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Abstract

This technical report addresses the problem of automatically structuring
linked document collections by using clustering. In contrast to traditional
clustering, we study the clustering problem in the light of available link
structure information for the data set (e.g., hyperlinks among web documents
or co-authorship among bibliographic data entries). Our approach is based
on iterative relaxation of cluster assignments, and can be built on top of any
clustering algorithm (e.g., k-means or DBSCAN). These techniques result
in higher cluster purity, better overall accuracy, and make self-organization
more robust. Our comprehensive experiments on three different real-world
corpora demonstrate the benefits of our approach.
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1 Introduction

1.1 Motivation

This report tackles the problem of automatically structuring heterogeneous
document collections into thematically coherent subsets. This issue is rel-
evant for a variety of applications, such as organizing large personal email
folders, dividing topics in large web directories into subtopics, structuring
large amounts of company and intranet data, etc. Two major techniques are
employed to address the problem: one is based on supervised classification,
which requires explicit manually labeled training data, the other takes advan-
tage of the so called unsupervised clustering. It is quite often the case that
explicit training data is unavailable, or very time consuming and expensive
to gather, so that clustering is the only viable option.

For conventional document clustering, a purely content based represen-
tation, e.g. based on frequencies of words or word stems in a Web page, is
used as an input for the clustering algorithm. This ”context-free” approach
does not exploit the available information about relationships between docu-
ments. However, such information might be crucial for the purity of the final
clusters. For example, if we are asked to cluster companies selling products
on eBay into trustworthy or not trustworthy, it would be of great help if
we could access all forums and customer pages that discuss the products in
question and their quality. Thus link information provides refined clues that
later on can crucially influence the final clustering.

The intuition behind our approach is sketched in Figure 1.1. Figure 1.1
(a) shows the clustering entirely based on the content information about
each document. Here document d is assigned to its nearest (most similar)
cluster. The similarity of document d is measured with respect to the cluster
centroids, (e.g. produced by a content-based clustering algorithm such as
k-means - see Section 2). Figure 1.1 (b) shows the link structure among the
documents. In the content-only world, such link information is completely
ignored. Our attempt to make use of it starts with the observation that

2



( )3,cddist

( )4,cddist

( )1,cddist

( )2,cddist

d
1c

4c

3c

2c

Initialization

(a) Content-Based Clustering

d
1c

4c

3c

2c

Link structure

(b) Link Structure

d1c

2c

3c

4c

Document d and its location after RL is applied.

(c) Final Clustering

Figure 1.1: Neighborhood-Based Clustering

document d is linked to a significantly higher number of documents from
cluster c2 than from cluster c1. Furthermore, the graph structure suggests
that documents from cluster c2 typically link to documents that belong to
this very same cluster - c2. Thus, with high probability a document can be
clustered in c2 if it is linked to many documents that belong to cluster c2.
In our toy example, this leads to reassigning document d to cluster c2. The
final clustering after taking both content and link information into account
is shown in Figure 1.1 (c).

1.2 Related Work

There has been considerable prior work on classification that takes advan-
tage of the available neighborhood information. In [16] such a classification
setting is formalized as a metric labeling problem. Chakrabarti et. Al. [4]
propose an iterative relaxation method for combining link and content infor-
mation to derive better classification performance. Other methods [22, 18]
try to incorporate the link information directly into the document vector
representation.

Closest to the approach presented in this technical report is our own re-
cent work on neighborhood-based classification [2]. However, all of these
approaches are supervised, thus based on training data, and are not consid-
ered in the context of (unsupervised) clustering.

Graph-based clustering is well established in the literature. For an overview
of existing methods see [25]. The underlying graph G is constructed by rep-
resenting each data point as a node in G and each edge, connecting any two
data points, by a weight, indicating the distance (dissimilarity) between its
end points. To cluster such a graph G, the graph-based algorithms typically
first create a minimum spanning tree of the graph G. Then, they repeatedly
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remove edges whose weight is largest in relation to the edge weights in their
environment in the minimum spanning tree of G until the number of desired
clusters is achieved [29, 27, 14]. Other methods addressing the graph-based
clustering problem use Singular Value Decomposition [6].

