
Middleware Specialization using Aspect Oriented
Programming

Dimple Kaul
Department of Electrical Engineering &

Computer Science
Vanderbilt University
Nashville, TN 37235

dkaul@dre.vanderbilt.edu

Aniruddha Gokhale
Department of Electrical Engineering &

Computer Science
Vanderbilt University
Nashville, TN 37235

gokhale@dre.vanderbilt.edu

ABSTRACT
Standardized middleware is used to build large distributed
real-time and enterprise (DRE) systems. These middleware
are highly flexible and support a large number of features
since they have to be applicable to a wide range of domains
and applications. This generality and flexibility, however,
often causes many performance and footprint overheads par-
ticularly for product line architectures, which have a well-
defined scope smaller than that of the middleware yet must
leverage its benefits, such as reusability. To alleviate this
tension thus a key objective is to specialize the middleware,
which comprises removing the sources of excessive general-
ity while simultaneously optimizing the required features of
middleware functionality. To meet this objective this paper
describes how we have applied Aspect-Oriented Program-
ming (AOP) in a novel manner to address these challenges.
Although AOP is primarily used for separation of concerns,
we use it to specialize middleware. Aspects are used to se-
lect the specific set of features needed by the product line.
Aspect weaving is subsequently used to specialize the mid-
dleware. This paper describes the key motivation for our
research, identifies the challenges developing middleware-
based product lines and shows how to resolve those using
aspects. The results applying our AOP-based specialization
techniques to event demultiplexing middleware for the case
of single threaded implementation showed 3% decrease in
latency and 2% increase in throughput, while in the thread
pool implementation showed 4% decrease in latency and 3%
increase in throughput.

Categories and Subject Descriptors
D.2.11 [Software]: Software Engineering—Software Archi-
tectures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SE’06 March 10-12, 2006, Melbourne, Florida, USA
Copyright 2006 ACM 1-59593-315-8/06/0004 ...$5.00.

General Terms
Performance, Specialization, Middleware

Keywords
Aspect-Oriented Programming, Product lines

1. INTRODUCTION
The implementations of standard, general-purpose, mid-

dleware, such as J2EE, CORBA and .NET are very complex.
The primary reason for this complexity arises from the need
for versatility in supporting a wide range of domains and
applications, with different functional and quality of service
(QoS) requirements. These qualities make the middleware
highly flexible and also optimized for the common cases.

Such versatility and flexibility comes at a premium for
product line architectures, which are defined by a narrower
scope and by a set of commonalities [9]. The high degree of
flexibility and feature richness of standardized middleware
imposes performance and footprint overhead for product
lines. For example, due to the wide range of features the
code bases of these middleware become bloated. A particu-
lar product line may only need a few of the features. There-
fore there is a need to trim unwanted features in order to
support the needs of product lines more effectively. More-
over, opportunities for optimizations in the required features
may get masked due to the excessive generality of mid-
dleware. A key goal therefore is to provide middleware spe-
cializations, which remove unwanted features in middleware
while simultaneously provide finer grained optimizations to
the required features.

We envision that once we obtain a specialized middleware
suited for a product line, system developers can now choose
from a narrow set of strategies that can be parameterized in
accordance with the needs of a product variant within the
product line. We hypothesize that such configurations can
lead to improved middleware QoS properties, such as high
throughput, low latency, low memory overhead etc in the
context of the concerned product line.

Unfortunately, different product lines have their own dif-
ferent set of QoS and functional requirements. Complex
middleware designs, such as in J2EE, CORBA or .NET, can-
not make any assumptions about any specific domain and
hence do not provide any reusable mechanisms to special-
ize these middleware to suit particular product lines. In the

current state of the art, middleware features are managed by
selecting them before coding or refactoring of original code.
Such an approach may apply to a few applications but ul-
timately it does not provide any reusable mechanisms that
can generically be applied to specialize middleware for prod-
uct lines. Moreover, ad hoc means to refactoring is always
time consuming and error prone.

In order to achieve the vision of specialized middleware,
which comprises removing generalization, achieving high de-
gree of configuration and optimization of required features,
and validation according to product line-specific needs we
need tool-driven mechanisms that will automate the process.
These specialization techniques will be helpful only if fea-
tures are selectable based solely on the various middleware
strategies or specifications that will fulfill user requirements.
This paper explores the use of aspect oriented program-
ming (AOP) [16] incorporated by the AspectC++ tool (www.
aspectc.org) to automate the middleware specializations.
For our work we chose the ACE C++ middleware (www.dre.
vanderbilt.edu) as the platform to demonstrate our ideas.

