
Computer Tutoring for Programming Education
Susan M. Eitelman

University of Central Florida
seitelman@gmail.com

ABSTRACT

Software is increasingly pervasive in the products we use.

Consequently, more programmers are needed to develop the

software, and consequently there is unmet demand on

programming instructors. One possible solution to the increased

demand is to complement human teaching with automated

computer tutoring. Several examples of such computer tutors for

programming already exist, however they have not found

widespread success. In the operational world, there are several

job-aids that support programmers in the field. Some of these job-

aids reflect similar principles used in training tools, particularly

scaffolding. Finally, several researchers in the realm of

programming instruction indicate the importance of using a

problem-based learning approach, or integrating learning and

performance for learners. Thus, the paper concludes with

questions revolving around how computer tutoring for

programming may be enhanced, and lead to greater success, by

developing an approach that similarly integrates performance and

learning.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer science education

General Terms

Human Factors.

Keywords

Intelligent tutoring,

1. INTRODUCTION
In today’s computer age, software is increasingly present in many

products. Humans use software for a wide range of tasks.

Applications range from entertainment support such as

programmable digital video recorders, to computer based training

and education tools, such as a reading tutor that listens (Mostow,

Aist, Burkhead, Corbett, Cuneo, Eitelman, Huang, Junker, Sklar,

& Tobin, 2003), to real-time critical systems such as in a nuclear

power plant (e.g., Nguyen, & Ourghanlian, 2003). As the use of

software-based products rises, so does the demand of software

developers. Furthermore, there is an increased demand on

programming instructors, which may be higher than the current

supply of instructors available (Shaffer, 2005). How might the

instruction of programming be better supported?

Computer tutoring systems are one way teachers are supported in

the classroom. There are a variety of computer-based tutors

available and several that focus on programming. There are also

several job-aids aimed to support programmers, some of which

reflect principles similar to those used in teaching. In particular,

scaffolding mechanisms are present in programming job-aids that

may be useful both in training and on the job. The present paper

presents a review of some of the research involved in computer

tutors for programming, and provides an example of a job-aid that

reflects characteristics of a training principle of scaffolding.

Finally, the conclusion contains questions to guide research for

developing a learning and performance support system.

2. BRIEF REVIEW OF THE LITERATURE
There are several computer tutors that focus on the instruction of

computer programming. An early programming computer tutor

focused on the Lisp language (Anderson, Boyle & Reiser, 1985).

Developed more recently, another computer tutor teaches the C

language (Song, Hahn, Tak, & Kim, 1997). Ludwig, utilizes

networking and online collaboration of people to support the

acquisition of programming skills (Shaffer, 2005). Finally,

another computer tutor system, that teaches programming in the

Java language, involves both a particular curriculum design and

specially-selected tools identified for their instructional value

(Ragonis & Ben-Ari, 2005). There are many other programming

computer tutors, which vary by the programming language they

use and instructional approach they reflect; the ones listed are

presented to provide a flavor for the variety.

Although many computer tutors exist that aim to develop

programmers, they have not proven themselves largely successful

(e.g., Deek & McHugh, 1998; Shaffer, 2005). Many researchers

are asking why this is the case, but no clear answers seem to have

manifested themselves, yet. It has been shown that computer

tutors may improve learning programming or other skills such as

geometry proofs when they are used to complement the teacher

(e.g., Chalk, 2001; Schofield, Eurich-Fulcer, and Britt, 1994).

Schofield and her team indicate that computer tutors may support

learning in a traditional classroom, not replace it, and also change

the learning atmosphere in a traditional classroom. The classroom

becomes less “teacher-centered” and the role of the teacher

becomes more facilitative (Schofield, et. al., 1994, p. 581). Thus,

the success of computer tutors, particularly for teaching

programming, may not be a question simply of instructional

strategy and mechanism, but include several variables and their

relationships including the environment, the actors, and the

approach.