Clustering plays an important role in image processing. Instead of coping
with documents represented by a feature vector, they operate over an image
represented by color components. Some of the developed image clustering
algorithms [15, 13, 21] are based on Markov Random Field (MRF). They first
cluster the image regions based on their color values, and then refine the clus-
tering using MRF processing. However, compared to neighborhood-aware
clustering of document collections, the size of the neighborhood considered
in image processing (i.e., typically consisting of 8 neighboring pixels) and the
data item representation vectors (limited to tens of features) are very small.

Another way of addressing the graph-based clustering problem is pro-
posed in [25]. In brief, it is an extension of the well known k-means algo-
rithm [12] that is based on graph theoretic distance measures.

However, our approach is orthogonal to all these approaches as we use
statistical knowledge about the cluster assignments of the nodes in the formed
neighborhoods in G. Furthermore, the assignment of the edge weights, and
thus the type of graphs used by the above approaches, are based on node-
node similarity, and it is not clear how to carry this forward to a hyperlinked
environment.

1.3 Contribution

Our contributions can be summarized into three major points:

• We develop a systematic and comprehensive framework for graph-based
clustering that uses the theory of Markov Random Fields [5, 17] and
a Relaxation Labeling technique [23] to derive robust clustering algo-
rithm.

• We identify methods to efficiently estimate the parameters in this
framework, and beneficial extensions of the framework leading to sig-
nificant gains in the performance, for example, by introducing metric
cluster distances or selective neighborhood influence on content level.

• We provide a comprehensive experimental study of the performance of
the proposed algorithms over three real life data collections: DBLP1,

1Computer Science Bibliography Data Base
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IMDB2, and Wikipedia3.

1.4 Outline

The rest of this report is organized as follows. In Section 2 we briefly review
the technical basics of clustering methods. Section 3 presents our framework
of neighborhood-based clustering. Section 4 deals with the efficient param-
eter estimation within this framework, and we describe further extensions
to improve the overall clustering quality. Section 5 provides experiments on
different real-world datasets.

2Internet movie database
3Online Encyclopedia
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2 Technical Basics

Clustering algorithms partition the set of given data objects into groups
called clusters. The data items we consider are documents and each docu-
ment is represented by a feature vector. In the prevalent bag-of-words model
the features are derived from word occurrence frequencies [3, 20] (e.g., captur-
ing tf or tf ∗ idf weights of terms). In addition, feature selection algorithms
[19] can be applied to reduce the dimensionality of the feature space and
eliminate “noisy”, non-characteristic features. This type of noise filters are
based on term frequencies or advanced information-theoretic measures for
feature ordering (e.g., mutual information (MI) or information gain [19]).

Clustering methods can be divided into the following
groups [9]: partitioning methods, hierarchical methods, density based meth-
ods, grid based methods, and model based methods. In this paper we con-
sider partitioning methods: the dataset is divided into disjoint partitions.
For this family of clustering algorithms, the number k of clusters is a tuning
parameter [11].

A simple and very powerful member of the family of partitioning clus-
tering methods is k-means [12]: k initial centers (points) are chosen, every
document vector is assigned to the nearest center (according to some dis-
tance or similarity metric), and new centers are obtained by computing the
means (centroids) of the sets of vectors in each cluster. After several itera-
tions (according to a stopping criterion) one obtains the final centers, and,
respectively, a clustering of the given document set can be derived. A simi-
lar algorithm, which can be considered as a ”smoothed” form of k-means is
EM clustering [11, 20]: in every iteration the probabilities of the objects for
being contained in the different clusters are updated using the expectation-
maximization technique.

The result and run-time for k-means and other iterative clustering algo-
rithms are strongly dependent on the initial partitioning (for k-means this
corresponds to the initial centers). A standard heuristics for this initialization
phase is pre-clustering [9]: before starting the actual clustering algorithm, a
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clustering is computed on a much smaller subset. This way one can often
obtain better starting points.
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3 A Probabilistic Framework
for
Graph-based Clustering

In this section we first describe a simple way of using the underlying link
structure by combining the content of a document with the content of its
neighbors. We show how to obtain confidence values from the content-based
clustering. Last, we introduce a probabilistic framework which enables us
to take advantage of the information contained in the neighborhood of each
document.

3.1 Content Combination

An intuitive way of combining the content of a document d with the content
of its neighbors d′ ∈ N(d) is to assign term weights w′(ti, d) to all terms
ti ∈ d while considering in a linear way the term weights ti in d’s neighbors
d′ ∈ N(d).

