
Bidirectional Importance Sampling for Illumination from 
Environment Maps 

by 

David Burke 

B.Sc, University of Prince Edward Island, 2002 

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF 
T H E REQUIREMENTS FOR T H E DEGREE OF 

MASTER OF SCIENCE 

in 

The Faculty of Graduate Studies 

(Department of Computer Science) 

We accept this thesis as conforming 
to the required standard 

T H E UNIVERSITY OF BRITISH COLUMBIA 

October 18, 2004 

© David Burke, 2004 



Abstract ii 

Abst rac t 

Image-based representations for illumination are able to capture complex 

real-world lighting that is difficult to represent in other forms. Current 

importance sampling strategies for image-based illumination have difficulties 

in the case where both the environment map and the surface BRDF contain 

important high-frequency detail, for example, when a specular surface is 

illuminated by an environment map containing small light sources. 

We introduce the notion of bidirectional importance sampling, in which 

samples are drawn from the product distribution of both the surface re

flectance and the energy in the environment map. Although this makes 

the sample selection process more expensive, we show significant quality 

improvements over traditional importance sampling strategies for the same 

compute time. 



Contents iii 

Contents 

Abstract ii 

Contents iii 

List of Figures v 

Acknowledgements vii 

1 Introduction 1 

2 Related Work 3 

2.1 Environment Mapping 4 

2.2 Prefiltered Environment Mapping 5 

2.3 Alternate Bases and Precomputed Transport . 6 

2.4 Importance Sampling and Point Relaxation 7 

2.5 Combined Importance Sampling . . 9 

3 Monte Carlo Rendering 11 

3.1 Environment Mapping 12 

3.2 Monte Carlo Estimators and Sampling 15 

3.2.1 Monte Carlo Integration ; 15 

3.2.2 Sampling a General Distribution 19 

3.3 Sampling the Environment Map 24 



Contents iv 

3.4 Improving Shadows: Area-weighted Lighting 27 

3.5 Sampling from the BRDF 30 

4 Sampling the Product Distribution 35 

4.1 Bidirectional Importance Sampling 35 

4.2 The Challenge of Bidirectional Sampling 42 

4.3 Sample Generation Through Rejection 43 

4.4 Sample Generation Through Sampling-Importance Resampling 47 

5 Results 51 

6 Conclusions 63 

Bibliography 64 

A Details on the Alias Method for Sampling 70 



List of Figures v 

List of Figures 

2.1 Environment mapping 4 

3.1 The rendering equation illustrated 13 

3.2 The transformation method: sampling via an inverted CDF . 21 

3.3 Motivation for the alias method 23 

3.4 The alias method 24 

3.5 Sampling a 2D intensity image 27 

3.6 A quantized intensity map 29 

3.7 Two interpretations for the BRDF 32 

3.8 The Phong BRDF 33 

3.9 Sampling from the cosine term/Phong BRDF product . . . . 34 

4.1 Angular maps of the EM, BRDF and product distribution . . 40 

4.2 Angular maps contrasting sampling methods 41 

4.3 Rejection sampling illustrated 43 

4.4 Rejection sampling the product distribution 44 

4.5 Our SIR method for sampling from the product distribution . 49 

5.1 David in Grace Cathedral. Phong exp 10, ks = 1.0, kd = 0.0 . 53 

5.2 David in Grace Cathedral. Phong exp 50, ks — 1.0, kd = 0.0 . 54 

5.3 David in Grace Cathedral. Phong exp 50, ks — 0.5, kd = 0.5 . 55 



List of Figures vi 

5.4 David in St. Peters. Phong exp 50, ks — 0.5, = 0.5 . . . . 57 

5.5 David in Grace Cathedral. Diffuse Phong (ks = 0.0, kd = 1.0) 58 

5.6 David in Grace Cathedral, unzbomed 59 

5.7 Comparison with Veach and Guibas(l) 60 

5.8 Comparison with Veach and Guibas(2) 61 

5.9 Comparison between SIR and converged image 62 



Acknowledgements vii 

Acknowledgements 

Firstly, I'd like to thank everyone who has contributed ideas, discussion and 

proof-reading to this work; in paticular, Wolfgang Heidrich, Abhijeet Ghosh, 

Hendrik Kueck, Simon Clavet, Nando de Freitas, and James Slack. 

I also want to thank my loved ones for putting up with me: my mother 

Elizabeth, my father Wayne, my sister Rebecca, and my dear Amy. 

Also, a big shout-out to Imager Small and everyone else who've kept me 

sane via games of Quake 3, UT2004, Panel de Pon, Bomberman, Netris, 

and general lab craziness. In no paticular order: Vlad "Vlady" Kraevoy, 

Ben "Tron" Forsyth, Ritchie "spankbot" Argue, Hendrik "Space Cowboy" 

Kueck, Eric "*nipple*" Brochu, James "evil" Slack, Fred "Cheerleader" 

Kimberly, David "Toasty" Pritchard, Simon "Frog" Clavet, Kristian "zirkus-

direktor" Hildebrand, Ahbijeet Ghosh, Roger "Butt Slammer" Tarn, Lisa 

Streit, Matt Trentacoste, Lewis "Wurmangst" Johnson, and the ever-snipey 

"Grumpy old man" (you know who you are). 

Lastly, I'd like to thank der kommuners, past and present, for their 

friendship and support: Eric Brochu, Eddy Boxerman, Hendrik Kueck, 

David Pritchard, and Tyson Brochu. 



Chapter 1. Introduction 1 

Chapter 1 

Introduction 

Image-based representations for illumination, such as environment maps 

(EMs) and light fields, have received considerable attention in recent years. 

The primary reason for this attention is that images can capture complex 

real-world illumination which is difficult to represent in other forms. 

When integrating image-based lighting, such as environment maps, into 

a rendering system, the employment of a good sampling strategy for illumi

nation is an important issue. While several researchers have recently worked 

on this problem, the basic approach that has been taken by most work is an 

importance sampling strategy based on the energy distribution in the envi

ronment map. Unfortunately, such an approach performs poorly for highly 

specular surfaces, since samples chosen this way have a low probability of ly

ing within the specular lobe. Similarly, if importance sampling is performed 

based solely on the reflectance function (BRDF) of the surface, then the 

sampling will not perform well for high-frequency environment maps. 

This thesis introduces bidirectional importance sampling, a method that 

samples visibility according to an importance derived from the product of 

BRDF and environment map illumination. The challenge of this approach 

is to develop an efficient means of drawing samples from this product distri

bution. The task is complicated by the fact that the 2D BRDF slice varies 

from point to point on the surface. Furthermore, the environment map is 
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usually represented relative to a global coordinate frame, while the BRDF is 

expressed in a local frame that changes with surface orientation. For these 

reasons, precomputation approaches, such as those that employ a table of 

the product distribution, are infeasible. 

We present two solutions to this problem. The first is a combined re

jection sampling and importance sampling scheme that initially generates 

samples according to the product distribution with rejection sampling, and 

then uses the resultant samples to estimate local illumination with stan

dard importance sampling. The second approach uses a technique called 

sampling-importance resampling. In this method, samples are generated 

from either the lights or the BRDF and then resampled to distribute them 

according to the product distribution. 

While both methods increase the cost of sample generation, we demon

strate significant quality improvements for the same compute time under 

the assumption of BRDF representations that support efficient evaluation 

and sampling. Our method creates samples on the fly and does not require 

expensive precomputation. 

The remainder of the thesis is structured in the following manner. In 

Chapter 2 we review some of the relevant work in environment map ren

dering. In Chapter 3 we give an introduction to sampling and Monte Carlo 

rendering, before describing our approach in Chapter 4. Chapter 5 discusses 

the results of our methods, and we conclude in Chapter 6. 

Part of this work has appeared in a different form. Our rejection sam

pling technique appeared as a Siggraph technical sketch, published with 

Abhijeet Ghosh and Wolfgang Heidrich [4]. 
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Chapter 2 

Related Work 

All rendering systems, both global and local, must at some point compute 

the direct illumination in the scene; that is, the amount of light arriving 

at surfaces from primary light sources. Unfortunately, this task remains 

expensive; as such, much research effort has focused on the development 

of more efficient techniques for computing the direct lighting. Little work 

deals directly with sampling from environment maps for global illumination 

applications. Debevec [6] describes the use of high dynamic range envi

ronment maps in global illumination in the context of Ward's RADIANCE 

package [47]; however, no specialized sampling strategies are employed to 

reduce variance for this specific light representation. 

This thesis focuses on direct lighting from environment maps. In this 

chapter, we present an overview of previous work on computing direct il

lumination from environment maps. After an introduction to environment 

mapping in Section 2.1, we address the approach of environment map pre-

filtering in Section 2.2. Section 2.3 summarizes work in alternate bases and 

precomputed light transport, and Section 2.4 discusses point set relaxation 

techniques. 
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2.1 Environment Mapping 

Environment mapping was first proposed by B l i n n and Newell [3]. E n v i 

ronment mapping operates under the assumption of a distant environment: 

when the distance between an object and its environment is large compared 

to the object's size, incoming i l luminat ion from the environment can be 

considered directional. Tha t is, the light sources in the environment can be 

thought of as being located at infinity - for example, th ink of the daytime 

sky l ight ing the surface of the earth. Under this assumption, the incoming 

i l luminat ion at the object can be efficiently stored i n a 2D image called an 

environment map ( E M ) . Dur ing rendering, the i l luminat ion can be indexed 

by, for example, the spherical coordinates of the reflected ray, as i l lustrated 

in Figure 2.1. 

