
UIUC Technical Report: UIUCDCS-R-2006-2766, UILU-ENG-2006-1806. August 2006

Best-k Queries on Database Systems

Tao Tao ChengXiang Zhai
Department of Computer Science

University of Illinois at Urbana-Champaign

Abstract

As exploratory queries become more and more popular,
the study of how to select k items based on fuzzy match-
ing and ranking of database tuples (i.e. top-k queries) has
attracted much attention recently. However, taking the top-
k tuples based on their scores computed independently is
inadequate for modeling some complex queries finding the
best k tuples based on some selection criteria involving a
global measure on multiple selected tuples (e.g., tuple re-
dundancy or compatibility). In this paper, we introduce and
study such best-k queries, and further model a database se-
lection problem generally as a decision problem, in which
a database system would respond to a query by selecting a
subset of tuples that optimize a certain utility function de-
fined globally. Accordingly, we present a general formal
framework for database selection, which covers the boolean
query search, the top-k query search, and the best-k query
search all as special cases. We prove that finding answers
to a general best-k query is an NP-hard problem. We pro-
pose an anytime algorithm, which allows a user to stop the
algorithm at any time to achieve a flexible tradeoff between
the result optimality and the running time, to execute a best-
k query efficiently. Experiment results show that the algo-
rithm can be used to efficiently answer a best-k query.

1 Introduction

With a traditional database query language (e.g., SQL),
a user must specify precisely the conditions to be satisfied
by the selected tuples. This is appropriate when (1) the in-
formation in the database is precise and (2) the user knows
exactly what to look for. While these are generally true in
most traditional database applications, they are not true in
many new applications that involve exploratory queries and
imprecise database information such as multimedia and text
databases [8]. Indeed, in such applications, it is often very
difficult (even impossible) for a user to precisely specify the
conditions in terms of data values for selecting data tuples,
even though the user may have clear preferences among the

DocID w1 w2 w3 Date SummaryLength
d1 4 5 0 Jan-1-2003 50
d2 1 4 1 Feb-10-2003 20
d3 3 3 1 Dec-21-2003 15
d4 4 3 1 Mar-3-2003 15
d5 4 4 1 Apr-10-2003 40
d6 0 1 5 May-12-2003 40
d7 4 4 2 Apr-10-2004 40

Table 1. A sample text document database

candidate tuples. It is thus necessary to study how to assist
a user in expressing such preferences and how to answer a
query involving such preferences.

For example, consider an overly-simplified database of
text documents shown in Table 1. There are six attributes,
including the document ID, the three words in our vocabu-
lary (w1, w2, and w3), the publication date, and the length
of the summary of a document.

Suppose a user is interested in documents published be-
fore year 2004 about w1 and w2. He may use a Boolean
query such as the following:

SELECT DocID
FROM Table t
WHERE before(t.Date, 2004) and t.w1 > 3 and t.w2 > 3

This query would return d1 and d5 as results, but not d3

and d4, though they intuitively may also be relevant. In such
a case, it may be more appropriate to introduce a scoring
function defined on all the three words and the query words
(i.e., w1 and w2) and assume that the user simply prefers a
document with a higher score by this function. For example,
a simple scoring function can be s(t, q) =

∑
wi∈q t.wi (i.e.,

the sum of frequency of each matched query word). We
can then allow a user to specify the preferences through the
following top-k query:

1

SELECT DocID
FROM Table t
WHERE before(t.Date, 2004)
ORDER(4) BY s(t,q)

That is, we will first select documents that have pub-
lished before year 2004, score each document using func-
tion s, and return the top 4 documents with the highest
scores according to s.

The top-k query problem has been studied extensively
recently [9, 8, 3, 2, 6, 4]. In most studies, the focus was on
how to efficiently execute a top-k query. For example, Fagin
has proposed several efficient algorithms that can be used to
answer a top-k query exactly [9, 8]. Chaudhuri and Gravano
studied how to convert a top-k query to a range query that
traditional databases can process [6]. Chang and Hwang
studied how to minimize the probes when evaluating a top-
k query with expensive predicates [4]. Agrawal proposed
another angle of top-k problem [2], discussing how to com-
bine different user preferences, when multiple users search
for data tuples together.

A major limitation of top-k queries is that the k tu-
ples are selected based on a ranking of tuples according
to scores that are computed for each tuple independently.
Thus, for example, the score of each document in our ex-
ample above is computed independent of other documents.
This limitation makes top-k queries inadequate for express-
ing more complex selection preferences which may involve
some global measure defined on multiple tuples. One such
measure is semantic redundancy or novelty [19]. In a text
database, many articles may be very similar, though not
identical, so that users would like to see retrieved results as
diversified as possible. It is clearly impossible to use a top-k
query to express a user’s desire for minimizing the redun-
dancy among the returned results (by whatever redundancy
measure appropriate for the application).

Another limitation of top-k queries is that the user must
specify the number k, which sometimes may be better de-
cided by the system. Consider again the example above,
suppose we will display the summaries of all the selected
documents (as a search engine often does) and our screen
size can only display up to 100 words (e.g., with a PDA).
We now not only have an additional global constraint (i.e.,
the sum of the summary lengths of the selected documents
must not exceed 100), but also can automatically choose a k
to maximize the amount of relevance information in the se-
lected documents. Intuitively, in the example of Table 1, the
optimal answers are {d1, d4, d3, d2} because they all match
the two query words w1 and w2 well and their summary
lengths sum to 100. However, if we use the function s to
rank the documents (as in the case of top-k queries), and
select top k documents subject to the screen size constraint,

the results would be {d1, d5}, since d1 and d5 would be
ranked at top positions, and their sum of summary lengths
is already 90, leaving no room for a third document.

The example above, while over-simplified, clearly il-
lustrates two points: (1) Top-k queries are inadequate for
database selection problems involving global constraints or
preferences, which we will refer to as “best-k” query prob-
lems since our goal is to select k tuples according to some
globally defined preferences. (2) Defining a user’s prefer-
ences and constraints on the whole set of selected tuples,
rather than on each individual tuple, is necessary to model
best-k queries. Indeed, some preferences and constraints
(e.g., screen size) are impossible to capture through func-
tions defined solely on individual tuples. The example also
shows that we need to define the database selection problem
in a more general way in order to accommodate complex
user preferences.

The need for querying a database with such complex
preferences is abundant. In practice, a user often solves
such a problem by post-processing the database search re-
sults manually or simply by-passes the problem by ac-
cepting the presumably non-optimal search results from a
database with existing querying capabilities. As another
example, consider a real estate dealer who wants to invest
a certain amount of money on buying several houses and
would like to spread the money to buy houses covering sev-
eral different regions in a town. In this case, we would
prefer the returned tuples to be as diversified as possible.
Clearly, diversity is a global property that cannot be cap-
tured by a top-k query, and hence the problem is a best-k
query problem.

