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Slicing is a well-known program reduction technique where for a given program P and a variable

of interest v at some statement p in the program, a program slice contains those set of state-

ments belonging to P that affect v. This article presents two algorithms for interprocedural slic-

ing of concurrent programs–a context-insensitive algorithm and a context-sensitive algorithm. The

context-insensitive algorithm is efficient and correct (it includes every statement that may affect

the slicing criterion) but is imprecise since it may include certain extra statements that are unnec-

essary. Precise slicing has been shown to be undecidable for concurrent programs. However, the

context-sensitive algorithm computes correct and reasonably precise slices, but has a worst-case

exponential-time complexity. Our context-sensitive algorithm computes a closure of dependencies

while ensuring that statements sliced in each thread belong to a realizable path in that thread.

A realizable path in a thread with procedure calls is one that reflects the fact that when a

procedure finishes, execution returns to the site of the most recently executed call in that thread.

One of the novelties of this article is a practical solution to determine whether a given set of

statements in a thread may belong to a realizable path. This solution is precise even in the presence

of recursion and long call chains in the flow graph.

The slicing algorithms are applicable to concurrent programs with shared memory, interleaving

semantics, explicit wait/notify synchronization and monitors. We first give a solution for a simple

model of concurrency and later show how to extend the solution to the Java concurrency model. We

have implemented the algorithms for Java bytecode and give experimental results.
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1. INTRODUCTION

Slicing is a program reduction technique that is useful in debugging [Agrawal
et al. 1993], program maintenance [Gallagher and Lyle 1991], Y2K compliance
transformations [Nanda et al. 1999], reverse engineering [Beck and Eichmann
1993], program testing [Harman and Danicic 1995] and applications that in-
volve understanding program behavior. The slice of a program with respect to
a program point p and a variable x, consists of all statements and predicates
of the program that might affect the value of x at point p [Weiser 1984]. More
details may be found in Binkley and Gallagher [1996] and Tip [1995].

In this article we show how to compute the interprocedural slice of concurrent
programs. We consider two models of concurrency - a simpler model where con-
currency is represented by the classical cobegin-coend [Dijkstra 1968] state-
ments and the Java concurrency model.

The original slicing algorithm by Weiser [Weiser 1984] was based on iterative
data flow analysis. Subsequently Ottenstein and Ottenstein [Ottenstein and
Ottenstein 1984] introduced the notion of slicing using Program Dependence
Graphs (PDG). A PDG is a graph in which nodes, representing assignments
and conditions in the program, are connected by control and data dependence
edges. The slice is defined with respect to a given node in this graph as the
set of all the nodes on which the given node is directly or transitively depen-
dent. Thus, given the PDG, the slice can be computed by a simple reachability
algorithm [Ottenstein and Ottenstein 1984; Horwitz et al. 1989].

Venkatesh [Venkatesh 1991] classifies static slicing algorithms as “exe-
cutable” and “closure” slices. Closure slices contain the set of statements that
are related to the variable of interest through a closure of dependences and
are not necessarily either syntactically correct or executable programs, that is,
programs which on execution preserve the behavior of the original program.
Weiser’s [1984] algorithm produces executable slices. However, his algorithm
does not produce precise slices for programs with procedures since it fails to ac-
count for the calling context of procedures. Horwitz et al. [1990] were the first to
address the issue of calling contexts and gave a closure based context-sensitive
slicing algorithm for slicing programs with procedures. Papers on generating se-
mantically correct slices for sequential programs include Harman et al. [2003],
Yang et al. [1992], and Binkley et al. [1995]. In this article, we present a closure
algorithm for generating context-sensitive slices for concurrent programs. This
work appeared in the Ph.D. dissertation of the first author [Nanda 2001].

In slicing programs, there are two main issues:

(1) Correctness. A slice is correct if it includes, at least, all the program state-
ments that affect the criterion. In the extreme case, the complete program
is always a correct slice. A slice is incorrect if it excludes some program
statements that should be in the slice.

(2) Precision. Given two correct slices, one slice is more precise than the other
if it contains fewer program statements.

Ideally, one would like to compute the correct slice that is the most precise.
But this is, in general, not computable [Weiser 1984; Müller-Olm and Seidl
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2001; Ramalingam 2000]. Hence, we try to compute a slice that is correct and as
precise as possible. There are three main sources of imprecision in closure based
interprocedural slicing of concurrent programs—(1) interprocedural paths are
not transitive, (2) interference dependence is not transitive and (3) backwards
reachability in a dependence graph may give imprecise results.

(1) A realizable path is one that corresponds to a legal call/return sequence
where each return statement brings control back to the point just after the cor-
responding procedure call was made [Sharir and Pnueli 1981]. Interprocedural
paths may not be transitive. A realizable path from n1 to n2 and a realizable
path from n2 to n3 does not imply that n1, n2 and n3 lie along a realizable path.
The problem of intransitivity of paths in interprocedural slicing of sequential
programs has been solved by Horwitz et al. [1990]. A context-sensitive slice is
one that computes only those nodes that lie on a realizable path to the node
that represents the slicing criterion. It has been shown [Harman et al. 2003],
that a context-sensitive slice may be more precise than a context-insensitive
slice.

(2) Interference dependence arises when a node uses a variable that was de-
fined in a parallel executing thread. Interference dependence is not transitive.
Consider two nodes n1

i and n1
k in a thread θ1 and a node n2

j in a thread θ2. An

interference dependence from n1
i to n2

j and an interference dependence from n2
j

to n1
k does not imply a dependence from n1

i to n1
k unless there is a path from n1

i to
n1

k in θ1. This problem was first identified and solved by Krinke [Krinke 1998].
(3) Müller-Olm and Seidl [2001] show that backward reachability in the de-

pendence graph can give sub-optimal results when slicing concurrent programs.
This is because of a further weakness in interference dependence. Their results
show that an interference dependence from n1

i to n2
j and an interference depen-

dence from n2
j to n1

k does not imply a dependence from n1
i to n1

k even if there is

a path from n1
i to n1

k in θ1. This is because the definition at n1
i may get killed

along concurrent threads.
In this article, we present a context-sensitive slicing algorithm for concur-

rent programs. Due to the limitations of backward reachability in the presence
of interference dependences, our algorithm generates a conservative slice. A
conservative slice is one that includes every node that is required as well as
some unnecessary nodes.

In order to compute a context-sensitive slice it is necessary to ensure that
nodes sliced in a particular thread form a realizable path in that thread.1 We
give a practical solution to determine whether a given set of nodes belonging
to a thread lie on a realizable path in that thread. We call this the “Realizable
Path” problem. A more formal definition is given in Section 5. We give a precise
solution to the realizable path problem. Essentially, we collapse every strongly
connected region in the call graph into a single node each. On the resultant
acyclic interprocedural call graph, we generate a topological ordering of the
nodes that performs a virtual inlining of called procedures. The topological
ordering renders the interprocedural call graph into an equivalent intrapro-
cedural call graph. Then, when adding a node to a path it is not necessary to

1Note that computation of realizable paths pertains to a single thread of a concurrent program.
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check the entire path for the existence of a realizable path—it is sufficient to
check it against the previously added node based on the topological numbering.
Thus, path reachability is performed efficiently and precisely.

The context-sensitive algorithm has exponential complexity. We also give a
more efficient but less precise, context-insensitive slicing algorithm. The algo-
rithms are described using the cobegin-coend model of concurrency. However,
we show how to map the Java concurrency model to the cobegin-coend model
(with certain limitations). We have implemented both the algorithms on Java
bytecode and tested them on Java programs (maximum size of 105 statements).
Although the context-sensitive algorithm has exponential complexity we found
that, with certain optimizations, it was practical for the programs that we used
for testing.

Recently, Krinke [Krinke 2003] has published a solution to context-sensitive
interprocedural slicing of concurrent programs. To ensure that nodes sliced in
a thread belong to a realizable path, Krinke maintains “callstrings” with each
node in the slice. The callstrings keep track of the calling context. However,
when slicing with callstrings it is not possible to make use of (intra-thread)
summary edges and this makes the algorithm extremely expensive, not only in
terms of maintaining callstrings but also in terms of visiting called procedures
repeatedly for each calling context. Further, the callstrings approach suffers
from combinatorial explosion of the callstrings and is usable only if the length
of the callstrings is limited to 2 or 3 elements—which decreases the precision.
To partially improve the efficiency, Krinke computes a “chop” of the graph be-
tween the slicing criterion and every node in the thread that has an incoming
interference dependence edge. Nodes that are not in the chop may be sliced
using summary edges. However, the remaining nodes must be sliced using the
expensive and imprecise callstring approach. Further, maintenance of chops
may be complex in the case that there are multiple slicing criterion in a single
thread. We compare our algorithm with Krinke’s in Section 10.

An algorithm for interprocedural slicing of concurrent programs has been
presented by Zhao [Zhao 1999]. However, we show that this algorithm is neither
context-sensitive nor correct.

Contributions

—A context-insensitive slicing algorithm for concurrent programs which is cor-
rect and has polynomial complexity.

—An algorithm to determine whether a given set of nodes may form a realizable
path in a thread.

—A context-sensitive slicing algorithm for concurrent programs which is com-
paratively more precise but has a worst case exponential complexity.

—Optimizations on the basic context-sensitive slicing algorithm and experi-
mental evaluation of the algorithms.

1.1 Organization

In Section 2, we give some background information about slicing of sequential
and concurrent programs, and in Section 3, we motivate the issues of correctness
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and precision of interprocedural slices for concurrent programs. In Section 4,
we give a context-insensitive slicing algorithm for a simple concurrency model.
Section 5 gives an algorithm to determine whether a given set of nodes form
a realizable path. Using this algorithm we extend the context-insensitive algo-
rithm to a context-sensitive solution by ensuring that the nodes sliced in each
thread lie on a realizable path in that thread (Section 6). In Section 7, we ex-
tend the algorithm to programs with nested threads and threads nested within
loops. In Section 8, we extend the algorithm to concurrent Java. We give exper-
imental results in Section 9. Section 10 gives information about related work
and Section 11 concludes this article.

2. BACKGROUND

As much work has been done in the area of slicing, we give a brief overview of
the current state of the art in sequential and concurrent programs.

2.1 Interprocedural Slicing of Sequential Programs

Unlike intraprocedural slicing, mere reachability produces imprecise slices in
programs with procedure calls. The interprocedural slice of a program is com-
puted on the system dependence graph (SDG) using a two-phase algorithm
[Horwitz et al. 1990]. Each procedure in the program is represented by a PDG,
and the SDG is built by joining the PDGs with special edges. At every proce-
dure there is a formal-in node for each global variable and parameter that may
be modified or referenced and a formal-out node for each global variable and
parameter that may be modified by the procedure. At each call site, there is an
actual-in node for each formal-in node and an actual-out node for each formal-
out node. There is a call edge from the call node to the ENTRY node of the called
procedure. Parameter-in edges connect corresponding actual-in nodes to formal-
in nodes, and parameter-out edges connect formal-out nodes to actual-out nodes.
Summary edges connect actual-in nodes to actual-out nodes to represent tran-
sitive flow dependencies induced by called procedures. The slicing criterion is
a node in the SDG.

Horwitz et al. [1990] circumvent the calling context problem using summary
edges in a two-phase slicing algorithm. In the first phase the algorithm iden-
tifies the nodes that can be reached from the slicing criterion, s in procedure
P , without descending into procedures called by P . The algorithm traverses
data, control, summary, call and parameter-in edges and ignores parameter-
out edges. In the second phase the algorithm identifies nodes that reach s from
procedures (transitively) called by P . The algorithm traverses data, control,
summary and parameter-out edges and ignores parameter-in and call edges.
The summary edges allow the algorithm to slice across an entire procedure
without descending into it.

2.2 Intraprocedural Slicing of Concurrent Programs

Consider the simplest model of concurrent programs that consist of processes
or threads which interact via shared variables with atomic memory reads and
writes. Threads share the same address space and execute concurrently with
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Fig. 1. (a) A threaded CFG with nested threads, (b), (c) threaded CFGs with threads nested within

a loop.

each other with complete interleaving semantics. There is no explicit synchro-
nization between the threads. At the language level the classical cobegin-coend
construct is used to express the parallelism. Threads generated by a cobegin
statement synchronize at the corresponding coend statement. There is no other
synchronization between the threads. An abstract representation of the con-
current programs is the threaded control flow graph (TCFG) [Krinke 1998] as
shown in Figure 1.

Let START θi represent the START node of a thread θi and START θ j repre-
sent the START node of a thread θ j , then the two threads may execute in par-
allel if the closest common ancestor of START θi and START θ j is a cobegin
node. We define a function ||(ni, nj ) to be true for two nodes ni and nj , if
they belong to threads that may execute in parallel. Interference dependence is
defined as:

Definition 1. A node n1 is interference dependent on a node n2 if n2 defines
a variable v, n1 uses the variable v, and n1 and n2 execute in parallel.

The Threaded PDG (TPDG) is an extension of the PDG to concurrent pro-
grams. TPDGs capture, besides data and control dependencies, additional de-
pendencies arising out of interference between concurrent execution of threads.
Interference dependence is fundamentally different from data or control de-
pendence as it is intransitive. In Figure 1(a), K2 is interference dependent on
N2 and N2 is interference dependent on K3. Yet K2 cannot be dependent on K3
in any execution of the program. Hence a slicing algorithm that computes a
simple transitive closure on the TPDG could generate an imprecise slice.

2.2.1 The Basic Algorithm. The reachability algorithm can be extended
to compute comparatively precise slices [Krinke 1998]. The slicing algorithm
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starts at the slicing criterion s and traverses backwards along data, control and
interference dependence edges. At each step the algorithm maintains a tuple
of nodes indicating the last node traversed in each thread. When following an
interference dependence edge from a node nj in a thread θ j to a node ni in a
thread θi, it checks if there is a path from ni to the last node traversed in θi.
For example, in Figure 1(a) to find the slice of K2 in θ1, the algorithm creates
the tuple [⊥, K2, ⊥, ⊥, ⊥] which has five elements—one for each thread in the
graph. The tuple indicates that K2was the last node visited in θ1 and ⊥ indicates
that no node has been visited in the corresponding thread. K2 is interference
dependent on N2 in θ2. The node corresponding to θ2 in the tuple is ⊥ and so
N2 is added to the slice with the tuple [⊥, K2, N2, ⊥, ⊥]. Next N2 is interference
dependent on K3 in θ1. The tuple node corresponding to θ1 is K2 and there is
no path from K3 to K2 and hence K3 is rejected from the slice. However, this
algorithm is imprecise in the presence of nested threads. N2 is interference
dependent on L2 in θ3 and M2 in θ4. The tuple nodes corresponding to θ3 and θ4

are ⊥ and so L2 and M2 would get added to the slice (which is imprecise).