More precisely, let w(ti, d) be the original term weight (e.g., obtained by
using the traditional tf ∗ idf value). We can compute the adjusted weight
w′(ti, d) as follows:

w′(ti, d) = w(ti, d) +
∑

d′∈N(d)

α · w(ti, d
′) (3.1)

Here, the parameter α controls the impact of the neighborhood content on
the final term weights in document d. The correspondingly adjusted feature
vectors can be used as an input to all vector-based clustering algorithms,
e.g., the k-means algorithm.

To avoid the potential increase in the level of noise, we can consider only
a subset of “good” neighbors. These neighbors should be similar enough to
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the document in question, d. For this purpose, we introduce a similarity
threshold, S-threshold, which can be computed as the cosine-similarity be-
tween the pair of neighboring documents and which selectively determines
the neighborhood of each document d.

A similar approach was used in [22] for document classification. Although
this is a fairly straightforward idea, we are not aware of prior literature
that has explicitly considered such a re-weighting of terms in the context of
clustering.

3.2 Confidence Measures for Clustering

Some clustering algorithms assign to each document a probability value of
membership to any of the possible clusters. An example for such an algorithm
is the EM clustering algorithm [20, 11]. Confidence values for cluster mem-
berships can be also assigned to the results of other clustering algorithms,
e.g., k-means.

The k-means algorithm provides us with a set of k centroids {z1, . . . , zk},
where centroid zi is a representation of cluster i. Note, that such a centroid
or a similar representation can be easily computed for the clustering obtained
by any other clustering algorithm. Each document d is assigned to a cluster i
so that the similarity sim(d, zi) between zi and the document d is maximized.
As a similarity measure one could adopt the cosine similarity between d and
zi.

But the similarities sim(d, zi) can also be used to make soft assignments.
The most intuitive way to do this is to assign to each document d a confidence
value σ(i, d) for the membership to cluster i proportional to sim(d, zi):

σ(i, d) =
sim(d, zi)∑k

j=1 sim(d, zj)
(3.2)

We chose the normalization constant such that:

k∑
j=1

σ(j, d) = 1 (3.3)

3.3 Including Neighborhood Information

Our approach adopts a probabilistic formulation of the clustering problem.
It is based on the so called relaxation labeling technique which was initially
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proposed for resolving problems in image processing but is successfully ap-
plied in classification [4, 2] and as we show - in clustering. We propose two
major approaches for finding the maximally likely clustering of the given test
graph: hard and soft clustering. A maximally likely clustering of a graph
aims to minimize the sum of two types of costs: assignment and separation
cost. The first one is based on the individual choice of a cluster to which a
document is assigned. The latter reflects the choice of a pair of clusters to
which two neighboring documents to be.

Formally, we aim to cluster a set of documents D, where each document
d ∈ D corresponds to a vertex in the graph G and each link between two
documents in D corresponds to an edge in G. The clustering algorithm
requires as an input the the text of each document d and information about
which documents of G constitute its neighborhood, N (d). Let c(d) denote
the cluster of node d whose validity can be associated with a probability.
The content of document d is represented as a set of terms that occur in d
and denoted by τ(d). The output of the algorithm should be an assignment
of clusters to the graph nodes such that each document d ∈ G belongs to its
maximally likely cluster i, selected from a finite set of clusters [1..m].

Taking into account the underlying link structure and document d’s content-
based feature vector, the probability of a document d to be assigned to cluster
i is:

Pr [c (d) = i | τ,G] = Pr [c (d) = i | τ(d), c (d1) , · · · , c (dl)]

where d1 through dl are the documents in D.
In principle, such a model could even consider long-range influences among

transitively related documents, with decreasing influence as the distance in
the graph increases. For tractability, however, it makes sense to focus on the
strongest dependencies among immediate neighbors. Such a model is called
a first-order Markov Random Field or MRF [17, 23]. Computing the pa-
rameters of an MRF such that the likelihood of the observed training labels
is maximized is a difficult problem that cannot be solved in closed analytic
form and is typically addressed by an iteration technique known as relaxation
labeling (RL). Our approach builds on this mathematical technique.