In this paper, we study the best-k query problem together
with the existing Boolean queries and top-k queries within a
single unified database selection framework. In this frame-
work, we model the database selection problem generally as
a decision problem. Specifically, we assume that a database
system would respond to a database query by selecting a
subset of tuples that optimize a certain utility function de-
fined on the tuples. The database selection problem is thus
reduced to an optimization problem where the search space
consists of all the subsets of tuples in the database and
the objective function is a global utility function defined
on any subset of tuples. We show that such an optimiza-
tion framework covers the boolean query search, the top-
k query search, and the best-k query search all as special
cases, corresponding to different utility functions. Specif-
ically, we show that the best-k queries can be regarded as
a natural generalization of the top-k queries by allowing a
user to specify an arbitrary utility function. The framework
provides a roadmap for exploring complex database queries
with different levels of complexity.

We further study how to efficiently evaluate a best-k
query. We show that finding answers to a best-k query is

2

an NP-hard problem and study efficient algorithms to find
answers to a best-k query. Without any additional assump-
tion on the utility functions, the only way to answer a best-k
query would be a brute force solution, in which we enumer-
ate all the possible subsets of items; clearly, such a solution
is only useful for extremely small-scale best-k problems.
We note that many practically interesting utility functions
satisfy a monotonicity property, which can be exploited to
dramatically prune the search space. Accordingly, we pro-
pose to use a branch-cutting strategy to prune the search
space in both breadth-first and depth-first search. While
these algorithms are efficient for obtaining exact optimal
answers to a best-k query, the worst cases are still exponen-
tial. We further explore how to obtain approximate answers
quickly. It turns out that the depth-first branch-cutting al-
gorithm can naturally provide flexible tradeoff between the
optimality of results and the running time of the query since
it is an anytime algorithm, which provides an approximate
solution at every step of search. We evaluate these algo-
rithms on simulated data sets. The results show that, for
any non-trivial best-k problems, the depth-first search strat-
egy is more feasible and much faster than the breadth-first
search strategy because the latter easily runs out of memory.

Our contribution in this paper is three-fold:

• We formulate a new database searching problem —
the best-k selection. This best-k is not only generally
enough to cover most previous work, such as tradi-
tional binary database search and top-k queries, but it
also suggests new database problems.

• We propose a framework to address the best-k selec-
tion. This framework further suggests a query lan-
guage, which is a natural extension of of the SQL lan-
guage and the top-k queries.

• We design efficient algorithms to select best-k items
from databases. In particular, we propose the ordered
enumeration tree and develop several pruning tech-
niques based upon this tree. Experiments show the ef-
fectiveness of these pruning techniques.

2 A Unified View of Database Queries

In order to formally define the best-k problem, we model
a database query generally as a decision problem, in which
a database system would respond to a selection query by
choosing an optimal subset of data tuples from the space of
all possible subsets in the database. We show that such a
decision-theoretic view of database queries gives us a uni-
fied database selection framework in which we can formally
study the new best-k query problem together with the exist-
ing Boolean queries and top-k queries. We now present this
framework in detail.

Without loss of generality, we represent a database ab-
stractly as a single table, which, in reality, can be a view
generated from several different tables or even one com-
puted on the fly. For example, in Table 2, there is a single
primary ID for every data tuple d1 to dn, and each tuple has
m different attributes, from attribute1 to attributem.

tuples ID attribute1 attribute2 ... attributem

d1 a11 a12 ... a1m

d2 a21 a22 ... a2m

...
dn an1 an2 ... anm

Table 2. A single table database

Formally, we define our data set as D = {~d1, ..., ~dn},
and each tuple ~di in D is an m degree vector representing
its m attribute values. Let T = {~t1, ...,~t|T |} ⊆ D be any
subset of D and Q be any user query.

We define the following query-based utility function U ,
which maps any subset of data tuples to a real value for
decision making.

Definition 1: Utility function
U is called a utility function if U : T × Q → R+ ∪ {0},
where R+ ∪ {0} represents all non-negative real numbers.

We assume that a larger U value indicates a better utility,
thus a better choice of data tuples. According to the decision
theory [17, 10], the optimal choice of subset is the one that
maximizes its utility function value. We thus can define a
best-k query generally as the following decision problem:

Definition 2: Best-k query
A best-k query is to find the best tuple set T ∗, which maxi-
mizes the user utility function U . Formally,

T ∗ = arg max
T⊆D

U(T,Q) (1)

Note that the parameter k does not explicitly appear in this
definition; it can be either defined by a user through the
query Q, or automatically derived by the database system
from Q and the utility function U .

Equation 1 is our decision function. Clearly, the utility
function U is the essential part of our decision function and
directly affects the results of a database query. Indeed, the
semantics of a best-k query is mostly captured by the util-
ity function U , and different instantiations of this function
lead to different types of database queries. We now show
that the Boolean queries and top-k queries can both be for-
mally defined in this framework as special cases of the best-
k queries.

3

2.1 Boolean queries and top-k queries

Let Q be a Boolean query. Consider the following utility
function:

U(T,Q) = |T |

|T |
Y

i=1

δ(~ti ,Q),

where δ(~ti, Q) is an indicator function defined as follows:

δ(~ti , Q) =



1 if tuple ~ti satisfies Q;
0 otherwise

It is straightforward to prove that a best-k query with
this utility function precisely captures the semantics of the
Boolean query Q.

Proposition 1: A Boolean query Q returns the same re-
sults as the corresponding best-k query with U(T,Q) =

|T |
∏|T |

i=1
δ(~ti, Q).

Proof: First, consider U(T2) > 0 and T1 = T2 ∪ {~ti}.
If δ(~ti, Q) = 1, U(T1) > U(T2); If δ(~ti, Q) = 0, then
U(T1) = 0 < U(T2). Thus, U(T,Q) is maximized when
we add to T as many tuples that satisfyQ, which is precisely
the semantics of a Boolean query. QED.

This utility function can be easily generalized to capture
a more general type of constrain-based selection queries,
where we would like to obtain as many tuples that satisfy
the query constraint as possible.
Definition 3: Constraint query
A constraint query is to find the maximum tuple set T ∗,
which satisfies the (possibly complex) constraint specified
by Q. Formally,

T ∗ = arg max
T⊆D

|T |δ(T,Q)

where δ(T,Q) is an indicator function that takes the value 1
if T satisfies the constraint specified in Q and 0 otherwise.

Note that a Boolean query is a special case of the general
constraint query where δ(T,Q) =

∏|T |
i=1

δ(~ti, Q), i.e., the
evaluation of the satisfaction status of T can be performed
efficiently by checking each tuple ~ti. In general, however, a
constraint query may have complex constraints that cannot
be evaluated in this way.

