
On Minimizing Materializations
of Array-Valued Temporaries

DANIEL J. ROSENKRANTZ, LENORE R. MULLIN and HARRY B. HUNT III

University of Albany—SUNY

We consider the analysis and optimization of code utilizing operations and functions operating

on entire arrays. Models are developed for studying the minimization of the number of material-

izations of array-valued temporaries in basic blocks, each consisting of a sequence of assignment

statements involving array-valued variables. We derive lower bounds on the number of materi-

alizations required, and develop several algorithms minimizing the number of materializations,

subject to a simple constraint on allowable statement rearrangement. In contrast, we also show

that when statement rearrangement is unconstrained, minimizing the number of materializations

becomes NP-complete, even for very simple basic blocks.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers,
optimization; E.1 [Data Structures]: Arrays; F.3.2 [Logics and Meanings of Programs]: Se-

mantics of Programming Languages—Program analysis

General Terms: Algorithms, Languages, Performance, Theory

Additional Key Words and Phrases: Array operations, array temporary materializations, compiler

optimization, copy minimization, program transformation

1. INTRODUCTION

We consider the analysis and optimization of code utilizing operations and
functions operating on entire arrays or array sections (rather than just on
the underlying scalar domains of the array elements). We call such opera-
tions monolithic array operations. A programming style using array operands
and monolithic array operations can focus on what a computation does at a
high level of abstraction, rather than on implementation details. For exam-
ple, a single monolithic assignment statement with an array expression on the

This research was supported by National Science Foundation (NSF) Grant CCR-0105536.

A preliminary version containing some of the results in this article appeared in Proceedings of
the 13th International Workshop on Languages and Compilers for Parallel Computing 2000 (LCPC
2000) (Yorktown Heights, NY, Aug.), S. P. Midkiff et al. Eds. Lecture Notes in Computer Science,

vol. 2017, Springer-Verlag, New York, 2000, pp. 127–146.

Authors’ address: Computer Science Department, University of Albany—SUNY, Albany, NY 12222;

email: {djr,lenore,hunt}@cs.Albany.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0164-0925/06/1100-1145 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006, Pages 1145–1177.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1186632.1186637&domain=pdf&date_stamp=2006-11-01

1146 • D. J. Rosenkrantz et al.

righthand side is equivalent to nested loops using scalar operations on indi-
vidual array elements. Additional advantages of using such monolithic state-
ments include improved program clarity, increased exposure of potential par-
allelism, increased tunability to target architecture, and increased flexibility
in potential optimizations. Indeed, many scientific programmers find it eas-
ier and more natural to program using monolithic array operations. For ex-
ample, MATLAB, widely used as a prototyping language for the development
of scientific software, makes heavy use of monolithic array operations. In ad-
dition, Fortran 90 has built-in monolithic array operations, and C++ is often
accompanied by libraries that provide monolithic array operations. This demon-
strated appeal of programming with monolithic array operations suggests that
analysis and optimization of such programs will be of growing importance. An
important aspect of such analysis and optimization is the elimination of array-
valued temporaries. In this article, we study materializations of array-valued
temporaries, with a focus on elimination of array-valued temporaries in basic
blocks.1

Efficiency is very important in scientific computing, and consequently scien-
tific software must be highly optimized. Ideally, scientific programmers should
be able to program using monolithic array operations, and have their pro-
grams automatically optimized to produce very efficient object code. Currently,
the dominant approach to compiler optimization of array languages, Fortran
90, HPF, etc., is to first scalarize the monolithic code, and then to do trans-
formational optimizations on the resulting scalarized loops. However, much
global information is obfuscated, or even lost, during the scalarization pro-
cess. In contrast, the results presented here (and in Chamberlain et al. [1996],
Humphrey et al. [1997], Hwang et al. [1996, 2001], Lewis et al. [1998], Roth
[2000], Roth and Kennedy [1996], and Veldhuizen and Gannon [1998]) illustrate
how a programming style using monolithic array operations, and program anal-
ysis of such programs prior to scalarization, can be used to perform high-level
transformations.

