorithm is as follows. Let w = h1(y). If ∀j <mf([w]j) = [y]j then
output w and halt. Otherwise calculate g1(y) and ask for a pre-image of
[y]g1(y); store the answer as z1. Then let w = h2(y, z1). If ∀j<mf([w]j) = [y]j
then output w and halt. Otherwise calculate g2(y, z1) and ask for a pre-
image of [y]g2(y,z1); store the answer as z2, and so on. By our assumption
the algorithm will run for at most k steps of this form before it outputs a
suitable w.

Now fix a such that |a| = m > k, and choose a sequence [x]0, . . . , [x]m−1

of numbers less than a. Let y encode the pointwise image of x under f . Run
the algorithm above, and reply to queries with elements of x. We will end
up with w encoding a sequence of pre-images of y, which will clash in some
way with our assumption that f is hard to invert. If f is an injection, w will
be the same as x; we use this in section 3. If f is not an injection and x
was chosen at random, then w is probably different from x; we use this in
sections 4 and 5.

The important properties of PV used in the argument above are that it is
universal and can define functions by cases (needed for the KPT witnessing
theorem) and that it can manipulate sequences. We show now how to make
V 0 into a universal theory in which we can carry out the same argument.

We start by referring to [6], pp 66–73. A relation R(x̄, Ȳ ) is in (uniform)
AC0 iff it is defined by some ΣB

0 formula A(x̄, Ȳ ). A number function f :
N

k × ({0, 1}∗)ℓ −→ N is an AC0 function iff there is an AC0 relation R and
a polynomial p such that

f(x̄, Ȳ ) = min z < p(x̄, |Ȳ |) R(z, x̄, Ȳ ) (5)

A string function F (x̄, Ȳ ) is an AC0 function iff |F (x̄, Ȳ )| ≤ p(x̄, |Ȳ |) for
some polynomial p, and the bit graph

BF (i, x̄, Ȳ ) ≡ F (x̄, Ȳ )(i)

is an AC0 relation.
We denote by V 0(FAC0) a conservative extension of V 0 obtained by

adding a set FAC0 of function symbols with universal defining axioms for
all AC0 functions, based on the above characterizations. FAC0 is essentially

9



R−def in [20].) This can be done in such a way that V 0(FAC0) is a universal
theory. In particular, the ΣB

0 comprehension axioms follow since for every
ΣB

0 formula φ there is a FAC0 string function whose range is the set of strings
asserted to exist by the the comprehension axiom for φ. Further, from (5) it
is clear that for every ΣB

0 formula φ there is a quantifier-free formula φ′ in
the language of V 0(FAC0) such that

V 0(FAC0) ⊢ (φ↔ φ′)

From these remarks, it is clear that the usual proof of the KPT witnessing
theorem can be adapted to show the following:

Theorem 3 Let φ(X, Y, Z) be a ΣB
0 formula such that V 0 ⊢ ∀X∃Y ∀Zφ(X, Y, Z).

Then there are FAC0 functions F1, ..., Fk such that

V 0(FAC0) ⊢ ∀X∀Z̄,

φ(X,F1(X), Z1) ∨ φ(X,F2(X,Z1), Z2)

∨ . . . ∨ φ(X,Fk(X,Z1, ..., Zk−1), Zk).

Using this we can show that if V 0 proves ΣB
0 -replacement, then for any

AC0 function F there exists k ∈ N and a uniform AC0 algorithm that will
find a pre-image under F of any sequence Y [0], . . . , Y [m−1] of strings by asking
at most k queries of the form “what is a pre-image of Y [i]?”

3 Replacement in V0 and parity

Let PARITY be the set of all strings over {0, 1} with an odd number of 1s.
By a (nonuniform) AC0 circuit family we mean a polynomial size bounded
depth family 〈Cn : n ∈ N〉 of Boolean circuits over ∧,∨,¬ such that Cn has
n inputs and one output. Ajtai’s theorem [1, 8] states that no such circuit
family accepts PARITY .