Let us now consider a top-k query with the preference
function being r : T → R+ ∪ {0}. The selected k tuples
based on this query (ignoring the ranking of them, which
is mostly a way to present the results) would be equivalent
to the results from a corresponding best-k query with the
following utility function:

U(T,Q) = δ(|T | ≤ k)δ(T,Q)

|T |
X

i=1

r(~ti,Q).

Proposition 2: A top-k queryQwith a preference function
r returns the same results as the corresponding best-k query
with

U(T,Q) = δ(|T | ≤ k)δ(T,Q)

|T |
X

i=1

r(~ti,Q).

In this proposition, we use another single variable δ func-
tion, which basically maps boolean value “true” to 1 and
“false” to 0. We briefly prove the the proposition below.

Proof: First, we observe that the Boolean part of the top-k
query captured by δ(T,Q) would allow us to include only
the tuples that satisfy the Boolean constraints. Second,
within this subset of tuples, we can have no more than k
tuples actually included in the results due to the constraint
δ(|T | ≤ k). Third, since the value of r is non-negative,
we would always prefer adding more tuples to the results.
Finally, if we replace a tuple t in T with another tuple t′
with a larger r value (i.e. r(t′, Q) > r(t, Q)), we would
always increase the utility value (i.e., U(T,Q) < U(T,Q)).
Thus, the optimal subset can be constructed as follows: (1)
Use the Boolean part of the query to select a working set
of tuples; (2) Rank the tuples in the working set by r(~t,Q);
(3) Take up to k top-ranked tuples as the optimal subset.
Clearly, this is exactly what a top-k query is expected to
return. QED.

Note that a top-k query implies a step of ranking the re-
turned results based on r, and this is not imposed by the
treatment of a top-k query in the decision-theoretic frame-
work because we believe that it is important to separate the
selection step from the ranking step as the latter is more
related to the presentation of the results. Indeed, the sepa-
ration would allow us to consider other alternative ways of
presenting the results, e.g., showing clusters of tuples or vi-
sualizing the results. Also, in a more general best-k query,
the primary utility function is defined on the space of sub-
sets, thus a ranking function defined on an individual tuple
may not always be meaningful. In this paper, we focus on
the selection step of best-k queries, leaving the study of how
to present the selected results as future research work.

We have shown that the new best-k queries cover the ex-
isting Boolean queries and top-k queries as special cases.
An examination of the utility functions derived from these
two types of queries would reveal that we have made an
implicit assumption that the utility value of a selected tu-
ple is independent of each other. This assumption helps to
decompose a complex utility function into simpler compo-
nent functions that can be efficiently evaluated on each indi-
vidual tuple. However, the independence assumption is not
always true, especially when a user’s preferences involve
some global measure defined on multiple tuples. An ex-
ample of this is semantic redundancy, which is only mean-
ingful for multiple tuples, hence violates the independence
assumption. We now look into more general best-k utility
functions without making such an independence assump-
tion.

4

2.2 Complex best-k queries

The value of U(T,Q) indicates the usefulness of return-
ing the subset T in response to the query Q from the user’s
perspective. When a user judges how useful a set of selected
tuples is, one would generally consider multiple factors and
have some preference function for each of them. For exam-
ple, in the example about retrieving documents from a text
document database, the user cares about at least 3 factors:
(1) the relevance of documents; (2) the publication date;
and (3) the summary lengths. The total utility of T is thus a
combination (or more precisely often a tradeoff) of all these
factors.

To model these intuitions formally, we first define the
space of user preference functions, ΨQ (or Ψ in short), as
the set of all the s preference functions that a user may be
interested in, i.e., Ψ = {ψ1, ..., ψs}. A function ψ ∈ Ψ
measures the utility of T on some utility aspect and gives a
mapping from T to a preference value in R+ ∪ {0} with a
larger preference value indicating a better utility. Thus the
utility function can now be written as

U(T,Q) = u(ψ1(T,Q), ..., ψs(T,Q)),

where u is a composition function to combine all prefer-
ence function together. We now take a further look at the
individual preference functions ψi’s. Intuitively, the total
preference value of all the tuples in T is some aggregation
of the values of individual tuples.

The simplest case is when the aggregated value is just a
sum of the values of each individual tuple.

ψ(T, Q) =

|T |
X

i=1

m(~ti , Q)

where m(~ti, Q) ∈ R+ ∪ {0} is a measure function de-
fined on an individual tuple, which we refer to as a 1st-
degree measure function.

For example, the summary length preference function
falls into this case, where ψ(~ti) = ~ti.summarylength,
and we can imagine that a global overall utility function de-
fined on top of this preference function can be U(T,Q) =
δ(ψ(T,Q) ≤ 100), expressing the constraint of displaying
100 words at most.

While many preference functions can be decomposed as
a simple summation, there are cases when we need to con-
sider the interactions of the individual tuples when aggre-
gating their values. For instance, the redundancy among
a set of selected text documents must be defined based on
some of their interactions. One possibility is the following
definition, which involves a 2nd-degree measure function
m(~ti,~tj , Q).

ψ(T,Q) =
X

1≤i,j≤|T |,i6=j

m(~ti ,~tj ,Q)

where m(~ti,~tj , Q) ∈ R+ ∪ {0} is a measure function de-
fined on a pair of individual tuples.

An attribute that normally can be captured through a
first-degree measure function may need higher-degree func-
tions in special cases. Consider the price attribute of a book.
When a user wants to find a set of books with a total price
no more than $100, a first-degree measure function would
be sufficient. However, if a discount can be obtained when
buying multiple books together, we may need higher-degree
measure functions. While higher degree measures may be
necessary, the first degree and second degree measures can
serve as good approximations.

2.3 Best-k query is NP-hard

When a utility/preference function involves tuples inter-
action, even if the preference function can be defined based
on first-degree measure functions, the decision problem is
often an NP-hard problem. For example, choosing T from
D s.t.

ψ(T) =
∑

~t∈T
~t.summarylength ≤ C is a known NP-

hard problem (i.e., subset sum). Below we show that choos-
ing an optimal subset to optimize a preference function in-
volving a 2nd-degree measure function is also NP-hard.
Proposition 3: A best-k query problem of choosing a
size-k subset T from an n-tuple set D to minimize∑

i,j m(~ti,~tj) is NP-hard.
Proof: We prove by reducing the optimization problem to
a set independent problem. For any given graph G with n
nodes(N1,...,Nn), we set up a new weighted graph G̃ also
with n nodes(Ñ1,...,Ñn). If two nodes Ni and Nj in G are
connected, we add a 1-weight edge between Ñi and Ñj ;
otherwise a 0-weight edge. Consider the nodes in G̃ as tu-
ples, and the edge weights as m(~ti,~tj) values between tu-
ples. If we can solve our minimum subset problem in poly-
nomial time, we then can judge whether the minimum k-
node subset in G̃ has a total weight of 0. Consequently, we
solve the set independent problem of the original graphG in
polynomial time. This creates contradiction since the set in-
dependent problem is an NP-complete problem. Hence the
best-k problem involving a 2nd-degree measure function is
NP-hard. QED.