There has been extensive research on nonmaterialization of array-valued
subexpressions in evaluating array-valued expressions, as described in
Section 5. Eliminating materializations of temporaries is an issue not only for
partial results within an expression, but more generally also for assignment
statements within a basic block. In particular, many programmers tend to avoid
writing a single assignment statement whose right-hand side is a long compli-
cated expression. Instead, they write a sequence of assignment statements, each
with a relatively simple righthand side. The array definitions corresponding to
the left-hand sides of these intermediate assignment statements are targets of
opportunity for nonmaterialization. A complicating factor that occurs in basic
blocks is that an array variable occurring on the righthand side of an assign-
ment statement can itself be the target of a subsequent assignment statement.
Consequently, nonmaterialization in basic blocks is more complicated than non-
materialization in expressions. Some initial results on nonmaterialization in

1More generally, our results are applicable to the optimization of straight-line code, including C++-

like template and macro bodies consisting of straight-line code.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

On Minimizing Materializations of Array-Valued Temporaries • 1147

basic blocks appear in Kennedy et al. [1995], Roth [1997], and Roth et al. [1997],
as discussed in Section 2.1.

In Section 2, we develop a framework and techniques for the study of nonma-
terialization in basic blocks. We give examples of how code can be improved via
nonmaterialization in basic blocks, and then formalize the problem of minimiz-
ing materializations as an optimization problem. We also develop two graph-
theoretic models that capture fundamental concepts of the relationship between
array values in a basic block.

In Section 3, we study the problem of minimizing materializations subject to a
natural constraint on the rearrangement of statements in a basic block. Several
additional properties of the graph-theoretic models introduced in Section 2 are
identified. These properties are used to develop two lower bounds on the number
of materializations subject to the statement rearrangement constraint. Two
classes of problem instances are identified, and algorithms are presented for
these classes that actually minimize the number of materializations. In fact, the
number of materializations produced by each algorithm equals the applicable
lower bound. A nontrivial upper bound for arbitrary problem instances, and an
associated algorithm obtaining this bound, are also presented.

In Section 4, we present results complementing those in Section 3, by showing
that when the statement rearrangement constraint of Section 3 is removed,
minimizing materializations is NP-complete, even for very simple basic blocks.

In Section 5, we discuss related work, and in Section 6, we give brief
conclusions.

2. NONMATERIALIZATION IN BASIC BLOCKS

2.1 Examples of Nonmaterialization

We use the term, materialization, to refer to code that computes an array at run
time. Many array operations, expressed in Fortran 90 and HPF in terms of sec-
tioning and such intrinsics as transpose, cshift, reshape, and spread, involve
the rearrangement and replication of array elements. We refer to these opera-
tions as (address) shuffle operations. (Note that the eoshift operation involves
deletions, and for the purposes of this article is not regarded as a shuffle oper-
ator. In Section 6, we briefly discuss how our results can be extended to handle
eoshift and other shuffle-like operations involving deletions.) Shuffle opera-
tions construct new arrays, all of whose elements are elements of their array
operands. The construction of such a new array essentially only utilizes array
indexing into the array operands, and is independent of the domain of values of
the scalars involved. Often it is unnecessary to actually materialize the results
of a shuffle operation. Rather, a compiler or other processor can keep track of
how elements of the resulting array can be obtained by appropriately indexing
the operands of the shuffle operation. Subsequent references to the result of
the operation can be implemented in terms of suitably modified references to
the operands of the operation. We call this technique nonmaterialization.

As an example of nonmaterialization, consider the following statement.

X = B + transpose(C).

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

1148 • D. J. Rosenkrantz et al.

Straightforward code to implement this statement would first materialize
the result of the transpose operation in a temporary array, say named Y, and
then add Y to B, assigning the result to X.

Even this single statement illustrates the need for nonmaterialization ap-
plied to code fragments at a higher level than single statements or expressions.
Indeed, instead of using a single assignment statement, the programmer might
well have expressed the above statement as a sequence of two statements, form-
ing part of a basic block, as follows:

Y = transpose(C)
X = B + Y.

The longer the expression calculating the value of X, the more likely it is that
a programmer will calculate X via a sequence of statements. Scalarizing and
optimizing each assignment separately might produce the following code,2 with
a separate loop for each of the above statements:

forall (i = 1:N, j = 1:N)
Y(i,j) = C(j,i)

end forall
forall (i = 1:N, j = 1:N)
X(i,j) = B(i,j) + Y(i,j)

end forall

A code optimizer could fuse the two loops, producing the following single loop,
in which Y and X are both materialized.