Figure 2.1: Environment mapping. Incoming light is assumed directional, 

and can thus be sampled and stored in an image. Rendering involves computing 

the amount of light reflected towards the viewer (direction w r ) ; this requires 

considering light incoming from all directions (w,'s). 
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2.2 Prefiltered Environment Mapping 

When computing shading for a non-mirrorlike object, it is generally neces

sary to consider multiple EM light directions. To mitigate this, the notion of 

prefiltering the environment maps was suggested, first by Greene [12]. The 

idea is for each E M entry to represent not just the incoming radiance from 

a single direction, but also the radiance from a larger region that has been 

integrated against the BRDF lobe of the surface. With this approach, one 

need only perform a single E M look-up to compute approximate shading for 

the surface patch. In the case of Greene, the E M was prefiltered with the 

surface's diffuse reflectance. Heidrich and Seidel [15] extended the approach 

to glossy BRDFs by prefiltering specular environment maps with radially 

symmetric Phong lobes. Kautz and McCool [20] addressed other isotropic 

BRDFs by developing a representation for more complex BRDFs that can 

still be used to prefilter environment maps. 

A drawback of these approaches is the precomputation required. This 

drawback was partially reduced by the hierarchical prefiltering algorithm of 

Kautz et al. [21] which significantly accelerates the preprocessing time. How

ever, the situation remains difficult when the scene contains multiple BRDFs 

or a surface with a spatially-varying BRDF. In these cases, the environment 

must be prefiltered separately against each BRDF model, resulting in large 

computational and storage costs. Also, efficient representations do not ex

ist for many types of BRDFs, particularly anisotropic models or measured 

BRDFs. 

Regardless of whether or not the environment map has been prefiltered, 

when rendering with a single E M lookup, one does not take visibility or 

occlusion into account, either during preprocessing or rendering. Thus, one 
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cannot produce images that contain such effects as shadows and multiple 

scattering. 

2.3 Alternate Bases and Precomputed Transport 

In some recent work, the illumination and/or BRDF are projected into finite 

bases, such as spherical harmonics (SH) and wavelets. These finite bases 

support efficient compression, as only a small number of terms are necessary 

for representing the source functions to a reasonable fidelity. 

For example, Ramamoorthi and Hanrahan [33] express the lighting in 

a spherical harmonics basis and then use only the first nine coefficients to 

render diffuse objects. However, because ringing artifacts occur when high-

frequency lighting is expressed in the SH basis, they must heavily down-

sample and blur their environment maps before applying their technique. 

This also implies their technique is unusable for high dynamic range envi

ronments. They extend their work in [34] from Lambertian BRDFs to more 

complex isotropic BRDFs, 

Sloan et al. [39] introduces precomputed radiance transfer, where visibil

ity and self-transfer effects are taken into account during an offline process. 

The precomputed radiance is then expressed in spherical harmonics so that 

it can be compressed and used for interactive rendering. Like Ramamoorthi, 

their technique is limited to very low frequency lighting. Ng et al. [29] and 

Liu et al. [27] factorize with wavelet representations which better preserve 

frequency detail in the environment, albeit at resolutions that are consider

ably lower than our technique can handle. Ng et al. [30] presents a formula

tion for factorizing the rendering equation into separate terms, each of which 

is expressed in a wavelet basis. Their rendering times are non-interactive. 
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Conceptually, what these techniques do is essentially render the scene 

from all viewpoints and then store a compressed version of these images for 

access at render time. As such, all flavours of factorization and precomputed 

transport require hours of preprocessing and huge amounts of storage, often 

in the gigabytes. What is more, the preprocessing must be repeated every 

time new geometry or material properties are introduced. Such massive 

precomputation is prohibitive in most every setting, especially in anima

tion when geometry is constantly changing. Our approach can handle high 

resolution all-frequency lighting and requires virtually no precomputation. 

Geometry, environment maps, and surface materials can be substituted on 

the fly at essentially no cost. While our rendering times are longer, at per

haps twenty seconds instead of two seconds, our algorithm comes with the 

flexibility of requiring no precomputation. 

2.4 Importance Sampling and Point Relaxation 

A common approach for rendering from environment maps is a technique 

called importance sampling, where the full illumination integral is approxi

mated by considering only a small set of sample directions. These directions 

are chosen according to their contribution to the reflected radiance. One 

way to achieve this is to approximate the E M with a small number of point 

lights representing bright regions in the environment. For example, Kollig 

and Keller [23] propose a scheme that is based on relaxing a point set until 

its distribution fits the energy distribution of the environment map. Relax

ation schemes attempt to serve as a compromise between light intensity and 

reasonable spatial coverage. Kollig's algorithm is similar to earlier work by 

Deussen et al. [8] on distributing stipples for digital halftoning. There is 
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also LightGen [5], which seeks to reduce the diffuse illumination from high 

dynamic range environments into a set of directional light sources using a 

similar relaxation technique. 

The problem with point relaxation methods is that they are not proven 

to converge in 2D, and they are often time consuming for a sufficiently 

large number of points. As a consequence, techniques that use relaxation 

precompute only a single relaxed point set, and then use this set to shade 

all points in the scene. Ostromoukhov et al. [31] presented a technique for 

distributing 2D point samples which is much faster than relaxation-based 

approaches, and also appears to produce a good spatial distribution for the 

points. 

Agarwal et al. [1] introduced a sampling method for environment maps 

where the sampled importance takes into account both the energy in the 

environment map and the solid angle separating the samples. This way, close 

clustering of environment map samples is avoided, which reduces redundant 

shadow tests. Like Argarwal et al., we have included the solid angle in the 

importance term for the lights; see Section 3.4. 

To distribute their samples, Agarwal et al. use a point relaxation algo

rithm which is different from that of Kollig and Keller; however, a downside 

of their approach is that the environment map has to be quantized to gen

erate the distribution. 

As an extension to their work, Agarwal et al. sort the samples for each 

shading operation by the magnitude of their contribution to the final illu

mination. They sample all point lights deterministically, in order of con

tribution, until the contrast that the remaining lights can add falls below 

some threshold. This use of the product of BRDF and environment map 

value is a step towards our approach of drawing samples according to an 
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importance that is the product of BRDF and light distribution. However, 

because they precompute a point set via relaxation, they are limited to 

choosing directions only from a set of precomputed samples, thereby in

troducing quantization artifacts (aliasing and banding). Also, the sorting 

introduces bias. In contrast, our methods are asymptotically unbiased, and 

can create samples efficiently on the fly, so that different sampling patterns 

can be used throughout the scene. 

Secord et al. [36] describes a fast algorithm for distributing stipples ac

cording to image intensities based on pre-integrating and inverting the prob

ability density function (PDF) derived from image intensities. This same ap

proach applies to drawing samples efficiently from environment maps, which 

are themselves images. We use a variant of this method in our current work; 

see Section 3.3 for details. 

2.5 Combined Importance Sampling 

Also similar in spirit to our approach is the work by Veach and Guibas [44] in 

which they combine sampling from the light sources and sampling from the 

BRDF to reduce the variance of the results. Prior to rendering, a decision is 

made as to how many samples to draw from each distribution. The general 

strategy is to draw more samples from the distribution with higher variance. 

Unfortunately, employing combined sampling results only in a blend between 

the variances of the individual distributions (see Section 4.1). Our method 

goes further than their work to reduce variance in that we sample directly 

from the product distribution, rather than just mixing samples taken from 

the individual distributions. 

The work of Szecsi et al. [42] selects sample weights with correlated 
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sampling, a technique that seeks to separate Monte-Carlo estimators into low 

and high variance components and combine samples from the components to 

reduce the overall variance. Unfortunately, their results are not convincing. 

Furthermore, as with Veach and Guibas, decisions must still be made a 

priori as to how samples are combined. Our approach is mathematically 

straightforward and allows for direct sampling of the product distribution 

without any arbitrary guesswork. 
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Chapter 3 

Monte Carlo Rendering 

The general goal of global illumination is the computation of all light in

teractions in a scene to generate realistic images. Many global illumina

tion algorithms, such as radiosity [11], irradiance gradients [47], and photon 

mapping [16] consist of two phases: first distributing radiance from the light 

sources onto surfaces, and then gathering the local radiances to construct 

an image for a specific viewpoint. A thorough distribution step will permit 

for a fast gather step, one which can produce quality images in a handful 

seconds. To date, computing the direct illumination remains the expensive 

aspect of global illumination; as such, much research effort has focused on 

coming up with efficient techniques for direct lighting. 

The work described in this thesis is an approach for tackling the direct 

illumination problem in the case where both the light sources and the mate

rials are complex - that is, of arbitrarily high frequency. This chapter builds 

a foundation for the presentation of our methods. Section 3.1 introduces the 

mathematics of direct illumination rendering from an environment map. In 

Section 3.4 extends the method for light sampling to include area considera

tions. Section 3.2 presents some basic notions of sampling and Monte Carlo 

integration. From these, we construct methods in Sections 3.3 and 3.5 for 

drawing samples according to the environment map and BRDF. 
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3.1 Environment Mapping 

While following the discussion in this section, refer to Figure 3.1 for a dia

gram of the geometry involved. The convention is to denote directions with 

co. The subscripts i and r denote quantities that are incoming and reflected 

(outgoing), respectively; for example, u>i and toT. 