Problem solving is the foundation of programming skill (Deek &

McHugh, 1998; Ragonis & Ben-Ari, 2005). Shaffer (2005) points

out that “most attempts at using technology to train programmers

have been unsuccessful because the designers have misconstrued

programming as a knowledge-based rather than as a task-based

discipline” (p. 56). Similarly, Pirolli and Recker (1994) explain

that there is an important difference between teaching declarative

and procedural knowledge. Furthermore, Shaffer, citing McBreen

(2002), poses that the apprenticeship model may be more effective

than that of the college setting because the experience produces

useful work under the apprenticeship model. Pirolli and Recker

also indicate that procedural learning occurs through problem-

solving of new situations pointing out that learning occurs by

doing. However, Shaffer also reminds us that some declarative

knowledge is required; as he puts it: “learning to program is like

learning a foreign language; you can never be truly fluent if you

have to look stuff up all the time” (p. 59). Shaffer’s comment

reflects the importance of declarative knowledge when acquiring a

skill. Thus, the computer tutor should not replace the teacher, nor

should it focus solely on declarative or procedural memory.

3. INTEGRATING LEARNING &

PERFORMANCE
Although changing the collegiate system institution to incorporate

the apprentice-model may at first seem somewhat unrealistic, the

point resonates with a principle called the Janus principle.

Hoffman (2004) poses the Janus principle: "Human-centered

systems do not force a separation between learning and

performance. They integrate them" (p. 79). The Janus principle

underlies some of the tools currently available. For example, in

their review of the literature, Deek and McHugh (1998) indicate

four major categories of programming tools, both instructional

and operational, one of which is the intelligent programming

environment category. They define an intelligent programming

environment as a programming environment that incorporates

aspects of both a classic programming environment, which

provides the basic tools to develop a program (e.g., text editor,

compiler), and of an intelligent tutoring system (e.g., automated

feedback and coaching). Such a system provides job support and

training to the user, thus integrating learning and performance. In

concert with the Janus principle, Deek and McHugh (1998) also

purport that “environments for the facilitating the study of

programming must be consistent with the activities of the actual

learning situation and support the entire problem-solving and

program development process” (p. 172). Furthermore, Dunlap

(2005) investigates the effects of student self-efficacy on

performance in a capstone software development course. She

explains that to appropriately prepare software developers for

working in their field, “educators need to create learning

environments that engage students in ways that help them develop

content expertise and problem-solving, collaboration, and lifelong

learning skills” (p. 65). In other words, learning and performance

should be integrated. Dunlap recognizes the Problem-Based

Learning (PBL) approach as one method of integrating learning

and performance in a learning environment, which reflects a basic

application of the Janus principle in the programming domain.

Additionally, the PBL approach seems to provide a mechanism

for shifting the traditional classroom approach towards a more

apprentice-like model.

To integrate learning and performance, one learning concept in

particular sticks out as particularly useful. Scaffolding is an

instructional strategy that dates back to the mid-1970s (e.g.,

Hobsbaum & Peters, 1996). Ragonis and Ben-Ari (2005) discuss

lessons learned from their investigation into the understanding of

programming concepts, particularly object-oriented programming

concepts, by novices. One of their main findings is sequencing of

topics. They also provide other guidelines, for example they

indicate that when classes and objects are introduced, which

should occur early in the curriculum, they should be introduced

with the support of diagrams. However, Ragonis and Ben-Ari also

point out that pictures involved in the problem may distract the

learner. The study by Ragonis and Ben-Ari seems to be the first of

its kind, a long-term systematic study of the teaching of object-

oriented programming concepts. Thus, their results indicate an

important example of the value of scaffolding. They point out that

some concepts must be taught before others, indicating an

instance and the importance of scaffolding.

Chalk (2001) explains the specific mechanisms required for a

scaffolding approach. Briefly they are: recruit attention, reduce

degrees of freedom, maintain direction, mark critical features,

control frustration, and demonstrate solutions when learner can

recognize them. First, a scaffolding approach will help the learner

maintain focus on the problem at hand by recruiting attention.

Second, the approach reduces complexity of the problem such that

the learner is not overwhelmed or distracted by extraneous

characteristics. For example, the guideline recommended by

Ragonis and Ben-Ari about avoiding pictures in problem

statements is an example of reducing the complexity of the

problem by avoiding the presentation of extraneous details, which

might occur in a picture. Third, the learner maintains direction to

achieve the goal when supported by a scaffolding approach. Again

using the examples provided by Ragonis and Ben-Ari, their

diagram for introducing classes and objects may be considered a

way to reduce the complexity of understanding a class and an

object by depicting it in a simple and functional manner. Fourth,

using an appropriate scaffolding approach should involve the

marking of critical feature to support the learner in recognize what

is important and avoid distraction by insignificant features and

details of the problem. Fifth, the approach will control the

learner’s frustration, facilitating the maintenance of direction to

achieve the goal and maintenance of keeping the learners attention

on the task. Finally, a scaffolding approach should include

demonstration of solutions in a manner that facilitates the learner

in recognizing how the problem was solved such that the learner

may develop an accurate construct for solving similar problems.