forall (i = 1:N, j = 1:N)
Y(i,j) = C(j,i)
X(i,j) = B(i,j) + Y(i,j)

end forall

In contrast, a compiler could determine that Y need not be materialized at
all, and generate the following code:3

forall (i = 1:N, j = 1:N)
X(i,j) = B(i,j) + C(j,i)

end forall

Nonmaterialization can also be used in optimizing distributed computation.
Kennedy et al. [1995], Roth [1997], and Roth et al. [1997] develop methods for
optimizing stencil computations, which are of importance in scientific comput-
ing, by nonmaterialization of selected cshift operations involving distributed
arrays. These nonmaterializations are used to minimize communications, in-
cluding both the amount of data transmitted, and the number of messages used.
The amounts of the shifts in the stencils involved are constants, so a compiler
can determine which cshift operations in the basic block are potential benefi-
ciaries of nonmaterialization. A compiler can analyze a basic block and choose
not to materialize some of these cshift operations. The nonmaterialization

2This code could alternately have been expressed using DO loops.
3This simple example is given to illustrate nonmaterialization. For this example, many compil-

ers would produce this code using standard techniques, without the need for more sophisticated

optimization techniques.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

On Minimizing Materializations of Array-Valued Temporaries • 1149

technique in Kennedy et al. [1995], Roth [1997], and Roth et al. [1997] uses
a sophisticated form of replication, where a subarray on a given processor is
enlarged by adding extra rows and columns that are replicas of data on other
processors. The actual computation of the stencil on each processor refers to
the enlarged array on that processor.

For instance, consider the following example, involving 2-dimensional arrays,
taken from Roth et al. [1997].

(1) RIP = cshift(U,shift=+1,dim=1)
(2) RIN = cshift(U,shift=-1,dim=1)
(3) T = U + RIP + RIN

The optimized version of this code is the following. RIP and RIN are not ma-
terialized. The cshift operations in statements (1) and (2) are replaced by
overlap cshift operations, which transmit enough data from U between pro-
cessors so as to fill in the overlap areas on each processor. In statement (3),
the references to RIP and RIN are replaced by references to U, each annotated
with appropriate shift values, expressed using superscripts to indicate the shift
value in each dimension.

(1) call overlap cshift(U,shift=+1,dim=1)
(2) call overlap cshift(U,shift=-1,dim=1)
(3) T = U + U<+1,0> + U<−1,0>

An important issue for nonmaterialization is determining whether a given
shuffle operation is a candidate for nonmaterialization. The criteria for a given
shuffle operation to be a candidate are that nonmaterialization of the opera-
tion be both safe and profitable. The usual criteria for a nonmaterialization to
be safe are that the source array of the shuffle is not modified while the def-
inition of the destination array is live, and that the destination array is not
partially modified while the source array is live [Schwartz 1975; Roth 1997].
(Note that these criteria implicitly assume that shuffle operations have a sin-
gle array operand.) The criteria for being profitable depend on the optimization
goal, the shuffle operation involved, the shape of the arrays involved, architec-
tural features of the computing environment on which the computation will be
performed, and the distribution/alignment of the arrays involved. For instance,
Roth [1997] gives profitability criteria for stencil computations on distributed
machines. For purposes of this article, we assume the availability of appropri-
ate criteria for determining whether a given shuffle operation is a candidate
for nonmaterialization.

Definition 2.1. An eligible statement is an assignment statement whose
right side is a shuffle operation that is a candidate for nonmaterialization. An
ineligible statement is a statement that is not an eligible statement. We say that
the array value occurring on the right side of an eligible statement is mergeable
with the array value occurring on the left side of the statement.

In a given basic block, it may not be possible to avoid materializing all the eli-
gible statements. Moreover, the decisions as to which eligible statements should
be nonmaterialized can be interdependent. This interdependence is an imped-
iment to using techniques for optimizing expression trees or dags. Roth [1997]

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

1150 • D. J. Rosenkrantz et al.

gives a “greedy” algorithm for choosing which eligible statements to nonmate-
rialize. At each step, Roth’s algorithm chooses the first eligible statement, and
modifies the basic block so that this statement is not materialized. Each mod-
ification can cause other statements that were eligible before the modification
to become ineligible. The following example illustrates this phenomenom.

Example 2.1
(1) B = cshift(A,shift=+5,dim=1)
(2) C = cshift(A,shift=+3,dim=1)
(3) D = cshift(A,shift=-2,dim=1)
(4) B(i) = 50
(5) R(2:199) = B(2:199) + C(2:199) + D(2:199)
At end of basic block: R live; A, B, C, and D dead.