The integral for direct illumination is given by the following expression: 

. Lr(x,ur) = / fr(x,Ui-+vr)Li(ui)(n(x) • Ui)V(ui)dui. (3.1) 

Equation 3.1 describes the amount of radiance (light) being reflected at a 

surface point x towards some outgoing direction cur. This reflected radiance 

is computed by integrating the incoming radiance Li{uJi) over the hemi

sphere centered at x of incoming directions u>i. The reflectance properties 

of the surface are described with the bidirectional reflectance distribution 

function (BRDF), denoted fT{x,u>i —* u>r). The BRDF is a function indi

cating how much of the light incident to x along the direction w; is reflected 

away towards tor. The n(x) • u>i term is known as the cosine term] it is an 

area foreshortening term that scales the incoming radiance Li{u>i) based on 

orientation of the surface normal n(x) with respect to the incoming light 

direction LOi. V(ui) is the visibility term, which in our case is binary; that is, 

V(tUi) is 1 if the surface point x can see the light along Wj and 0 otherwise. 

In this work, we express the incoming illumination with an environ

ment map (EM), a discrete representation of the continuous hemisphere 

of lights surrounding x. The environment map in our case is a latitude-

longitude map - that is, a 2D image that is projected onto the hemisphere. 

Recall that environment mapping operates under the assumption of distant 

illumination; that is, each pixel in the E M is treated as a point light source 
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Figure 3.1: Shading for surface point x is computed by considering the light 

from all incoming directions Ui of the hemisphere f i . Each light L(u>i) is 

weighted by the B R D F (circled in red), describing the probability that the 

surface at x reflects that light towards the viewing direction wT. 

corresponding to the incoming light summed over a differential patch on 

the hemisphere. A n E M pixel can be uniquely indexed with a direction u>i 

expressed in spherical coordinates. 

Under illumination from an environment map, we can rewrite the direct 

illumination integral as an explicit summation over the E M entries: 

JV 

Lr(x,u)T) = ^2fr(x,Ui(j) -» ujr)Li{iOi{j)){n{x) • Witf))V{m(j))S(w(j))f 

(3.2) 

where the incoming light direction u>i is now a function of the E M pixel index 

j. The additional weighting term S(j) represents the solid angle subtended 

by the spherical patch corresponding to element j. 

Computing the direct illumination integral involves the evaluation of the 
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visibility term V(oij) . Determining whether or not the surface point x can 

see the light at u>i typically involves a ray cast. A ray r with origin x and 

direction tOi is intersected with the scene geometry. If no intersection occurs, 

x can see the light Li(u)i), and so V(o>j) is set to 1. Otherwise, some part 

of the scene is occluding x's line of sight to the distant environment along 

u>i. V(ui) is thus set to 0, negating the light Lj(u;i)'s contribution to the 

reflected radiance. 

Performing the ray-scene intersection test makes up the bulk of the work 

during rendering. Even with the aid of hierarchical acceleration structures, 

visibility queries dominate the rendering time. In our implementation, for 

example, typical timings for ray intersection queries with scenes of modest 

complexity - half a million triangles - are on the order of 4-5 microseconds 

on our test machine. If one was to precisely evaluate the reflected radi

ance as indicated in Equation 3.2 by summing over the entire EM, then 

for sufficiently interesting environment map resolutions (1024x512 pixels), 

one would have to wait for a couple of seconds to light a single pixel in the 

output image. A small output image of size 128x128 would take 12 hours 

to render; this is obviously far too slow. 

Intuitively, one realizes that it is not necessary to sum over the entire 

environment map when computing direct illumination, because there are 

certain regions of the environment that contribute far less light than others. 

As an example, think of a night scene lit by a full moon in a clear sky. A 

vast majority of the light received by the scene will be coming only from the 

small set of directions corresponding to the location of the moon in the sky. 

In fact, for most real-world lighting conditions, the contrast ratio between 

the lightest and darkest points in the environment is very high, typically 

five to eight orders of magnitude [7]. 
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This leads, us to the notion of Monte Carlo ray tracing. When rendering 

from environment maps, one need only consider a small set of incoming light 

directions. If these directions are carefully chosen in such a way that their 

contributions make up a significant amount of the reflected radiance, then 

one can expect to have computed a decent approximation to the illumination 

integral. 

The challenge is to decide how to distribute this small set of sample 

rays effectively. Possible approaches are to distribute rays according to the 

intensity of the lights, as suggested above, or according to the reflectance 

of the surface. In practice, we do this randomly - hence the name Monte 

Carlo. These topics are discussed in detail in Sections 3.3 and 3.5. First, we 

require valid mathematics for approximating integrals; this is the subject of 

the next section. 

3.2 Monte Carlo Estimators and Sampling 

We present here an overview of Monte Carlo (MC) integration and basic 

sampling theory. Many introductory treatises of probability theory and 

Monte Carlo methods exist in the literature. The reader is pointed to Kalos 

and Whitlock [19] and Hammersley and Handscomb [14] for basic texts 

on probability theory and Monte Carlo methods, including Monte Carlo 

integration, rejection sampling and importance sampling. For introductions 

to Monte Carlo methods in ray tracing and rendering, see [9, 17, 18, 37]. 

3.2.1 Monte Carlo Integration 

The goal in rendering is to compute the reflected radiance for every surface 

point visible to the viewer. In our case, this amounts to evaluating the direct 
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illumination integral for every pixel in the resulting image. As described in 

the previous section, this is too computationally intense to solve directly. 

Instead, we employ Monte Carlo integration, a stochastic technique that 

allows us -to compute approximations for integrals such as the illumination 

integral for which an exact evaluation is intractable. 

Suppose we wish to evaluate the integral 

Hf)= [ f(x)p(x)dx, (3.3) 
•Ix 

where the space x is the domain of definition of the function. Of course, 

/(/) need not necessarily be a continuous integral. As is the case molecular 

dynamics, for example, /(/) could be a very large sum and x the perhaps 

uncountable set of possible configurations of the system. In any case, when x 

is high-dimensional, /(/) becomes infeasible to compute with deterministic 

integration methods. 

One can approximate such integrals or large sums /(/) with tractable 

sums.ijv^/). Given a set of identically independently distributed samples 

X = {xi, X2, • • •, XN} drawn from some density p(x) defined over the space 

X, the tractable sum 
1 'N 

W ) = i v ^ / ( x i ) ( 3 - 4 ) 

i = l 

converges asymptotically as N —> oo to 

Hf) = / f(x)p{x)dx. 
x 

Let us evaluate the expectation value of our estimator IAT(/)- The ex

pectation of a function f(x) is defined by 

(/(*)) = J f(x)p(x)dx. (3.5) 
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for a continuous variable and 

(/(z)) = £ / ( s ) p ( s ) 

X 

for a discrete variable. Among the properties satisfied by expectation values 

are the following: 

(aX) = a(X); (3.6) 

i i 

where X is the random quantity and a is any constant. 

We wish to evaluate the expectation of our estimator i j \ r ( / ) from Equa

tion 3.4: 
1 N 

vW)> = <jy £ / ( * * ) > • (3-8) 

Applying Equations 3.6 and 3.7 to the right side of Equation 3.8 yields 

1 N 

(W)> = ̂ E</^)>-
i=l 

By the definition of expectation given in Equation 3.5, this can be rewrit

ten as 
N (i*(f)) = ̂ E / 

i = l 

1 N 

= ]vE'(/); 
= / ( / ) . 

The expectation of 7JV(/) is therefore /(/). IN(I) is an unbiased estimate 

of /(/), and by the strong law of large numbers, will almost surely converge 

to the target integral /(/) [2]. 
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The strength of Monte Carlo integration over deterministic integration 

schemes is essentially that MC integration seeks to evaluate f(x) only in 

those areas where probability is high - that is, where the contributions of 

f(x) to the integral /(/) are most significant. 

Let us now examine the variance of The variance of a random 

quantity X, written var(X), is the expected squared difference between a 

realization of the variable and its expectation. That is, 

var(X) EE ((X-(X)f); 

= (X2) - (X)2. • 

For independent random variables X{, variance observes the following 

properties: 

var (E x<) = E v a r ( X i ) ; 
var(aX) = a2var(X). 

With these relations in mind, we see that 

var(7iv(/)) = v a r ^ E / ( x * ) ^ ; 
1 N 

i = l 

= ^var (/(*)). (3.9) 

In rendering, variance manifests itself as per-pixel noise in the output 

image. Equation 3.9 shows that the variance in a Monte Carlo estimator 

of an integral /(/) is inversely proportional to the sample size N. This 

result tells us that we can reduce noise in the output image by increasing the 

number of sample directions we use to approximate the illumination integral. 
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However, the error in our estimate actually behaves similarly to the standard 

deviation of the samples; that is, the square root of the variance. Thus is 

demonstrated the fundamental problem with Monte Carlo integration: the 

notion of diminishing returns. Because image quality depends on /V 2 , one 

must quadruple N to halve the error. 

3.2.2 Sampling a General Distribution 

So far, we have not mentioned how to choose the density function p(x) for 

distributing samples during Monte Carlo integration. Let us defer this dis

cussion for a time, assuming for the moment that we know a good distribu

tion p(x) to sample from. This section presents two methods for redistribut

ing a uniformly distributed variate according to some arbitrary probability 

density p(x). 

Cumulative Distribution Functions and the Transformation 

Method 

A common technique for sampling from general PDFs is known as the trans

formation method, which requires the notion of the cumulative distribution 

function. 

The cumulative distribution function (CDF) is an alternate way of com

pletely describing the distribution of a real-valued random variable X ~ 

p(x). For every real number x, the CDF is given by 

C(x)=p{X < x). 

In other words, C(x) is the probability that the random variable X takes on 

a value less than or equal to x. 
f 
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The CDF can be computed with 

C(x) — I p(x)dx, 
Jxo 

where xo is the smallest value that the variable X may take on, generally 

—oo. If xo is finite, the random variable can always be translated so that 

x 0 = 0. 