Some of the scaffolding features introduced by Chalk are present

in job-aids for programming. For example, Pike, Weide, and

Hollingsworth describe work they did to develop a job-aid for

facilitating programmers, not students of programming, with

avoiding dynamic memory errors, such as memory leaks that are

hard to debug and a common problem even for seasoned

programmers (2000). Their tool is simply a layer, implemented as

a header, or .h, file that supports the programmer in identifying

dynamic memory allocation errors that may lead to memory leaks.

The tool helps the programmer identify these early, during code

implementation, as well as throughout the compilation and

execution phases. After the programmer is satisfied that the

program code is error-free, at least for dynamic memory

allocation, then the header file may be removed without affecting

the execution of the file when there are no dynamic memory

allocation errors, which improves the efficiency of the program

execution. In the present example, marking critical features is the

predominant scaffolding mechanism, and frustration control is

also present. The tool marks where the memory allocation error

occurs, marking the critical feature in the code; then the tool

arguably also controls the level of the programmer’s frustration by

facilitating the debugging of the error.

Another example reflects a job-aid for a programming teacher.

Warms (2005) describes a tool he uses in explaining concepts to

his students. In particular, the tool incorporates visualization

mechanisms that primarily reduce the complexity of using

pointers. The tool helps the learner visualize the trace of memory

allocation to addresses, this time static memory allocation, which

is differs from the dynamic memory allocation errors described

earlier. While Warms proposes his tool as a job-aid for teaching

the concepts of pointers, the tool is clearly a training aid.

Furthermore, it seems natural to extend such a tool to job-aid

applications of programming itself – not just teaching

programming. In particular, it may be useful for newer

programmers who may not have yet become experts on the use of

pointers even if they understand the concept at a basic level.

Another aspect to scaffolding is the removal of “scaffolds” as the

learner progresses in proficiency, reflecting the Zone of Proximal

Development (ZPD). With ZPD, the learner is able to achieve

more with support, such as from a tutor, than they would

otherwise be able to achieve alone (e.g., Fernández, Wegerif,

Mercer, & Rojas-Drummond, 2001). So, a learning aid may be

applied until it is no longer needed, as the learner is now able to

achieve on his own what was previously achievable only with the

aid. Such an approach is already demonstrated by the dynamic

allocation memory error checking header file (Pike, et. al., 2000).

Similarly, the pointer visualization tool, described by Warms

(2005), might be used in a programmer’s early stages but later be

discarded once the programmer fully masters manipulating

pointers. Thus, the Janus principle, namely the integration of

learning and performance support, is already appearing in the

development of computer programming tutors.

4. DISCUSSION
Although significant time and expense have been poured into the

development of various computer tutors, they still suffer from not

having demonstrating widespread success, particularly in light of

the increasingly overwhelming demand on programming teachers

indicated by Shaffer (2005). One conclusive question is: why

have computer programming tutors not found widespread

success? More specifically, the question arises: how can we

employ computer programming tutors for training productive

programmers more successfully?

In an effort to address the last question, integrating learning and

performance support may lead to an answer. First, the

development of programming skills must be defined. Such work is

already documented in the literature, for example the work by

Ragonis and Ben-Ari (2005) reflects a particular ordering of

concepts in object-oriented program. A more complete model of

the process of programming skill development, including

advanced concepts, would support the development of a learning

and performance support system for a programming environment.

Second, a comprehensive description of language-independent

concepts and tabulation of language-dependent implementation

issues, at least for a select set of popular languages to start, would

guide the development of such a system. In particular, designers

would derive the declarative and procedural knowledge stores

directly from such records.

The C-Tutor introduced by Song, Hanh, Tak, and Kim (1997)

begins to reflect such an approach. Their tutor involves an

intention-based diagnosis tool to intelligently identify the

learner’s intentions, and also it involves a debugging tool that

analyzes how the learner is implementing the intentions, or goals.