2.2.2 Nested Threads. Krinke’s algorithm has been extended to handle
nested threads and threads nested within loops [Nanda and Ramesh 2000].
We give an informal description of the extensions. To handle nested threads
the algorithm is extended as follows. In Figure 1(a) to find the slice of K2 in
θ1, the algorithm creates the tuple [K2, K2, ⊥, K2, K2]. The node corresponding
to θ1 is marked K2 as this was the last node traversed in θ1. The nodes corre-
sponding to θ0, θ3 and θ4 are also marked K2 since each of these threads may
execute sequentially with θ1 (this is required to handle nested threads). K2 is
interference dependent on N2 in θ2. The tuple node corresponding to θ2 is ⊥ and
so N2 is added to the slice with the tuple [N2, K2, N2, K2, K2]. Since θ0 executes
sequentially with θ2, the tuple corresponding to θ0 is also updated to N2. The
other tuple nodes are not changed. N2 is interference dependent on K3 in θ1, L2
in θ3 and M2 in θ4. The tuple node corresponding to these threads is K2. Since
there is no path from K3, L2 or M2 to K2, each of these nodes will be rejected.

2.2.3 Threads Nested in Loops. In Figure 1(b), K3 is interference dependent
on L3 which is interference dependent on K5. There is a path from K5 to K3
induced by the loop and so the slicing algorithm would add K5 to the slice
of K3. But it is not possible for K3 to be transitively dependent on K5 as the
definition at K5 is killed by the definition at L2 and the definition at L3 is killed
by the definition at K2. On the other hand, in Figure 1(c) K2 is interference
dependent on L2 which is interference dependent on K3. In this case it is correct
to add K3 to the slice of K2. To handle threads nested within loops, the algorithm
differentiates between data dependences and loop-carried data dependences
that cross thread boundaries. In Figure 1(c), there are two edges between K2 and
L2, an interference dependence edge and a loop-carried data dependence. A loop
is induced by a backedge in which the destination dominates the source [Aho
et al. 1986]. Let nb be the source of the backedge of the loop that induces a loop-
carried data dependence. Then each loop-carried data dependence is treated as
a traversal through nb and tuples are updated accordingly. In addition when
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Fig. 2. Example showing incorrectness of the two-phase algorithm. The nodes in the thickened

boxes help navigate the slice of print x. The nodes in the dashed boxes are the ones that do not

get added to the slice, thus generating an incorrect slice.

traversing an interference dependence edge from ni in θi to nj in θ j , let n′
j be

the last node visited in θ j . Then the reachability test from nj to n′
j is restricted

to paths enclosed within relevant subregions rather than the entire TCFG. The
relevant region is defined as the region enclosed between the cobegin node that
is the closest common ancestor of ni and nj and its corresponding coend node.
Details and proof of correctness may be found in Nanda and Ramesh [2000].
Note that this approach is limited to structured programs as loop-carried data
dependence is not defined in irreducible CFGs.

3. MOTIVATION—INTERPROCEDURAL SLICING
OF CONCURRENT PROGRAMS

Consider simple concurrent programs with procedures based on cobegin-coend
parallelism where threads are not nested and threads may not be nested within
loops. The concurrent program is represented by an interprocedural threaded
control flow graph (ITCFG). A threaded system dependence graph (TSDG) is an
SDG with interference dependence edges (as shown in Figure 2). The complete
set of edges, E in the TSDG are the data dependence, control dependence,
interference dependence, call, summary, parameter-in and parameter-out edges
which are denoted by Edd, Ecd, Eid, Ec, Es, Epi and Epo respectively. The slicing
criterion is defined as a node in the TSDG.

Müller-Olm and Seidl [2001] define for a program point p of a program P ,
the optimal slice Sopt(p) is the set of statements ni that affect p given that all
conditionals in P are interpreted as non-deterministic choices. They have also
shown that Sopt(p) is not computable.

On the ITCFG, G∗ of a concurrent program, we define:

Definition 2. A realizable path in a thread of a concurrent program is a path
in which “returns” are matched with corresponding “calls” [Reps et al. 1994].
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Definition 3. An interprocedural threaded witness is an ordered sequence
of nodes 〈n1, n2, . . . , nk〉 belonging to G∗ such that any subsequence of nodes
ni1 , ni2 , . . . , nik belonging to the same thread, θi, form a realizable path
in θi.

Now we define our notion of slice, which is weaker than optimal slices. In-
formally, the context-sensitive slice S(p) of a TSDG at a node p consists of all
nodes n on which p is transitively dependent in such a manner that only inter-
procedural threaded witnesses are generated in the slice. S(p) represents the
slice that is both correct and context-sensitive. More formally,

Definition 4
S(p)={q | P = 〈n1, . . . , nk〉,

q = n1

e1−→· · · ek−1−−→ nk = p, ei ∈ E ′

E ′ = Edd ∪ Ecd ∪ Eid ∪ Ec ∪ Epi ∪ Epo

P is an interprocedural threaded witness in the corresponding
ITCFG }

S(p) is less precise than Sopt(p) [Müller-Olm and Seidl 2001]. However, we
believe that it is a reasonable notion and can be computed. We will give an al-
gorithm, which we call the “context-sensitive algorithm” that exactly computes
S(p). This algorithm has exponential complexity. We also give an efficient algo-
rithm, which we term the “context-insensitive algorithm”, that computes a su-
perset of S(p). Both the algorithms compute correct slices although the context-
sensitive algorithm computes more precise slices than the context-insensitive
one. We introduce three examples to motivate the issues of correctness and
precision.

3.1 Correctness Issues

Consider a simple adaptation of the two-phase algorithm for sequential pro-
grams [Horwitz et al. 1990] with extensions for interference dependence, where
interference dependence edges are traced in both Phase 1 and Phase 2 in ad-
dition to the other standard edges [Zhao 1999]. Applying this algorithm to the
node K8 in Figure 2 yields the following results. In Phase 1, K8 is data dependent
on K7 which is parameter-out dependent on K6 in procedure P1. Therefore, K6
will be sliced in Phase 2.

In Phase 2, K6 is data dependent on K5. K5 is data dependent on K4, interfer-
ence dependent on L11 and L12 in procedure P2 in thread θ2 and interference
dependent on L7 in θ2. L12 is data dependent on L10 which is parameter-in de-
pendent on L5. Since the algorithm is now in Phase 2, L5 will not be added to
the slice. However, L7 is summary dependent on L5 and hence L5 will eventually
get added to the slice along with its transitive dependencies. Now consider the
dependencies arising from L11. Of these, L11 is data dependent on L9 which is
parameter-in dependent on L4. Since the algorithm is in Phase 2, L4 will not be
added to the slice. As a result L4 and nodes that are transitively dependent on
it (L2) will never get added to the slice. Hence the two-phase algorithm gives
an incorrect slice.
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Fig. 3. Illustrating inter-thread summary edges. The nodes are labeled Mi in θ0, Ki in θ1, and Ni

in θ2. The thickened boxes do not show a complete slice but help navigate the relevant nodes in

the two-phase slice of K12. The dashed, thickened boxes show some of the nodes that do not get

added to the slice. The inter-thread summary edges are notional in the sense that they show the

inter-thread transitive dependency, but they are not explicitly computed by any algorithm. The

numbers in circles indicate the topological order of the nodes after inlining and are used in the

context-sensitive slicing algorithm.

3.1.1 Interthread Summary Edges. Another problem with applying the
two-phase algorithm directly is that the summary edges do not adequately rep-
resent transitive dependencies in the presence of threads since there may be
transitive dependencies that cross thread boundaries. In fact, summary edges
are not computable in concurrent programs [Ramalingam 2000].

Consider the slice of K12 in Figure 3. In Phase 1, we find that K12 is parameter-
out dependent on K11. In Phase 2, K11 is summary dependent on K7 and
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parameter-out dependent on K26. Further, we trace the following dependen-
cies backwards: K26 ← K25 ← N4 ← N3 ← N8 ← N7 ← K21 ← K19. K19 is
parameter-in dependent on K8 but since the algorithm is in Phase 2, K8 will
not get added to the slice and nor will any of the nodes that it is dependent on
(such as K2). Similarly, K9 and its dependencies will also not get added to the
slice.

Here the problem is that some inter-thread transitive dependencies are miss-
ing. There is a transitive dependence from the formal-in node, K19 to the formal-
out node, K26, and from K20 to K26 which should induce inter-thread summary
edges from K8 to K11 and K9 to K11, respectively. As these are inter-thread tran-
sitive dependencies they are not considered by the standard [Horwitz et al.
1990] intra-thread summary edge algorithm. As mentioned earlier, this is not
computable.

3.2 Precision Issues

Even if it were possible to compute all summary edges, this algorithm remains
imprecise and context-insensitive. In Figure 4(a), we show a program and its
ITCFG, and the corresponding TSDG is in Figure 4(b). Consider the slice of M6
in Figure 4. Clearly, M6 is dependent on the call to f1 at M5 but not on the call
to f1 at M11. But the simple two-phase algorithm adds M11 to the slice of M6
as follows: M6 is parameter-out dependent on M21 in procedure f1 and M21 ←
M19 ← N3 ← M13 ← M11.

It might appear that a naive marriage of Krinke’s algorithm and Zhao’s
algorithm would generate precise context-sensitive slices. However, this is not
the case because unlike a single procedure program, paths may not be transitive
in programs with multiple procedure calls.

3.2.1 Intransitivity of Interprocedural Paths. Determining whether there
is a realizable path between any two nodes in the interprocedural control flow
graph of a sequential program is possible using standard techniques of inter-
procedural control flow analysis of programs [Burke 1990; Callahan 1988].
Let the relation Reach(ni, nj ) be true if there is a realizable path from ni

to nj and false otherwise. For example, in Figure 4(a), Reach(M8, M20) and
Reach(M20, M19) are true but Reach(M11, M8) is false. In programs with proce-
dure calls, the composition of Reach may not be a realizable path. That is, given
that Reach(na, nb) and Reach(nb, nc) are true, the composition Reach(na, nb) ◦
Reach(nb, nc) does not imply that 〈na, nb, nc〉 is a realizable path. For example,
Reach(M8, M20) ◦ Reach(M20, M19) does not imply that there is a realizable path
through 〈M8, M20, M19〉.

As a consequence, a simple extension of Krinke’s algorithm to concurrent
interprocedural slicing generates context-insensitive slices. Consider a simple
extension of the two-phase algorithm where we keep track of the last node
visited in each thread. The slice of M14 in Figure 4(b) would trace the follow-
ing dependencies: In Phase 1, M14 ← M12 ← M21. In Phase 2, M21 ← M19 ←
N3. Since N3 is in θ2 the algorithm remembers that the last node visited in θ1

was M19. Next, N3 ← M20. When the algorithm re-enters θ1 it finds that there
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Fig. 4. (a) An ITCFG. The nodes are labeled Ki in θ0, Mi in θ1 and Ni in θ2. The numbers in the

circles indicate the topological order of the nodes after inlining the calls. (b) The corresponding

TSDG, depicting intransitivity of paths. The darkened nodes trace part of a context-insensitive

slice of M14. The darkened dashed node would not be added in a context-sensitive slice.
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is a realizable path from M20 to M19 (Figure 4(a)) and so M20 is added to the
slice.

Note that the path from M20 to M19 is an interprocedural path that corre-
sponds to an execution of M20 from the call at M5 followed by an execution of
M19 from the call at M11. However, the path information has no way of keeping
track of the calling contexts associated with each node.

Further, M20 ← N2. On re-entering θ2, the algorithm checks that there is a
path from N2 to N3. Now, N2 is interference dependent on M2 and M8. Both have
a path to M20 and so both will be added to the slice. But adding M8 violates the
realizable path condition. To understand why, observe that the path traced by
the algorithm within θ1 is as follows : M8 → M20 → M19 → M21 → M12 → M14. The
subsequence of nodes in θ1 is 〈 M8, M20, M19, M21, M12, M14 〉. Although there is a
realizable path between every pair of nodes in the sequence, yet the composition
of the realizable paths is not a realizable path in θ1.

3.3 Recapitulation

This section has highlighted the following points

—The two-phase algorithm when applied to concurrent programs may give
incorrect slices.

—In concurrent programs, computation of summary edges is undecidable as
the summary edges in a concurrent program may be induced by cross-thread
dependences. Cross-thread dependencies must be computed without using
summary edges else some nodes may be missed by a slicing algorithm, re-
sulting in an incorrect slice.

—To compute a context-sensitive slice it is necessary to be able to determine
whether a set of nodes belong to a realizable path.

In Section 4, we will explain how to solve the correctness problem. In Section 5,
we solve the realizable path problem and in Section 6 we put the two solutions
together to compute correct, context-sensitive slices.

4. A CONTEXT-INSENSITIVE SLICING ALGORITHM

In this section we give a fast slicing algorithm which computes correct but
possibly imprecise slices.2 First we make an observation about two-phase slic-
ing of sequential programs (or a single thread of a concurrent program). In a
sequential program:

—When computing the slice of a node ni, for every node, nj , that is added to
the slice in Phase 1, the slice of nj is available as a subset of the slice of ni

that is computed. That is, every node that nj is dependent on gets added to
the slice.

—If the node nj is added to the slice in in Phase 2, then only the relevant subset
of the calling contexts of nj are added to the slice of ni.

2Note that this algorithm is intra-thread context-sensitive, but inter-thread context-insensitive.
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We need to extend the two-phase algorithm to handle inter-thread dependen-
cies. Since inter-thread summary edges are not computable we need to capture
these dependencies while traversing interference dependence edges. The basic
idea behind the interprocedural slicing algorithm for concurrent programs is
as follows:

—A node ni that is reached via an interference dependence edge needs to be
sliced in Phase 1, since we need to find all the nodes that it is dependent
on. So whether the interference dependence edge is traversed in Phase 1
or Phase 2, ni must be sliced in Phase 1. This implies that if an interfer-
ence dependence edge is discovered during Phase 2, we need to run a sub-
sequent pass in Phase 1 for ni (and its corresponding Phase 2). This (as
we will prove later) also solves the problem of transitive dependencies that
cross threads.