We can now use the transformation method to sample from p(x). Specif

ically, we choose uniform deviates Ui ~ Ẑ (o,i) and transform them according 

to X j = C _ 1 ( t i i ) . Refer to Figure 3.2 for an illustration. Note that since 

p(x) > 0, C(x) is monotone increasing, and so C _ 1 (x) exists everywhere. 

Discrete Distributions 

We now examine the case where X is a discrete random variable. Here, the 

probability distribution p(x) describing X is represented by a table of values 

p[i] — Pr[X = i], where i = 1,... ,N runs through the set of all possible 

values of X. Such a PDF representation can be created from any discretely 

sampled function f[i] in 0(n) time via the expression: 

P\i] = ^ N l \ u V 

Ei=i /W 

We can evaluate a discrete CDF C[i] according to 

N 

= £>[<]• 

i = i 

Now, to sample from p(x), we use the transformation method as before. 

That is, choose u ~ W(o,i) a n ^ find the table index i that satisfies C[i] < u > 

C[i + 1]. This requires a binary search through C[i], and so sampling this 

way takes O(logiV) time per generated sample. Practically speaking, one 
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can often do fairly well to use i = [uN\ as a starting point for the search. A 

0(1) sampling can be achieved by pre-inverting C,-which takes 0(N) time. 

Depending on the scenario, this may not be worth the effort. For example, 

if C is constantly changing, or if only a small number of samples will be 

drawn, sampling directly from C in O (log TV) time may well be faster than 

pre-inverting C and sampling in 0(1) time. 

Figure 3.2: Sampling via C D F inversion. Left: a ID P D F , P(x). Middle: the 

corresponding C D F , C(x). Right: uniform samples transformed by C~1(x). 

Note along the x-axis how samples have been redistributed according to P(x). 

Image courtesy of [36]. 

Faster Sampl ing : the A l i a s M e t h o d 

Another method for sampling from discrete distributions is the alias method, 

which was proposed by Walker [46]. This ingeniously simple technique com

putes samples in 0(1) time, but with an initialization that is less costly than 

the CDF inversion and pre-normalization of the transformation method. 

Strangely, the alias method has been largely overlooked by the graphics 

community, where the transformation method seems to be the standard 

technique for sampling from discrete distributions. As such, this section 
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presents the idea behind the method of aliases, and the variant of Vose [45] 

that we use in this work. 

Let x be a discrete random variable distributed over the set S = {0,1, 2,3} 

with corresponding probabilities P = {0.1,0.2,0.4,0.3} (see Figure 3.3, left). 

We want to generate sample values for x according to the distribution P. 

Marsaglia [28] introduced the following simple approach. Assuming we have 

a uniform random number generator, one way to sample from P is to gen

erate a uniform random integer i in [1,10] and use it to index into the set 

L = {0,1,1,2,2, 2, 2, 3, 3, 3} (see Figure 3.3, right). L has been.chosen such 

that the number of times each element of S appears in L is proportional 

to the probability of that element occurring, as described by P. Note that 

the size of L depends on the probabilities in P. If, for example, x was 

distributed over {0,1} with probabilities {1/2953,1 - 1/2953}, this method 

would require L to have 2954 elements. This simple example distribution 

can obviously be sampled more efficiently; however, for arbitrarily complex 

discrete distributions, the required size of L is bounded only by the precision 

of the random number generator - generally several orders of magnitude. 

Marsaglia's approach was how arbitrary discrete distributions were sam

pled prior to Walker's method of aliases, which introduced storage costs that 

are only linear in the input size while maintaining constant-time sampling. 

We now describe the sampling approach behind the alias method. Let 

S = {0,... ,N — 1} be the domain of distribution of x, as before, with 

corresponding probabilities P — {po,... ,p;v-i}. The method operates on 

two lists, prob and alias, to generate an integer x from S as follows: given a 

real-valued uniform variate u ~ [0, TV), let j = [uj. If (u — j) < probj, then 

choose x = j; otherwise, choose x = alias j. 

The particular technique we use to create the lists prob and alias is 
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0 1 2 3 S. i 

Figure 3.3: Marsaglia's sampling method [28]. Left: the target distribution 

P. Right: Sampling is achieved by redistributing a uniform random integer i 

in [1,10] according to L. 

that of Vose [45]. Consider again the dis t r ibut ion S = {0 ,1 ,2 ,3} ~ P = 

{0.1,0.2,0.4,0.3}, as i l lustrated on the left side of Figure 3.4. Vose's algo

r i t h m can be visualized by drawing a horizontal line in the plot of P at 

probabi l i ty 4 . Elements of P that are over this line are "chopped off" and 

their contributions redistributed to elements which have a smaller probabil

ity, creating tables prob and alias. O n the right side of Figure 3.4, the x-axis 

corresponds to table indices. The heights of the shaded regions correspond 

to the real-valued entries of prob, while the numbers in the lighter regions 

correspond to the indices stored i n alias. For those elements Pj that are 

< = -L , probj = NPj. For those elements that are > jj., probj = 1 and j 

appears i n alias. Sampl ing amounts to picking a random index j and deter

min ing if it falls w i th in probj. If so, return j, otherwise return the reference 

alias j to a value whose probabil i ty overflowed into b in j . 
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Figure 3.4: Walker's alias method [46]. Left: the target distribution P 

and the cutoff line at = 0.25. Right: Values with large probabilities have 

references distributed to bins where probabilities are small. 

Refer to A p p e n d i x A for a discussion and implementat ion of the alias 

method, including Vose's linear-time algori thm for in i t ia l iz ing the lists alias 

and probs. 

3.3 Sampling the Environment Map 

In situations where we need to draw samples according to the importance 

of the environment map image, we employ an approach similar to Secord 

et al . [36] for sampling from a 2D P D F . For an R G B image, our notion of 

importance is the intensity of each pixel - that is, the sum of the intensities 

of each color channel. 

We begin wi th an overview of the method, followed by a detailed de

script ion. 
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O v e r v i e w o f 2D S a m p l i n g 

Preprocess ing 

Given an NxM RGB image, we perform the following precomputation: 

1. For each pixel, compute an intensity J(x, y) = red(x, y)+green(x, y) + 

blue(x, y) 

2. For each of the y = [1,..., M] scanlines, create a PDF based on the 

intensities of the pixels in that scanline. At the same time, com

pute the average intensity of the pixels in that scanline: IaVg(y) = 

3. Finally, create a PDF from the distribution of M scanline averages 

lavg } . 

Sampl ing 

One can now generate samples according to the image intensities: 

1. Generate U j ~ ^(0,1)2. 

2. Redistribute U i t V according to the PDF of scanline averages to select 

a scanline X i i V . 

3. Redistribute u^x according to the PDF of the pixel intensities in scan

line X i t V , to select pixel location x^x. 

2D S a m p l i n g i n D e t a i l 

Our goal is to redistribute a set of uniform 2D samples U = {u\,... ,un} 

where Ui ~ ZY(o,i)2 according to a PDF p(x), generating a set X = {x\,..., xn} 
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with Xi ~ p(x). Let x; x and x^y denote the x and y coordinate of sample 

X{. To determine X i > y , we compute the cumulative density function 

C(y) = rm(t)dt, (3.10) 
Jo 

where m(y) is the marginal density function of p{x). In our case, we have a 

2D image, and so m(y) can be thought of as the average intensity of scanline 

y in the environment map. Note that M(y) is non-zero for those scanlines 

containing non-zero intensity, and so using the transformation method we 

obtain X i > y = C - 1 ( U J J 2 / ) . 

Given X J i V , the uniform sample U i t X is now redistributed according to the 

PDF of the respective scanline, pXiy(x}. This can be accomplished via the 

conditional probability distribution 

c ( x | x - } = ^ K ^ y ( 3 - n ) 

and the corresponding cumulative distribution 

C(x\xity) = / c(s\x^y)ds (3-12) 
Jo 

As before, the x coordinate of the new point can be found through X i y X = 

C (Ui>x 1̂ 1,2/) 

Our 2D environment map is a discrete PDF, and so we use either the 

transformation method or the alias method for sampling in O(l) time. The 

precomputation of scanline PDFs and data structures have linear require

ments in both space and time. The precomputation need only be done once 

per environment map. Also, the preprocessing is fast, at only milliseconds 

even for large images; it can thus performed on-the-fly as the image is loaded. 

Importance sampling from the E M is now just a simple table lookup, 

where the table indices are uniformly random points. Practically speaking, 
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Figure 3.5: Sampling a 2D intensity image. Two I D passes are performed: 

a scanline is selected according to the distribution of scanline averages, and a 

pixel is then sampled from within that scanline. 

rather than transforming a uniform distribution, one can use points taken 

from a low-discrepancy sequence such as the Halton sequence [36] or a blue-

noise distribution [31]. These choices will result in a sample set which is more 

evenly distributed in space, with fewer clusters of close points. For further 

information, the reader is referred to Keller's thesis [22] for an excellent 

presentation of quasi Monte Carlo methods and their use in rendering. 

3.4 Improving Shadows: Area-weighted Lighting 

In principle, there is always a practical lower-bound on the number of visi

bility tests one can perform per pixel and still achieve a low-variance image. 