Clearly, when interactions are involved in the utility
function, even if it involves only 1st-degree measure func-
tions, the best-k query problem is generally NP-hard. Thus
it is necessary to explore heuristics and study approximate
algorithms, which is detailed in Section 4.

3 Best-k Query Languages

In the previous section, we defined the best-k query prob-
lem conceptually as a decision problem with its semantics

5

utility of aspect2

utility of aspect1
0

A

B

Figure 1. Multiple optimal points

mostly captured by a utility function. In this section, we
discuss query languages for best-k queries that can be used
to describe a utility function.

In general, a utility function for database selection may
involve a combination of multiple preference functions cor-
responding to different aspects of utility. While each prefer-
ence function alone can usually uniquely suggest an optimal
subset, we will have to impose some trade-off between dif-
ferent preference aspects when we combine multiple pref-
erence functions. As shown in Figure 1, a plane is defined
by two different preference aspects. Point A and point B are
both optimal on one aspect, but neither of them is optimal
on both. Choosing between A and B would have to rely on
the tradeoffs. Clearly, such trade-off can only be given by a
user, and different users generally have different tradeoffs.

A simple strategy that a user often follows in resolv-
ing potential conflicts between different utility aspects is
to choose one single primary utility aspect to optimize and
impose some thresholds for all other (secondary) utility as-
pects. We refer to the preference function for the primary
utility aspect as the primary preference function and all
other secondary preference functions constraint preference
functions. In general, a constraint preference function sim-
ply imposes a constraint on the selected tuples X , so it is
an indicator function whose value is 1 when X satisfies the
constraint and 0 otherwise. A typical form of such a func-
tion is ψ(X) = δ(m(X) > c), where c is some constant
threshold for some utility measure m(X). For example,
ψ(X) = δ(

∑
t∈X t.price < 100) imposes the constraint

that the total price of the selected tuples must be below
$100.

When the utility function is a combination of a pri-
mary preference function and a number of constraint pref-
erence functions, we have U(X) = u(X)

∏r
i=1

δi(X),
where δi(X) is a constraint preference function and u(X) is
the primary preference function that we want to maximize.
Clearly, the optimal subset X chosen according to such a
utility function must satisfy all the constraints as well as
maximize u(X).

In some case, a constraint function can be further written
as a product of constraints over individual tuples: δi(X) =∏|X|

j=1
δi(~tj). Suppose we have l such local constraint func-

tions and r− l = m global constraint functions correspond-

ingly, the utility function can now be written as

U(X) = u(X)
l

Y

i=1

|X|
Y

j=1

δi(~tj)
r

Y

i=l+1

δi(X) (2)

= u(X)
l

Y

i=1

|X|
Y

j=1

δi(~tj)
m

Y

i=1

∆i(X) (3)

where we denote ∆i = δl+i for easy narration in the rest of
the paper.

A best-k query to express such a utility function can be
specified as follows, assuming that the user is interested in
the attributes a1, ..., an of the selected tuples.

SELECT a1, ...an

FROM Table t
WHERE δ1(t), ..., δl(t)
MAXIMIZE u(X)
SUBJECTTO ∆1(X), ..., ∆r(X)

Clearly, when the preference functions u and ∆1,...,∆m

are missing, our best-k query would degenerate to a stan-
dard Boolean query. If l + 1 = r (i.e., only one global
constraint) and ∆1(X) = δ(|X | ≤ k), and our function
u(X) is u(X) =

∑|X|
i=1

u(~ti), the best-k query would be a
regular top-k query without the ranking part.

4 Algorithms for Executing Best-k Queries

The main challenge of best-k query problem is its NP-
hard property. In this section, we study the algorithms for
executing best-k queries, especially we address the global
constraints parts. We first formulate the problem as a con-
strained optimization problem. The equation 3 and its query
language in Section 3 naturally suggest a constrained opti-
mization approach for executing best-k queries, where all
δi(X) (i = 1, ..., r) functions serve as the constraint part
and the u(X) works as an objective function. We then have
the following formulation:

max u(X)

subject to δ1(X)

...

δr(X)

As discussed in the previous section, the constrained op-
timization problem is clearly NP-hard. Interestingly, this
optimization problem can be further cast as a 0-1 integer
programming problem. We define a binary variable xi for
each tuple di in the working set. Let xi = 1 if di is selected
(i.e. di ∈ T) and xi = 0 otherwise. If u(X) is p-degree
measure preference function, it can be expressed by:

u(X) =
X

i1,i2,..,ip

u(di1 , di2 , ..., dip)xi1xi2 ...xip ,

6

where the product xi1xi2 ...xip
= 1 iff every xij

= 1
(j = 1...p) meaning that all corresponding di’s are selected.
All δ functions can be converted in the same way. For in-
stance, if ψ is q-degree measure, function δ(ψ(X) < c) can
be converted as

δ(X) = δ(ψ(X) < c)

⇐⇒
X

i1,i2,..,iq

ψ(di1 , di2 , ..., diq)xi1xi2 ...xiq < c.

0-1 integer programming is a classic NP-hard problem.
Considering the scale of typical database problems, find-
ing efficient algorithms for executing a best-k query is quite
challenging. Below, we propose a strategy for answering a
best-k query efficiently.

4.1 Working set construction

To make an NP-hard problem tractable, our first strategy
is to reduce the data size. Indeed, in extreme cases, when
the size of data is very small, even a brute-force enumera-
tion would be feasible. We now discuss how we can reduce
the data size by constructing a working set.

In general, a database query may involve both local and
global constraints. The processing of global constraints is
more complex than that of local constraints. We thus ad-
dress them separately in two steps: First, we construct a
working set mostly based on local constraints. Second, we
obtain a best-k solution from the working set by consid-
ering the global constraints as well. The benefit of this
two-step approach is twofold: (1) We can reuse the existing
well-established database techniques to deal with the (local)
preferences over individual tuples. (2) We can efficiently
remove the noninteresting data tuples, and substantially re-
duce the search space when processing global constraints.

In order to construct a working set, we would first ex-
plore standard relational database techniques, and generate
the SQL “WHERE” clause using preference functions
defined solely on individual tuples.

SELECT a1, ...an, b1, ..., bs
FROM Table t
WHERE δ1(t), ..., δl(t)

We introduce additional SELECT attributes b1, ..., bs to
ensure that a1, ...an and b1, ..., bs cover all attributes in-
volved in δ1(t), ..., δl and ∆1, ...,∆m, since some of them
are needed by ∆’s in the next step.