In the spirit of emphasizing the influence of the immediate neighbors for
each document, N (d), we obtain
Pr [c (d) = i | τ(d), G] = Pr [c (d) = i | τ(d), N (d)] and denote it by Φi,d. This
reflects the MRF assumption that the label of a node (as a random vari-
able) is conditionally independent of the labels of other nodes in the graph
given the labels of its immediate neighbors. We abbreviate Pr [c (d) = i | τ(d)],
the graph-unaware probability based only on d’s local content, by σi,d. Let
c (N (d)) denotes the assignment of clusters to the group of neighbors of d,
N (d). The probability that a test document neighborhood N (d) is assigned
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to c (N (d)) is denoted by Pr [c (N (d))]. Applying, for tractability, the addi-
tional independence assumption that there is no direct coupling between the
content of a document and the labels of its neighbors, the following central
equation holds for the total (prior, i.e., unconditional) probability Φi,d, sum-
ming up the posterior (i.e., conditional) probabilities for all possible cluster
assignments to the neighborhood N (d):

Φi,d =
∑

c(N(d))

σi,d · Pr [c (d) = i | c (N (d))] · Pr [c (N (d))]

In the same vein, if we further assume independence among all neigh-
bor labels of the same node (but still capturing the dependence between a
node and each of its neighbors), we reach the following formulation for our
neighborhood-conscious clustering problem:

Φi,d = σi,d ·
∑

c(N(d))

 ∏
d′∈N(d)

Pr [c (d) = i ∧ c (d′) = j]

 .

This can be computed in an iterative RL manner as follows:

Φ(r)
i,d = σi,d ·

∑
c(N(d))

 ∏
d′∈N(d)

Pr [c (d) = i ∧ c (d′) = j]

(r−1)

where r > 1 and i, j ∈ [1..m] are cluster assignments. With the short-hand
notation
φi,j = Pr [c (d) = i ∧ c (d′) = j] we can rewrite this into:

Φ(r)
i,d = σi,d ·

∑
c(N(d))

 ∏
d′∈N(d)

φi,j

(r−1)

(3.4)

11



4 Extensions of the Framework
and Parameter Estimation

To this end we have presented the basic framework of our algorithm. This
section tackles the problem of estimating the parameters for the initial solu-
tion and during the iteration of the relaxation labeling (clustering).

As we wish to take advantage of the content as well as the link infor-
mation provided as an input to the algorithm, the cluster assignments to
all test nodes for iteration (r = 0) are intuitively the assignments of a pure
content-based clustering, e.g., k-means, to the test nodes. All iterations that
follow are based on Equation (3.4). We iterate until the probabilities Φi,d,
for each document and cluster assignment, stabilize, i.e., the magnitude of
change drops below some stop parameter ε. The relaxation is guaranteed to
converge to a locally consistent assignment if initiated sufficiently close to a
consistent labeling (clustering) [17, 23]. In [23] it is shown that the relaxation
algorithms are local optimizers by nature (similarly to EM methods). They
do not necessarily arrive at the global optimum. Given a relaxation clustering
algorithm and the data, two factors affect the solution: the initial cluster as-
signments and the cost function used to iteratively find the global maximum
of the cluster assigning function. In our case, the iterative scheme contains
both factors: the initial cluster assignment from the content-based clustering
in iteration r = 0, and the cost function involving a dynamically computed
separation cost (i.e., assigning neighbors to different clusters), re-adjusted in
each iteration.

Calculating the sum over all possible cluster assignments in Equation
(3.4) is hard as we have m|N(d)|summands, where m is the number of distinct
clusters. To solve this problem we employ two major methods described in
Subsections 4.1 and 4.2. Depending on the chosen method of clustering, we
approximate the sum over all possible cluster assignments of the neighbor-
hood to either its most significant summand, treating it as if it were the true
set of clusters (hard clustering), or the p most significant summands (soft
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clustering) and their associated probabilities where p is a tunable constant.
The proposed graph-based clustering algorithm efficiently re-computes and
updates the probabilities of particular cluster assignments to the neighbor-
hood N (d) after each RL iteration. An algorithm for computing the p most
significant summands is proposed in [8]. Another fast and more suitable
algorithm to compute them is presented in [2].

4.1 Soft Clustering

The soft clustering approach aims to achieve better accuracy of the clustering
by avoiding the overly eager ”rounding” that the hard clustering approach
does. Instead, we take into account the p most significant combinations of
cluster assignments to the test document neighborhood (Equation (3.4)).
This is motivated by the observation that apart from the few most probable
cluster assignments to the neighborhood (p), the remaining combinations of
cluster assignments have very low probabilities. Thus, they do not contribute
much to the calculation of Φ

(r)
i,d (the probability of document d to be assigned

to cluster i) and can be ignored. This reduces the exponential number of
summands in Equation (3.4) from m|N(d)| to p and makes its computation
feasible.