For example, consider a high-frequency environment map that is dark ev

erywhere except for i V small, bright area light sources. For a surface patch 
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which can see all N lights, the best thing to do would be to draw a single 

sample from each of the light sources. If ever we render with less than N 

samples, there will always be some amount of variance in the resulting im

age, because visibility will not have been tested for each light. This noise 

is particularly noticeable in penumbra regions (soft shadow boundaries), as 

each pixel is seeing a different random sampling of the lights. In practice, 

this is often acceptable; as will be shown in Chapter 5, our approaches for 

sampling from the product distribution still give us nice images even for 

an extremely small number of samples. Sampling purely from the E M or 

BRDF takes many more samples (hundreds), and thus implicitly generates 

shadow boundaries which are generally good. 

Up to this point, sampling from the environment map has meant select

ing directions (pixels) based solely on pixel intensity - that is, based on light 

brightness. In practice, however, it is desirable to distribute light samples 

with a good spatial distribution as well as by intensity. 

The motivation for including an area factor is to address the oversam-

pling of small, bright light sources. Once a small light source has been 

sampled from, there is little additional gain in drawing another sample from 

this light, because it is behaving essentially as a point source. By drawing 

a single sample from it, we already have an idea of the intensity and color 

of the light coming from this source. Furthermore, our shadow quality will 

not improve or smoothen, because the spatial extent of the light is small, 

and the visibility function is not likely to vary across the light. 

As an example, consider an environment map containing several small 

light sources with equal area, with one light being significantly brighter than 

the others. If directions are chosen based solely on E M pixel intensity, the 

majority of the samples will come from the bright light. However, because 
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this light source is small, only one or two samples from this light would be 

enough. We're better off casting a few samples to some of the dimmer lights 

in order to smooth out shadow boundaries. 

To this end, we take the approach of Agarwal et al. [1] and modulate 

the light intensity by an area term based on the solid angle of the light. 

The basic idea is to first identify the light sources in the environment map. 

Then, the importance of all pixels making up a light source are scaled based 

on the area of that light. In effect, we want to penalize small light sources 

more than large ones, so that small sources are not oversampled. 

Figure 3.6: The Grace Cathedral environment after quantization based on the 

logarithm of pixel intensity. Observe how area light sources in the environment, 

such as the altar and windows, have been localized. 

Our light classification scheme proceeds in the following manner. We first 

compute the histogram of the image and quantize it into N intensity levels. 

The binning is performed on the logarithm of pixel intensity. Because we're 

interested in high-frequency H D R environment maps, where the contrast 
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ratio is 5-7 orders of magnitude, the majority of E M pixels are low intensity. 

So, this classification is performed logarithmically rather than linearly. 

Next, connected components are found in the quantized image by run

ning a breadth-first search. The area (solid angle) of each connected com

ponent is found by summing the areas (solid angles) of each pixel making 

up the light source. Importances L; of the pixels, originally taken just from 

intensity, are now scaled by this solid angle area. The new importance is 

given by L oc LAco. Specifically, we employ the conclusions of Agarwal et 

al. [1] and select L = L (min(0.01, Aco))b, where b is in the range [0.1,0.2], 

depending on the average size of the light sources in the environment map. 

The time complexity of the area-weighting algorithm is linear in the size 

of the EM, and is sufficiently fast so that it can be performed in negligible 

time during loading. 

In practice, the bright areas in measured environments are often reason

ably well distributed across the sky, and so this factor does not significantly 

affect the quality of the sample distribution. Nevertheless, the results pre

sented in Chapter 5 were generated using this augmented light importance. 

3 . 5 Sampling from the BRDF 

Another method for choosing sample directions for visibility testing is to 

distribute rays according to surface reflectances (BRDFs). This is partic

ularly helpful in scenes that have, for example, rather uniform light dis

tributions (think outdoor scenes). Sampling based on lighting intensity in 

such a scene does not significantly localize important directions. However, 

sampling from glossy or shiny materials in the scene will do well because of 

their non-uniform reflection properties. Examples of such surfaces include 
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metals, plastics, anything with a finish or polish, or surfaces such as asphalt 

or water when viewed at grazing angles. 

Recall that the BRDF fr(x,u>i —> uir) states what fraction of the power 

arriving at a surface point x from an incoming direction u>i will be reflected 

along an outgoing direction u>r (see Figure 3.7). We assume that the BRDF 

is energy preserving; that is, 

In other words, we assume that the BRDF reflects all energy incident upon 

it, and that no energy is generated or absorbed. While not strictly necessary 

for computing single-bounce direct illumination, this restriction allows for 

an alternative interpretation of the BRDF: the BRDF fr can be thought of 

as a probability density that describes the probability that an incoming ray 

of light will be randomly scattered towards a particular outgoing direction. 

Under this view, each incoming ray maps to a single outgoing ray with equal 

intensity, but directed along directions sampled according to the magnitude 

of the BRDF. Furthermore, the BRDF is reciprocal, and so incoming and 

outgoing directions can be exchanged. Hence, another interpretation is to 

view the BRDF as a function which describes which incoming light directions 

uii will contribute to the light reflecting along cor. 

There has been much previous work in efficient sampling from BRDFs 

(for example, [24, 25, 40] ). There are several analytical representations 

for the BRDF that support sampling directly. In particular, we use the 

energy-preserving (normalized) form [26] of the Phong model [32]: 

6 is the angle between the view direction uT and the reflected light ray 

R, where R is the incoming light direction u>i reflected across the surface 

x, ix>i — > ujr)dujr = 1. (3.13) 

fr(x,Ui -^u>r) = - i-(n + l)cos"6'-| . (3.14) 
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n(x) 

(Oi's 
V 

(a) (b) 

Figure 3.7: Two interpretations for the B R D F . The B R D F describes: (a) the 

distribution of scattering directions ujr for light which is incoming along <*;»•; or, 

(b) the distribution of incoming light directions uii that send light towards u>r. 

normal n (x ) . See Figure 3.8 for an i l lustrat ion. ks(n + l ) c o s n # is called 

the specular term; it describes the wid th of shiny highlights observed in the 

material . ks and kd are referred to as the specular and diffuse coefficients, 

respectively. W h e n ks = 0; kd — 1, the B R D F reduces to a constant, and 

the surface is said to be diffuse, meaning that light is reflected uniformly i n 

al l directions. W h e n ks = l;fc<f = 0, incoming light is reflected according to 

the cosine lobe. A s such, some reflected directions are preferred over others, 

and so the reflected radiance is non-uniform over the surface, resulting in a 

glint or highlight. A s the specular exponent n is increased, the highlights 

become taller (brighter) and more concentrated. In order that the B R D F 

preserves energy, its terms are normalized by ^ and ^ , and the coefficients 

constrained to ks + kd = 1. 

One can sample the Phong P D F by sampling from the P D F 

p(0,<t>) = 
n + 1 

2TT 
cos (3.15) 
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n(x) n(x) 

(a) (b) 

Figure 3.8: The Phong B R D F . (a) The amount of light a viewer sees depends 

on the angle 6 with respect to the reflected light direction R. (b) The diffuse 

and specular lobes. The specular lobe shape depends on the exponent n. 

The pair (#, <f>) is a direction expressed in spherical coordinates; 8 is the 

polar angle constrained to the upper hemisphere (6 € [0,7r/2]), and' <f> is 

the azimuthal angle (4> € [0, 27r]). We can sample from Equation 3.15 by 

transforming a pair of uniform variates (1*1,1*2) according to 

(0,0) = (arccos ( ( l -u i )^) ,27Ri 2 ) . (3.16) 

Note that our sample directions (6,4>) are distributed about the polar axis. 

However, the specular term in the BRDF is parameterized about the reflec

tion direction. So, the final step in sampling is to transform our directions 

from the global polar axis to the local frame of the BRDF. 

It is common practice to incorporate the cosine term from the illumina

tion integral (Equation 3.1) into the BRDF, yielding 

fr(x,Ui -> Ur) = 

Recall that the cosine term n(x) • u>i serves to scale incoming light based on 

the orientation of the surface with respect to the incoming light direction. 

^ ( n + l ) c o s n 0 + ^ n{x)-Ui. (3.17) 
27T 7T 
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Observe that the Phong lobe is parameterized about the reflection di

rection, whereas the cosine term is parameterized about the surface normal. 

This difference in parameterization makes sampling from the product of the 

B R D F and cosine term more challenging. In fact, to date, there is no an

alytical method for directly sampling from Equation 3.17 [38]. Instead, we 

sample according to fT by combing samples drawn exclusively from either 

the specular term or the diffuse term. The ratio of samples drawn from each 

term depends on the values ks and kd\ in other words, N B R D F samples 

will be drawn as ksN specular samples and k^N diffuse samples. Deciding 

which term to sample from is made randomly in order to remain unbiased. 

k d N diffuse k s N specular N samples 

Figure 3.9: Sampling from the product of the Phong B R D F and the area term 

involves combing samples drawn individually from the diffuse and specular 

terms. In this case, ks = kj, — 0.5, resulting in (approximately) an equal 

number of samples being drawn from each term. 
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C h a p t e r 4 

Sampling the Product 

Distr ibution 

The main contribution of this thesis addresses the problem of direct illu

mination from environment maps. We propose a bidirectional sampling 

approach in which both the energy distribution in the environment map 

and the reflectance of the BRDF are taken into account. 

4.1 Bidirectional Importance Sampling 

We operate on the assumption that creating samples from only the environ

ment map or only the BRDF model is inexpensive, and that the visibility 

test dominates the cost. This assumption holds for scenes with complex 

geometry and for BRDF models optimized for sampling. In the case of pro

cedural shaders, for example, importance sampling is always difficult, but we 

can still operate if the shader provides information to support efficient im

portance sampling as proposed by Slusallek et al. [40]. In any case, visibility 

is typically evaluated by casting a ray through the scene and intersecting it 

with geometry. A ray cast operation is orders of magnitude more expensive 

than drawing samples in virtually every case. 