Assume that statements (1), (2), and (3) are eligible statements. Roth’s
method would first consider the shuffle operation in statement (1), and conse-
quently chooses to merge B with A. This merger would be carried out as shown
below, changing the modification of B in statement (4) into a modification of
A. In statements (4) and (5), the reference to B is replaced by a reference to A,
annotated with the appropriate shift value.

(1) call overlap cshift(A,shift=+5,dim=1)
(2) C = cshift(A,shift=+3,dim=1)
(3) D = cshift(A,shift=-2,dim=1)
(4) A<+5>(i) = 50
(5) R(2:199) = A<+5>(2:199) + C(2:199) + D(2:199)

Statement (4) now modifies variable A, thereby making statements (2) and
(3) unsafe, and therefore ineligible. This prevents C and D from being merged
with A. The greedy algorithm would terminate at this point, since there are no
eligible statements, leaving three copies of the array (in variables A, C, and D).
But, it is better to optimize Example 2.1 by materializing a separate copy of A
in B, and letting A, C, and D all share the same copy (in variables A), as follows:

(1) B = cshift(A,shift=+5,dim=1)
(2) call overlap cshift(A,shift=+3,dim=1)
(3) call overlap cshift(A,shift=-2,dim=1)
(4) B(i) = 50
(5) R(2:199) = B(2:199) + A<+3>(2:199) + A<−2>(2:199)

The above example can be extended to show that the “greedy” algorithm can
be arbitrarily worse than optimal. Suppose that instead of just C and D, there
were n additional variables that could be merged with A. Roth’s method would
only merge B with A, resulting in a total of n+1 materialized arrays. In contrast,
by making a separate copy for B, there would be a total of only two materialized
arrays.

We now illustrate another technique that can facilitate minimizing materi-
alizations. Placing the materialized result of a nonshuffle array statement in
a different variable than given in the statement may permit subsequent shuf-
fle operations to be nonmaterialized. This freedom in selecting the variable in

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

On Minimizing Materializations of Array-Valued Temporaries • 1151

which to place a materialization is necessary for certain optimizations to be
possible, as illustrated by the following example:

Example 2.2
(1) A = C + D
(2) B = cshift(A,shift=+3,dim=1)
(3) z = A(i) + B(i)
At end of basic block: A dead, B live.

Since variable A is dead at the end of the basic block, and B is live, it is
advantageous to materialize the result computed by statement (1) in variable B
instead of variable A. Thus, an optimized version of the basic block might be as
follows. Here, the partial result C + D is annotated by the compiler to indicate
that the value to be stored in variable B should be shifted appropriately.

(1′) B = (C + D)<+3>

(3) z = B<−3>(i) + B(i)

2.2 Definitions and Problem Statement

Next, we begin our development of a framework for considering the problem
of minimizing the number of materializations in a basic block (equivalently,
maximizing the number of shuffle operations that are not materialized).

Definition 2.2. A def-value in a basic block is either the initial value (at the
beginning of the basic block) of an array variable or an occurrence of an array
variable that is the destination of an assignment. (An assignment can be to the
complete array, to a section of the array, or to a single element of the array.)

Definition 2.3. A complete-def is a def-value resulting from an assignment
to a complete array. A partial-def is a def-value resulting from an assignment
to a section or element of an array (where the other array elements retain their
prior values). An initial-def is an initial value of an array variable.

Note that the set of def-values can be partitioned into the sets of complete-
defs, partial-defs, and initial-defs. For convenience, we identify each def-value
by the name of its variable, superscripted with either 0 for an initial-def, or
the statement assigning the def-value for a noninitial-def. Using this notation,
Example 2.1 involves initial-defs A0 and R0, complete-defs B1, C2, and D3, and
partial-defs B4 and R5.

Definition 2.4. A materialization is either an initial-def or a complete-def.

We say that a given materialization is in the variable of its def-value, since
the def-value is stored in the location corresponding to this variable.

We now consider sets of mutually mergeable def-values, represented as trees
in the clone forest, defined as follows:

Definition 2.5. The clone forest for a basic block is a graph with a node
for each def-value occurring in the basic block, and a directed edge from the
source def-value to the destination def-value of each eligible shuffle operation.
The set of def-values occurring in a tree of the clone forest is called a clone set,

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

1152 • D. J. Rosenkrantz et al.