We show that if V 0 proves the ΣB
0 replacement scheme, then (using

KPT witnessing) there exists a (uniform) randomized AC0 algorithm for
PARITY . This algorithm shows the existence of a (uniform) AC0 circuit
family such that each circuit has a vector r̄ of random input bits in addition
to the standard input bits, and with probability p > 2/3 the circuit correctly
determines whether the standard input is in PARITY and with probability
1− p the circuit produces an output indicating failure. From this a standard
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argument shows the existence of a nonuniform AC0 circuit family for parity,
violating the above theorem.

Let PAR be the function that maps a binary string of length m to its
parity vector. That is, PAR(m, Y ) = X if |X| < m and, for each i < m,
X(i) is the parity of the string Y (0) . . . Y (i). In what follows we take m to
be a parameter, assume Y is an m-bit string, and suppress the argument m
from PAR(m, Y ).

Plainly PAR(Y ) cannot be computed in AC0. However its inverse, which
we will call UNPAR, is in uniform AC0: the ith bit of UNPAR(X) is given
by the ΣB

0 formula (i = 0∧X(i))∨ (i > 0∧X(i− 1)⊕X(i)). Here UNPAR
has an argument m, which we suppress.

Notice also that for all m-bit strings A,B,C, writing ⊕ for bitwise XOR,
if A = B ⊕ C then PAR(A) = PAR(B)⊕ PAR(C).

Theorem 4 V 0 does not prove BB(ΣB
0 ).

Proof Suppose V 0 ⊢ BB(ΣB
0 ). Then applying the argument of section 2

to the function UNPAR, for some fixed k there is a uniform AC0 algorithm
which, for any sequence Y [0], . . . , Y [m−1] of binary strings of length m makes
k queries of the form “what is PAR(Y [i])?” and outputs the sequence of
parity vectors of Y .

We will show how to use this algorithm to compute the parity of a single
string in uniform randomized AC0. Suppose m ≥ 3k and let I be the input
string of length m which we want to compute the parity of.

Choose m strings U0, . . . , Um−1 in {0, 1}m at random, and for each i com-
pute Vi = UNPAR(Ui). Choose a number r, 0 ≤ r < m, uniformly at
random. Define the string Y (thought of as an m×m binary matrix) by the
condition

Y [i] =

{

Vi if i 6= r
I ⊕ Vr if i = r.

Since for each m the function UNPAR defines a bijection from the set
{0, 1}m to itself, and since for each I with |I| < m the map X 7→ I ⊕X also
defines a bijection from that set to itself, it follows that the string Y defined
above, interpreted as an m×m bit matrix, is uniformly distributed over all
such matrices.

Now run our interactive AC0 algorithm on Y . If the algorithm queries
“what is PAR(Y [i])?” for i 6= r, reply with Ui (which is the correct answer).
If the algorithm queries “what is PAR(Y [r])?”, then abort the computation.

11



Since at most k different values of i are compared to r and since for each
input I each pair (Y, r) is equally likely to have been chosen, it follows that
the computation will be aborted with probability at most k/m ≤ 1/3.

Hence with probability at least 2/3 the algorithm is not aborted, we
are able to answer all the queries correctly, and we obtain W such that
W [r] = PAR(Y [r]) = PAR(I ⊕ Vr). But I = Vr ⊕ (I ⊕ Vr) and hence

PAR(I) = PAR(Vr)⊕ PAR(I ⊕ Vr)

= Ur ⊕W [r]

We use this to compute PAR(I) and use bit m− 1 of PAR(I) to determine
whether I ∈ PARITY .

For each input I the algorithm succeeds with probability at least 2/3,
where the probability is taken over its random input bits.

Since no such AC0 algorithm exists, it follows that V 0 does not prove the
ΣB

0 replacement scheme. �

4 Replacement in PV and factoring

We adapt the proof [16] that cracking Rabin’s cryptosystem based on squar-
ing modulo n is as hard as factoring.