Under these assumptions, one can benefit from extra time spent in at-
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taining a good sample distribution that takes both the BRDF and envi

ronment map into account. Such a distribution selects only directions for 

visibility testing that have significant contribution to the reflected radiance 

of the surface under evaluation. 

Consider again the direct illumination integral 

Lr(tor) — / fr(ui —> ur) cos6iLi(<jJi)V(L0i)dwi, (4.1) 
Jn 

where Li is the illumination from the environment map, fr is the BRDF, and 

V is the binary visibility term. Conventional approaches perform importance 

sampling either from the intensity in the environment map according to the 

probability density 

" '•= T T T T T ' ( 4 - 2 ) 

or from the BRDF according to 

, \ frjUj -> U>r) COS 6j 

J n fr (ui ) COS t'jdcJj 

Notice that in Equation 4.3 the cosine term has been included in the PDF, 

as discussed in Section 3.5. 

Let us derive estimators for the reflected radiance Lr. When choosing 

sample directions uiij ~ q^tOi), Equation 4.1 can be estimated with LAT,L: 

r / \ 1 fr(ui,J: Ur) COS 9ijLi(Uij)V(uJi:j) 
LN,L{ur) = ^7 > — s ; 

Lite) Jn l K l ) 

L Li(ui)duji • . 

N 
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When sampling according to the BRDF with u>ij ~ qf(u>i), the corre

sponding estimator L^j is 

1 ^ fr(uitj—> ur) cos 9ijLi(u}ij)V(uJi:j) 

1 fri^ij ^r)cosf?j )jLi(o;jj)V'(a;j ij) 
fr{uijur) cosOij JQ 

fslfr(u)i-*VT)CQ8 0ij<L;i ^ 

N 1 

j = l 

Evaluating the variance of these estimators yields 

r L . 2 

-> var(Ljv,i) = ^ - ^ ( f r i ^ i -> wT.)cosf?iV'(wi)); 

/ x , r x J fr(uJiur) cos 9i2 

When proposing samples from the environment, variance in the result is 

proportional to the variance in the BRDF. Similarly, when proposing from 

the BRDF, variance is proportional to the lights. It follows that the greatest 

reduction in image noise occurs when samples are drawn from the function 

with greater variance. This is verified by intuition. If the BRDFs are dif-

fuse but the lighting spotty, then directions should be chosen according to 

the importance of the lights. On the other hand, if light sources in the en

vironment map are relatively broad but the surfaces glossy or shiny, then 

proposing from the BRDF will be the better thing to do. 

Either approach will produce significant noise if both the BRDF and the 

illumination contain any high frequency information. The solution of Veach 

and Guibas [44] was to linearly combine samples drawn exclusively from the 

lights or BRDF. However, a mix of samples still suffers from dependence on 
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the variances of the individual techniques, because the variance of a sum of 

terms equates to the sum of the variances of each term. 

Our approach is to reduce variance by sampling directly from the product 

distribution, 

Jn fr(oJi —> U>r) COS 9iLi(uJi)cLji ' 

Observe that the normalization term in Equation 4.4 is the direct illu

mination integral with the visibility term V(CJJ) omitted: In other words, 

this term is the exitant radiance in the absence of shadows. We refer to it 

as Lns ("radiance, no shadows"): 

L n S - = / fr(Vi -> Ur) COS 9iLi(u>i)duJi. (4.5) 

Jn. 

If we draw sample directions CJJJ ~ p{^i) according to the product dis

tribution in Equation 4.4, we can estimate Equation 4.1 with Ljv ) P, where 

1 ^ frjWjj -> Ur) COs9i>jLi(0Jij)V(uJij) 
LN,M) = ^ , 

_ J_y^£ frjUij u r ) COS 9jtj Ljjujjj) V(uj,j) . 
N fhi fr(Vij -+UJr) COS OitjLi(uJitj) 

LNA*»T) = ^ X > K > ) - (4-6) 

i = i 

We refer to LJV,p as the bidirectional estimator for the direct illumination 

integral. The evaluation of Equation 4.6 can be interpreted as taking the 

unoccluded reflected radiance Lns and scaling it by the average result of N 

visibility tests performed along directions that contribute most significantly 

to the radiance. 
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Evaluating the variance, 

L2 

coij ~ piyji) -> v&r(LN>p) = -^var(V(o; i)) 

Observe that the variance of the bidirectional estimator for the reflected 

radiance depends only on the variance in the visibility function. Variance 

in the lighting and BRDF has been completely factored away by sampling 

directly from the product distribution. The remaining question is how these 

samples can be drawn. 

Figure 4.1 contains angular plots of the probability densities correspond

ing to the various proposal distributions. The top image of Figure 4.1 is an 

image of the importance derived from environment map intensity. The cen

ter image is a plot of the BRDF for a surface patch whose normal is pointing 

at the horizon. The BRDF plotted here is a specular Phong BRDF with 

exponent 50. The bottom image is the product of the E M and BRDF. It is 

this product distribution that we'd like to sample from, because it directly 

corresponds to the reflected radiance of the surface patch. 

Figure 4.2 illustrates the benefit of sampling from the product distri

bution, as opposed to sampling from the E M or the BRDF individually. 

Sampling from the BRDF alone misses the bright lights in the environment 

(top image), while samples drawn from the environment do not lie in the 

BRDF (middle image). The bottom image, however, shows samples drawn 

according to the product distribution using our SIR technique, as described 

in Section 4.4. 
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Figure 4.1: From top to bottom: angular plots of the importance function 

of the Grace Cathedral E M , a specular Phong B R D F of exp 50, and their 

product. 
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F i g u r e 4.2: Samples drawn solely from the B R D F (top) or the environment 

(middle) vastly undersample the product distribution (bottom). The sample 

set in the bottom image was generated with our SIR technique; see Section 4.4. 
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4.2 The Challenge of Bidirectional Sampling 

The challenge in realizing the idea of bidirectional importance sampling 

is that the product of the BRDF and environment map is too high dimen

sional to precompute. The BRDF is a 4D function that maps from incoming 

directions to outgoing directions. The relevant 2D slice of the BRDF, corre

sponding to a specific outgoing light direction u>r, varies from point to point 

in the scene due to changes in the local surface orientation. The environment 

map is two dimensional, and thus the BRDF-EM product has six dimen

sions. Even with a coarse discretization of the BRDF, which might cause 

high frequency features in the BRDF to be lost, precomputing the product 

distribution and storing it in a table for sampling is obviously prohibitively 

expensive. 

Complicating matters further is the fact that the BRDF and environment 

map are usually specified relative to different coordinate frames. Typical pa-

rameterizations for the BRDF are local, either about the surface normal or 

the reflected light direction. The EM, on the other hand, is expressed in a 

global frame. Thus, precomputing the product of the BRDF and the envi

ronment for a single BRDF orientation is insufficient. One must either com

pute a sample rotation or add another two dimensions to the precomputed 

table, corresponding to a discrete sampling of possible surface orientations. 

The high-dimensional nature of the problem makes it difficult to use pre

computation for sample generation. We simply cannot afford to premultiply 

the two functions together. 

We suggest the following process for sampling from the product of the 

lights and the BRDF. First, create samples according to either the environ

ment map or the BRDF. Then, adjust the sample distribution such that the 
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directions chosen for visibility testing will be proportional to the product 

distribution. 

We have developed two solutions that realize this approach, one based 

on rejection sampling and the other on the sampling-importance resampling 

(SIR) algorithm. Note that the complete algorithm is a two-stage approach. 

That is, the local illumination integral is always estimated with importance 

sampling, but individual subproblems are solved with either rejection sam

pling or SIR. 

Our two sampling methods are detailed in the following two sections. 

4.3 Sample Generation Through Rejection 

c q ( X i ) 

x L ~q(x) x 

F i g u r e 4.3: Rejection sampling. A sample Xi ~ q{x) is accepted as being a 

valid sample of the target distribution p{x) if a uniform variate in [0, cq(x)] 

falls under p(x). 

Our first approach for sampling from the product distribution is through 

rejection sampling. Rejection sampling is a technique which allows us to 
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sample from a probability distribution known only up to a proportionality 

constant. This allows us to sample according to distributions, where the 

normalization constant is too expensive to compute explicitly (as is the case 

with the product distribution from Equation 4.4). Also, rejection sampling 

provides a simple procedure for sampling from arbitrary distributions that 

do not have simple analytical forms for sampling. 

Rejection sampling is illustrated in Figure 4.3. In order to create samples 

tOij ~ p(u)i), we can approximate P(LO%) with a PDF q(wi), such that p(u>i) < 

c-q(ui) for some constant c. We then generate random samples u>ij ~ qi^i), 

and accept them with a probability of p(tOij)/(c • q(u>ij)). 

Figure 4.4: Rejection sampling the product distribution. Both fmaxL and 

Lmaxf bound the product distribution fL. However, fmaxL is a tighter fit 

for this particular B R D F and E M . Thus, the acceptance rate is higher by 

proposing samples from the lights and rejecting against the max of the B R D F . 

In our case, one simple way of bounding p(u>j) from Equation 4.4 is to 
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use the global maximum of the BRDF as a conservative estimate for its 

contribution as illustrated in Figure 4.4. If Lm&x and fmax refer to the 

maximum values of both distributions, i.e. 