Fig. 1. Clone forest for Example 2.1.

and these def-values are said to be clones of each other. The root def-value of a
given clone set is the def-value corresponding to the root node of the clone tree
corresponding to the clone set.

As an example, the clone forest for Example 2.1 is shown in Figure 1. There
are four clone sets, {A0, B1, C2, D3}, {R0}, {B4} and {R5}, with root def-values A0, R0,
B4 and R5, respectively.

The interface between a given basic block and the rest of the program is
through those variables that are live at the beginning or end of the basic block.
These variables can be identified using data-flow analysis [Aho et al. 1986]. We
assume that each such variable has an official location, where its value will be
stored at block entry and/or exit.

We formalize the materialization problem via the following assumptions:

Materialization Problem Assumptions:

(1) Only Eligible Nonmaterialized Assumption. The only statements that can
be nonmaterialized are eligible statements. A materialization can occur in
a different variable than in the given code, and a reference to a def-value
can be replaced by a reference to a clone, with appropriate annotation.

(2) No Dead Code Assumption. No dead code.

(3) No Aliasing Assumption. Arrays with different names are not aliased.4

(4) Full Mergeability Assumption. The relation between def-values in a basic
block, based on being mergeable, is symmetric and transitive.

(5) Coarse Analysis Assumption. There is no fine-grained analysis of array in-
dices. In particular, no analysis is made as to whether two given partial-defs
overlap or whether a given use overlaps a given partial-def.

(6) Live Entry Assumption. The initial value of each variable that is live on
entry to a basic block is stored in the variable’s official location.

(7) Live Exit Assumption. A variable that is live at exit from a basic block, must
have its final value at the end of the basic block stored in the variable’s
official location.

(8) Restricted Rearrangement Assumption. No rearrangement of the ineligible
statements in a basic block.

4However, the techniques in this article can be suitably modified to use aliasing information.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

On Minimizing Materializations of Array-Valued Temporaries • 1153

In Section 3, we focus on the optimization problem of minimizing the number
of materializations in a basic block, under all eight assumptions. In Section 4,
we consider this problem under Assumptions (1)–(7) only.

Definition 2.6. The Materialization Problem Under No Ineligible State-
ment Rearrangement is the problem of minimizing the number of materializa-
tions in a basic block, under Assumptions (1)–(8) listed above. The Materializa-
tion Problem Under Unconstrained Statement Rearrangement is the problem of
minimizing the number of materializations in a basic block, under Assumptions
(1)–(7) listed above.

The overall optimization problem can be viewed as minimizing the total
number of materializations for all the clone sets for a given basic block. Consider
Example 2.1 again. Def-values A0 and R0 are initial-defs. From Assumption 6,
there is a materialization for each initial-def, so materializations are needed for
A0 and R0. Def-value R5 can be obtained by a partial-def that modifies the already
materialized initial-def A0, and so does not require a new materialization. Def-
value B4 (or, possiblly a clone of B4) must be obtained by a partial-def that
modifies A0 or a clone of A0. Statement (5) uses values from both clone set {A0,
B1, C2, D3} and clone set {B4}. Thus, at the time statement (5) is executed, a
member of each of these clone sets must be available. Since def-values from
two different clone sets must be simultaneously available, two def-values used
in statement (5) must be stored in different variables, and so are stored in the
variables of different materializations. Clone set {B4} is created by the partial-
def in statement (4) that modifies a member of clone set {A0, B1, C2, D3}. Thus, at
least two members of clone set {A0, B1, C2, D3} must be materialized: one to hold a
def-value from this clone set for use in statement (5), and one to hold a def-value
that is modified by statement (4). The optimized code given for Example 2.1
materializes A0 and B1 from clone set {A0, B1, C2, D3}, and materializes R0 from
clone set {R0}. Clone sets {B4} and {R5} do not require new materializations; they
can be obtained by partial-defs to already materialized arrays.

We now establish a lower bound on the number of separate copies required
for a given clone set. First, we identify two important kinds of def-values.

Definition 2.7. A given def-value in a basic block is transient if the basic
block contains a subsequent def-value in its variable, and the next such def-
value in its variable is a partial-def.

A given def-value in a basic block is persistent if it is the last def-value in its
variable in the basic block, and its variable is live at the end of the basic block.