Let n be the product of distinct odd primes p and q. Suppose 0 < x1 < n
and gcd(x1, n) = 1. Let c = x21. Then c has precisely four square roots
x1, x2, x3, x4 modulo n, as follows.

Let xp = (x1 mod p) and xq = (x1 mod q). By the Chinese remainder
theorem there are uniquely determined numbers x1, x2, x3, x4 with 0 < xi < n
such that

x1 ≡ xp (mod p) x1 ≡ xq (mod q)
x2 ≡ xp (mod p) x2 ≡ −xq (mod q)
x3 ≡ −xp (mod p) x3 ≡ xq (mod q)
x4 ≡ −xp (mod p) x4 ≡ −xq (mod q)

Now x1 − x2 ≡ 0 (mod p) and x1 − x2 ≡ 2xq 6≡ 0 (mod q), so gcd(x1 −
x2, n) = p. So from x1 and x2 we can recover p, and similarly from x1 and
x3 we can recover q.

Hence if we have one square root of c, and are then given a square root
at random, we can factor n with probability 1

2
.
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Theorem 5 If PV proves replacement for sharply bounded formulas, then
factoring (of products of two odd primes) is possible in probabilistic polyno-
mial time.

Proof We will use our standard argument, taking squaring modulo n as
our function f (so f has n as a parameter).

If PV proves BB(Σb
0) then there is polynomial time algorithm which, for

some fixed k ∈ N, given any sequence y0, . . . , ym−1 of squares (modulo n),
makes at most k queries of the form “what is the square root of yi?” and, if
these are answered correctly, outputs square roots of all the yis.

Now suppose n is large enough that m = |n| > k. Choose numbers
x0, . . . , xm−1 uniformly at random with 0 < xi < n. We may assume that
gcd(xi, n) = 1 for all i, since otherwise we can immediately find a factor of
n.

For each i let yi = (x2i mod n). Let y code the sequence y0, . . . ym−1,
so [y]i = yi. Notice that each xi is distributed uniformly amongst the four
square roots of [y]i.

Run our algorithm, and to each query “what is the square root of [y]i?”,
answer with xi. We will get as output w coding a sequence [w]0, . . . , [w]m−1

of square roots of [y]0, . . . , [y]m−1.
If we think of n as fixed, the value of w depends only on the inputs

given to the algorithm, namely y and the k many numbers xi that we gave as
replies. Let i be some index for which xi was not used. Then xi is distributed
at random among the square roots of [y]i, and [w]i is a square root of [y]i
that was chosen without using any information about which square root xi
is. Hence gcd(xi − [w]i, n) is a factor of n with probability 1

2
. �

Notice that the only property of the function | | we used was that we could
find some n with |n| > k. So any nondecreasing, not eventually constant
function would do in the place of | |. Hence if PV only proves replacement
for very short sequences, that is still enough to give us factoring.

In fact under the assumption that factoring is hard we can show that
these replacement schemes form a hierarchy. For any α with one argument,
let BB(α,PV) be the axiom scheme:

∀i<α(b) ∃y<b φ(i, y) → ∃w ∀i<α(b)φ(i, [w]i)

for all PV formulas φ. We will assume that our base theory proves that
α(x) < |x| and that α is increasing.

13



We need a generalization of a result of Zambella, lemma 3.3 of [20]. The
lemma there is presented for a two-sorted system similar to V 0 and with |x|
rather than α(x).

An ∃bPV formula is a PV formula preceded by a bounded existential
quantifier; modulo PV this is the same as a strict Σb

1 formula.