4.2 Hard clustering

In contrast to the presented soft clustering approach, we also consider a
method that takes into account only the most probable cluster assignments in
the test document neighborhood to be significant for the Φ(r)

i,d = Pr [c (d) = i | τ,
N(d)](r) computation. We call this newly employed approach hard clustering.
It might be seen as a crude approximation of the sum in Equation (3.4) but
depending on the sets C and D this approximation gives very good empirical
results (see Section 5). Our hopes for this method would be that it is more
efficient and possibly more robust than the soft clustering method. Hard
clustering can be thought of as a ”high-level” noise reduction, since it trusts
only the most probable neighborhood cluster assignments and ignores as-
signments with lower probability, thus reducing the chance of an incorrectly
assigned node in the neighborhood to influence the cluster assignment of the
current test node.

Let cmax(d
′) be the maximum probable cluster for each document d′ ∈

N(d) as of iteration (r − 1):

cmax(d′) = argj max Pr [c (d′) = j](r−1)
.
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Then considering only the maximum probable c(N(d)) according to the node
label probabilities of iteration (r − 1), Equation (3.4) can be written as:

Φ(r)
i,d = σi,d ·

∏
d′∈N(d)

(
φi,cmax(d′)

)(r−1)
,

and its simplified form, presenting the product over the set of cluster assign-
ments rather than documents in the neighborhood N (d):

Φ(r)
i,d = σi,d ·

 ∏
cmax(d′)∈C

(
φi,cmax(d′)

)n(cmax(d′))

(r−1)

.

where n (j) is the frequency of label assignment j in N(d): n (j) = |{d′ ∈ N (d) |
c (d′) = j}|.

4.3 Separation cost

The probability φi,j of the endpoints of the edge between documents d and
d′ to be assigned to a pair of clusters i, j depends on the cluster assignment
conditional probabilities of the corresponding nodes from the previous iter-
ation. We calculate φi,j by a smoothed estimator based on the frequencies
of edges tentatively assigned to a pair of clusters i, j in round (r − 1) of the
iteration scheme (using Laplace smoothing).

We use this method in combination with the hard and soft node clustering
approach and abbreviate the corresponding clustering algorithms as GC[H]
and GC[S].

4.4 Edge pruning and weighting

Our method uses link weights based on the following rationale. The cluster
assignment of a document should be more influenced by neighbors with a
homogeneous content that is thematically closely related to the document’s
own content. As an intuitive example suppose we are interested if a given
Amazon product page sells cosmetics or routers. Each page contains highly
valuable outgoing links, e.g., links to the product description on the manu-
facturer page or comparison between similar products. But all too often we
would also find on the same product page many non-relevant links like a link
to the Amazon’s generic ”latest products” page, user’s shopping cart, profile,
etc.

We aim to ignore the unnecessary and most probably noisy information
behind these irrelevant links by assigning to each edge e a weight we equal to
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the cosine similarity between the feature vectors of the documents connected
by the edge.

This edge weighting schema is applied for noise reduction in two ways:
1) we prune edges whose weight we is below a specified similarity threshold
(S-threshold)), and 2) we differentiate links by using higher we to promote
links that are considered more important. These considerations lead to the
following revised label probability for the RL algorithm:

Φ(r)
i,d = σi,d ·

∑
c(Nd)

∏
d′∈Nd

φ
(r−1)
c(d),c(d′) · we (4.1)

4.5 Incorporating Metric Cluster Distances

Intuitively, neighboring documents should receive similar cluster assignments.
For example, suppose we have a set of clusters C = {Culture (C), Entertain-
ment (E), Science (S)} and we wish to find the most probable cluster for a
test document d. Typically, documents that are related to culture or enter-
tainment have overlapping areas of discussion like concerts, exhibitions, etc.
This means, the clusters C and E are thematically close to each other. On
the other hand, a document discussing scientific problems (S) would be much
farther away from both C and E. So, a similarity metric Γ (·, ·) imposed on
the set of clusters C would have high values for the pair (C, E) and small
values for cluster pairs (C, S) and (E, S). Back to our example, suppose
that document d has four neighbors and that these are assigned to clusters
c(N(d)) = {C, C,E,E}. Then, the probability that document d would be
assigned to cluster C should be higher than the same probability if the neigh-
boring documents of d were clustered in c(N(d)) = {C, C, S, S}. Note that
both of these neighbor assignments c(N(d)) have the same number of C clus-
ters; the key lies in the different similarities between C and the other clusters
in each of the two c(N(d)). The intuition suggests that the clustering result
should approximately capture the topic structure in the data set.