Depending on the size of the constructed working set in
this way and whether the WHERE clause is missing, we
may have to use the primary preference u(X) to further
reduce the size of the working set heuristically. Because
generally the primary interest of a user is to maximize the
objective function, if a data tuple has a very small objective
value, a user is unlikely very interested in it even if it may

21 43

2 3 4

3 4

4

A

B C
3 4

4

4
D

E G

H

4
F

21 43

1 2 3

1 2

1

A

B C
1 2

1

1
D

E G

H

1
F

(a) (b)

Figure 2. (a) A complete ordered set enumer-
ation tree; (b) A complete reverse ordered set
enumeration tree.

turn out to be a part of the true optimal solution. We can
thus rank data tuples in the descending order of objective
values and cut off on some threshold. Clearly, this step can
be done through the existing top-k searching techniques.

Once the working set is constructed, we conceptually ob-
tain a new database table T from the original one t, and our
task is to solve the essential best-k query by enumerate all
the subsets in the working set and check the optimality of
each subset. It can be submitted as the new query below.

SELECT a1, ...an

FROM Table T
SUBJECTTO ∆1(t), ..., δm(t)

4.2 Ordered Set Enumeration Trees

We address the efficiency problem by proposing a data
structure – ordered set enumeration trees (OSE), which is
an extension of set enumeration trees proposed in [16].

• OSE is a tree built upon n data tuples. For example,
Figure 2 (a) is such a tree over 4 tuples: 1, 2, 3, and 4.

• The root node (Node A in Figure 2 (a)) has its array
including all n data tuples.

• Each node in an OSE tree includes an array, and we
call the array items “buckets”. For example, Node B
in Figure 2 (a) has an array {2, 3, 4}, each of which is
a bucket.

• The array in each node is ordered. The order is consis-
tent in the whole tree. For example, if item 2 is before
item 3 in any node, it will be always before item 3
in all other nodes. Given the order, we term all other
buckets after a certain bucket in the same node as its
f ollowup buckets. For example, in Node B, 3 and 4
are 2’s followup buckets.

7

• Each bucket has 0 or 1 children node. We therefore can
define parent bucket and parent node, respectively. For
example, B’s parent node is A and its parent bucket is
{1} in Node A. Node that 2 in Node A is not B’s parent
bucket.

• The items in a children node is a subset of the followup
buckets of its parent bucket. For example, Node B has
item 2, 3, and 4, which are 1 in Node A’s followup
buckets.

Intuitively, this tree enumerates all subsets of items in the
root node. Any path, starting from a root bucket, is one-to-
one mapped to a subset. For example, a path, including 2 in
Node A, 3 in Node C, and 4 in Node G, stands for the set
{2,3,4}, which is a subset of {1,2,3,4}. On the other hand,
given any subset, {1,3,4} for example, we then choose the
first item from the root node (1 in Node A), and choose
the second item from the first one’s children node (3 in B).
With the same selection principle, we can find an unique
path in the tree, which stands for any arbitrary subset. Since
our paths are always start from a bucket in a root node, we
indeed can use the ending bucket of a path to stand for this
whole path. For example, 4 in Node G stands for the path: 2
in A, 3 in C, and 4 in G. In the rest of this paper, we use this
abbreviation for easy description. Thus, when we mention
a bucket, we often mean the path and furthermore a subset
corresponding to this path.

If we define all buckets before a bucket b in the same
node as preceding buckets of b and replace “followup
buckets” with “preceding buckets” in the above definition,
we obtain a new data structure reverse ordered set enu-
meration tree. Figure 2 (b) is the reverse tree correspond-
ing to Figure 2 (a). Unless specifically stated, we discuss
our algorithm on an OSE tree, but all techniques can be used
in a reverse one.

An ordered set enumeration search tree has two impor-
tant properties: 1) Any set T represented by a bucket is
a proper superset of the set K represented by its parent
bucket, and |K| + 1 = |T |. 2) The sets K1 and K2 that
are represented by two buckets in the same node are the
same size |K1| = |K2|, and also |K1∪K2| = |K1|+1. For
example, the two buckets in NodeE represent sets {1, 2, 3}
and {1, 2, 4} respectively, their parent bucket represents a
set {1, 2}.

4.2.1 Preference/utility values

While the general rule of the content stored buckets is for
the system to easily obtain a value ψ(X) for each set X
presented by its corresponding bucket. Thus, depending on
preference function, the contents can be different. We dis-
cuss the following two cases:

• First degree measures
According to the tree, for any two buckets in the same
node (X and Y), X ∪ Y has only one tuple (assuming
it is x) more than X itself. Thus, clearly, ψ(X) =
π(ψ(X), ψ(Y)). Operator π depends on function ψ.
If ψ is a sum, π is a sum as well. If ψ is max or min,
π is max or min correspondingly. In the sum case, the
values that a bucket need to store are ψ(X) and ψ(x),
where x is the single item in the current bucket.

• Second degree measures
Let us define T = X ∩ Y . According to the defini-
tion of the OSE tree, T has precisely one tuple (as-
suming it is x) less than X , and X is a tuple (assum-
ing it is y) less than X ∪ Y . Thus, ψ(X ∪ Y) =
π(ψ(X), ψ(Y), ψ(T), ψ(x, y)). π again depends on
ψ. Take the sum for example, ψ(X ∪ Y) = ψ(X) +
ψ(Y) − ψ(T) + ψ(x, y). In an OSE tree , T is ac-
tually the parent bucket of X and Y . Hence, the func-
tion valueψ(T) can be easily obtained from this parent
bucket (by storing ψ(T) into bucket T).

4.2.2 Depth-first search v.s. Breadth-first search

While all buckets represent all subsets of tuples in the root
node, a tree traveling process indeed performs an exhaustive
enumeration of all these subsets. Presumably, we can use
both a depth-first search strategy and a breadth-first search
strategy to do the traveling. However, depth first search
does not need to keep all the internal nodes. Due to the
large size of a OSE tree, we therefore favor the depth-first
search. Moreover, when doing depth-first search, because
of the existence of the primary preference function, we can
almost always stop a traveling process in the middle, a prop-
erty that breadth-first search does not have. This will be
further discussed in the experiment part.

4.3 Child node construction and branch cutting

Pure set enumeration is probably suitable when a data
size is very small. While the data size is relatively large, we
have to prune the search space. We observe that the search
space can be pruned when the preference functions satisfy
the following property:

Definition 4: Monotonicity [1]
A preference function ψ ∈ Ψ is said to satisfy the mono-
tonicity property if ∀X,Y ⊆ D, ψ(X ∪ Y) ≥ ψ(Y).

Monotonicity property states a function value monotoni-
cally increases with more tuples added in. Many real func-
tions do have this property. For example, buying more will
almost always increase the total spending. In this paper, we
only address the problem with monotonicity property and
leave others in the future work.