Lemma 6 Any model N |= PV has an ∃bPV-elementary extension to a
model M |= PV + BB(α,PV) such that every element of M is of the form
f(a, b̄) for some f ∈ PV, a ∈ N and b̄ ⊆ α(M), where α(M) = {x ∈ M :
x < α(y), some y ∈ M}. Informally, M is formed from N by only adding
new “α-small” elements and closing under PV functions. �

Proof Let L be the language of PV with the addition of a name for every
element ofN , and let T be the universal theory ofN in this language, so every
model of T will be an ∃-elementary, and hence ∃bPV-elementary, extension of
N . Enumerate as (t1, φ1(x, y)), (t2, φ2(x, y)), . . . all pairs consisting of closed
terms in L and binary PV formulas with parameters from L. We will use
this to construct a chain T = T0 ⊆ T1 ⊆ T2 ⊆ . . . of theories.

Suppose that Ti has been constructed and is a consistent, universal theory.
If Ti ⊢ ∀x<α(ti+1) ∃y φi+1(x, y) then put Ti+1 = Ti. Otherwise introduce a
new constant symbol c and put

Ti+1 = Ti ∪ {c < α(ti+1)} ∪ {∀y ¬φi+1(c, y)}.

Note that Ti+1 is consistent and universal.
Let T ∗ be the union of this chain of theories, and let L∗ be L together

with all the new constant symbols that were added in the construction of T ∗.
Enumerate all pairs of closed terms and binary formulas in L∗, and repeat
the above construction to get a theory T ∗∗ and a language L∗∗. Repeat this
step ω times, and let T+ be the union of the theories and L+ its language.

T+ is consistent and universal, so there is a model M � T+ each element
of which is named by some closed L+-term. M � T , so M is an ∃bPV-
elementary extension of N . Also, each time a new constant c was introduced
to L+, c < α(t) was introduced to T+ for some term t. So M is the closure
of elements of N and new “α-small” elements, as required.

To show that M is a model of BB(α,PV), suppose that a is an element
of M and φ(x, y) is a PV formula with parameters from M , and

M � ∀x<α(a) ∃y φ(x, y).

14



Then by the construction of M , we may assume that a is named by some
closed L+ term t and that φ(x, y) is a parameter-free L+ formula; and by the
construction of T+ we must have that T+ ⊢ ∀x < α(t) ∃y φ(x, y), since T+

either proves this or its negation. But T+ is a universal theory, so by using
Herbrand’s theorem and the properties of PV we can find a PV function
symbol f (with parameters) such that T+ ⊢ ∀x < α(t)φ(x, f(x)). Now by
the comprehension available in PV, we can find some w ∈ M such that
M � ∀x<α(t)φ(x, [w]x), as required. �

We can now adapt the proof of the KPT witnessing theorem to get the
following:

Theorem 7 Suppose

PV + BB(α,PV) ⊢ ∀x ∃y ∀z φ(x, y, z)

for an ∃bPV formula φ. Then there exist k ∈ N, a term s(x, z̄) and functions
f1, . . . , fk such that

PV ⊢∀x ∀z̄, ∃i<α(s)k φ(x, [f1(x)]i, [z1]i)

∨ ∃i<α(s)k φ(x, [f2(x, z1)]i, [z2]i)

∨ . . . ∨ ∃i<α(s)k φ(x, [fk(x, z1, . . . , zk−1)]i, [zk]i)

(we include the exponent k here because the range of α might not be closed
under multiplication).

Proof Enumerate all pairs of PV functions as (s1, f1), (s2, f2), . . . with infi-
nite repetitions in such a way that for each k both sk and fk take k or fewer
arguments. Assume that the conclusion of the theorem is false, and let T be
the theory

PV+{∀i<α(s1(b, c1))
1 ¬φ(b, [f1(b)]i, [c1]i),

∀i<α(s2(b, c1, c2))
2 ¬φ(b, [f2(b, c1)]i, [c2]i), . . .}

where b and c1, c2, . . . are new constant symbols. Then T is finitely satisfiable
(we can take the term s in the statement of the theorem as the sum of our
finite set of terms s1, . . . , sk).