This is why introducing a metric Γ (·, ·) should help improve the clustering
result. In this metric, similar clusters are separated by a shorter distance and
impose smaller separation cost on an edge cluster assignments.

The theory paper by Kleinberg and Tardos [16] suggests constructing an
r-HST tree approximation for obtaining such a metric. The argument for this
specific approximation is tractability of the otherwise NP-hard optimization
problem, but the approach loses generality.

Our approach, on the other hand, is general, and we construct the metric
Γ automatically from the test data. The metric value for a pair of labels
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(i, j) is computed by the content similarity between the corresponding sets
of documents contained in clusters i and j. In our experiments, we use
the term-vector based cosine similarity between the ”super-documents” that
concatenate all documents of the same cluster. This metric is computed only
once, and does not change as the relaxation labeling proceeds.

We incorporate the distance metric into the iterations for computing the
probability of an edge cluster assignments φi,j by treating Γ(i, j) as a scaling
factor. This way, we magnify the impact of edges between nodes assigned
to similar clusters and scale down the impact of edges between the nodes
clustered into dissimilar ones:

Φ(r)
i,d = σi,d ·

∑
c(Nd)

∏
d′∈Nd

φ
(r−1)
c(d),c(d′) · we · Γ(c(d), c(d′)) (4.2)

The product of the φ and Γ terms on the right-hand side can be viewed as the
probability that d and d′ are thematically related, having specific labels with
probability φ and the labels being thematically close with probability Γ. Our
experimental results (Section 5) show that incorporating Γ into the relaxation
labeling significantly contributes to more accurate clustering results. In such
cases the algorithm exploits the additional ”guidance” that the cluster metric
provides for estimating the edge label probabilities in each iteration.
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5 Experiments

5.1 Quality Metrics for Clustering

Our quality measure describes the correlation between the actual topics of our
datasets and the clusters found by the algorithm. Note that the cluster labels
can be permutated: Given two classes class1 and class2, it does not matter
whether a clustering algorithm assigns label a to all documents contained to
class1 and label b contained in class2 or vice versa; the documents belonging
together are correctly put together and the quality should reach its maximum
value (i.e., 1) and the error should be 0.

Let k be the number of classes and clusters, Ni the total number of
documents in classi, Nij the number of documents contained in classi and
having cluster label j. We define the accuracy of the clustering as:

A = max(j1,...,jk)∈perm((1,...,k))

∑k
i=1 Ni,ji∑k
i=1 Ni

(5.1)

5.2 Setup

We have tested our graph-based clustering algorithm on three different data
sets. The first one includes approximately 16000 scientific publications cho-
sen from the DBLP database. The set of classes includes “Database” (DB),
“Machine Learning” (ML), and “Theory” as labels. We labeled the docu-
ments based on the conference in which they were published. For example,
if a paper appeared in SIGMOD or VLDB proceedings, then it was assigned
to the DB set. We chose co-authorship as the relation determining the con-
nectivity between documents. For the initial step of purely content-based
clustering we use the document titles as the only source.

The second dataset has been selected from the Internet movie database
IMDB. For our tests we took into account all movies in which a given set
of 80 famous actors occur (e.g., Johnny Depp, Bruce Willis, Mel Gibson,
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etc.). This resulted in about 5000 movies grouped in 4 genres: “Action”,
“Comedy”, “Documentary”, and “Drama”. This dataset is challenging for
automatic clustering because initially many movies were “hand-tagged” with
more than one genre. For our test we merged multiple genres of the same
movie by using only the most “prominent” one as a “true” genre of a movie.
For example, if a movie had a label Action and Science fiction, we considered
it to be Action. For each movie we took its title and plot as a source of
features for the initial content-based classification. We removed all stopwords
and applied stemming to reduce the dimensionality of the feature space. This
resulted in a feature set of around 19 000 terms. We built an edge between
two documents (movies) in the graph if they have a starring actor in common.
We applied similarity-based edge pruning for noise reduction. Our default S -
threshold 0.25 left us with 800 nodes each of which has at least one neighbor.
All “singleton” nodes without edges were disregarded in the experiments as
all graph-aware methods would behave identically to content-based clustering
on these nodes.