8

We start the whole algorithm from a single root node,
and recursively create the different branches under each
bucket of each node. Given the current node cNode and
one of its bucket cBucket, we use an algorithm called Con-
struct(cNode, cBucket) (Algorithm 1) to construct a child
node nNode under cBucket.

It is easy to see that not every data tuple in cBucket’s fol-
lowup buckets will be put into nNode because of the mono-
tonicity property. Considering a constraint δ(ψ(T) ≤ c), if
a set T violates the constraint, i.e. ψ(T) > c, we immedi-
ately conclude that all its super sets violate the constraint as
well, and hence can be safely ignored. In a OSE tree, we
verify the constraint satisfaction for each preference func-
tion. Any violation will prevent the corresponding bucket
from being added into the nNode.

The methods of deriving ∆i(B ∪ K) from ∆i(B) and
∆i(K) are dependent on the specific forms of preference
functions. We take a complex 2-degree measure function
for example: ψ(T) =

∑
t1,t2∈T ψ(t1, t2). Let b1 and b2

be two buckets in the same node, and they represent two
equal-size sets B1 = B ∪ {b1} and B2 = B ∪ {b2}. To
append a bucket with ID b2 under bucket b1, we have to
computeψ(B1∪{b2}), which is equal to ψ(B1)+ψ(B2)−
ψ(B) + ψ(b1, b2). This means that we store two values in
each bucket t: ψ(T) andψ(T−{t}) for deriving ∆ function
values of its supper set easily.

1: construct an empty node nNode under cBucket
2: for each bucket b in cBucket’s followup buckets do
3: isOk = true
4: let B be the set b stands for
5: let K be the set cBucket stands for
6: for each constraints ∆i do
7: derive ∆i(B ∪K) from ∆i(B) and ∆i(K)
8: if ∆i(B ∪K) == 1 then
9: isOk = false

10: end if
11: end for
12: if isOk==true then
13: add a new bucket n with ID same to b into nNode
14: end if
15: end for
Algorithm 1: A child node construction algorithm.
Construct(cNode, cBucket) constructs a children node nN-
ode under the current bucket cBucket of the current node
cNode.

4.3.1 Early stop conditions

Besides the branch cutting techniques above, we often have
other heuristics for pruning the branches of a OSE tree.
These heuristics are function specific, we thus discuss them

one by one. We again use maxu(T) as our objective func-
tion. For easy elaboration, we assume the returned result
size k is predefined, though this condition can sometimes
be relaxed in a more sophisticated way. The propositions
in this section are all relatively straightforward so that we
sketch the basic ideas without doing strict proofs.
Proposition 4: u(T) = maxt∈T (u(t))
If data tuples in each node are sorted in a descending order
of u(t), the first set satisfying all constraints that a depth
first search encounters is an optimal solution.

Note that this makes the objective function
max maxt∈T (u(t)). Because of the descending or-
der on the utility function, the biggest item in each set is
the one in the root bucket, which is clearly the biggest item
in all subsets rooted in this bucket.
Proposition 5: u(T) = mint∈T (u(t))
If data tuples sorted in a descending order of u(t), the first
set satisfying all constraints that a depth first search encoun-
ters in a reverse ordered set enumeration tree is an opti-
mal solution.

This proposition is applied when users ask for the small-
est item in a set is largest. Clearly, it is the corresponding
example of the previous proposition.
Proposition 6: u(T) =

∑
t u(t)

Assume that the current best-k tuple set K, satisfying all
constraints, has objective value u(K). The traveling is
now at bucket x in node X . We do not need to gener-
ate b’s child node if either of the following two conditions
holds: 1) b has less than k − |X | followup buckets; 2)
[u(B)+

∑
t∈Ω

u(t)] ≤ u(K), where Ω stands for the k−|B|
best tuples in b’s followup buckets.

The first condition is saying that one does not have to con-
tinue a search if no enough tuple left. For example, if one
needs k = 3 items in Figure 2, one does not need to gener-
ate Node D at all from {3} in Node A, because no enough
followup buckets left. The second one shows that even if
there are enough tuples left, searching can stop if the max-
imum possible set is less than the best set that has already
been obtained. Again, if one needs 2 item in Figure 2, but
the largest two item from {2, 3, 4} even smaller than the
current best solution, one does not have to construct Node
C, Node D and Node G.

Compared with algorithms in some related work, our al-
gorithm is novel in that we address the new best-k prob-
lem in a general framework – working set construction and
item selections. Our proposed “ordered enumeration tree”
is also different from the original enumeration tree at that
it can support several pruning heuristics. Moreover, com-
pared with [12, 12], our algorithm is targeting at the exact
solutions and also the best-k selection is also different from
simple aggregation operators.

9

… …

c1

c2

cn

o1 u1

t1,j

Figure 3. An illustration of the greedy algo-
rithm.

4.4 Approximate Answers

Although the results in the previous subsection show that
the depth-first search algorithm is relatively efficient, it may
still not be feasible to run it on a very large data set due to
the intrinsic NP-hard property. We have two different ways
to make the approximation solution: First, we stop our pre-
vious algorithm in the middle to return the current best solu-
tion. We call it any-time stopping. Second, we develop the
greedy algorithm. Below, we introduce the greedy strategy,
and we will compare the two strategies in the experiment
section.

A greedy algorithm first selects a single best tuple, and
gradually adds new tuples by choosing the next best one
given the current selected ones. The key decision in this
greedy algorithm is to decide what the next best tuple is. In
our problem, this has to be decided by multiple constraint
utility functions. When we add a new tuple to a set, the cost
value of every utility function may potentially increase. To
avoid having a cost value above a desired bound, we should
avoid “consuming” the critical utilities. A critical utility is
one that is closest to be run out. We use Figure 3 to illus-
trate this idea. Assume we have n different utility functions,
and their constraint bounds are ci, i = 1, ..., n, respectively.
Black area (oi) stands for the utilities used/consumed by the
previously selected tuples , and the other areas (ui) are the
utilities left. oi + ui = ci. When a new tuple j is selected,
it occupies the tilt areas(ti,j). Assume its objective gain is
bj . We want to select a tuple, which will occupy minimum
percentage of the remaining area (thus consuming least util-
ities), while having maximum objective gain. We formalize
this heuristic criterion with the following measure:

argmax
j

{
bj

maxi
ti,j

ui

×
∏

i

δ(
ti,j

ui

≤ 1)},

where δ is an indicator function(δ(true) = 1, δ(false) = 0).
The tuple that can maximize the measure above is selected
as the next best one.

bound1 bound2 cons. pref. 1 cons. pref. 2 objective
+∞ +∞ 498.0 221.4 754.8

300 450 419.7 157.4 441.9

250 400 411.8 147.3 391.7

200 350 397.4 143.0 344.4

Table 3. Trade-off between the primary objec-
tive and the constrained preferences

5 Experiments

In this section, we evaluate the proposed algorithms us-
ing simulated data sets. Since the construction of the work-
ing set is based on well studied database techniques, such as
top-k queries, we focus our evaluation on the essential prob-
lem of best-k query, i.e. select items from a given working
set. As discussed before, this problem is in general an NP-
hard problem. Therefore, the evaluation focuses on the run-
ning speed as well as the closeness to the optimal solution
if an approximation is applied.