—A node nj that is added to the slice in Phase 2 may be traversed again in a
subsequent Phase 1 due to a transitive dependence that includes an interfer-
ence dependence edge. Then although nj has been sliced before it will have
to be sliced again in Phase 1, since Phase 2 generates only a subset of all the
nodes that nj is dependent on. To handle this we color the nodes with three
colors rather than two colors as in the two-phase algorithm.

4.1 The Algorithm

The slicing algorithm essentially puts a loop around the traditional two-phase
algorithm [Horwitz et al. 1990]. The purpose of the loop is to ensure that nodes
reached via an interference dependence edge are sliced in Phase 1. Our slicing
algorithm uses three lists. Each time a node is reached through an interference
dependence edge, it is added to the outermost worklist w0 and subjected to a
complete two-phase slice. The algorithm iteratively applies a 2-phase slice to
every node in w0.

Our algorithm uses three colors for marking a node. We call the colors phase1,
phase2 and undefined and define a transitive order undefined < phase2 <

phase1 on them. Initially all the nodes in the TSDG are colored undefined.
In Phase 1, for the nodes reached by tracing backwards the data dependence,

control dependence, summary dependence, parameter-in dependence, and call
dependence edges we check the color of the node. If it has already been colored
phase1 we do not need to slice it again, else we color it phase1 and insert it into
worklist w1. For nodes reached via interference dependence edges, if they have
been colored phase1 already, we ignore them, else they are colored phase1 and
added to the outermost worklist w0. For a node reached via a parameter-out
dependence edge, if it is still colored undefined it is colored phase2 and added
to the worklist w2. If it had already been colored phase1 or phase2 it need not
be added to the worklist again.

In Phase 2, also nodes reached via interference dependence edges are
colored phase1 and added to w0 if they are not already colored phase1. Nodes
reached via data dependence, control dependence, summary dependence, and
parameter-out edges are colored phase2 and added to the worklist w2 if they
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Fig. 5. The context-insensitive three-color iterated two phase slicing algorithm.

have not already been colored either phase1 or phase2. Parameter-in and call
edges are ignored.

The final slice consists of every node that has been colored either phase1 or
phase2. The algorithm is given in Figure 5.

Example 1. Let us slice the program in Figure 2. Initially K8 is added to the
worklist w0. Then K8 is extracted and a 2-phase algorithm is applied to it. We
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use the shorthand notation “Ki ← Kj” to indicate that Ki is dependent on Kj.
The steps are as follows:

—Iteration 1:
—Phase 1: K8 is data dependent on K7 which is parameter-out dependent on

K6 in procedure P1. K6 is inserted into w2.
—Phase 2: In Phase 2, K6 is data dependent on K5. K5 is data dependent on

K4, and K4 is inserted into w2. K5 is interference dependent on L11 and L12
in procedure P2 in thread θ2 and interference dependent on L7 in θ2. L11,
L12 and L7 are inserted into w0. Next K4 is sliced. No further dependencies
are found and the first iteration ends.

—Iteration 2: In the next iteration, let us assume L7 is processed.
—Phase 1: L7 is parameter-out dependent on L13 and therefore L13 is added

to w2. Then, L7 ← call P2 ← START θ2. Also L7 ← L5 ← L3.
—Phase 2: L13 ← L12. But L12 is already colored phase1. No other depen-

dencies are found and this completes the second iteration.

—Iteration 3: Let L11 be extracted from w0 in the next iteration.
—Phase 1: L11 ← L9 ← L4 ← L2.
Nothing gets added to w2 and so the Phase 2 is empty. This completes the
iteration.

—Iteration 4: This iteration starts with L12 and nothing new is found in the
iteration.

Thus, the algorithm generates a correct slice.

Example 2. Consider the slice of K12 in Figure 3.

—Iteration 1:
—Phase 1: K12 ← K1 ← M4 ← M1. K12 ← K11. (K11 is added to w2.)
—Phase 2: K11 ← K7 ← K10. K11 ← K26 ← K25 ← K18 ← K17. K25 ← N4. (N4

is added to w0).

—Iteration 2:
—Phase 1: N4 ← N1. N4 ← N3 ← N8 (N8 is added to w2).
—Phase 2: N8 ← N7 ← N6 ← N5. N7 ← K15. N7 ← K6. N7 ← K24. N7 ← K30.

N7 ← K21. All of K15, K6, K24, K30, K21 are added to w0.

—Iteration 3:
—Phase 1: K21 ← K17. K21 ← K19 ← K8 ← K2. Since the algorithm is in

Phase 1, the parameter-in edge is traversed.

—Iteration 4:
—Phase 1: K24 ← K22 ← K20 ← K9 ← K3. K24 ← K31 (K31 is added to

w2).
—Phase 2: K31 ← K30 ← K29. Since the algorithm is now in Phase 2, the

parameter-in edge to K4 is not traversed.

—Iteration 5:
—Phase 1: K30 ← K29. K29 ← K4 ← K5. K29 ← K22. K29 ← K13 ← K3. In

Iteration 4, K30 was colored phase2. In this iteration it is colored phase1
and sliced again. This time the parameter-in edges are also traversed.
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—Iteration 6:
—Phase 1: K6 ← K4 ← K5.

—Iteration 7:
—Phase 1: K15 ← K14. K15 ← K13.

Note that the slice computed is correct but not context-sensitive. The call to
f 2(b) at K14 is added to the slice although it is not possible for the value of a
at K12 to be affected by the call at K14. The other unnecessary nodes added to
the slice are K15 and K13.

We do not give a formal proof of correctness of the algorithm, but in Ap-
pendix B, we give an informal argument based on the proof for the context-
sensitive algorithm.

4.2 Complexity

Each node in the graph may be colored at most twice. Hence, the maximum
number of nodes handled by the algorithm is 2∗ N and the runtime complexity
of the algorithm is O(N + E), where E is the number of edges.

The cost of construction is governed by the cost of generating the control
dependence, data dependence, interference dependence and summary edges.
Control dependence edges are determined on a per-thread basis with additional
control dependence edges from a cobegin node to the corresponding START θi

nodes and from EXIT θi nodes to the corresponding coend node. These can be
generated in time linear in the size of the graph [Johnson and Pingali 1993].
Data and interference dependence can be generated using algorithms of Rugina
and Rinard [1999], Salcianu and Rinard [2001], and Nanda and Ramesh [2003].
Novillo et al. [1998] further explain how to reduce the number of interference
dependence edges in the presence of monitors. The cost of generating summary
edges is the same as in sequential programs [Reps et al. 1994].

5. REALIZABLE PATHS IN A SEQUENTIAL THREAD

In the previous section, we showed that the algorithm is context insensitive
as it simply includes into the slice all the nodes that are reached during the
traversal irrespective of whether all the nodes in a thread form a realizable
path. In order to generate a context-sensitive slice it is necessary to determine
whether a given set of nodes may form a realizable path. Given a set of nodes
that form a realizable path in a thread, we show in this section how to determine
whether another node may be added to the set without violating the realizable
path condition.

In Figure 6, Reach(S3, K1) and Reach(K1, S8) are true but Reach(S3, S8) is
false. Further, consider the realizable path (S4, K1, K2, S5, S9, S10, S11, K1, K2,
S12). From this path we see that there is a realizable path from K2 to K1.
That is Reach(K2, K1) is true. Similarly, Reach(K1, S9) is true and in this case
Reach(K2, S9) is also true. It might appear that the concatenation of the path
from K2 to K1 and the path from K1 to S9 may be a realizable path. Yet, there is

no realizable path K2
+→ K1

+→ S9. On the other hand, there is a realizable path

K2
+→ K1

+→ S13.
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Fig. 6. (a) A program ICFG and (b) The ICFG with procedures inlined.

We are now ready to state the problem to be solved: Given a sequential in-
terprocedural control flow graph, G, and a set of nodes n1, n2, · · ·, nk belonging
to G we wish to find out if there is a realizable path n1

+→ n2
+→ · · · +→ nk . We

term this problem the “Realizable Path” problem.
Given a set of nodes, we wish to identify whether they form a part of a

realizable path. A brute force solution would generate all possible realizable
paths in the graph using any standard technique [Sharir and Pnueli 1981;
Reps et al. 1994] and then check if the given set of nodes forms a subsequence
of any one of the realizable paths.

Another solution to the Realizable Path problem could be to inline all the
procedures. In Figure 6 we have shown a program with the procedures inlined.
Then the problem reduces to the intraprocedural case and can be solved eas-
ily. This solution obviously requires unbounded space when there are recursive
procedures. Another, not so obvious, problem with this solution is that a given
node (for example, K1 in Figure 6) may occur in multiple locations in the ex-
panded graph. To find a realizable path that includes K1 we need to trace every
path through each location of K1. In the presence of loops, the length of a path
may be unbounded.

In this section, we propose a solution based on interval analysis.

5.1 An Interval-Based Approach

First we introduce some standard terminology. G = (V , E, n0) is an interpro-
cedural control flow graph (or ICFG) where V represents the set of vertices, E
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is the set of edges and n0 is the distinguished start node. A region R of G is a
(possibly interprocedural) subgraph of G such that an edge (nx , ny ) of G is in R
if and only if nx and ny are both in R. A node nx is an entry node of R if there
is an edge (nw, nx) of G such that nw is not in R. A node ny is an exit node of R
if there is an edge (ny , nz ) of G such that nz is not in R. A strongly connected
region (SCR) is a region such that every node in it is reachable from every other
node.

The interval order of the nodes of G is the order in which they are visited
by a reverse postorder traversal (i.e., postorder traversal on the reverse graph,
rooted at the EXIT node of the ICFG). If G is acyclic, then interval order is a
topological ordering [Burke 1990]. Let NUMBER(ni) be the topologically ordered
number for any node ni. Then topological order has the interesting property
that NUMBER(ni) < NUMBER(nj ) if ni is a predecessor of nj in the graph, G.

A call graph of a program is a graph where each procedure is uniquely rep-
resented by a single node. There is an edge (P, Q) in the call graph if procedure
P calls procedure Q .

Since every node in a SCR is reachable from every other node in it, it is
obvious that we do not need to test for reachability for nodes within a SCR. This
is the basis of our algorithm. We find the largest possible interprocedural SCRs
in the ICFG and collapse them into single nodes [Burke 1990; Sarkar 1991].
The resultant graph is an acyclic graph and can be ordered in topological order.
We use the program in Figure 7 as an example. Briefly, our analysis takes the
following steps:

(1) Construct the call graph of the program and find the SCRs in this graph.
Collapse the SCRs into single nodes to generate the CallSCR graph. Term
the nodes in this graph the call strongly connected components or cSCRs.
The cSCRs are shown in Figure 8 and internally consist of one or more
procedures.

(2) Determine the intraprocedural SCRs for each non-recursive procedure as
follows: ignore all interprocedural edges, and create a dummy edge connect-
ing a call site to the corresponding return site and then apply any standard
algorithm [Cormen et al. 1990] to collapse strongly connected regions into
a single node. Call these intraprocedural strongly connected components or
intraSCRs for short. They are labeled as χi in all the figures. Figure 9 shows
the intraSCRs of the example program in Figure 7.

(3) Mutually recursive procedures form a single node (cSCR) in the CallSCR
graph. On the subgraph induced by such a cSCR node (i.e., the set of nodes
and edges belonging to the procedures in a cSCR node), apply any stan-
dard algorithm to determine the strongly connected components in this
subgraph. These SCRs are also termed intraSCRs. (See Example 3 and 4
below.)

(4) Finally, we give an algorithm to integrate intraSCRs across procedures to
construct the final interprocedural strongly connected components or ISCRs.
The ISCRs of the example program are shown in Figure 10. The ISCRs are
numbered as Zi. The component intraSCRs are also shown. The resultant
ISCR graph is an ICFG that has no cycles, no recursion and in which each
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Fig. 7. The ICFG of a program.

node represents an ISCR. Next, we inline any procedure that has not been
integrated into an ISCR.

Once this set of information has been calculated we can calculate whether a
given set of nodes form a realizable path.

Example 3. Consider the case of the self recursive procedure, R1 in Figure 7.
The edge from S22(call R1) to the Enter R1 vertex generates an intraSCR con-
taining all the statements between Enter R1 and S22. Similarly, the edge from
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Fig. 8. (a) The call graph of the program in Figure 7 and (b) the CallSCR graph which is formed

by collapsing SCRs in the call graph. Each node in the CallSCR graph is called a cSCR node and

contains one or more procedure.

Fig. 9. The intraprocedural and recursion induced strongly connected components (intraSCRs),

labeled χi and connected by intraprocedural control flow edges. The interprocedural edges have not

been shown.
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Fig. 10. (a) The ISCR graph for the program in Figure 7 consisting of Interprocedural Strongly

Connected Components (ISCRs). Zi are the names of the ISCRs, the list of intraSCRs associated

with each ISCR are shown as χi and the numbers in circles represent the topological order of

the ISCRs after inlining. (b) The “TopologicalNumber Graph” showing the edges connecting the

TopolNumbers.

the Return node to S23 induces another intraSCR and the edge S21 → S23
induces the connection between the two intraSCRs. In Figure 9, these two in-
traSCRs are labeled χ20 and χ21. This is logically correct since every node in χ20

is reachable from every other node along some recursive path and similarly for
χ21. Also, every node in χ21 is reachable from every node in χ20.

Example 4. Consider the multiway recursion in the procedures L, M and
N. In the region induced by these procedures we calculate the SCRs. For the
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purpose of determining the SCRs within this region we ignore the interproce-
dural call edge from call L in main to Enter L but not the edge from call L in
procedure N to Enter L. That is, we include only those interprocedural call and
return edges between the procedures L, M and N that are internal to the cSCR
under consideration. From Figure 9, we see that there are two interprocedural
SCRs in the region labeled χ22 and χ23 induced by the two interprocedural loops
Enter L → L1 → L2 → Enter M → M1 → M2 → Enter N → N1 → N2 → Enter
L and L3 → L4 → N3 → N4 → M3 → M4 → L3. There is an external edge from
call L in the main procedure to χ22 and an external edge from χ23 to S12 in
main.