The third dataset used in the experiments was the online encyclopedia
Wikipedia. We crawled about 5000 documents from the released Wikipedia
dump file. As links between the pages we used their natural hyperlink con-
nectivity. We restricted the crawler to follow only links within Wikipedia.
The feature space had about 70 000 unique terms; no feature selection was
performed. The distinguished classes are “Politics”, “Computer Science”,
“Physics”, “Chemistry”, “Biology”, “Mathematics”, and “Geography”. We
started the crawl from the main pages for each of these subjects and used
topic-specific words in the anchor text as indicators for whether an outgo-
ing link should be followed. For example, we started gathering documents
from the page http://en.wikipedia.org/wiki/Chemistry by following links that
contained manually selected word stems like “chemist”, “isomer”, “branch”,
“organic”, etc. All pages gathered from the starting chemistry page were
considered to be “hand-tagged” as Chemistry. When the same page was
discovered following paths with starting points of two different seeds, the
page was discarded since no decision about its “true” label without human
assessment could be taken.

All datasets for our experiments are available at the URL http://www.mpi-
inf.mpg.de/∼angelova.

5.3 Results

We compared the following methods:

1. Content-based k-Means; we used the standard bag-of-words model [3]
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(using term frequencies to build L1-normalized feature vectors, stem-
ming with the algorithm of Porter [24], and deletion of stopwords) for
document representation; feature selection according to df, (k-Means).

2. Hard graph-based clustering method as described in Section 4.2, (GC[H]).

3. Soft graph-based clustering method as described in Section 4.1, (GC[S]).

4. Graph-based clustering taking into account the cluster metric Γ(·, ·) and
the edge weights we in the test graph as in Equation 4.2 of Section 4.5,
(wmGC[H] or wmGC[S]).

5. GC using the edge weighting scheme as in Equation 4.1 of Section 4.3,
(wGC[H] or wGC[S]).

6. Graph-based clustering taking into account the cluster metric Γ(·, ·) of
Section 4.5, (mGC[H] or mGC[S]).

7. Content Combination described in Section 3.1 with α, (CComb[α]).

All graph-based methods 2 trough 6 use the result of the simple content
based method 1 in the initialization step.

Adding the content combination approach provokes another variation of
all other methods mentioned so far. To study the influence of this parameter
we tested all graph-based methods 2 trough 6 with different values of α which
are correspondingly shown in squared brackets after the method abbreviation.
For example,

• GC[H][0.5] denotes the graph-based clustering GC[H] on top of CComb[0.5];

• wmGC[H][1.0] denotes the graph-based clustering
wmGC[H] on top of CComb[1.0], and so on.

All experiments, unless otherwise stated, were performed using similarity
threshold 0.3 and feature sets for DBLP and Wikipedia of size 2000, and for
IMDB of size 2500. Note that the Wikipedia set is the most representative
test data set. This is due to the fact that the documents in Wikipedia
are with predefined true topics which ensures the precision of the clustering
evaluation.

We also tested an MST-based graph-cut clustering algorithm [29], com-
puting the edge weights as weighted sum of hyperlink based neighborhood
and content similarity of the documents, and pruning edges in the corre-
sponding spanning tree. However in our preliminary experiments, the k-
means algorithm (despite of its simplicity) showed superior performance on
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our data sets. Hence, we did not consider building our algorithm on top of a
graph-cut approach.

The outcome of the comparison among the above methods along with the
95% confidence intervals is shown in Table 5.1. Table 5.2 describes the influ-
ence of the cluster metric (Section 4.5) on the performance of the proposed
graph-based methods. A detailed sensitivity analysis of the parameters is
presented in Figure 5.1.