For instance, in Example 2.1, def-value B1 is transient, because the next
def-value in its variable B is a partial-def, namely B4. Def-value R0 is transient
because of the subsequent partial-def R5. Def-value R5 is persistent. Note that
def-values A0, C2, D3, and B4 are neither transient nor persistent.

PROPOSITION 2.1. Consider the clone tree for a given clone set. There needs to
be a separate materialization for each def-value in the clone tree that is either
transient or persistent.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

1154 • D. J. Rosenkrantz et al.

Fig. 2. Version forest for Example 2.1.

PROOF. Consider a given clone tree. We need to consider the following three
cases of pairs of def-values in the clone tree: (1) two transient def-values,
(2) two persistent def-values, and (3) a transient def-value and a persistent
def-value.

Case 1. By Definition 2.7, two transient def-values in the clone tree are each
modified by subsequent partial-defs. Under Assumption 5, these partial-defs
possibly can assign new values to a common element of the array. From As-
sumption 2, the new arrays resulting from these partial-defs are not dead.
From Assumption 5 again, the two values for a common array element might
both be needed. Thus, the materializations containing these common elements
must be different.

Case 2. Two persistent def-values in the same clone tree cannot share the
same materialization because, from Assumption 7, the two persistent def-
values must be in different variables.

Case 3. A transient def-value and a persistent def-value cannot share the
same materialization because from Assumption 2 each is needed, from As-
sumption 7 the persistent def-value must be in the variable corresponding to
its official location, and this value must be unchanged at the end of the basic
block, but the transient def-value is modified by a subsequent partial-def.

For each transient def-value of a given clone set, there is a subsequent partial-
def in its variable, and this partial-def is the root def-value of another clone set.
We now define a graph that represents the relationship between clone sets
based on partial-defs. This graph contains a node for each clone set, and an
edge for each transient-def, as formalized by the following definition.

Definition 2.8. The version forest for a basic block is a graph with a node
for each clone set in the basic block, and a directed edge from clone set α to
clone set β if the root def-value of clone set β is a partial-def that modifies a
member of α. The root def-value of a given tree in the version forest is the root
def-value of the clone set of the root node of the version tree.

For example, the version forest for Example 2.1 is shown in Figure 2. There
are two trees in the version forest, with root def-values A0 and R0, respectively.

Definition 2.9. A node of a version forest is persistent if any of its def-values
are persistent.

For instance, in Figure 2, the only persistent node in the version forest is the
node for clone set {R5}.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

On Minimizing Materializations of Array-Valued Temporaries • 1155

3. MINIMIZING MATERIALIZATIONS UNDER NO INELIGIBLE
STATEMENT REARRANGEMENT

3.1 Overview of Section

In this section, we develop our main techniques and results on the Material-
ization Problem Under No Ineligible Statement Rearrangement. This problem
consists of minimizing the number of materializations in a basic block, under
the eight assumptions listed in Section 2.2. Here, of particular importance is the
constraint of no rearrangement of ineligible statements imposed by Assump-
tion 8. (Note that Assumption 8 places no constraint on the rearrangement
of eligible statements.) We develop both lower bounds and algorithms for this
problem. For reasons of clarity, both the lower bounds and the algorithms are
developed in two stages. The first-stage results (Sections 3.2 and 3.4) are concep-
tually simpler and explicate the underlying logic more clearly. The second-stage
results (Sections 3.3 and 3.5) are stronger, but more complicated.

In Section 3.2, we develop the simpler lower bound. To express this lower
bound, we first formulate key concepts that are fundamental to the minimiza-
tion problem. The concept of an essential node (Definition 3.3) is of particular
importance. We show (Corollary 3.1) that the number of essential nodes of a
basic block is a lower bound on the number of materializations occurring in
the basic block. Next we show (Theorem 3.2) that several properties of a basic
block are invariant under any transformation of a basic block permitted by the
assumptions of Section 2.2. These properties include the number of essential
nodes. Consequently, we conclude (Theorem 3.3) that the number of essential
nodes in a basic block is a lower bound on the number of materializations in
any optimized version of the basic block.

In Section 3.3, we first formulate additional concepts in order to generalize
the lower bound from Section 3.2. Theorem 3.4 generalizes Corollary 3.1 to
provide a stronger lower bound on the number of materializations occurring in
a basic block. Then Theorem 3.5 generalizes Theorem 3.2 to include additional
properties of a basic block that are invariant under any transformation of a basic
block permitted by the assumptions of Section 2.2. We conclude (Theorem 3.6)
that the lower bound from Theorem 3.4 is a lower bound on the number of
materializations in any optimized version of the basic block.