£ m a x := m a x ^ L ^ i ) , and 

/max := max^g/^i), 

then we can bound the target PDF as p(uJi) < /max -QL^i)- Note that 

qL is just the usual importance from the environment map alone, and so we 

can sample from it in constant time using CDF pre-integration and inversion 

or the alias method, as discussed in Section 3.2.2. In order to accept i V 

visibility samples, we will thus have to create M « /max • N environment 

map samples Uij through importance sampling, and then accept each sample 

individually with probability 

fr (iOij) cos 8ij • juLi{u>i)dlOi • 

/max ' Lns 

Both this formula and the final radiance estimate from Equation 4.6 

require the normalization term Lns from Equation 4.5. We can estimate 

this term using information that has already been computed during the 
) 

rejection sampling. Since we already evaluate both BRDF and environment 

map for M directions ~ qi,{uji), we can estimate Lns as 

Lns « ^ L i ^ ( h j i J2 fr K , - U, 0) COS 9^. (4.7) 
i = i 

Another interpretation of this method is that we estimate the unoc-

cluded illumination Lns with M samples, using importance sampling from 

the environment map. However, we only evaluate the visibility for i V of 
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those samples whose light contribution is significant enough to make visibil

ity tests worthwhile. The directions for the visibility tests are chosen in an 

unbiased fashion. 

So far, we have bounded the actual target PDF as a constant times the 

environment map PDF. This is appropriate if the BRDF contains mostly 

low frequencies, i.e. if fmax is a close bound of the real BRDF. If this is 

not the case, then most samples will be rejected and the rejection sampling 

will become inefficient. Instead, we can perform the same rejection sam

pling algorithm by approximating the environment map with a conservative 

bound and then selecting samples according to the real BRDF. Under this 

scheme, we now have p(wj) < Lmax • qf(ui), which amounts to generating 

samples from the BRDF alone, and then rejecting according to the product 

distribution as before. 

Given these two ways of rejection sampling, we usually want to draw 

the initial samples in such a way that the bounding constant is minimized. 

That is, if / m a x < Lmax we importance sample from the environment map; 

otherwise, we importance sample from the BRDF. In practice, we randomly 

choose which of the two methods to use, where the method with the smaller 

bounding constant is chosen with a higher probability. This is similar in 

spirit to the combination of sampling strategies proposed by Veach and 

Guibas [44]. 

Our rejection sampling approach has worked well in the experiments that 

we have performed (see Chapter 5). However, the inherent downside of using 

rejection sampling is that one cannot guarantee bounds on the execution 

time for creating a new sample. That is, if the area between c • q(u)i,j) and 

p(tOij) is large, the probability of sample acceptance will be low. One way 

of dealing with this is to choose a maximum number of sample attempts in 
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the rejection sampling. So long as at least one sample is accepted, this will 

still yield an asymptotically unbiased estimate of the reflected radiance. 

If no samples are accepted, a possible strategy could be to test visibil

ity for a random subset. Another possibility which is less expensive is to 

use the unoccluded illumination, where visibility has not been tested at all. 

While this introduces bias, it will only happen in very dark areas, where 

the product of illumination and BRDF is very small. In these areas, the 

visibility term will not have significant impact anyway. In practice, even in 

the presence of high specular BRDFs and environments, the rejection sam

pling acceptance probability has been sufficiently high so as to not require 

resorting to these biased methods. See Chapter 5 for a complete discussion. 

The next section presents our second method for sampling from the 

product distribution, which does not suffer from the unbounded execution 

time of the rejection sampling. 

4.4 Sample Generation Through 

Sampling-Importance Resampling 

In this section, we describe our second technique for sampling from the 

product distribution by motivating with a description of the importance 

sampling algorithm. 

Recall that the idea behind Monte Carlo integration is to approximate 

the integral /(/) = J f(x)dx by sampling from a target density p(x) and 

computing an estimate to /(/), 

N 
(4.8) 
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In our case, p(x) is the BRDF-EM product distribution of Equation 4.4. 

The idea behind the importance sampling algorithm [35] is to sample 

from p[x) by introducing an arbitrary proposal distribution q(x) that is eas

ier to sample from than p(x) and whose support includes p(x). Equation 4.8 

can be rewritten as / 

where W(XJ) oc is a measure of the importance of sample Xj. Conse

quently, if one can draw samples according to q(x) and evaluate W(XJ), a 

possible Monte Carlo estimate of /(/) is 

This leads to the sampling-importance resampling (SIR) algorithm [10, 

41, 43]. The goal of SIR is to introduce a resampling step to eliminate 

samples with low importance ratios w(x). SIR proceeds in two stages. In 

the first stage, a set of independent random samples X = {xi,... ,XM} is 

drawn from a proposal distribution q(x). In the second stage, a smaller set of 

samples Y = {yi, • • •, J/AT} is drawn from X with sample probabilities w(xi) 

proportional to their importance ratio j^ry- As the number of first-round 

samples M approaches infinity, the sample set Y can be shown to have been 

drawn directly from p. A requirement for the algorithm to be efficient is 

that q{x) be a good approximation to p(x) in the region of visibility. 

We can apply SIR as a solution to the problem of drawing samples from 

the lighting-BRDF product distribution. It is desirable for q(x), the proposal 

density for the first round of sampling, to be a reasonable approximation of 

N 

(4.9) 



Chapter 4. Sampling the Product Distribution 49 

p{x). Because p(x) in our case is the product distribution, natural choices for 

q(x) are probability densities based on either the BRDF or the environment 

map. In the second SIR stage, we resample the first-round draws according 

to w(xi) oc ^ry- The basic intuition here is that directions are proposed 

from a single distribution, then resampled (filtered) based on their value to 

the second distribution. 

Stage 1 Stage 2 
L(coitj) 

L(coi2) 
CO 

CO i,2 

CO i,N 

Figure 4 .5: Our resampling method. First, M samples are proposed from q/, 

the P D F of the B R D F . The candidate directions are then resampled based on 

the incoming light along those directions, producing N samples for visibility 

testing. JV is generally much less than M. 

This leads to our second method for approximating the illumination in

tegral, which proceeds in two stages. In the first stage, M sample directions 

are drawn according to qL-(wi) or qf(u>i). We store the sample and as

sociated weight w(uij), chosen to be w{u>ij) = fr(^i,j) when u>ij ~ qL^i) 
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and w(u>ij) = Li(u>ij) when Uij ~ qf(u)i). The second stage then resamples 

the stored sample directions according to the distribution of their weights 

w(u>i). Visibility is tested along each of the iV resampled directions. 

The total number of samples generated for each pixel is exactly M + N. 

This an improvement over rejection sampling for two reasons. Firstly, exe

cution time is tightly bounded. We no longer have to wait an indeterminate 

amount of time (possibly even indefinitely) for the acceptance criteria to 

pass and accept a sample as being valid. Using the SIR algorithm, samples 

can be drawn directly from the product distribution in constant time. 

The second improvement over rejection sampling is that the sample sizes 

M and TV can be freely chosen, yielding fine control over the tradeoff between 

quality and time. For example, the BRDF sample size can be adjusted based 

on the expense of sampling from the BRDF model. Also, it is possible to 

directly select N - the target number of visibility rays traced per pixel -

based on, for example, scene complexity. Because the cost of ray tracing 

typically dominates rendering time, our general approach for generating 

results has been to fix N and adjust M so as to increase or decrease the 

variance in resampled directions. As discussed in the next chapter, typical 

values of M we use are one to two orders of magnitude larger than N. 

It is interesting to note that prior strategies for sampling, which draw 

directly from the E M or BRDF alone, are just special cases of our SIR 

technique where M = N — 1. For example, proposing samples only from 

the lights can be achieved by SIR sampling with a single first-round sample 

drawn from the EM, and then trivially resampled in the second round with 

probability 1.0 because it is the only sample. 
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C h a p t e r 5 

Results 

This chapter presents the results of our techniques in comparison with pre

vious sampling strategies for rendering from environment maps. While both 

the rejection sampling and SIR methods increase the cost of sample genera

tion, we demonstrate significant quality improvements for the same compute 

time under the assumption of BRDF representations that support efficient 

evaluation. 

In all of our tests, the illumination comes from high dynamic range 

(HDR) environment maps, where the contrast ratio between bright and dark 

areas of the environment is high (several orders of magnitude). In principle, 

our techniques would work equally well under low dynamic range (LDR) 

lighting, where the ratio of bright to dark is at most 255 : 1. However, LDR 

EMs are not of sufficiently high-frequency to be interesting. Furthermore, 

the trend in rendering is to use HDR environments, which serve as a more 

accurate representation of real lighting conditions. 

The images in this chapter were generated with our ray tracer which uses 

a voxel grid as the acceleration data structure for intersection queries. Our 

comparisons examine the output quality of the various rendering algorithms 

for a fixed amount of computation time. We performed these tests on a 

single-processor 3.0GHz P4 running Linux. 



Chapter 5. Results 52 

Figures 5.1, 5.2 and 5.3 contain images of Michaelangelo's David in the 

Grace Cathedral environment. We use here the 700k-triangle version of the 

David model acquired from the Digital Michaelangelo Project [13]. In our 

implementation, intersecting a ray with the David model takes on average 

6.1 ps on our test machine. The Grace Cathedral environment is a 1024x512 

HDR map with a contrast ratio of 107 : 1. In these tests, each algorithm 

was given 12.0 seconds to render a 176x248 image. This image resolution 

was chosen in order to be able to distinguish differences between the images 

when presented in print form. 

In these three figures, the images on the top row show previous sampling 

strategies, while the images on the bottom row present our techniques. In 

each case, the upper-left image was rendered with 100 samples drawn from 

the environment map, while the upper-right image was rendered with 75 

samples from the BRDF. The images on the bottom row were each rendered 

with 15 visibility samples, chosen from 800 candidates; on the left is the SIR 

approach, and on the right, rejection sampling. 