Table 5.1: Comparison of Clustering Methods
DBLP IMDB Wikipedia

A A A

kMeans 0.4245±0.0074 0.3569±0.0145 0.5054±0.0133

GC[H] 0.4609±0.0075 0.3809±0.0147 0.5497±0.0133

GC[S] 0.4379±0.0075 0.3948±0.0148 0.5261±0.0133

wmGC[H] 0.4689±0.0075 0.3790±0.0147 0.5938±0.0131

wmGC[S] 0.4448±0.0075 0.3998±0.0149 0.5872±0.0131

CCkMeans[0.5] 0.4053±0.0074 0.4022±0.0149 0.5953±0.0131

GC[H][0.5] 0.4649±0.0075 0.4216±0.0150 0.6231±0.0129

GC[S][0.5] 0.5245±0.0075 0.3655±0.0146 0.6229±0.0129

wmGC[H][0.5] 0.4893±0.0075 0.4389±0.0147 0.6369±0.0128

wmGC[S][0.5] 0.4903±0.0075 0.4378±0.0150 0.6367±0.0128

CCkMeans[1.0] 0.5218±0.0075 0.4024±0.0149 0.6391±0.0128

GC[H][1.0] 0.5914±0.0074 0.4338±0.0150 0.6254±0.0129

GC[S][1.0] 0.5844±0.0075 0.4222±0.0150 0.6220±0.0129

wmGC[H][1.0] 0.6108±0.0075 0.4540±0.0147 0.6394±0.0128

wmGC[S][1.0] 0.5980±0.0075 0.4373±0.0150 0.6359±0.0128

The main observation are:

• The graph-based approach significantly outperforms all pure content-
based methods. Our experiments show improvements of up to 9% over
the k-Means algorithm as well as significant gains close to 10% over the
content combination approach proposed in Section 3.1.

• The performance of the graph-based clustering is even better if the
content combination technique discussed in Section 3.1 is used as ini-
tialization step for the graph-based methods.

• Including the cluster distance metric in the computations improves the
graph-based clustering by gently imposing constraints on the separa-
tions cost estimates but resulting in up to 6% gain in accuracy in some
cases.

For all data sets the similarity threshold (S-threshold) acts as a noise filter
and improves the performance of the graph-based clustering. However, in-
creasing the S-threshold to a very high value disregards too much potentially
valuable neighborhood information.
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Table 5.2: Cluster Similarity Metric Influence
Data kMeans GC[H] GC[S]

- - GC mGC wGC wmGC GC mGC wGC wmGC

DBLP 0.4245 0.4609 0.4682 0.4597 0.4689 0.4379 0.4412 0.4379 0.4448

IMDB 0.3569 0.3809 0.3790 0.3803 0.3790 0.3948 0.4030 0.3992 0.3998

Wikipedia 0.5054 0.5497 0.5874 0.5850 0.5938 0.5261 0.5864 0.5858 0.5872

Using the term weight correction factor α helps obtaining better perfor-
mance. Furthermore, above some α value (e.g., 0.7 for the IMDB and DBLP)
the accuracy of the clustering is no longer sensitive to the specific choice of
α, sparing us the effort of parameter fine tuning.

The cluster distance metric is a very powerful guide for the graph-based
methods. Its impact is biggest when no term weight correction factor α is
used or the value of α is small. This is due to the fact that α introduces new
terms into each document based on the available terms in the document’s
neighborhood. This means that if many documents, which actually belong
to different clusters, are highly connected, the presence of α introduces noisy
term information into the clusters. Recall that the cluster metric Γ is based
on the cosine similarity between the cluster centroids, thus with increasing
α, the correcting information provided by Γ decreases its quality.

Finally, we conclude that the newly proposed graph-based clustering
methods, especially the combination of the hard clustering approach ap-
plied on top of the content combination technique, are the clear winners and
outperform the previously known state-of-the-art algorithms by a significant
margin.
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Figure 5.1: Parameter Influence for the Different Data Sets
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6 Conclusion and Future Work

In this paper we proposed an approach for automatically clustering het-
erogeneous documents collections by using neighborhood information. The
performed experiments confirm the hypothesis of highly valuable influence of
the link structure over the clustering results. Our ongoing and future works
includes

• the combination of our approach with orthogonal clustering approaches
by using meta methods described in our work [26]

• the application of our framework on top of other clustering methods,
such as density-based [10], grid-based [1] and cut-based [7] clustering

• applying the graph-based clustering method over heterogeneous graphs
where nodes can have different types and each type has a specific set
of possible cluster assignments.

We have experimentally shown that our neighborhood based approaches
are more robust and have higher accuracy than the traditional content based
approaches. A big advantage of the proposed methods is that they are suit-
able to be implemented as a last-stage refinement of the cluster purity pro-
duced by any clustering algorithm: content- or graph-based.
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