5.2 Building the ISCR Graph

This section gives details of step (4) given above. After performing steps (1),
(2) and (3), each procedure in the ICFG (including main) consists of intraSCRs
connected by control flow edges. The procedures are also connected by call and
return edges as in the original ICFG. An intraSCR that has multiple ICFG
nodes has clearly been generated by merging ICFG nodes in a loop and is termed
a multi-node intraSCR. An intraSCR node that has exactly one ICFG node is
termed a singleton intraSCR.

We now try to combine as many intraSCRs (across all procedures) as possible
into a single interprocedural SCR or ISCR. The algorithm is very simple. The
algorithm walks through the collapsed ICFG starting with the Enter main node
in the main procedure. For each multi-node intraSCR that contains a call site
(P → Q), we delete the call edge and insert the intraSCRs in Q into the
parent ISCR. Then we traverse the call SCR graph from Q and insert all the
intraSCRs in the procedures that are called directly or transitively from Q .
Since a procedure may be integrated from multiple locations, this process may
have to be repeated from each location. To avoid this, we use the CallSCR graph
to cache the list of nodes reachable transitively from a procedure. The algorithm
works in two phases.

In the first phase, we walk through the CallSCR graph, starting at the root
(the cSCR representing the main procedure) and build the cache for each proce-
dure. The algorithm is given in Figure 11. In the second phase we start with the
main procedure and walk through the intraSCR graph and integrate as many
intraSCRs as possible into a single ISCR. Each intraSCR has an attribute multi
which is true if the intraSCR has multiple nodes (i.e., it has at least one inter-
nal edge) and is false otherwise (if it is a singleton node). The corresponding
ISCR also inherits this attribute. (This is used by the Reach algorithm in Sec-
tion 5.3.) A call statement may be part of a multi-node intraSCR or it may
belong to a singleton intraSCR. If it is a single statement, then the correspond-
ing ISCR generated from it is marked to be of type CALL SITE and we introduce
a dummy ISCR after it and label it to be of type RETURN SITE with attribute
multi set to false. If the call statement is part of a multi-node intraSCR, then
the called procedure is integrated into the current ISCR and the call edge will
be deleted.

At the end of this phase, the interprocedural SCRs are in place in the in-
terprocedural SCR graph. The ISCR graph is shown in Figure 10. As we can
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Fig. 11. Algorithm to build the ISCR graph. In CacheTransitive, cnode is a node in the CallSCR

graph. For each procedure P , in the cnode, we find the set of intraSCRs belonging to P and ev-

ery intraSCR belonging to a procedure (transitively) called by P and cache the set at cnode. In

BuildISCRGraph, q is an intraSCR node. If q is a multi-node SCR which has procedure calls, then

every intraSCR in the cache of the called procedure is added to the current q to generate the final

ISCR node.

see in the ISCR graph, several intraSCRs may be combined into a single ISCR,
as for example, χ1, χ15, χ16, χ17, χ18 and χ19 are all in the ISCR numbered Z1.
Also, it is possible that a single intraSCR may be tagged to several ISCRs, as
for example, χ20 is tagged to ISCRs labeled Z10, Z11 and Z15. In the example
in Figure 10, the procedures P1, P2 and P3 have got integrated into the ISCR
labeled Z1; procedures L, M and N have generated the two ISCRs Z17 and Z18,
but there is a call edge from Z13 to Z17 and a return edge from Z18 to Z14. The
case of R1 is interesting. R1 has been integrated into Z10 and Z11 so there is no
call edge from Z10 or from Z11. But there is a call edge from Z4 and Z7 to Z15
and a corresponding return edge from Z16 to Z5 and Z8, respectively.

At this stage, we are assured that the resultant graph is acyclic and the ISCR
nodes can be ordered in topological order after inlining all the remaining proce-
dure calls that did not get integrated into an ISCR. We give an efficient method
for inlining that does not require making actual copies of the procedures. Briefly,
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Fig. 12. The algorithm to generate topological ordering.

the algorithm walks through the graph in reverse postorder maintaining a stack
of the call sites to ensure that only realizable paths are traversed. The nodes
are numbered in reverse postorder. A procedure node that is visited more than
once gets multiple numbers. So inlining is simulated by the simple expedient
of using a single integer to number the position of the inlined procedure in the
graph. The topological ordering is shown enclosed in circles in Figure 10 and
for ease of exposition we refer to them as “TopolNumbers”. Each ISCR has one or
more unique TopolNumbers associated with it. For example, the ISCR Z15 has
two TopolNumbers 5 and 10, corresponding to each call site while the ISCR Z17
has only one TopolNumber 18.

The algorithm for generating the topological order uses the following nota-
tion: Each node is of type CALL SITE, RETURN SITE or DEFAULT. Each ISCR has
the following attributes:

—z.number holds the value of the latest TopolNumber assigned to the z and is
initially set to zero;

—The attribute multi indicates whether the ISCR has at least one internal
edge. If it is true, then it implies that all nodes in the ISCR are reachable
from each other (else it is a singleton node).

The algorithm starts with the EXIT node of the ICFG and visits the nodes in
reverse postorder. The global variable count is initialized to 0. The numbering
scheme allows a procedure node to be re-entered for each corresponding call
site without looping endlessly or missing any call sites. The call stack ensures
that procedures are entered and exited along realizable paths. The algorithm
is given in Figure 12.
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Fig. 13. The Reach algorithm.

5.3 The Reach Algorithm

To summarize the construction so far: Each node in the ICFG of a thread belongs
to an intraSCR. The intraSCR may be a multi-node intraSCR or a single-node
intraSCR. Each intraSCR belongs to one or more ISCRs. Each ISCR is num-
bered in topological order and may have one or more TopolNumbers. This is
equivalent to inlining the ISCRs. Since the TopolNumbers represent a single-
procedure program, it is easy to determine reachability on them. We build a
TopologicalNumber graph which has as its nodes TopolNumbers and whose
edges represent successor/predecessor relationships on the TopolNumbers. The
TopologicalNumber graph is shown in Figure 10(b). Once this is gener-
ated, we no longer explicitly need the ISCR graph and so its edges can be
deleted.

In this section, we explain how to efficiently determine reachability on the
TopologicalNumber graph. Given two TopolNumbers, tx and ty , we give an al-
gorithm, Reach to determine whether there is a path from tx to ty . Clearly, if
the value of tx is larger than that of ty , then there is no path from tx to ty .
A simple solution would be to walk back along the TopologicalNumber graph
from ty until we reach tx or a number smaller then tx . If we reach tx , then there
is a path, else there is no path. However, the number of TopolNumbers can be
exponential in the depth of the call graph and hence this is not an efficient
solution. The Reach algorithm shown in Figure 13 performs an optimization
that skips across called procedures where possible. As a result, the algorithm’s
complexity is linear in the size of the ISCR graph.

The TopolNumbers that represent call and return sites are marked accord-
ingly. In addition, we keep a dummy edge from the TopolNumber associated
with a call site to the TopolNumber associated with the corresponding return
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site. For example, we create a dummy edge from 9 to 12 and from 4 to 7 in
Figure 10(b).

The algorithm starts from the TopolNumber with the larger value and walks
back along the TopologicalNumber graph. Let the source TopolNumber value be
tx and the destination TopolNumber value be ty . When the algorithm reaches a
return site, it uses the dummy edge to check if the call site value is smaller than
tx . If the call site value is smaller than tx then it descends into the called proce-
dure, else it can use the dummy edge to skip the called procedure and continue
traversing backwards from the call site. Thus, the traversal enters a proce-
dure only if tx is in the called procedure or in a procedure called (transitively)
from the called procedure; otherwise, it keeps going up the TopologicalNumber
graph. Thus, the maximum number of TopolNumbers visited by the algorithm
is at most the number of ISCRs. The algorithm, Reach, to determine whether
there is a path from a TopolNumber tx to another TopolNumber ty is given in Fig-
ure 13. An initial invocation of Reach(tx , tx) trivially returns false if tx belongs
to an ISCR with attribute multi set to false.

5.4 The Realizable Path Algorithm

The Reach algorithm described in the previous section determines reachability
from one TopolNumber to another. However, we need reachability from one node
in the ICFG to another. So we determine the set of TopolNumbers that a node can
map to and use this as the basis for determining reachability on the nodes of the
ICFG. We now present the ValidPath algorithm to determine whether a set of
nodes belong to a realizable path. The algorithm for determining the existence of
a path is given in Figure 14. As a node belongs to a unique intraSCR, we have a
function getIntraSCR(node ni) that returns the intraSCR that ni belongs to. The
procedure GetTopologicalNumberSet(intraSCR) does the following: It finds all
the ISCRs that the intraSCR belongs to and returns the set of TopolNumbers as-
sociated with these ISCRs. GetTopologicalNumberSet(χ20), for example, would
find the ISCRs Z10, Z11 and Z15 and the corresponding TopolNumbers set
is (5, 10, 14, 15). The overloaded procedure GetTopologicalNumberSet(node ni)
returns GetTopologicalNumberSet( getIntraSCR(ni)).

RealizablePath(ni, nj , μ) returns all possible TopolNumbers associated with
ni if nj is ⊥. That is to say that ni is the first node visited in a given
thread and hence all paths to ni are realizable. If nj is not ⊥, then in
RealizablePath(ni, nj , μ), μ is a proper subset of all the TopolNumbers associated
with nj and represents the valid numbers associated with nj at a particular po-
sition in the path. The procedure IntraSCRPath(qi, μ) called by RealizablePath
locates every TopolNumber associated with qi that reaches at least one of the
TopolNumbers in μ. If it returns ∅ it implies that there is no realizable path from
ni to nj .

Example 5. As an example, we will walk through the algorithm to check
if 〈 S24, S20, S8 〉 in Figure 7 is a realizable path. The nodes are processed in
reverse order. S8 ∈ χ9 and therefore μ is initialized to the set of TopolNumbers
associated with χ9, which is (13). S20 ∈ χ20 and the TopolNumbers associated
with χ20 are (5, 10, 14, 15). Of these, we need to check only 5 and 10 since 14 and
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Fig. 14. The Realizable Path algorithm.

15 are larger than 13 and hence cannot precede 13. We have both Reach(5, 13) is
true and Reach(10, 13) is true. So now newset has (5, 10), which is returned by
RealizablePath. Next we check S24 ∈ χ21 whose TopolNumbers are (6, 11, 14, 15).
Of these none are smaller than 5 and only 6 is smaller than 10 but Reach(6, 10)
is false and hence this is not a realizable path.

The correctness of the algorithm follows from the correctness of the Real-
izablePath algorithm. The correctness of the RealizablePath algorithm can be
stated as

THEOREM 1. For any two nodes ni and nj in the ICFG, RealizablePath(i, j , μ)
returns all and only the TopolNumbers associated with ni that have a path to some
TopolNumber associated with nj in μ.

Since every node belongs to a unique intraSCR node, the correctness of the
ValidPath algorithm may be stated as

THEOREM 2. Given a set of intraSCR nodes and the correspond-
ing set of Topol-Numbers 〈〈q1, μ1〉, 〈q2, μ2〉, . . . , 〈qn, μn〉〉, such that μn =
GetTopologicalNumberSet(qn) and μi = IntraSCRPath(qi, μi+1), for 1 ≤ i < n,
then 〈q1, q2, . . . , qn〉 is a realizable path if and only if μi �= ∅ for 1 ≤ i ≤ n.

COROLLARY 1. Given a set of intraSCR nodes and the correspond-
ing set of TopolNum-bers 〈〈q1, μ1〉, 〈q2, μ2〉, . . . , 〈qn, μn〉〉, such that μn =
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GetTopologicalNumberSet(qn) and μi = IntraSCRPath(qi, μi+1), for
1 ≤ i < n, then 〈q0, q1, q2, . . . , qn〉 is a realizable path if and only if
IntraSCRPath(q0, q1, μ1) �= ∅.

Thus, by Corollary 1, it is clear that to add a node to an existing realiz-
able path, it is sufficient to check for a path from the new node to some valid
TopolNumber of the last node added to the path. It is not necessary to run Valid-
Path on the entire set of nodes in the path or even to keep track of all the
previous nodes in the path. Thus, the RealizablePath algorithm can be used to
incrementally determine whether a set of nodes form a realizable path.

We give a proof of correctness of the RealizablePath algorithm in Appendix A.

5.5 Complexity

Since we are using a form of procedure inlining, the space and time complexity
can in the worst case grow exponentially. If there is a long call chain, of length
y , where each procedure in the chain is called from x sites then a procedure at
the bottom of the call chain may get inlined x y times. However, we use only one
integer to represent the inlined procedure and hence we found that the space
requirement was practical for our sample programs.

The steps in building the interprocedural SCR graph involve finding SCRs
in each procedure and finding SCRs in the call graph. There are standard near-
linear algorithms for doing this. Integrating the intraprocedural SCR graphs
with the call SCR graph to generate the interprocedural SCR graph requires
a single walk through the program and also takes linear time. The algorithm
for inlining the procedures and calculating the TopolNumbers has potentially
exponential performance if there are very long chains of procedures that need
to be integrated.

The time complexity of the RealizablePath algorithm is linear on the num-
ber of TopolNumbers. However, the number of TopolNumbers can be exponential
in the depth of the call graph, and hence the algorithm has exponential com-
plexity. However, despite this, in practice the algorithm is very fast. We have
tested it on several Java benchmark programs and the results are given in
Section 9.

6. A CONTEXT-SENSITIVE SLICING ALGORITHM

6.1 The Algorithm

To simplify the presentation, we assume that threads are not nested and
threads are not nested within loops. We discuss these extensions in Section 7.1
and 7.2. The context-sensitive algorithm (Figure 15) is an extension of the
context-insensitive algorithm with modifications to ensure that only realizable
paths are traversed.

The algorithm takes as input the slicing criterion, the ISCR graph of each
thread and the TSDG. It starts with the slicing criterion, s, and inserts it into
the outermost list w0. It keeps extracting a node from w0 and applies a 2-
phase algorithm to it. The same coloring scheme as in the context-insensitive
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Fig. 15. The context-sensitive interprocedural slicing algorithm.

algorithm is applied to the elements of the worklists in the context-sensitive
algorithm also.