SELECT *
FROM Table T
MAXIMIZW u(T)
SUBJECTTO ∆1(t), ..., ∆m(t)
LIMIT k

Specifically, we study the impact of following parame-
ters:
1) n: the number of data tuples in T
2) k: the number of returned tuples
3) m: the number of constraints

To avoid any bias of random sampling, every number
that we report is the arithmetic mean of 10 independent sim-
ulation with the identical simulation parameters. All exper-
iments are done on a Linux platform with a processor of
2.4GHZ cpu speed and 1G memory.

5.1 Trade-off between the primary preference and
the constrained preferences

We first examine the difference with or without the con-
straint functions. We use an objective function and two con-
straints: one is 1-degree interaction and the other is 2-degree
interaction. We assume n = 200 and k = 8. The results
are shown in Table 3. As expected, when setting different
bounds, we observe the output results with different con-
straint preference values(Column 3 & 4) and objective val-
ues(Column 5). The trade-off is very clear. When applying
a tight constraint, a certain amount of the objective value is
sacrificed.

10

0.0001

0.001

0.01

0.1

1

10

100

1000

5 6 7 8 9 10 11 12 13

tim
e

(s
)

searching depth

30%
25%
20%
10%

30%-broad

Figure 4. Scalability on the searching depth.

5.2 Depth-first search and breadth-first search

Since executing a best-k query is computationally ex-
pensive, it is necessary to study the efficiency of the pro-
posed algorithms. A comparison between our algorithms
with brute-force enumeration(i.e without employing the the
branches cutting with the monotonicity property) would
not be very interesting, because the cutting can definitely
prune the searching branches. Indeed, with reasonable tight
bounds, we find that more than 99% nodes in a depth-first
tree can be pruned by monotonicity property. This will
clearly largely accelerate the searching process. We thus
compare the depth-first search versus breadth-first search
both with branch-cutting.

We first evaluate the scalability on the number of se-
lected tuples, k, by fixing the total number of tuples to
n = 200. Since all preference values are with a uniform
distribution [1 : 100], and thus the expected value of each
tuple is 50, we use the percentage of the expected values as
the constraint bounds. For example, if the search depth is 5,
the expected value of 5 tuples is 50×5 = 250. 30% bounds
will be 250∗0.3 = 75. Figure 4 shows the scalability of the
algorithm over k. The x-axis is the search depth while the
y-axis is the running time in log scale. Given the inherent
complexity of the problem, it is not surprising that the figure
still shows an exponential curve. However, as shown in the
figure, the depth-first search algorithm is several orders of
magnitude faster than the breadth-first search, which cannot
finish in hours after k > 9.

We then evaluate the algorithm’s scalability over the to-
tal number of tuples. By fixing k to 5, and varying n from
200 to 2000, Figure 5 shows two curves representing 25%
and 10% bounds, respectively. Clearly, we observe a sub-
exponential property in this figure, which demonstrates the
good scalability of our algorithm. Although the worst case
is always exponential, our algorithm can often stop much
earlier to return an optimal answer without actually going
through all the branches. We also observe the depth-first al-
gorithm outperforms the breadth-first one, which again can-
not finish experiments when n is larger than 1000.

0.0001

0.001

0.01

0.1

1

10

200 400 600 800 1000 1200 1400 1600 1800

tim
e

(s
)

number of data tuples

25%
10%

25%-broad

Figure 5. Scalability on the number of tuples.

the number of constraints 3 4 5 6

running time(s) 49.91 4.68 1.00 0.66

Table 4. The impacts of the number of con-
straints

5.3 The impacts on the number of constraints

Presumably, when we have more constraints(i.e m is
larger), the search space can be more easily pruned. In this
part, we study the impact of the value m. We fix n = 1000,
k = 8 and all bounds at 50% level. When varying the num-
ber of the constrained preferences, we test the running time.
The results are shown in Table 4. We see clearly the de-
scending trend of the running time with respect to the num-
ber of constraints. When there are three constraints, it needs
around 50 seconds, but six constraints reduces the process
within less 1 second.

5.4 Experiments on early stop conditions

We examine the effectiveness of those early stop condi-
tions. By the same process, we fix k = 8 and vary the value
of n, and generate two curves in Figure 6. From the figure,
we can see that the algorithm performance is improved with
applying all these early stop conditions.

5.5 Any-time stopping

In this section, we evaluate the any-time stopping prop-
erty of the depth first search algorithm. The test is done
with n = 500 tuples, k = 8, and 25% constraint bounds.
We use 6 sets of data for simulation. (Note that we do not
do 10 set averaging process for this experiments, because it
is for studying the individual set’s property.) We compare
the time when the program achieves optimal solutions(2nd

row) with the time when the program (with early stopping

11

0

20

40

60

80

100

120

50 100 150 200 250 300 350 400 450 500

tim
e

(s
)

data size

with early stop
without early stop

Figure 6. Early stop conditions.

300

350

400

450

500

550

600

0 2 4 6 8 10 12

pe
rf

or
m

an
ce

time(s)

anytime stop
greedy

Figure 7. Performance comparison between
any time stopping and greedy algorithms.

applied) actually stops(3rd row) in Table 5. The last row
shows the percentage of second row over third row. It is
clear that the program obtains optimal solution much ear-
lier than the time it actually stops, when the optimum is
guaranteed. The percentage is usually no larger than 15%.

Figure 7 shows how the performance increases as we al-
low the program to run longer. We only plotted the x-axis up
to the time of finding the optimal solution. We also observe
that the performance is improved quickly in the beginning,
and becomes flat soon after, though it still increases slightly
when more time is spent. Thus, empirically, stopping in the
middle usually does not incur too much quality loss.

We also compare the two approximation strategies – any
time stopping and greedy algorithm in Figure 7. The curve
for the greedy algorithm is all flat because it finishes in a
very short period. Clearly, the greedy algorithm is much
faster than the any-time stopping strategy, but when running
time is reasonably long, the any-time stopping method can
outperform the greedy algorithm.

6 Related Works

Our work is probably most related to the study of top-k
queries. The top-k query problem was first proposed in [8],

and has been studied in several later works [9, 4, 13, 6, 2,
15, 5, 14], in which many different ways of efficiently exe-
cuting a top-k query have been proposed. Our work differs
from these works in that we address a more general type of
queries that can cover top-k queries as special cases.