In this manner, the tutor allows the learner to actively develop a

program, while it provides feedback. However, there are some

opportunity gaps with the C-Tutor. One example is that it relies

on example problems with solutions entered by the teacher. A

facility that frees it from such a constraint, or at least from relying

solely on examples, would enable the tool to grow into a job-aid

with the learner. Potentially, the tool could learn new example-

types and support the user in solving similar problems in the

future, especially in a collaborative, online environment, which is

addressed next.

Finally, various other questions manifest themselves in the search

for better applications of computer programming tutors. For

example, what is the relationship of the computer tutor and the

human teacher, as introduced by Dunlap (2005)? Further, how can

we foster the relationship to optimize learning? Also, what is the

relationship of multiple learners in a group? Shaffer’s (2005)

online learning environment introduces the potential of learner-

learner coaching and instructional support. How might the

learner-learner relationship be fostered to optimize learning? In

conclusion, it seems that although computer programming tutors

have not yet shown widespread success, they still hold potential.

A variety of research questions arise surrounding how this may be

approached and include exploration of integrating learning and

performance support tools, which complement the Problem-Based

Learning approach.

5. ACKNOWLEDGMENTS
Our thanks to ACM SIGCHI for allowing us to modify templates

they had developed.

6. REFERENCES
[1] Anderson, J. R., Boyle, C. F., & Reiser, B. J. (1985).

Intelligent tutoring systems. Science, 228, 456-462.

[2] Chalk, P. (2001). Scaffolding learning in virtual

environments. Proceedings of the 6th Annual Conference on

Innovation and Technology in Computer Science Education,

85-88. Canterbury, UK: ACM Press.

[3] Deek, F. P., & McHugh, J. A. (1998). A survey and critical

analysis of tools for learning programming. Computer

Science Education (8)2, 130-178.

[4] Dunlap, J. C. (2005). Problem-based learning and self-

efficacy: How a capstone course prepares students for a

profession. Educational Technology Research and

Development, 53(1), 65-85.

[5] Fernández, M., Wegerif, R., Mercer, N., & Rojas-

Drummond, S. (2001). Reconceptualizing “scaffolding” and

the zone of proximal development in the context of

symmetrical collaborative learning. Journal of Classroom

Interaction, 36(2), 40-54.

[6] Hoffman, R., Lintern, G., Eitelman, S. (2004). The Janus

Principle. IEEE Intelligent Systems, 19 (2), March/April

2004, p. 78-80.

[7] Mostow, J., Aist, G., Burkhead, P., Corbett, A., Cuneo, A.,

Eitelman, S., Huang, C., Junker, B., Sklar, M. B., & Tobin,

B. (2003). Evaluation of an automated Reading Tutor that

listens: Comparison to human tutoring and classroom

instruction. Journal of Educational Computing Research,

29(1), 61-117.

[8] Nguyen, T., & Ourghanlian, A. (2003). Dependability

assessment of safety-critical system softare by static analysis

methods. Proceedings of the 2003 International Conference

on Dependable Systems and Networks (DSN ’03). IEEE.

[9] Pike, S. M., Weide, B. W., & Hollingsworth, J. E. (2000).

Checkmate: Cornering C++ dynamic memory errors with

checked pointers. ACM SIGCSE Bulletin, Proceedings of the

thirty-fist SIGCSE technical symposium on computer science

education SIGCSE, 32(1), 352-356. New York, NY: ACM

Press.

[10] Pirolli, P., & Recker, M. (1994). Learning strategies and

transfer in the domain of computer programming. Cognition

and Instruction (12)3, 235-275.

[11] Ragonis, N., & Ben-Ari, M. (2005). A long-term

investigation of the comprehension of OOP concepts by

novices. Computer Science Education, 15(3), 203-221.

[12] Schofield, J. W., Eurich-Fulcer, R., & Britt, C. L. (1994).

Teachers, computer tutors, and teaching: The artificially

intelligent tutor as an agent for classroom change. American

Educational Research Journal 31(3), 579-607.

[13] Shaffer, S. C. (2005). Ludwig: An online programming

tutoring and assessment system. Inroads – The SIGCSE

Bulletin, 37(2), 56-60.

[14] Song, J. S., Hahn, S. H., Tak, K. Y., & Kim, J. H. (1997). An

intelligent tutoring system for introductory C language

course. Computers & Education, 28(2), 93-102.

[15] Warms, T. M. (2005). The power of notation: Modeling

pointer operations. Inroads – The SIGCSE Bulletin, 37(2),

41-45.