When adding a node, ni in some thread θi, to the slice, we need to check if
there is a realizable path in θi that includes ni and the set of nodes already added
to the slice in θi. Therefore, when computing the slice we need to carry sufficient
information to capture the entire path currently sliced in each thread. A tuple of
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nodes containing one node per thread is maintained (similar to the tuples used
in the intraprocedural algorithm [Krinke 1998; Nanda and Ramesh 2000]). In
the tuple, the node corresponding to a thread is the last node reached (so far)
in that thread. Along with the node we also keep the valid set of TopolNumbers
associated with the node and the color of the node. So each element in the state
tuple consists of three items, (i) the last node visited by the algorithm in that
thread, (ii) the valid set of TopolNumbers associated with that node and (iii) the
color of the node. When a node ni in thread θi is visited, we update the tuple
entry for that thread. Later if the algorithm visits a node, nj , in the same thread
θi we check if there is a realizable path from nj to ni using the RealizablePath
test. If so, nj is added to the slice (along with the valid set of TopolNumbers) else
it is rejected.

We use the notation {ni, 〈a, b, . . . , k〉} to represent a node numbered ni with
the set of TopolNumbers 〈a, b, . . . , k〉. We use the symbol ⊥ in the state tuple to
indicate that the corresponding thread has not yet been visited. The function
θ (ni) returns the index of the thread to which ni belongs.

Example 6. Let us apply this algorithm to K12 in Figure 3. In the figure, the
nodes are numbered on the left for identification and the TopolNumbers are in
circles on the right. For simplicity, we use the short notation ni to represent a
node and the expanded form {ni, 〈a, b, . . . , k〉} only at important points.

—Iteration 1:
—Phase 1: {K12, [(⊥, ∅), (K12, 〈33〉), (⊥, ∅)]} ← K1 ← M4 ← M1.

The notation {K12, [(⊥, ∅), (K12, 〈33〉), (⊥, ∅)]} indicates that the node sliced
is K12. The state of θ0 is (⊥, ∅) indicating that it has not yet been visited.
The state of θ1 is (K12, 〈33〉) indicating that the last node visited in θ1 was
K12 and the corresponding valid TopolNumber set is 〈33〉. The state of θ2 is
also (⊥, ∅) indicating that it has not yet been visited.
K12 ← K11. (K11 is added to w2.)

—Phase 2: K11 ← K7 ← K10. K11 ← K26. K26 ← K25 ← K18 ← K17.
{K25, [(⊥, ∅), (K25, 〈29〉), (⊥, ∅)]} ← {N4, [(⊥, ∅), (K25, 〈29〉) (N4, 〈4〉)]}. (N4 is
added to w0). The algorithm records the fact that the last node visited in
θ1 was K25 with TopolNumber set 〈29〉.

—Iteration 2:
—Phase 1: N4 ← N1. N4 ← N3 ← N8 (N8 is added to w2).
—Phase 2: N8 ← N7 ← N6 ← N5.

{N7, [(⊥, ∅), (K25, 〈29〉) (N7, 〈5〉)]} ← {K15, [(⊥, ∅), (K15, 〈41〉), (N7, 〈5〉)]}. In
this case, since there is no path from the TopolNumber 〈41〉 in θ1 to 〈29〉,
this node is rejected by the slice giving a context-sensitive solution.
N7 ← K6. N7 ← K24.
{N7, [(⊥, ∅), (K25, 〈29〉) (N7, 〈5〉)]} ← {K30, [(⊥, ∅), (K30, 〈8, 25〉), (N7, 〈5〉)]}.
The TopolNumber set of K30 is 〈8, 25, 38〉 of which there is no path from
〈38〉 to 〈29〉. Hence RealizablePath returns a subset of the possible
TopolNumbers 〈8, 25〉 which are the valid numbers for the node at this
point in the slice.
N7 ← K21.
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All of K6, K24, K30, K21 are added to w0.

—Iteration 3:
—Phase 1: K21 ← K17 ← K10. K21 ← K19 ← K8 ← K2. Since the algorithm is

in Phase 1, the parameter-in and call edge is traversed.
—Phase 2: No nodes were added to w2 and so there is no Phase 2.

—Iteration 4:
—Phase 1: K24 ← K22 ← K20 ← K9 ← K3. K24 ← K31 (K31 is added to w2).
—Phase 2: K31 ← K30 ← K29. Since the algorithm is now in Phase 2, the

parameter-in edge to K4 is not traversed.

—Iteration 5:
—Phase 1: {K30, [(⊥, ∅), (K30, 〈8, 25〉), (N7, 〈5〉)]} ← {K29, [(⊥, ∅), (K29, 〈7, 24〉),

(N7, 〈5〉)]}. Again, a subset of the TopolNumbers is allowed.
K29 ← K4 ← K5. K29 ← K22. {K29, [(⊥, ∅), (K29, 〈7, 24〉), (N7, 〈5〉)]} ← {K13,
[(⊥, ∅), (K13, 〈34〉), (N7, 〈5〉)]}. In this case, K13 is rejected as there is no path
from 〈34〉 to 〈7, 24〉. In Iteration 4, K30 was colored phase2. In this iteration
it is colored phase1 and sliced again.

—Iteration 6:
—Phase 1: K6 ← K4 ← K5.

Example 7. Consider the slice of M14 in Figure 4(b) again. In Figure 4(a),
we have shown the topological ordering for each thread in circles on the right
end of each node. The numbers are local to a thread. The ISCRs in f 1 have
two numbers each corresponding to the two call sites. All others have only one
TopolNumber each. The TopolNumbers are also depicted in the corresponding
TSDG shown in Figure 4(b).

The algorithm starts by inserting {M14, [(⊥, ∅), (M14, 〈30〉), (⊥, ∅)} into w0.
Here the state tuple associated with θ0 and θ2 is (⊥, ∅) as these threads have
not yet been visited and the state tuple for θ1 is (M14, 〈30〉) indicating that the
last node visited in θ1 was M14 and its corresponding valid TopolNumbers set is
〈30〉.

—Iteration 1:
—Phase 1: M14 ← M12 ← M21.
—Phase 2: M21 ← M19 ← N3 in θ2. The element inserted into w0 will be {N3,

[(⊥, ∅), (M19, 〈9, 23〉), (N3, 〈3〉)]}. The state tuple for θ0 is still (⊥, ∅), for θ1 it
is (M19, 〈9, 23〉) indicating that M19 was the last node visited in θ1 and its
corresponding valid TopolNumbers are 9 and 23.

—Iteration 2:
—Phase 1: N3 ← M20. The possible TopolNumbers for M20 are 10 and 24

but RealizablePath(M20, M19, 〈9, 23〉) returns 〈10〉 since Reach(24, 9) and
Reach(24, 23) are false but Reach(10, 24) is true. The element inserted
into w0 now is {M20, [(⊥, ∅), (M20, 〈10〉), (N3, 〈3〉)]} indicating that not all
TopolNumbers associated with M20 are now valid.

—Iteration 3:
—Phase 1: M20 ← N2. Insert {N2, [(⊥, ∅), (M20, 〈10〉), (N2, 〈2〉)]} into w0.
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—Iteration 4:
—Phase 1: N2 ← M8 and N2 ← M2. However, RealizablePath(M8, M20, 〈10〉)

returns ∅ since Reach(16, 10) is false and hence the algorithm rejects M8
from the slice but correctly accepts M2 into the slice as Reach(2, 10) is
true.

PROOF OF CORRECTNESS. Let p be the slicing criterion in a given TSDG; let Sp

be the slice computed by the algorithm. Then the correctness of the algorithm
can be stated as

THEOREM 3. S(p) = Sp

The proof is given in Appendix B.

6.2 Complexity

In intraprocedural slicing, each node in the slice may be inserted into the work-
list O(nt−1) times [Nanda and Ramesh 2000], where n is the number of nodes
in a thread and t is the number of threads. This gives a slicing complexity of
O(Nt), where N is the number of nodes in the graph. A node may be repre-
sented by an exponential number of TopolNumbers and for each TopolNumber
it may be inserted into the slice an exponential number of times. This makes
the complexity of the algorithm doubly exponential O(N pt

), where p is the call-
ing depth of the call graph. However, in Section 9, we show that with certain
optimizations, the algorithm is practical.

7. EXTENDING THE PROGRAM MODEL

The slicing algorithm essentially requires information regarding (1) whether
two threads may execute in parallel, (2) the reachability of one node from an-
other, that is, RealizablePath computation, (3) control dependence, (4) data
dependence, and (5) interference dependence. In this section, we show how
to compute reachability between nodes in the presence of nested threads and
threads nested within loops. In the next section we show how to compute these
factors for Java programs.

7.1 Nested Threads

Consider a slice beginning with K4 in θ1 in Figure 16(a). K4 is interference
dependent on N2 in θ2. N2 is interference dependent on L2 in θ3. Since, the
thread θ3 has never been visited before, the algorithm would add L2 to the slice
although it is clear that K4 is not dependent on L2. In the intraprocedural slicing
algorithm [Nanda and Ramesh 2000], when a node ni in θi is visited, we update
every element of the tuple that corresponds to a thread that does not execute in
parallel with θi. A similar technique is used for interprocedural slicing: if ni is
dependent on some node [nj , Tj , color j ], the valid TopolNumber set associated
with ni is μi and colori is determined as explained before, then we create a new
tuple [ni, Ti, colori] such that
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Fig. 16. (a) Nested threads and (b) Threads nested within loops.

for each thread θk

if ||(θ (ni), θk) is false then
Ti[θk].node = ni

Ti[θk].μ = μi

Ti[θk].color = colori

else
Ti[θk].node = Tj [θk].node
Ti[θk].μ = Tj [θk].μ
Ti[θk].color = Tj [θk].color

where ||(ni, nj ) has been defined earlier as a function that returns true for two
nodes ni and nj , if they belong to threads that may execute in parallel. Here we
overload the function to ||(θi, θ j ) which returns true if two threads θi and θ j may
execute in parallel or false otherwise. Consider the slice of K4 in Figure 16(a).

—K4 is inserted into w1 as {K4, [(K4, μ(K 4), phase1), (K4, μ(K 4), phase1),
(⊥, ∅, undefined), (K4, μ(K 4), phase1), (K4, μ(K 4), phase1)]}.
Since, θ1 executes sequentially with θ0, θ3 and θ4, they are marked in the
same way as θ1.

—K4 is interference dependent on N2 which is added to the slice as {N2,
[(N2, μ(N2), phase1), (K4, μ(K 4), phase1), (N2, μ(N2), phase1), (K4, μ(K 4), phase1),
(K4, μ(K 4), phase1)]}.
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—L2 is interference dependent on N2, L2 belongs to θ3 and the tuple entry for
θ3 has (K4, μ(K 4), phase1). Since the RealizablePath algorithm is applied only
to a single thread we need some way to determine whether there is a path
from L2 to K4.

We need some algorithm to determine whether there is a path from a node
in some thread θi to another node in a sequentially executing thread θ j . The
threaded control flow graph has a properly nested structure and hence it is easy
to divide it into a set of regions that have a proper global ordering.

Each thread is broken into a set of single-entry-single-exit regions, where the
entry node is either the START θi node or a coend node and the exit node of the
region is either a cobegin node or the EXIT θi node of the thread. In Figure 16(a),
θ0 is broken into two regions, R1 and R7. The region R1 has its entry node as
S1 (START θ0) and the exit node is S5 (the cobegin node). The region R7 has the
entry node S6 (coend) and the exit node is S8 (EXIT θ0). Similarly, θ1 is broken
into two regions, R2 and R6 and the other threads have only one region each.

We calculate reachability for these regions and store the information in
bitvectors. A node in a thread may belong to one or more regions. Each
TopolNumber of a node maps to a specific region. When we apply Realizable-
Path(ni, nj , μ), if ni and nj belong to different threads then RealizablePath()
has the following functionality

—Let R j be the regions associated with μ.

—Let Ri be a region associated with ni that has a path to R j

—For every such Ri return the TopolNumbers of ni that map to some region in
Ri or return ∅ if Ri is empty.

In the example, there is no path fromR3 (the region to which L2 belongs) toR2

(the region to which K4 belongs) and hence, L2 is correctly rejected from the slice.

7.2 Threads Nested within Loops

When threads are nested within loops, loop-carried dependences that cross
thread boundaries may give rise to a conservative slice. This has been explained
in detail in the context of intraprocedural slicing [Nanda and Ramesh 2000] and
a brief summary is in Section 2.2. In intraprocedural slicing, a loop carried data
dependence from a thread θi to θ j is treated as a sequential data dependence
even if θi and θ j may execute in parallel. In addition, reachability between two
nodes, ni and nj , is calculated on the region defined by the closest enclosing
cobegin-coend region. However, in interprocedural slicing, we could not find a
way to determine reachability within a region and maintain the calling context
information that is stored in the μ component of each tuple.

Instead, we use the conservative estimate, that any node within a loop is
reachable from any other node in the loop. If a loop encloses a cobegin-coend
construct, then we create a separate region for the entire loop and every node in
the loop belongs to this region. In Figure 16(b) we show the regions created when
a cobegin-coend construct is nested within a loop. In the example, θ1 is divided
into three regions as shown. We need not determine topological ordering for θ3
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and θ4, as every node in θ3 is reachable from every other node and similarly for
θ4. We assign all the nodes within the loop to the same ISCR. The rest of the
algorithm remains unchanged.

8. SLICING CONCURRENT JAVA PROGRAMS

Unlike the structured cobegin-coend parallelism construct, Java supports
fork-join parallelism, monitors and explicit wait/notify synchronization. The
fork-join parallelism affects the ||(i, j ) function, the synchronization gives rise
to additional dependencies and monitors affect the interference dependence. In
this section we explain how to handle these variations.

8.1 The Control Flow Graph

8.1.1 The Basic Thread Model. Figure 17 shows the ITCFG for a minimal-
istic producer consumer program written in Java. A method that is used in
more than one thread is replicated in each thread. At the call site p.start() of
an object p that extends the Thread class or implements the Runnable interface,
we create a “fork” node. At a fork node, the parent thread generates a child
thread which continues to execute in parallel with the remainder of the parent
thread. The child thread continues execution at the run method that p must
implement. In order to map the Java model to the cobegin-coend model, at a
fork node, we create two new threads–one for the child thread and one for the
parent thread. In Figure 17, S26 is a fork node where two threads θ1 and θ2 are
created. At K1 in θ1, the main method continues execution and at L1 in θ2, the
Producer.run() method gets executed.