This paper is structured as follows: Section 2 describes
the central theme of this paper. It describes different mid-
dleware specialization techniques mentioned in the litera-
ture and pinpoints the reasons why we used Aspect-Oriented
Programming (AOP)to specialize middleware. It then de-
scribes how we have applied AOP to resolve the generality
challenges of middleware by focusing on a subset of the mid-
dleware used for specialization; Section 3 describes the re-
sults of our experiments comparing the non-specialized and
specialized middleware; and finally Section 4 provides con-
cluding remarks and future work.

2. MIDDLEWARE SPECIALIZATION VIA
ASPECT ORIENTED PROGRAMMING

Section 1 motivated the need for specializing middleware
to suit them for the requirements of different variants of
product lines. Middleware specialization can be achieved by
traditional software design and implementation techniques
including code refactoring, “ahead of time” design or even
using component frameworks [17]. But all these techniques
illustrate several drawbacks including large memory require-
ments stemming from the use of component frameworks,
error prone configurations which is usually attempted man-
ually and large performance overheads.

There are various specialization techniques described in
literature, which can be leveraged to specialize middleware.
For example, Feature-Oriented Programming (FOP) [1] is
an appropriate technique to design and implement program
families, and which uses incremental and stepwise refine-
ment approaches [1, 11]. FOP aims to cope with the in-
creasing complexity and increasing lack of reusability and
customizability of contemporary software systems. Aspect-
Oriented Programming (AOP) [16] is another related progr-
amming paradigm and has similar goals: It focuses primarily
on separating and encapsulating crosscutting concerns to in-
crease maintainability, understandability, and customizabil-
ity. However, it does not focus explicitly on incremental
designs or program families. Aspect-Oriented Programming
can change an existing functionality without refactoring of
code, addresses concerns with minimum coupling, makes it
reusable and implements no hierarchy refinements. These
features of AOP can lead to error free and efficient code. It
can prevent code clutter, tangling and scattering and makes

it easy to add new functionality by creating new aspects.
New features or behavior can be added at any stage of de-
velopment thus relieving the developer of committing to un-
der/over design. So an unknown functionality which cannot
be predicted ahead of time is not a problem.

These characteristics of AOP can be leveraged to create
an implementation that is easier to design, understand, and
maintain resulting in higher productivity, improved quality,
and better ability to implement newer features. We there-
fore leverage these capabilities of AOP as a middleware spe-
cialization technique for product lines.

2.1 Overview of AOP
Without causing any intrusive changes to entire code,

AOP technology helps modularize the implementation, and
helps reduces dependencies between modules [14].

AspectC++ is a tool using AOP for the C++ language.
For every valid C++ program, AspectC++ can be used.
AOP principles supported by tools like AspectC++ address
the challenges of crosscutting concerns which pure OO meth-
ods fail to do so. Using pointcuts and advices, an aspect
weaver brings aspects and components together. An advice
defines the code that is defined on these joint points.

Figure 1: Logging Example using OOP Ap-
proach [19]

Consider the classic example of a logging operation in a
sample OOP method [19] shown in Figure 1. Here the logger
instance of Logger class is called in each and every class that

needs to have logging capability. This example demonstrates
the tangling of the logging concern across the application
logic. We briefly summarize the key ideas in AOP below
alluding to an example illustrated in Figure 1:

1. Advice: This is the code that is applied to, or that
crosscuts the existing code. In our example, this is the
logging code that executes when the thread enters or
exits a method that we want to untangle.

There are three choices when advice is executed (a)
before()- advice code is executed before the original
code. It can be used to read/modify parameter values,
(b) after()- advice code is executed after a particular
control flow or original code is executed. It can be used
read/modify return values. and (c) around()- advice
body is executed instead of control flow.

2. Join point: It denotes a position to give advice in
an aspect. Points in the model where aspects can be
woven in, e.g., class, methods, structures etc.

3. Pointcut: This is the term given to the point of ex-
ecution in the application at which crosscutting con-
cern needs to be applied. In our example, a pointcut is
reached when the thread enters a method, and another
pointcut is reached when the thread exits the method.
Some of the Join points described by pointcut expres-
sions are execution(), call(), cflow(), throws() etc.

4. Aspect: The combination of the pointcut and the
advice is termed an aspect.

In the other code snippet [19] shown in Figure 2 we ob-
serve that by using one simple aspect file developers do not
have to change all the classes manually. This makes the code
less error prone, flexible and extensible. The above exam-
ple demonstrates how AOP can be used to specialize ACE
middleware because AOP does not change the original code
base. Instead different specializations can be captured as
aspects in different files and these can then transform the
original code base into specialized form.