The need for relaxing/extending the traditional Boolean
queries has also been recognized in many other works. For
example, probabilistic relational algebra was studied in [7,
11] to incorporate fuzzy concepts in a relational database
model.

The study of aggregation operations in database sys-
tems [20, 12] is related to our work in that the computation
of complex preference functions often involves the com-
putation of aggregation operations, though the preference
functions are often more complex than the single aggre-
gation operators, which are the main focus of the existing
work on aggregation operations.

Our work is also related to our previous work on a risk
minimization framework for information retrieval [18, 19],
in which the retrieval problem has been modeled as a deci-
sion problem involving uncertainties and the Bayesian de-
cision theory is applied to formalize the framework. In cur-
rent work, we are concerned with deterministic decision
problems and focus on how to efficiently compute an ap-
proximately optimal decision.

7 Conclusions and Future Work

As exploratory queries become more and more popular,
the study of complex database queries attracts much atten-
tion recently. In this paper, we propose and study a new
database query problem, called best-k query, which gener-
alizes the existing top-k query by relaxing its Independence
assumption on scoring each selected tuple. In order to unify
different types of database queries, we model the database
selection problem generally as a decision problem, in which
a database system would respond to a database query by
selecting a subset of objects that optimize a certain utility
function defined on the objects. We show that such an op-
timization framework covers the boolean query search, the
top-k query search, and the best-k query search all as special
cases, corresponding to different utility functions. The pro-
posed framework provides a roadmap for exploring com-
plex database queries with different levels of complexity.

We further study how to efficiently evaluate a best-k
query. We prove that finding answers to a best-k query is
an NP-hard problem and study efficient algorithms to find
answers to a best-k query. We note that many practically in-
teresting utility functions satisfy a monotonicity property,
which can be exploited to dramatically prune the search
space. Accordingly, we propose to use a branch-cutting
strategy to prune the search space in both breadth-first and
depth-first search. We evaluate these algorithms on simu-

12

dataset 1 2 3 4 5 6

optimal time 2.53 5.28 0.83 0.48 1.27 0.118

total time 116.98 33.27 175.48 13.52 10.16 11.02

opt/total 2.2% 15.9% 0.47% 3.6% 12.5% 1.1%

Table 5. Any time stop.

lated data sets. The results show that, for any non-trivial
best-k problems, the depth-first search strategy is more fea-
sible and much faster than the breadth-first search strategy
because the latter easily runs out of memory. Moreover,
the depth-first branch-cutting algorithm has the additional
benefit of being an anytime algorithm, which allows a user
to make flexible tradeoff between the optimality of results
and the running time of the query. Experiment results show
that, using anytime stopping, the depth-first branch-cutting
algorithm achieves better approximation than a greedy al-
gorithm for finding approximate answers. Thus among the
algorithms we explored, the depth-first branch-cutting algo-
rithm is the best.

There are several issues for further exploring and ex-
tending the work presented here: (1) More efficient algo-
rithms: The depth-first search algorithm can work on any
monotonic preference functions. It is possible to develop
even more efficient algorithms by making additional as-
sumptions about the preference functions. For example,
if the constraint functions only involve first-degree mea-
sure functions, there may be additional heuristics that can
be exploited to further speed up the algorithm. (2) Non-
monotonic preference functions: Some preference func-
tions (e.g., aggregation by average) do not satisfy the mono-
tonicity property, so we cannot apply the proposed depth-
first algorithm. It would be very interesting to study effi-
cient algorithms that can answer best-k queries involving
such preference functions.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In VLDB’94, pages 487–499, 1994.

[2] R. Agrawal and E. L. Wimmers. A framework for ex-
pressing and combining preferences. In SIGMOD’00,
pages 297–306, 2000.

[3] N. Bruno, L. Gravano, and A. Marian. Evaluating top-
k queries over web-accessible databases. In ICDE’02,
pages 369–380, 2002.

[4] K. C.-C. Chang and S. won Hwang. Minimal probing:
supporting expensive predicates for top-k queries. In
SIGMOD’02, pages 346–357, 2002.

[5] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum.
Probabilistic ranking of database query results. In
VLDB, pages 888–899, 2004.

[6] S. Chaudhuri and L. Gravano. Evaluating top-k selec-
tion queries. In VLDB’99, pages 397–410, 1999.

[7] T. Eiter, T. Lukasiewicz, and M. Walter. A data model
and algebra for probabilistic complex values. Annals
of Mathematics and Artificial Intelligence, pages 205–
252, 2001.

[8] R. Fagin. Combining fuzzy information from multiple
systems. In PODS, 1996.

[9] R. Fagin, A. Lotem, and M. Naor. Optimal aggrega-
tion algorithms for middleware. In PODS’01, 1994.

[10] P. C. Fishburn. Nonlinear Preference and Utility The-
ory. The John Hopkins Press, 1988.

[11] N. Fuhr and T. Rölleke. A probabilistic relational al-
gebra for the integration of information retrieval and
database systems. ACM Transactions on Information
Systems, pages 32–66, 1997.

[12] S. Guha, D. Gunopulos, N. Koudas, D. Srivastava, and
M. Vlachos. Efficient approximation of optimization
queries under parametric aggregation constraints. In
VLDB’03, pages 778–789, 2003.

[13] U. Güntzer, W.-T. Balke, and W. Kießling. Opti-
mizing multi-feature queries for image databases. In
VLDB’00, pages 419–428, 2000.

[14] L. Guo, J. Shanmugasundaram, K. Beyer, and
E. Shekita. Efficient inverted lists and query algo-
rithms for structured value ranking in update-intensive
relational databases. In ICDE ’05: Proceedings of the
21st International Conference on Data Engineering
(ICDE’05), pages 298–309, 2005.

[15] V. Hristidis, N. Koudas, and Y. Papakonstantinou. Pre-
fer: a system for the efficient execution of multi-
parametric ranked queries. In SIGMOD ’01: Proceed-
ings of the 2001 ACM SIGMOD international confer-
ence on Management of data, pages 259–270, 2001.

13

[16] R. Rymon. Search through systematic set enumer-
ation. In In Proceedings of the Third International
Conference on Principles of Knowledge Representa-
tion and Reasoning (KR), pages 539–550, 1992.

[17] D. J. White. Decision Theory. Aldine Publishing
Company, 1969.

[18] C. Zhai. Risk Minimization and Language Modeling
in Text Retrieval. PhD thesis, Carnegie Mellon Uni-
versity, 2002.

[19] C. Zhai, W. W. Cohen, and J. Lafferty. Beyond in-
dependent relevance: Methods and evaluation met-
rics for subtopic retrieval. In SIGIR’03, pages 10–17,
2003.

[20] D. Zhang, V. J. Tsotras, and D. Gunopulos. Efficient
aggregation over objects with extent. In PODS, 2002.

14