8.1.2 Threads Created in Loops and Procedures. A thread may be created
multiple times within a program if it the thread creation statement occurs
within a loop; a recursive call; or if the thread is created within a procedure
which is invoked from more than one call site and there is a path from one call
site to another. In such cases, we create two representative threads at the fork
node, as two threads are sufficient to capture inter-thread communication. For
a thread created within a procedure, for each call site, we compute the set of
other threads that it may interact with.

8.1.3 Open-Ended Threads. The child thread may be open-ended or it may
join the parent thread at some later point. The semantics of an open-ended
thread imply that the thread may interfere with any thread that is created
subsequently. This gives a conservative estimate of the interference dependence
computation and the ||(i, j ) function.

8.1.4 The Semantics of Join. The semantics of a join node are mapped to
the semantics of a coend node as follows—in the method that issues the join
command, we insert a thread exit node just before the call to join, then cre-
ate a join node from where the method continues execution. In Figure 17, M2
is a thread exit node created just before the call to O3.join(). K5 is the join
node and it has an incoming edge from M2 and from N7 which is the thread
exit node for Consumer thread. Mapping a fork node to a join node is achieved

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.



1124 • M. G. Nanda and S. Ramesh

Fig. 17. Java threads.
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by the pointer and escape analysis [Nanda and Ramesh 2003]. However, the
ITCFG construction has the following limitations: If the fork and join nodes
are in different methods we are unable to construct a suitable join node and
so we conservatively ignore the join command and treat the threads as open-
ended threads. In addition, if the fork-join construct does not generate properly
nested threads, then also we conservatively ignore the join command. For ex-
ample, in Figure 17, if the code in ProducerConsumerTest had been p.join();
c.join() instead of c.join(); p.join(), then the threads would not have a
properly nested structure and we would have to treat the threads as open-
ended threads.

8.2 The ||(i, j ) Function

In fork-join parallelism, ||(ni, nj ) is true if the nearest common ancestor of ni

and nj , along some path, is a fork node.
Note. The ||(ni, nj ) function is conservative and does not take into account

the ordering induced by wait-notify synchronization.

8.3 RealizablePath Computation

RealizablePath computation is explained in Section 5. As in the cobegin-coend
parallelism, we define a set of regions on the control flow graph and determine a
global ordering across the regions. We define a function ThreadRegion(ni) which
returns the ThreadRegion to which ni belongs. We also compute REACH(Ri, R j )
over the entry nodes of all the ThreadRegion and store it in small bitvectors.
For example, R j .REACH will have one bit for each ThreadRegion and the bit
for Ri will be set if there is a path from Ri to R j . Then, to find out if there is
a path ni to nj in the ITCFG, we first check if they belong to the same region.
If yes, we apply the RealizablePath algorithm. If not, we need to check if there
is a path from the ThreadRegion to which ni belongs to the ThreadRegion to
which nj belongs (i.e., ThreadRegion(ni) ∈ ThreadRegion(nj ).REACH).

8.4 Control Dependence

Control dependence is calculated using standard techniques [Horwitz et al.
1990] for intraprocedural and interprocedural analysis. At the inter-thread
level, we generated control dependence edges from the START node of each
thread to the corresponding fork node from which it was generated. In ad-
dition, in Java, exit() statements and statements that throw exceptions can
affect the control dependence of programs with procedure calls [Sinha et al.
1999; Harrold et al. 1998].

8.5 Data Dependence

For every variable that is referenced before it is used in a procedure we need to
create a formal-in node and for every variable that is modified in a procedure
we need to create a formal-out node. In Java, this form of MOD/REF analysis
is achieved using a technique known as escape analysis [Nanda and Ramesh
2003; Whaley and Rinard 1999; Choi et al. 1999]. Since Java supports only call-
by-value parameter passing, only a static variable or a field of a formal reference
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parameter may belong to the REF set. These are called EscapeIn variables. Sim-
ilarly the MOD set is referred to as EscapeOut. The escape analysis generates
EscapeIns and EscapeOuts for upwards exposed reads and downwards exposed
writes of “escape” variables. The corresponding actual-in and actual-out nodes
are also created.

Java has a simple object model in which all reference-type variables point to
a heap-allocated object. Thus, the inter-thread pointer analysis converts every
field v. f to the form Oi. f where Oi is a symbolic heap location.

For interference dependence we determine which objects escape a thread.
Such an object that is assigned in one node and referenced in a parallel execut-
ing node, generates an interference dependence edge. For example in Figure 17,
three symbolic locations O1, O2 and O3 are generated at S3, S4 and S14. The
pointer analysis propagates these locations and determines that at N5 and L5,
the variable O1.val is being used and defined. Since N5 and L5 may execute in
parallel, an interference dependence edge is generated from N5 to L5 and from
L5 to N5.

In Java, monitors are defined by the synchronized keyword. For synchro-
nized blocks of code, only downward exposed definitions and upward exposed
references are used to determine the interference between threads [Nanda and
Ramesh 2003; Novillo et al. 1998].

8.6 Synchronization Dependence

Synchronization primitives wait and notify are handled as follows: Synchro-
nization edges are drawn from a notify node to the corresponding wait nodes.
Each object has an implicit lock associated with it. wait is treated as having an
implicit read on the lock variable and notify is treated as having an implicit
write on the lock variable. Then, the data dependence calculation automati-
cally detects the dependence between a write on a Oi.〈lock〉 at the Oi.notify
statement and a read on Oi.〈lock〉 at the Oi.wait statement. In addition, a wait
statement implies the release of all locks held by the object and hence this is
treated as an edge of a monitor section and all definitions reaching the wait
statement are downward exposed and visible to other threads.

Analysis based on synchronization dependence [Krishnamurthy and Yelick
1995] may generate a partial order between the synchronized blocks that may
further reduce the interference dependence edges.

9. IMPLEMENTATION

Although the complexity of the context-sensitive algorithm is doubly exponen-
tial, its performance can be improved by applying optimizations similar to the
optimizations for intraprocedural slicing [Nanda and Ramesh 2000].

We start with a brief description of these optimizations for intraprocedural
slicing [Nanda and Ramesh 2000]. To slice K3 in Figure 18, the algorithm would
find that K3 is data dependent on K2 and insert K2 with the tuple [K2, K2, ⊥, ⊥].
Next the algorithm may determine that K3 is interference dependent on L2
which is interference dependent on K2. K2 would be inserted into the worklist
again with the new tuple [K2, K2, L2, ⊥]. In general, a node may be inserted into
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Fig. 18. Threaded PDG for a concurrent single-procedure program.

a worklist O(nt−1) times, where n is the number of nodes in a thread and t is
the number of threads.

There is a concept of a less restrictive tuple versus a more restrictive tu-
ple. For example, the tuple [K2, K2, ⊥, ⊥] is less restrictive than the tuple
[K2, K2, L2, ⊥]. The first tuple says that any node in θ2 and θ3 may be visited,
whereas the second tuple says that any node in θ3 may be visited but in θ2 only
those nodes can be visited that have a path to L2. For example, although K2
is interference dependent on L3, the tuple [K2, K2, L2, ⊥] would not allow the
insertion of L3 since there is no path from L3 to L2 in θ2. Clearly, the paths that
can be traversed from the second tuple is a subset of the paths admissible from
the first tuple.

The essence of the intraprocedural optimizations is to ensure that less re-
strictive tuples are sliced first and more restrictive tuples are discarded. In
order to ensure that the slicing algorithm “finds” less restrictive tuples first,
the algorithm gives nodes reached via interference dependence edges a low
priority.

We extend the same notion to interprocedural slicing as follows: Inside the
procedure Insert (Figure 19, 20 in the appendix), let mu have k TopolNumbers
t1, t2, . . . , tk . Instead of creating one worklist element, we create k worklist
elements. Each worklist element has one TopolNumber from the set mu. The
data structures do not change, except that now in a tuple T , T [i].μ is either the
empty set or it is a set with exactly one element. This is equivalent to inlining
the procedures in the ISCR graph.3 Then, we apply the optimization used in
intraprocedural slicing as follows:

(1) Given that a node ni has been inserted into the worklist with a tuple
[(n1, μ1), (n2, μ2), . . . , (nk , μk)], if it gets a new tuple [(n′

1, μ′
1), (n′

2, μ′
2), . . . ,

(n′
k , μ′

k)], where for all i, either ni is ⊥ or there is a realizable path from
(n′

i, μ′
i) to (ni, μi), then the new tuple is redundant and need not be added

to the slice.

3Recall that the ISCR graph has no loops and no recursion.
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(2) Nodes reached through interference dependence need to be given a low
priority. This is already ensured by the algorithm since nodes reached via
interference dependence edges are placed in the outermost queue which is
processed only after nodes reached through other edges.

The complexity of the algorithm does not change but the running time of the
algorithm was observed to improve on our sample programs.

By breaking each TopolNumber set into its individual components, it might
appear that the number of elements inserted into the worklist is going to in-
crease exponentially. However, note that, by the optimization, if there is a path
from one TopolNumber ti to another, t j in the set mu, then a worklist element
will be created only for t j . Only in the case when a procedure is called from
multiple branches of a switch which is not embedded within a loop do we actu-
ally end up inserting a large number of elements into the worklist. In practice,
the improvement in slicing time to be gained by avoiding unnecessary paths,
far outweighs the overhead of breaking the TopolNumber set into individual
worklist elements.

Another practical optimization that we built into our implementation is as
follows: if a thread has no incoming interference dependence edges (i.e., there
is no node in the thread which is the source of an interference dependence
edge) then we need not apply RealizablePath or maintain tuples for any node
in that thread. This thread can never be reached via an interference dependence
edge and hence may be sliced as a sequential thread. With this optimization,
the algorithm reduces to the sequential two-phase algorithm in the absence of
threads or interference dependence edges. The complete algorithm is given in
Appendix C.

9.1 Experimental Results

The algorithms have been tested on a uniprocessor 2.66GHz Intel Pentium 4
workstation with 2GB of memory running under Linux. The algorithms analyze
Java bytecode.

The characteristics of the programs have been described in Table I: pc is
a simple Producer-Consumer program, multi is a multithreaded program that
downloads a web site and all its links so that it can be browsed offline, raytracer
is a multithreaded ray tracer, hanoi is an IBM benchmark program, Slice is a
public domain applet obtained from Eric Ruf’s web page [Ruf 2000], mandelbrot
is Simon Arthur’s applet to explore the Mandelbrot set, and instantdb is a
database browser that comes with the InstantDB database. In addition, we ran
our slicer on all the programs in the Java Grande [JavaGrand] suite, but in
the interests of space we include results for one program from each of its three
classes of applications (sync, series and montecarlo). We give a break-up of
data based on user code and library code. Note that the degree of concurrency
in our sample programs is quite small and so the experimental results do not
test the limits of scalability that may arise due to higher concurrency.

For the slicing criterion, we chose every node that was the destination of
an interference dependence edge. This resulted in approximately 30 to 2000
slicing criteria depending on the program. The results are given for averages
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Table I. Benchmark Programs

Number

of Classes Methods Statements Degree of

Program User Lib User Lib User Lib Threads Concurrency

pc 4 148 9 224 2932 32536 3 3

multi 10 148 95 397 16659 57917 3 3

raytracer 8 242 19 577 18722 210676 5 2

slice 13 244 67 678 34055 206225 5 2

hanoi 29 241 104 594 87464 234472 4 2

mandelbrot 18 276 51 727 87872 407081 4 2

instantdb 3 319 34 814 80008 466105 4 2

sync 6 152 52 578 53641 116910 5 3

series 6 152 44 270 39145 79969 3 3

montecarlo 18 160 259 514 197240 120250 3 3

Table II. Build Mitime (seconds)

CFG + CD Summary IntraSCR + ISCR Graph

Program + DD + ID Edges Topological Ordering

pc 0.48 0.18 0.01

multi 1.32 0.57 0.04

raytracer 17.79 3.83 1.01

slice 17.06 6.74 0.81

hanoi 45.23 35.16 1.85

mandelbrot 140.36 94.39 12.24

instantdb 166.47 64.12 13.17

sync 19.49 1.25 0.96

series 4.27 1.45 1.24

montecarlo 15.72 10.82 5.13

over all the slicing criteria as well as for the criterion node that generated some
maximum or minimum size.

In Table II, we give the time to build the various components of the threaded
system dependence graph. The first column gives the time to parse the program
and calculate the control, data and interference dependence edges. The second
column gives the time to build the summary edges. The third column gives the
time to build the ISCR graph and to generate the topological ordering for all
the threads. Clearly, the time to build the ISCR graph and the TopolNumbers
is a small fraction of the total time to build the threaded system dependence
graph.