Figure 2: Logging Example using AOP Ap-
proach [19]

2.2 Aspect-Oriented vs. Object-Oriented Pr-
ogramming

Aspect-Oriented refactoring [18] offers more expressive
power than can be achieved by object orientation alone. Our
experience conducting this research revealed that aspect-
oriented refactoring was often simpler. For example, con-
sider Figure 3, which shows how in pure OOP the classes
and the requirements relationship form a mesh. This im-
plies that a requirement is dependent on multiple classes
and if there is any change in one requirement it will lead
to change in all the classes leading to unnecessary mainte-
nance complexity. Thus in pure OOP in order to change
any code using object oriented process only introduces sig-
nificant complexity in already existing source code. Using
AOP by capturing aspects in separate files, however, ensures
that the actual source code is hardly touched. In AOP every
requirement can be modeled as an aspect. Hence maintain-
ing and changing of requirements is easier and maintainable.

Figure 3: Comparing Object Oriented Model and
Aspect Oriented Model

2.3 ACE Middleware Specialization using As-
pectC++

There are very few tools developed specifically for mid-
dleware specialization. One of the tools developed is Fea-
ture Oriented Customizer (FOCUS) [3]. FOCUS is a domain
specific modeling tool that has been developed to automate
specialization of middleware. Code is annotated with spe-
cialization rules and middleware developer has to select suit-
able specialization rules. Its transformation engine is a Perl
based tool which selects the appropriate specialization files
and transforms it into changed source code file. The code
is then compiled to executable code. In this tool join-points
need to be manually identified and the source code changed
manually to insert hooks. Also, correctness of the transfor-
mation needs to be validated externally.

We now describe how we have applied AspectC++ for spe-
cialization of the ACE middleware. In particular for special-
ization we focused on the Reactor pattern within ACE. To
add or modify different features in Reactor implementations
different aspects were defined. These aspects were defined
in different files and for different combinations of these as-
pect files made it possible to achieve different middleware

specializations. Because the number of aspects are small
and they are totally isolated from actual source code, their
management is relatively easy and less error prone. And all
this was possible without making any change to code base.

Source code transformation i.e., weaving is done based on
aspects at compile time using AspectC++ compiler (ag++
of version 1.0pre2). This compiler supports a superset of
the C++ language. This language contains constructs to
identify join points in the component code and to specify
advice in the form of code fragments that should be exe-
cuted or will execute at these join points. The output of
the AspectC++ compiler is plain C++ code, which can
be translated with standard C++ compilers to executable
code. The compile time for building ACE with AspectC++
woven code is slightly more than the non-aspectized code,
however, as shown later this overhead has no impact on the
runtime performance. Also, while building the full func-
tional middleware with selected specializations, the result-
ing executable passed all the build verification tests in ACE
indicating validity of aspectized code.

Case Study: Select Reactor and Thread Pool Reactor
Specialization
Middleware is often developed as set of frameworks that
can support multiple types of functionalities. This overly
excessive generality of functionalities can be configured us-
ing different options, such as different concurrency mod-
els (Thread-per-connection, Thread pool, or Thread-per-
request).

In this case study we will describe preliminary work that
illustrates the use of AspectC++ for the specialization of
ACE middleware, in particular we are targeting a class of
product lines that are network centric and must deal with
event-driven style of programming. An OO based event-
driven interface in ACE is the Reactor. The Reactor frame-
work in ACE implements the Reactor pattern, which decou-
ples the demultiplexing and dispatching of events from the
handling of the events. It was developed to support differ-
ent types of alternative concurrency models. For this pa-
per we focus on two types of concurrency models i.e., single
threaded and thread-pool reactor.

The OO design philosophy in ACE enables support for all
these alternate mechanisms transparently, which is achieved
by an elegant class hierarchy of base and subclasses, and
template parameterization. For example, for all types of
concurrency models of reactor implementations, ACE uses
the ACE_Reactor_Impl as the abstract base class which del-
egates the actual work to its subclasses e.g., ACE_Select_
Reactor (for single threaded reactor implementation)or ACE_
TP_Reactor (for thread pool reactor implementation) via
virtual method calls.

The choice of the reactor implementation is chosen via
ACE-specific configuration mechanisms. It is assumed that
once a particular type of reactor is selected, it never changes
during the lifetime of a system. Based on this choice of the
reactor implementation, we use AspectC++ advice whose
goal is to eliminate the virtual method call between the
abstract base class and the implementation of the reactor
chosen. Thus, the advice effectively replaces the abstract
base class ACE_Reactor_Impl method call by child class ACE_
Select_Reactor or ACE_TP_Reactor method directly.