Figure 5.1 shows the David rendered with a Phong BRDF model with 

coefficients ks = 1.0, kd = 0.0 and a specular exponent of 10. The BRDF 

in this case is a broad-lobed gloss. Observe that sampling from the E M 

produces a nicer image than sampling from the BRDF. This is because Grace 

is a highly specular environment map, and the BRDF here is glossy but still 

broad; drawing samples according to the BRDF is less informative than 

sampling according to the high-frequency lighting. The images generated 

by our techniques, however, are much better than either simple sampling 

strategy. Observe also that our methods are able to achieve this quality 

with several times fewer ray casts - in this case only 15 as opposed to 75 or 

100. 
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Figure 5.1: David in Grace Cathedral. Phong exp 10, ka = 1.0, kd = 0.0. 

176x248 image rendered in 12.0 seconds. Clockwise from top left: 100 E M 

samples; 75 B R D F samples; 15/800 rejection samples; 15/800 SIR samples. 
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Figure 5.2: David in Grace Cathedral. Phong exp 50, fcs = 1.0, kd = 0.0. 

176x248 image rendered in 12.0 seconds. Clockwise from top left: 100 E M 

samples; 75 B R D F samples; 15/800 rejection samples; 15/800 SIR samples. 
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Figure 5.3: David in Grace Cathedral. Phong exp 50, ks = 0.5, kd — 0.5. 

176x248 image rendered in 12.0 seconds. Clockwise from top left: 100 E M 

samples; 75 B R D F samples; 15/800 rejection samples; 15/800 SIR samples. 
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In Figure 5.2, David's BRDF is still a purely specular Phong (ks — 

1.0, kd — 0.0), but here the Phong exponent has been increased to 50. Here, 

the model's surface is very shiny; accordingly, sampling purely from the 

BRDF produces a better image than sampling from the environment map. 

Again, however, our techniques go further. Both the lighting and the BRDF 

in this scene are high-frequency, and yet our methods produce images that 

are of much higher quality. 

In Figure 5.3, David is again given a shiny Phong BRDF with exponent 

50. This time, however, we add a diffuse term (ks = 0.5, kd = 0.5). Observe 

how noisy the image produced by sampling purely from the BRDF has be

come. BRDF sampling makes little sense in this case, because the presence 

of a diffuse term sends samples in all directions, making the variance high. 

Our methods still outperform the straightforward sampling strategies, be

cause by sampling directly from the product distribution we disregard those 

directions which the BRDF accepts but the E M does not. 

Figure 5.4 shows David appearing with the same Phong BRDF as in 

Figure 5.3, but under a different lighting scheme, the St. Peter's Basilica 

environment map. Like the Grace Cathedral environment, St. Peter's is 

a 1024x512 E M with a contrast ratio of 107 : 1. However, the content of 

St. Peter's is somewhat lower frequency than Grace, and as such sampling 

solely from the E M does not perform as well for this scene as it did in Grace. 

Consequent, our technique stands out even more. 
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Figure 5.4: David in St. Peters. Phong exp 50, ks = 0.5, kd = 0.5. 176x248 

image rendered in 12.0 seconds. Clockwise from top left: 100 E M samples; 75 

B R D F samples; 15/800 rejection samples; 15/800 SIR samples. 
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How do our techniques do in situations where the B R D F is very low 

frequency? The images in Figure 5.5 shows a purely diffuse David (Phong 

coefficients ks = 1.0, kd = 0.1)) in Grace Cathedral. On the left is the image 

resulting from 100 samples drawn purely E M samples. On the right is the 

SIR technique with 25 samples ( M = 800, N = 25). In this case, because 

the B R D F is purely diffuse and thus smoothly varying, one might think 

that sampling from the E M alone would be all that is necessary to render 

a decent image. Nevertheless, our SIR technique produces a comparable 

image with a quarter of the rays, indicating that sampling from the product 

distribution is always desirable. 

Figure 5.5: David in Grace Cathedral. Diffuse Phong (ks — 0.0, kd = 1.0). 

176x248, 12.0 seconds. Left: 100 E M samples; Right: 25/800 SIR samples. 
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Figure 5.6 contains unzoomed images of David in Grace Cathedral. 

Figures 5.7 and 5.8 contain a comparison of our algorithm to that of 

Veach and Guibas [44], in which samples drawn from the individual E M 

and B R D F distributions are combined via a weighted sum to produce an 

estimate of the reflected radiance. Our technique is able to achieve superior 

image quality with far fewer rays. The results obtained from the combined 

sampling approach are an improvement over straightforward sampling ap

proaches; however, our method goes further to reduce variance than simply 

blending between the variances in the individual distributions. 

In summary, the results presented here clearly demonstrate that the 

approach of sampling directly from the product distribution outperforms 

previous sampling strategies. What is more, we are able to achieve compa

rable quality with far fewer rays, meaning that our techniques are particu

larly beneficial to renderings of complex scenes where ray-scene intersection 

queries are expensive. 

Figure 5.6: David in Grace Cathedral, viewed unzoomed. Phong exp 50, 

ks — 0.5, kd = 0.5. 228x272 image rendered in 18.0 seconds. From left to 

right: 110 E M samples; 13/900 SIR samples; 80 B R D F samples 
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Figure 5.7: Comparison between Veach and Guibas [44] (left column, 100 

samples) and our SIR technique (right column, 15/800 samples). 176x248 im

age rendered in 12.0 seconds. Specular Phong (ka = 0.5, kd = 0.5), exponents 

10 (top row) and 50 (bottom row). 
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Figure 5.8: Comparison between Veach and Guibas [44] (left column, 100 

samples) and our SIR technique (right column, 15/800 samples). 176x248 

image rendered in 12.0 seconds. Phong B R D F , exp 50, ks = 1.0, k<i = 0.0 
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Figure 5.9: Our SIR algorithm compared to the full solution. 268x220 image 

of the Dragon model (871k triangles) in Grace Cathedral. Top: converged 

image (hours); Bottom: SIR algorithm using 150/3000 samples (90 sec) 
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C h a p t e r 6 

Conclusions 

We have presented two Monte Carlo strategies for sampling the incident 

illumination from environment maps that take into account the product of 

the light and the surface reflectance. By providing a means of sampling 

from a more complex target distribution, our methods are able to achieve 

lower variance in the renderings of scenes with high frequency lighting and 

specular BRDFs, as compared to traditional importance sampling strategies. 

Note that although our proposed bidirectional methods take longer to 

generate samples than simpler approaches, the number of samples required 

to achieve good quality is considerably less than when sampling according 

to a simple function. For large datasets with complex structures, the time 

required to trace shadow rays will dominate the rendering time. In such 

cases, our methods will provide greater benefit over importance sampling 

from the E M or BRDF alone. 

On-going work for us is the examination of other sampling strategies 

that exist in the literature, such as iterative SIR, Metropolis-Hastings, and 

particle filtering [2]. The general idea behind these strategies is to use sam

ples that have already been drawn as a basis for proposing further, fitter 

samples. It would be interesting to explore how these methods of sampling 

from more complicated distributions could be applied to other problems in 

computer graphics. 
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A p p e n d i x A 

Details on the Alias M e t h o d 
for Sampling 

As mentioned in Section 3.2.2, we use the alias method of Vose [45] for sam

pling from discrete random distributions. Surprisingly, Vose's work appears 

to have been overlooked by the graphics community, where the transforma

tion method is the de facto standard for importance sampling. The alias 

method offers a number of advantages over CDF inversion, the most notable 

being a fast 0(iV)-time initialization algorithm. 

In his paper, Vose's description of the approach contains ambiguous pseu

docode; we therefore present a class called DiscreteDistribution which 

is similar to the class used in our implementation. DiscreteDistribution 
contains two methods: a constructor for initialization, and a method for 

drawing samples called sample(). The constructor operates on an input 

array of non-negative values which are used as distribution weights: 

DiscreteDistribution: .'DiscreteDistribution(double *probs, 
unsigned num): 

m_num( num ), m_probs( probs ) 
{ 

// C l a s s i f y the normalized weights as being 
// either large ( > 1/N ) or small ( <= 1/N ). 
const double stdWeight = 1.0 / m_num; 
Vector small, large; 

for ( unsigned i = 0 ; i < m_num ; ++i ) 
i f ( m_probs[i] > stdWeight ) 
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> 

large.addObject( i ); 
else 

small.addObject( i ); 

// Assign a l i a s indices. 
m_alias = new unsigned[m_num]; 

while ( ! large. isEmptyO && ! small. isEmptyO ) { 
const unsigned sm = small.getAndRemoveLastObject(); 
const unsigned l g = large.getAndRemoveLastObject(); 

m_probs[lg] -= stdWeight - m_probs[sm]; 
m_probs[sm] *= static_cast<double>( m_num ); 
m_alias[sm] = l g ; 

i f ( m_probs[lg] > stdWeight ) 
large.addObject( l g ); 

else 
small.addObject( l g ); 

> 

for ( unsigned i = 0 ; i < small.size() ; ++i ) 
m_probs[ small[i] ] = 1.0; 

for ( unsigned i = 0 ; i < large.size() ; ++i ) 
m_probs[ large[i] ] = 1.0; 

One can now draw samples from the distribution by calling the sample () 

method, which returns an index in [0, JV — 1]. 

unsigned CDiscreteDistribution::sample() const 
{ 

// Generate a random number i n [0, m_num). 
const double u = uniform() * m_num; 
const unsigned i = static_cast<unsigned>( u ); 

return ( u - i > m_probs[i] ) ? m_alias[i] : i ; 
} 