9.1.1 Performance Analysis. In Table III, we give the average and maxi-
mum time taken to compute a slice for the context-insensitive algorithm (col-
umn “I”), the context-sensitive algorithm without optimizations (column “V”)
and the context-sensitive algorithm with optimizations (column “O”). The min-
imum time, in each case was too small to measure. The computation pace (time
per node) was too small to measure. The context-sensitive algorithm without
optimizations takes a long time to compute and for many programs it was found
to be impractical (i.e., it took more than 20 minutes of CPU time to generate
the slice for most nodes).
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Table III. Total Time (in seconds) to Slice for the

Context-Insensitive Algorithm (I), the Context-Sensitive

Algorithm without Optimization (V) and the Context-Sensitive

Algorithm with Optimization (O); the Number of Nodes in the

Slice for (V) and (O); and Computation Pace (time in seconds per

node) for the Context-Sensitive Algorithm with Optimization (O)

Total Slice Time

I V O

Program Ave Max Ave Max Ave Max

pc 0.0 0.01 0.0 0.0 0.0 0.0

multi 0.001 0.02 0.02 0.07 0.006 0.03

raytracer 0.014 0.03 0.12 0.25 0.035 0.09

slice 0.014 0.03 — — 0.02 0.07

hanoi 0.04 0.08 — — 0.05 0.18

mandelbrot 0.08 0.11 — — 0.13 0.4

instantdb 0.11 0.14 — — 0.20 0.41

sync 0.02 0.03 — — 0.10 0.19

series 0.002 0.01 0.03 0.05 0.001 0.01

montecarlo 0.03 0.09 — — 0.08 0.16

Table IV. Worklist Analysis for the Context-Sensitive Algorithm without Optimization (V) and

The Context-Sensitive Algorithm with Optimization (O). Values are for the Slicing Criterion that

had the Largest Ratio of Nodes in the Worklist to Nodes in the Slice

Max Inserts Total Elements Actual Nodes

Per Node in Worklists in Slice Ratio

Program I V O I V O I V/O I V O

pc 2 5 2 82 218 83 77 61 1.1 3.6 1.4

multi 2 97 23 6083 64330 5204 5644 1935 1.1 33.3 2.7

raytracer 2 189 17 16547 61696 34843 13941 9542 1.2 6.5 3.65

slice 2 — 18 19235 — 32338 14933 9952 1.3 — 3.25

hanoi 2 — 58 36144 — 69290 28762 13366 1.3 — 5.2

mandelbrot 2 — 55 57018 — 156558 43221 23684 1.3 — 6.6

instantdb 2 — 8 71374 — 50134 59624 21632 1.2 — 2.3

sync 2 — 30 17458 — 24832 16385 10622 1.07 — 2.3

series 2 85 4 613 16649 628 613 329 1.0 50.6 1.9

montecarlo 2 — 26 34650 — 33705 32480 17317 1.07 — 1.9

Another measurement of the performance of the algorithm is the number
of nodes inserted into the worklist. In the context-insensitive algorithm, some
nodes get sliced twice as they get colored phase2 and later phase1. Hence, the
number of nodes handled by the worklist is greater than the total number of
nodes in the slice. In the context-sensitive algorithm, a node may be inserted
into the worklist with potentially exponential number of tuples. In Table IV, we
give the maximum number of times a single node is inserted into the worklist
with a different tuple and the total number of nodes handled by the worklists
for the context-insensitive algorithm (“I”), for the context-sensitive algorithm
without optimization (“V”) and for the context-sensitive algorithm with opti-
mization (“O”). As a base for comparison, we also show the actual number of
nodes in the slice (which is the same for context sensitive slice with and without
optimizations). In the last column, we show the ratio of nodes handled by the
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Table V. Precision Analysis. Average Number of Nodes Sliced in the

Context-Insensitive (1) and the Context-Sensitive Algorithms (2) and the

Percentage Range in Reduction of Nodes (3)

Context-Insensitive Context-Sensitive

Program (1) (2) (3)

pc 68 37 40% to 48%

multi 2010 711 74% to 88%

raytracer 8079 5574 1.5% to 83.3%

slice 6695 2911 4.8% to 84.6%

hanoi 22566 8194 5.8% to 90%

mandelbrot 34318 17903 2.8% to 78.4%

instantdb 40420 13079 61.3% to 73.9%

sync 14604 8101 34.1% to 80%

series 430 295 23.5% to 46.7%

montecarlo 22194 11820 32.9% to 46%

worklists to the actual number of nodes in the slice. The values are shown for
the slicing criterion that generated the largest ratio (worst case).

Although the total number of nodes handled by the worklists is, in general,
a small (< 10) multiple of the number of nodes in the slice, we observe that the
number of times a single node is inserted into the slice can be much higher (e.g.,
a maximum of 189 in raytracer). The improvement due to the optimizations is
also clearly visible as a drop in the maximum insertions per node as well as a
drop in the total worklist count.

9.1.2 Precision Analysis. In Table V, we show the average number of nodes
sliced by the context-insensitive algorithm and the context-sensitive algorithm.
(Obviously, there is no difference in precision between the context-sensitive
algorithm with and without optimization.) In the last column we give the
improvements to be gained by using a context-sensitive algorithm rather than a
context-insensitive algorithm. For example, in hanoi the context-sensitive algo-
rithm generated between 5.8% to 90% fewer nodes than the context-insensitive
algorithm. The gain in precision from context-insensitive to context-sensitive
analysis may be worth the extra computing power.

We also implemented Zhao’s algorithm and found that his algorithm misses
nodes in some programs. In the case of the programs raytracer, slice, hanoi
and mandelbrot Zhao’s algorithm generated between 0% to 8% fewer nodes
than the context-insensitive algorithm, whereas in pc and multi there was no
difference between the two algorithms.

9.1.3 The ISCR Graph. In Table VI, we give statistics related to the ISCR
graph. It is interesting to note the reduction in the size of the graph when using
an interval-based approach. For each program, we give statistics for the thread
with the maximum number of ISCRs generated. The table gives the original
number of statements in the thread; the number of intraSCRs and ISCRs;
and the largest value of a TopolNumber. The maximum number of ISCR nodes
visited by a single call to Reach is equal to the maximum number of ISCRs in
the graph. As can be seen from the table, the maximum number of ISCRs is
much smaller than the largest value of a TopolNumber and hence Reach is very
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Table VI. The ISCR Graph

No. of No. of Max Value of a Max Numbers

Program LOC IntraSCR ISCR TopolNumber at an IntraSCR

pc 54 9 6 6 1

multi 55049 2461 1336 13174 348

raytracer 207249 4212 1636 20425 672

slice 212155 4965 2474 135166 4031

hanoi 290059 5170 2629 289155 8256

mandelbrot 449266 6316 3479 703312 19104

instantdb 527054 7123 4185 488878 10740

sync 129091 2847 1167 257492 7786

series 118276 2995 1610 391444 11861

montecarlo 239018 4208 2150 1269957 38366

fast. The last column gives the maximum number of TopolNumbers associated
with a single intraSCR. This governs the number of iterations in the two loops
in IntraSCRPath called by RealizablePath.

The maximum number of TopolNumbers is also an indication of the prob-
lems of using algorithms based on procedure inlining. Initially we tried using
a bitvector solution to compute Reach with one vector for each TopolNumber
and in each vector, one bit for each TopolNumber indicating reachability. This
would have required 703312 ∗ 703312 bits (roughly 60GigaBytes of RAM) for
mandelbrot. In contrast, we now use one integer for each TopolNumber with a
requirement of roughly 2.5 MB (assuming 4 bytes per integer) which is more
manageable.

9.1.4 Remarks. The context-insensitive algorithm is very fast and requires
little overhead in terms of memory (it does not require calculation of the ISCR
graph or topological ordering) but is definitely less precise than the context-
sensitive algorithm. The context-sensitive algorithm has exponential complex-
ity, but, in general, few nodes display this exponential behavior and most nodes
get inserted into the worklist a small constant number of times. With the opti-
mizations, the algorithm was found to be practical for our sample benchmark
programs. Note, however that our sample programs display a low degree of
concurrency. We have not tested the limits of scalability that may arise due to
higher concurrency.

In our tests, we have analyzed complete programs including all library meth-
ods (except native methods). Often we are not interested in slicing library meth-
ods. There are standard techniques [Horwitz et al. 1990] for analyzing sequen-
tial programs in the absence of library code and it may be possible to extend
these techniques to concurrent programs (we leave this for future work) and
would considerably increase the speed of slicing. However, our experience has
been that while there are rarely errors in library code, errors in user programs
often occur due to incorrect usage of library code. Hence, it is important not to
neglect library code in the analysis.

In applications such as model checking [Millet and Teitelbaum 1998] and
formal verification where it is important to get as small a slice as possible, it
may be well worth the additional computation to generate a context-sensitive
slice.
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9.1.5 Limitations of the Implementation. Our data dependence analysis
generates synchronization dependence edges but we do not apply the synchro-
nization analysis to determine a partial order based on wait-notify synchro-
nization. Hence we do not eliminate interference dependence edges based on
synchronization analysis. Java supports virtual method calls, so we use type
information to refine the call graph. However, we do not support dynamic class
loading. This assumption enables us to perform whole program analysis includ-
ing construction of a static call graph.

10. RELATED WORK

The entire work in this article consisting of context-insensitive and context-
sensitive algorithms, along with the correctness proofs and experimental re-
sults, appeared as part of the first author’s thesis work, reviewed by an inter-
national panel of examiners and approved in November 2001 [Nanda 2001].
Recently, a very similar algorithm has been published [Krinke 2003]. While the
basic ideas of path folding and slice computation are the same in Krinke’s arti-
cle, the underlying methodology in our algorithm is very different. Krinke’s al-
gorithm has been described in the introduction. Essentially he uses callstrings
to capture the calling context. The callstrings need to be truncated to 2 or 3
elements to avoid a combinatorial explosion of callstrings. Chops need to be
computed between the slicing criterion and every node in the thread that has
an incoming interference dependence edge. Nodes that are not in the chop may
be sliced using summary edges. However, the remaining nodes must be sliced
using the expensive and imprecise callstring approach. Here we would like to
add the following remarks: We believe that (1) Our algorithm is more precise
since our realizable path algorithm is more precise—it does not suffer from
limitations of truncated callstrings; (2) Our algorithm is more efficient – it uses
summary edges effectively and has additional optimizations. It may be noted
that both approaches handle fork-join conservatively.

For concurrent programs, most of the work on slicing has been done on
intraprocedural slicing. Cheng [1993] presents an approach for slicing pro-
grams where interprocess communication is channel-based. As Tip [1995] notes,
Cheng does not state or prove any property of the slices computed. Krinke [1998]
gives a precise slicing algorithm for programs with shared memory. This how-
ever becomes imprecise in the presence of nested threads and threads nested
within loops. Nanda et al. [2000] give a more efficient slicing algorithm which
remains precise in the presence of all program constructs. None of these handle
issues such as synchronization and monitors.

Hatcliff et al. [1999] analyze Java programs with monitors and synchroniza-
tion. They introduce several new dependencies including a ready dependence,
where a node, ni, is ready dependent on another node, nj , if nj ’s failure to com-
plete could imply that ni never executes. For example, a wait statement is ready
dependent on the corresponding notify statement and all statements that may
be reached from a wait statement are ready dependent on the wait statement.
However, they ignore the imprecision introduced by the intransitivity of inter-
ference dependence. More recently, Ranganath et al. [2004] show how to reduce
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the number of interference dependence edges for concurrent Java programs.
Though they do not give experimental results on slicing, this should improve
the precision and speed of slicing. Chen and Xu [2001] give an algorithm that
handles the imprecision due to interference dependence to some extent. How-
ever, they require to inline all procedures that contain the source or destination
of an interference or synchronization dependence edge.

Intraprocedural slicing of programs has a limitation in that it is often im-
practical to slice realistic programs. Procedures need to be inlined causing the
control flow graph to grow potentially without bounds. Programs with recursion
either cannot be analyzed or are analyzed conservatively.

Millet and Teitelbaum [1999] give an algorithm for slicing Promela. They
also use an extension of the SDG but it is not clear whether their algorithm is
context-sensitive.

11. CONCLUSION

In this article, we have given a context-insensitive interprocedural solution to
slicing concurrent programs that is efficient and correct. Then we have given
a context-sensitive interprocedural slicing algorithm for concurrent programs
which is both correct and comparatively more precise. We have shown how
to extend the analysis to handle nested threads. We have implemented the
algorithm for Java programs and give statistics on a set of benchmark programs.
Although the context-sensitive solution is exponential in complexity, we show
that it may be practical for some programs.

The context-sensitive algorithm may generate conservative results when
threads are nested within loops. The limitations of the context-sensitive al-
gorithm are due to the limitations of determining realizable paths in concur-
rent programs with procedure calls. However, despite the limitations, our ex-
periments show that the context-sensitive algorithm is more precise than a
context-insensitive algorithm. We plan to use the output of the slicing algorithm
for efficient verification of Java programs, after which we will have a better idea
about the usefulness of context-sensitivity versus context-insensitivity.

APPENDIX

A. CORRECTNESS OF REALIZABLE PATH ALGORITHM

In this appendix, we give the proof of Theorem 1, Theorem 2 and Corollary 2
defined in Section 5.4 and restated below for convenience.

THEOREM 1. For any two ICFG nodes ni and nj in the ISCR graph, Real-
izablePath (ni, nj , μ) returns all and only the TopolNumbers associated with ni

that have a path to some TopolNumber associated with nj in μ.

THEOREM 2. Given a set of intraSCR nodes and the correspond-
ing set of Topol-Numbers 〈〈q1, μ1〉, 〈q2, μ2〉, . . . , 〈qn, μn〉〉, such that μn =
GetTopologicalNumberSet(qn) and μi = IntraSCRPath(qi, μi+1), for 1 ≤ i < n,
then 〈q1, q2, . . . , qn〉 is a realizable path if and only if μi �= ∅ for 1 ≤ i ≤ n.
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COROLLARY 2. Given a set of intraSCR nodes and the correspond-
ing set of Topol-Numbers 〈〈q1, μ1〉, 〈q2, μ2〉, . . . , 〈qn, μn〉〉, such that μn =
GetTopologicalNumberSet(qn) and μi = IntraSCRPath(qi, μi+1), for 1 ≤ i < n,
then 〈q0, q1, q2, . . . , qn〉 is a realizable path if and only if IntraSCRPath(q0, μ1) �=
∅.

By construction, every ITCFG node ni belongs to exactly one intraSCR node
qi; every intraSCR node qi is part of at least one ISCR node in the ISCR graph.
Each ISCR node has at least one TopolNumber associated with it. This follows
from the assumption that there is a path from ENTRY to every node in the ICFG
and a path from every node to EXIT in the ICFG. The proof uses the following
fact: for an intraSCR node qi, GetTopologicalNumberSet(qi) returns all the
TopolNumbers of all the ISCR nodes in the ISCR graph to which qi belongs.

By construction, every intraprocedural and interprocedural loop is collapsed
into a single node. Therefore, there are no loops in the ISCR graph. Also, by
construction, the topological numbering inlines all the procedures in the ISCR
graph. Hence, we have the following lemmas.

LEMMA 1. The ISCR graph has no loops.

LEMMA 2. Topological numbering reduces the program to a single procedure
with no loops.

LEMMA 3. For any two TopolNumbers ti and t j in the ISCR graph Reach(ti, t j )
is true if and only if there is a path from ti to t j . Also, if there is a path from ti

to t j , then Reach(ti, t j ) is true.

PROOF. This follows from Lemma 1 and Lemma 2.

PROOF oF THEOREM 1. The proof follows from Lemma 3 and the
IntraSCRPath(qi, μ) algorithm, which returns every TopolNumber of ti ∈ qi such
that Reach(ti, t j ) is true for some t j ∈ μ and rejects any TopolNumber of ti if
Reach(ti, t j ) is false for all t j ∈ μ.