In the following we illustrate some of the specializations
we implemented using method transformations in the Select
and Thread Pool Reactor classes:

/**
* This aspect is for Single Threaded specialization
*/

aspect Single_Thread_Implementation
{

/**
* It redirects purge_pending_notifications
* method of ACE_Reactor_Impl to same method
* of ACE_Select_Reactor subclass.
*/

advice call ("% ACE_Reactor_Impl
::purge_pending_notifications(...)"):around ()

{
((ACE_Select_Reactor_Impl *) tjp->target ())->

ACE_Select_Reactor_Impl
::purge_pending_notifications
(*tjp->arg < 0 >(),*tjp->arg < 1 >());

}
}

/**
* This aspect is for Thread Pool specialization
*/

aspect Thread_Pool_Implementation
{

/**
* It redirects handle_events method of
* ACE_Reactor_Impl to same method of
* ACE_Select_Reactor subclass.
*/

advice call ("% ACE_Reactor_Impl
::handle_events(int)"):around ()

{
((ACE_TP_Reactor *) tjp->target ())->

ACE_TP_Reactor
::handle_events (*tjp->arg < 0 >());

}
}

In the above code snippet of single thread implementa-
tion we are redirecting method call of ACE_Reactor_Impl::
purge_pending_notification to ACE_Select_Reactor::p\

-urge_pending_notification directly. It should be noted
that this method is called almost 16 times in a single server/-
client scenario. So the removal of the indirection provides
performance gains that are amortized over a large number
of requests. This is expected in event driven services that
have to deal with a large number of client requests.

3. RESULTS & OBSERVATIONS
This section describes results of our experiment compar-

ing the performance of the original ACE reactor pattern
with the specialized version. We collected empirical data
that compared the specialized version of ACE with the orig-
inal version along different dimensions including end to end
latency and throughput. We used the ACE middleware’s
performance test suite to conduct these performance tests
and study the impact of AOP on latency and round trip
throughput changes.

Our experiments illustrate that the refactored middleware
framework showed a significant improvement running the
ACE performance tests. To demonstrate the benefits of im-
plementing AOP for ACE middleware framework we discuss
two specializations of ACE concurrency models in the re-
actor and illustrate the improvements in performance i.e.,
latency and throughput.

Figure 6: Thread Pool reactor (Latency Vs No. of
test run)

Figure 7: Thread Pool reactor (Throughput Vs No.
of test run)

Case I: Single Threaded Reactor
In this case we use AOP to remove the virtual table indi-
rection by bypassing the virtualness of abstract base class
methods of reactor and calling the child class methods di-
rectly assuming that in this case application is using only
single threaded reactor.

Figures 4 and 5 show improved end-to-end latency and
increase in throughput applying AOP for the specialization
of the reactor.

Figure 4: Single threaded reactor (Latency Vs No.
of test run)

Figure 5: Single threaded reactor (Throughput Vs
No. of test run)

Case II: Thread-pool Reactor
In this case we use AOP to remove the virtual table indi-
rection by bypassing the virtualness of abstract base class
methods of reactor and calling the child class methods di-
rectly assuming that in this case application is using only
thread-pool threaded reactor.

Figures 6 and 7 show improved end-to-end latency and
increase in throughput when specialization of reactor is done
using aspects.

Observations and inferences
Table 1 lists out the percentage decrease of latency and in-
crease in throughput in select and thread pool reactor im-
plementation:

For our feasibility study reported in this paper, the spe-
cializations of removing virtualness was performed manually
i.e., aspects were written by hand for a selected set of meth-
ods of the reactor class in ACE. The experiments we per-
formed and the results we obtained are encouraging, which
demonstrates the promise of applying Aspect Oriented Pr-
ogramming to specialize middleware. Another critical ob-
servation we made in our study was that the techniques for
specializing a single threaded reactor were entirely different
from those that were needed for a thread pool reactor. We
infer that the process of manually applying specializations
for very large middleware frameworks therefore cannot scale
and hence requires a generative approach that will enable
the automated synthesis of the specialization files. Our cur-
rent work focuses on this dimension of the research where
we are applying model-driven generative programming [6]
to automate the process of middleware specialization.