Let N be a model of T , and let N ′ ⊆ N be the substructure consisting
of all the elements named by terms. Since T is universal, N ′ |= T . Let M

15



be the extension of N given by lemma 6 to a model of BB(α,PV). By ∃bPV
elementariness, M is also a model of T .

Now let a be any element of M . By the construction of M , for some
d̄ ⊆ α(M), some e ∈ N ′ and some PV function g we have a = g(d̄, e).
Furthermore by the construction of N ′ we know that d̄ < α(h1(b, c1, . . . , ck))
and e = h2(b, c1, . . . , ck) for some k and some PV functions h1 and h2.

In this paragraph we identify a number i < α(h1(b, c̄))
k with the sequence

ī = i1 . . . ik of numbers less than α(h1(b, c̄)) that it codes. We can find
l > k such that fl is the PV function symbol that takes as input b, c1, . . . , cl
and outputs (as a single number) the sequence w1 . . . wα(h1(b,c1,...,ck))k where
wi = g(̄i, h2(b, c1, . . . , ck)). Then a = [fl(b, c1, . . . , cl)]d and since M |= T we
have M |= ¬φ(b, a, [cl+1]d). Here a was chosen arbitrarily, so we have shown
that M |= PV + BB(α,PV) + ¬∀x ∃y ∀z φ(x, y, z). �

Corollary 8 Suppose that factoring is not possible in probabilistic polyno-
mial time. Then BB(α,PV) is not provable in PV + BB(β,PV), for terms
α, β where α(x), β(x) < |x| and α grows faster than any polynomial in β.

Proof Our standard argument is that if replacement is provable in PV,
then there is a polynomial time interactive algorithm that queries k square
roots and outputs |n| square roots, for some fixed k ∈ N.

By theorem 7 we can show, by a similar argument, that if PV+BB(β,PV) ⊢
BB(α,PV) then we have a polynomial time interactive algorithm that queries
kβ(n)k square roots modulo n and outputs α(n) square roots, for some fixed
k ∈ N.

So if n is sufficiently large that α(n) > kβ(n)k, we can use the argument
of theorem 5 to factor n. �

This gives a hierarchy of theories

PV + BB(|x|,PV) ⊃ PV + BB(||x||,PV) ⊃ . . .

The same argument goes through in V 0. One way to see this is to notice
that the important difference between PV and V 0 is that the PV functions
are closed under polynomial time iteration, and no such iteration is used in
the proof here. So we have the unconditional separation result

Theorem 9 BB(α,ΣB
0 ) is not provable in V 0 + BB(β,ΣB

0 ), for terms α, β
where α(n), β(n) < n and α grows faster than any polynomial in β.
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Proof If the theorem is false, then there is k ∈ N and an interactive algo-
rithm that, given α(n) many vectors v1, . . . , vα(n), each of length n, will make
kβ(n)k queries of the form “what is the parity vector of vi?” and then output
the parity vectors of all the vis. So if α(n) ≥ 3kβ(n)k, then by adapting the
argument of section 3 we get a probabilistic uniform AC0 algorithm which
computes parity. �

5 Unique replacement in PV and RSA

We define “unique replacement” to be the scheme

∀i< |a| ∃!x<bφ(i, x) → ∃w ∀i< |a| φ(i, [w]i).

Theorem 10 If PV proves unique replacement for sharply bounded formu-
las, then the injective WPHP for PV formulas can be witnessed in probabilis-
tic polynomial time (and hence in particular we can crack RSA [12]).

Proof (Simplified from the model-theoretic proof in [19].) First notice that
it is sufficient to show that PV does not prove unique replacement for some
PV formula φ. For suppose that φ is decided by the polynomial time machine
with code e, and that for some fixed i there is a unique x such that φ(i, x).
Then there is a unique pair (z, x) such that z is an accepting computation
of the machine e on input (i, x), and the property of being an accepting
computation is sharply bounded.