LEMMA 4. Given any three TopolNumbers ti, t j and tk, a path from ti to t j

and a path from tj to tk implies there is a realizable path through 〈ti, t j , tk〉.
PROOF. By Lemma 2 and by property of intraprocedural paths.

PROOF oF THEOREM 2. By Theorem 1, IntraSCRPath(qi, μ) returns a non-
empty set if and only if there is a path from some TopolNumber of qi to some
TopolNumber in μ. Hence, there is a path from qi to qi+1 if and only if μi =
IntraSCRPath(qi, μi+1) and μi �= ∅. If any μi is the empty set, then there is no
path from that qi to qi+1 and there cannot be a realizable path. Conversely, if
μi �= ∅ for i ≤ 1 ≤ n, then there is a path from every qi to qi+1 and by Lemma 4
there is a realizable path through 〈q1, q2, . . . , qn〉. Hence, the theorem.

PROOF OF COROLLARY 2. By Theorem 2, there is a realizable path through
〈q1, q2, . . . , qn〉. By Theorem 1, there is a path from q0 to q1, and by Lemma 4,
there is a realizable path through 〈q0, q1, q2, . . . , qn〉.
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Thus, to add a new node to the realizable path, it is sufficient to apply
IntraSCRPath to the last node added to the path and its corresponding set
of TopolNumbers.

B. CORRECTNESS OF THE CONTEXT-SENSITIVE SLICING ALGORITHM

In this appendix, we give a proof of Theorem 3 defined in Section 6 and restated
below

THEOREM 3. S(p) = Sp

Definition 5. There is an intra-thread transitive dependence from a node

ni to a node nj , if there is a sequence of dependencies ni
ei→ · · · ek→ nj such that

none of ei is an interference dependence edge.

THEOREM 4. If there is an intra-thread transitive dependence from a
FormalIn node to a FormalOut node at a call site of a procedure, then there
is a summary edge from the corresponding ActualIn node to the corresponding
ActualOut node. Conversely, if there is a summary edge from an ActualIn node to
an ActualOut node, then there is an intra-thread transitive dependence from the
corresponding FormalIn node to the corresponding FormalOut node [Horwitz
et al. 1990].

LEMMA 5. A tuple (n1, T1, color1) is added to the one of the lists w0, w1, or
w2, at some stage if and only if there exists a sequence of tuples (ni, Ti, colori),
i = 1, . . . , n that is added to one of these lists where the tuples satisfy the following
properties:

(1) For i = n
—nn = p
—Tn(θ j ).node = ⊥ if θ j �= θ (nn)

Tn(θ j ).node = nn if θ j == θ (nn)
—colorn = phase1.

(2) For i = 1, . . . , n − 1, n > 1

—ni
ei→ ni+1, ei ∈ {cd, dd, c, s, pi, po, id }

—colori ∈ {phase1, phase2}
—For j = 1, . . . , |θ |

—Ti[θ j ].node = Ti+1[θ j ].node, if θ j �= θ (ni)
= ni, if θ j == θ (ni)

—Ti[θ j ].μ = RealizablePath(ni, Ti+1[θ j ].node, Ti+1[θ j ].μ) if θ j �= θ (ni)
= Ti+1[θ j ].μ if θ j == θ (ni)

—Ti[θ j ].μ �= ∅
(3) For i = 1, . . . , (n − 1), one of the following holds

—ei ∈ {cd, dd, s}, colori = colori+1

—ei = po, colori ≤ colori+1

—ei ∈ {pi, c}, colori = colori+1 = phase1
—ei = id , colori = phase1
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PROOF. There are two parts to this proof:
“If” part: This is obvious.
“Only If” part: Assume that (n1, T1, color1) is added to one of the lists. We need
to show that there exists a sequence of tuples (ni, Ti, colori), i = 1, . . . , n hav-
ing the desired properties that get added to one of the lists. This follows by
computational induction from the following two facts:

(1) The tuple (p, T, phase1) has such a sequence, where T [θ ].node = ⊥, for all
θ �= θ (p) and T [θ (p)].node = p.

(2) If every tuple that is already added to one of the lists has such a sequence,
then every new tuple that gets added because of these tuples, has a se-
quence.

(1) is obvious. (2) follows from the fact that the sequence for the new tuple is
got from the sequence corresponding to one of the tuples already in the list.

LEMMA 6. A node ni is colored phase2 if and only if there exists a sequence
of tuples ni → · · · → nj → nk, such that n j is a FormalOut node in the same
procedure as ni and nj is also colored phase2; and nk is an ActualOut node
which may be colored phase1 or phase2 (n j is parameter-out dependent on nk).

PROOF. This follows from Definition 5 and the fact that all nodes reached
by interference dependence edges are colored phase1. Hence it is not possible
to enter phase2 except via a parameter-out dependence edge originating at an
ActualOut node.

LEMMA 7. Given a node nj and a TopolNumber set μ such that μ �= ∅ and
another node ni such that ni

∗→ nj and for each edge ei in the path from ni to n j

we have ei ∈ {dd, cd, s, po, c, pi}, then RealizablePath(ni, nj , μ) �= ∅.

PROOF. By property of data dependence, control dependence, summary de-
pendence, parameter-out dependence, call dependence and parameter-in de-
pendence, there is a realizable path from ni to nj .

THEOREM 5. S(p) ⊆ Sp.

Proof. Assume n ∈ S(p), then by definition of S(p), there is a threaded
witness from n to p. Let the threaded witness be 〈n = n1, n2, . . . , nn = p〉. We
shall construct a sequence of tuples (ni, Ti, colori), i = 1, · · · , n, that satisfy the
property mentioned in Lemma 7, thereby proving the theorem.

Let Tn and colorn be as given in (1) of the property of Lemma 5.
Now, we define inductively Ti given Ti+1 for i = 1, . . . (n − 1). For each pair

of nodes in the witness, ni and ni+1, let ni
e→ ni+1, where e ∈ E ′, that is, e is of

type ‘cd’, ‘dd’, ‘c’, ‘pi’, ‘po’, or ‘id’ (but not ‘s’). The definition of Ti depends upon
the type of e. We shall define Ti for each of these types:

(1) e is ’cd’ or ‘dd’ and ni and ni+1 belong to the same thread θ (ni):
In the tuple Ti+1 associated with ni+1, let Ti+1[θ (ni)].μ be μi+1. Then at ni

we have the tuple Ti such that Ti[θ (ni)].μ = RealizablePath(ni, ni+1, μi+1).
Since ni and ni+1 belong to a threaded witness and since ni and ni+1 belong
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to the same thread, there must be a (realizable) path from ni to ni+1 and by
Lemma 7, we get Ti[θ (ni)].μ �= ∅. Also from the algorithm, we get colori =
colori+1.

(2) e is ‘id’ (Obviously, ni and ni+1 belong to different threads) or case ‘cd’, ‘dd’
such that ni and ni+1 belong to different threads:
In the tuple Ti+1 associated with ni+1, let n′ be the previous node belong-
ing to θ (ni) in the threaded witness. Then Ti+1[θ (ni)].node = n′ and let
Ti+1[θ (ni)].μ be μ′. Then, at ni we have the tuple Ti such that Ti[θ (ni)].μ =
RealizablePath(ni, n′, μ′). If n′ is ⊥ then RealizablePath(ni, n′, μ′) will re-
turn GetTopologicalNumberSet(ni) and hence is not an empty set. Else,
since ni and n′ belong to a threaded witness and since ni and n′ belong to
the same thread, there must be a path from ni to n′ and by Lemma 7, we
get μ′ �= ∅.

Also from the algorithm, we get colori = colori+1 for ‘cd’ and ‘dd’ and for
‘id’ edges colori = phase1.

(3) e is ‘pi’ : if colori+1 is phase1 then all the properties of Lemma 5 are met
in the same way as item 1. If colori+1 is phase2, then by Lemma 6 there is
a sequence of nodes 〈ni, ni+1, . . . , n f , na〉, such that all the nodes belong to
θ (ni). Further n f is a FormalOut node with color phase2, na is an ActualOut
node with color phase1 or phase2. Also by Lemma 6, na is in the sequence.
Further, by Theorem 4, na is summary dependent on ni.

Let the state tuple associated with na be Ta such that Ta[θ (ni)].μ =
μa. Then at ni we have the tuple Ti such that Ti[θ (ni)].μ = μi =
RealizablePath(ni, na, μa). By Theorem 4, there is a path from ni to na and
by Lemma 7, we get μi �= ∅.

Also from the algorithm, we get colori = colori+1 since there is summary
edge from ni to na.

(4) case ‘c’ : if colori+1 is phase1 then all the properties of Lemma 5 are met in
the same way as for item 1. If colori+1 is phase2, then by Lemma 6 there is
a sequence of nodes ni, . . . , n f , na, such that n f is a FormalOut node with
color phase2, na is an ActualOut node with color phase1 or phase2, and na

is call dependent on ni (by construction).
Let the state tuple associated with na be Ta such that Ta[θ (ni)].μ =

μa. Then at ni we have the tuple Ti such that Ti[θ (ni)].μ = μi =
RealizablePath(ni, na, μa). By construction, there is a path from ni to na

and by Lemma 7, we get μi �= ∅.

(5) e is ‘po’ : colori ≤ colori+1 and all the properties of Lemma 5 are met in the
same way as for item1.

Now construct the tuples (ni, Ti, colori), i = 1, · · · , n. It is easy to see
that this sequence satisfies the required properties of Lemma 5. Hence the
theorem.

THEOREM 6. Sp ⊆ S(p). If a node q is added to the slice Sp, then it is in S(p)

PROOF. If q is added to the slice then by Lemma 5 there is a sequence of
tuples (ni, Ti, colori), i = 1, . . . , n with n1 = q that obey the properties of tuples
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given in Lemma 5. We show that these properties imply that there is a threaded

witness for q. We have ni
ei→ ni+1, where ei ∈ {cd, dd, c, s, pi, po, id}. In order

to show that this sequence forms a threaded witness, we need to show that for
every thread θi, the subsequence of nodes ni

1, . . . , ni
k belonging to thread θi form

a realizable path.
Let ni and ni+1 be any two consecutive nodes added to the slice. We show

inductively that if ni+1 forms a part of a threaded witness, then ni also forms a
threaded witness. Consider the different dependence edges from ni to ni+1.

(1) case ‘pi’, ‘po’ or ‘cd’, ‘dd’ such that ni and ni+1 belong to the same thread
(i.e., θ (ni) == θ (ni+1)). (In the case of ‘pi’ and ‘po’, θ (ni) == θ (ni+1) is always
true):
Let μi+1 be the set of TopolNumbers associated with ni+1. Then in the state
tuple for ni+1, we have Ti+1[θ (ni)].μ = μi+1. In the state tuple for ni, we have
Ti[θ (ni)].μ = μi such that μi = RealizablePath(ni, ni+1, μi+1). By Lemma 5,
μi �= ∅. Then by Corollary 2 (Section A) there is a realizable path from ni to
ni+1 and hence there is a threaded witness for ni.

(2) case ‘id’ or ‘cd’, ‘dd’ such that ni and ni+1 belong to different threads (i.e.,
θ (ni) �= θ (ni+1)):
Let the last node visited by the algorithm in θ (ni) be some n′. If n′ is ⊥ then
ni is the first node in its thread and it obviously forms a realizable path in its
thread. If n′ is not ⊥, then in the state tuple associated with ni+1, we have
Ti+1[θ (ni)].node = n′ and Ti+1[θ (ni)].μ = μ′. In the state tuple associated
with ni, we have Ti[θ (ni)].μ = μi such that μi = RealizablePath(ni, n′, μ′).
By Lemma 5 μi �= ∅. Then by Corollary 2 there is a realizable path from ni

to n′ and hence there is a threaded witness for ni.

(3) case ‘s’ : In a threaded witness, no pair of adjacent nodes are related by the
summary edges. So, in order to show the existence of threaded witness, we
first replace every pair ni, ni+1, that are related by a summary edge by a
sequence of nodes that are related by ‘cd’, ‘dd’, ‘pi’ and ‘po’ edges alone. This
is always possible thanks to the property of summary edges (Theorem 4).
Also, by Definition 5 and Theorem 4 there is a transitive dependence from
ni to ni+1 composed of only ‘cd’, ‘dd’, ‘pi’, ‘po’ edges. Then we can apply case
1 of this proof to the sequence of nodes from ni to ni+1 that have only ‘cd’,
‘dd’, ‘pi’, ‘po’ edges. Thus, there is a realizable path from ni to ni+1 and the
nodes belong to a threaded witness.

Thus, for any ni added to the slice, there is a threaded witness in θ (ni). Hence,
the theorem.

B.1 Correctness of the Context-Insensitive Algorithm

Let Si
p be the slice computed by the context-insensitive algorithm, then the

correctness can be stated as

THEOREM 7. S(p) ⊆ Si
p.

For the context-insensitive algorithm we have the following lemma:
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Fig. 19. The context-sensitive interprocedural slicing algorithm with optimizations.

LEMMA 8. A tuple (n1, color1) is added to the one of the lists w0, w1, or w2, at
some stage if and only if there exists a sequence of tuples (ni, colori), i = 1, . . . , n
that is added to one of these lists where the tuples satisfy the following properties:

(1) For i = n
—nn = p
—colorn = phase1.

(2) For i = 1, . . . , n − 1, n > 1

—ni
ei→ ni+1, ei ∈ {cd , dd, c, s, pi, po, id }

—colori ∈ {phase1, phase2}
(3) For i = 1, . . . , (n − 1), one of the following holds

—ei ∈ {cd , dd , s}, colori = colori+1

—ei = po, colori ≤ colori+1

—ei ∈ {pi, c}, colori = colori+1 = phase1
—ei = id , colori = phase1
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Fig. 20. The context-sensitive interprocedural slicing algorithm with optimizations—continued.

This is identical to Lemma 5 without the RealizablePath restriction. The
proof of Lemma 8 is similar to the proof of Lemma 5 and the proof of Theo-
rem 7 proceeds along the same lines as Theorem 5, using Lemma 8 instead of
Lemma 5.

C. ALGORITHM FOR OPTIMIZED INTERPROCEDURAL SLICING OF
CONCURRENT PROGRAMS
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