Reactor Select ThreadPool
Latency -3% -4%

Throughput 2% 3%

Table 1: Average Percentage Change

4. CONCLUDING REMARKS
This paper motivates the need for middleware specializa-

tions and describes a study using Aspect-Oriented Progra-
mming (AOP) to automate the specializations. As a result
of this study we infer that the use of AOP can play an im-
portant role in automating middleware specializations. For
proof of concept we used AspectC++ to specialize the re-
actor implementation in the ACE middleware by removing
indirection by bypassing “virtualness” of base class and di-
rectly calling child class methods. The preliminary results
are encouraging and demonstrate that application of our
specializations improves end-to-end throughput and latency
over general purpose middleware.

We are continuing to work on implementing aspects for
other QoS challenges of middleware using AspectC++ and
specializing other patterns. To overcome the limitations of
manually implementing the aspects, we are exploring the
use of model-driven techniques, which will enable a system
developer to express specialization requirements at higher
levels of abstractions and automatically synthesizing the as-
pects.

5. REFERENCES
[1] Don Batory, Jacob Neal Sarvela, and Axel

Rauschmayer, ’Scaling Step-Wise Refinement’
ICSE May 2003, Portland, Oregon.

[2] Sven Apel, Thomas Leich, Marko Rosenm uller,
and Gunter Saake. ’Combining Feature Oriented
and Aspect Oriented Programming to Support
Software Evolution’, RAM-SE’05, July 2005,
Glasgow, Scotland.

[3] Arvind Krishna, ’Model-driven Middleware
Specialization Techniques for Software
Product-line Architectures in Distributed
Real-time and Embedded Systems’, MODELS
2005, October 2, 2005, Jamaica.

[4] Don Batory, ’Feature-Oriented Programming and
the AHEAD Tool Suite’, ICSE 2004, Edinburg,
Scotland.

[5] Don Batory, ’Feature Oriented Programming for
Product-Lines Tutorial’, ICSE 2003, Portland,
Oregon.

[6] Czarnecki K., Eisenecker U. W. ’Overview of
Generative Software Development’.
Unconventional Programming Paradigms (UPP)
2004, Mont Saint-Michel, France.

[7] Roberto E. Lopez-Herrejon. ’Understanding
Feature Modularity in Feature Oriented
Programming and its Implications to Aspect
Oriented Programming’. ECOOP2005 PhDOOS

Workshop and Doctoral Symposium, Glasgow,
Scotland.

[8] Aniruddha Gokhale, Douglas C Schmidt,
Balachandran N, Jeff Gray, Nanbor Wang.
’Model-Driven Middleware’. Middleware for
Communications, (Qusay Mahmoud, ed.), John
Wiley and Sons, 2004.

[9] J. Coplien, D. Hoffman, and D. Weiss.
’Commonality and Variability in Software
Engineering’. IEEE Software,
15(6),November/December 1998.

[10] D.Batory, Roberto Lopez-Herrejon, Jean-Phillipe
Martin. ’Generating Product-Lines of
Product-Families’. IEEE International Conference
on Automated Software Engineering (ASE’02),
Edinburgh, UK.

[11] Olaf Spinczyk, Daniel Lohmann. ’Aspect-Oriented
Programming with C++ and AspectC++’. AOSD
05, Chicago, USA.

[12] Charles Zhang, Dapeng Gao and Hans-Arno
Jacobsen. ’Generic Middleware Substrate through
Modelware’. ACM/IFIP/USENIX 6th
International Middleware Conference (Middleware
2005), Grenoble, France

[13] R. E. Lopez-Herrejon and D. Batory. ’Improving
Incremental Development in AspectJ by Bounding
Quantification’. In Software Engineering
Properties and Languages for Aspect
Technologies(SPLAT), 2005. Chicago, USA.

[14] Olaf Spinczyk, Daniel Lohmann. ’AspectC++
Quick Reference’.

[15] D.Batory. ’A Tutorial on Feature Oriented
Programming and the AHEAD Tool Suite’.

[16] Gregor Kiczales, John Lamping, Anurag
Mendhekar, Chris Maeda, Cristina.
’Aspect-Oriented Programming’. In proceedings of
the European Conference on Object-Oriented
Programming (ECOOP), Finland. Springer-Verlag
LNCS 1241. June 1997.

[17] Wasif Gilani, Nabeel Hasan Naqvi, Olaf Spinczyk.
’On Adaptable Middleware Product Lines’. ACM
International Conference, Proceedings of the 3rd
workshop on Adaptive and reflective middleware
2004. Toronto, Ontario, Canada.

[18] Adrian Colyer, Andrew Clement. ’Large-scale
AOSD for Middleware’. AOSD 2004. Lancaster
UK.

[19] Aspect-Oriented Programming article on
http://sel.ics.es.osaka-
u.ac.jp/research/aspect/index.html.en