In the rest of this proof x and y will code sequences of |n| numbers each
of size < n|n| and with elements [x]i, [y]i, and z will code a sequence of |n|
numbers each of size < n and with elements 〈z〉i.

Suppose that h is a PV function from n|n| to n. Note that from any PV
function g : 2n → n we can derive such a function h with the property that
a witness to WPHP for h yields in polynomial time a witness to WPHP for
g ([15], or see [19] for an explicit polynomial time construction).

Choose x < n|n|2 at random and let z < n|n| be such that 〈z〉0 =
h([x]0), . . . , 〈z〉|n|−1 = h([x]|n|−1).

Assume that PV proves the following instance of unique replacement:

∃i< |n| ∀u<n|n| h(u) 6= 〈z〉i

∨ ∃i< |n| ∃u1<u2<n
|n| h(u1) = h(u2)

∨ ∃y<n|n|2 ∀i< |n| h([y]i) = 〈z〉i.
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Then by our witnessing theorem, for some k (independent of n) there
is a deterministic interactive computation which takes n and z as its initial
input. Then for k steps it gives us an index i < |n| and expects an input
y < n|n|; if we can guarantee that for each such step we have h(y) = 〈z〉i,
then the computation outputs either u1 and u2 mapping to the same thing,
in which case we are done (and this case is the only one that is different from
normal replacement), or y < n|n|2 satisfying ∀i< |n| h([y]i) = 〈z〉i.

Run the computation, and to each index i queried respond with [x]i. The
computation must output some y satisfying ∀i< |n| h([y]i) = 〈z〉i. Now the
computation is deterministic, and if we think of n as fixed, there were n|n|(k+1)

possible different inputs to the machine: namely n|n| different possibilities for
z and (n|n|)k different possibilities for the k responses [x]i. Hence there are at
most n|n|(k+1) possible outputs y. However x was originally chosen at random
from n|n|2 possibilities. So if k < n − 1 then with high probability x is not
a possible output of the machine, so x 6= y and for some i < |n| we have
[x]i 6= [y]i but h([x]i) = 〈z〉i = h([y]i). �

Notice that part of this argument can be formalized in PV, to show
that if PV proves unique replacement, then PV proves that the surjective
WPHP for PV functions implies the injective WPHP for PV functions. In
the proof above randomness was used to find some x outside the range of a
given polynomial time algorithm; in the formal PV proof we would use the
surjective WPHP to provide such an x.

Corollary 11 Suppose PV proves the ∆b
1 comprehension axiom scheme (3).

Then PV proves unique replacement for PV formulas and by theorem 10 we
can crack RSA.

Proof Let φ(i, x) be any PV formula (with parameters) and suppose that
the hypothesis of the theorem holds. Let M |= PV, a, b ∈ M and suppose
M |= ∀i< |b| ∃!x<aφ(i, x). Then

M |= ∀i< |b| ∀j < |a|,

∃x<a (φ(i, x) ∧ xj = 1) ↔ ∀x<a (φ(i, x) → xj = 1).

Over PV, φ is equivalent to both a Σb
1 and a Πb

1 formula, so we can apply
comprehension and get some w such that

M |= ∀i< |b| ∀j< |a|,

([w]i)j = 1 ↔ ∃x<a (φ(i, x) ∧ xj = 1).
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Here we assume without loss of generality that a is a power of 2, so that we
can switch easily between thinking of w as a binary sequence of length |b||a|
and as a sequence of |b| many binary numbers [w]1 . . . [w]|b|, each of length
|a|. We also use the fact that in PV the formula φ(i, x) can be written in
both a strict Σb

1 and a strict Πb
1 way, which we need to apply comprehension.

Now pick any i < |b|. There is some unique x ∈M such that φ(i, x); and
by the construction of w, for each j < |a| we know ([w]i)j = 1 if and only if
xj = 1. Hence [w]i = x.

So M |= ∀i< |b| φ(i, [w]i). �
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