In Section 3.4, we present an algorithm (Theorem 3.7) minimizing material-
izations in basic blocks with no persistent def-values. For such basic blocks, the
number of materializations produced by the algorithm equals the lower bound
of Theorem 3.3. Thus (Theorem 3.8), the algorithm constructs an optimum so-
lution to the minimization problem for these basic blocks.

In Section 3.5, we present two algorithms for basic blocks with persistent def-
values. We define the concept of a persistence conflict between two version trees.
These conflicts occur when there is a possible interaction preventing simulta-
neous optimization of both version trees. A persistence conflict can also occur
within a version tree if an initial def-value must be shuffled to produce a per-
sistent def-value in the same variable. We present an algorithm (Theorem 3.9)
minimizing materialiations in basic blocks with no persistence conflicts. For

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

1156 • D. J. Rosenkrantz et al.

such basic blocks, the number of materializations produced by this algorithm
equals the lower bound of Theorem 3.6. Thus (Theorem 3.10), the algorithm
constructs an optimum solution to the minimization problem for these basic
blocks. Finally, we note that each persistence conflict in a given basic block can
be broken by adding an additional materialization. This provides an algorithm
and upper bound (Theorem 3.11) for basic blocks with persistence conflicts.

3.2 A Simple Lower Bound

Next we formalize the concept of the point in a basic block where a clone set is
created. Without loss of generality, we assume that the statements in a given
basic block are numbered consecutively, beginning with 1.

Definition 3.1. The origin point of an initial-def is just before the basic
block, and is denoted by (0). The origin point of a complete-def or a partial-def
is the statement in which it receives its value. The origin point of a clone set is
the origin point of the root def-value of the clone set.

In Figure 2, the origin point of clone set {A0, B1, C2, D3} is (0), of {B4} is (4), of
{R0} is (0), and of {R5} is (5). In general, we note that the origin point of a given
clone set is either just before the basic block, or is an ineligible statement.
Consequently, the ordering of the origin points of the clone sets in a given basic
block cannot be altered by any transformation permitted by Assumption 8.

Definition 3.2. The demand point of a persistent def-value in a basic block
is just after the basic block, and is denoted by the statement number one greater
than the statement number of the last statement in the basic block. The demand
point of a nonpersistent def-value is the last ineligible statement that contains
a use of the def-value, and is defined to be (0) if there is no ineligible statement
that uses it. The demand point of a clone set is the maximum demand point of
the def-values in the clone set.

For instance, in Figure 2, the demand point of {A0, B1, C2, D3} is (5), of {B4} is
(5), of {R0} is (0), and of {R5} is (6).

Next, we formalize the concept of an essential node of a version tree. Infor-
mally, an essential node is a node whose value is required after the values of
all its child nodes (if any) have been produced. In order to satisfy this require-
ment, the materialization used to hold this value cannot be the same as any
materialization used to hold a transient def-value that is modified to produce
the value of a child node.

Definition 3.3. A node of a version tree is an essential node if it is either a
leaf node, or a non-leaf node whose demand point is greater than the maximum
origin point of its children.

For instance, in Figure 2, node {A0, B1, C2, D3} is essential because its demand
point (5) exceeds the origin point (4) of its child {B4}. Node{R0} is not essential
because its demand point (0) does not exceed the origin point (5) of its child {R5}.
Nodes {B4} and {R5} are leaf nodes, and so are essential.

PROPOSITION 3.1. Every persistent node of a version tree is essential.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

On Minimizing Materializations of Array-Valued Temporaries • 1157

Fig. 3. Version forest for Example 3.1.

PROOF. Every leaf node is essential by definition. A persistent non-leaf node
is essential because its demand point is just after the basic block, but the origin
point of each of its children is within the basic block.

Recall that there are three materializations in the optimized code for Ex-
ample 2.1. There is the materialization of A0, which is also used for C2 and
D3. There is a materialization of transient def-value B1, which is subsequently
modified by the partial-def that creates B4. Finally, there is a materialization of
transient def-value R0, which is subsequently modified by the partial-def that
creates R5. In this example, the number of materializations in the optimized
code equals the number of essential nodes in the version forest. Each of the
three essential nodes of the version forest (shown in Figure 2) for this basic
block can be associated with one of these materializations. Node {A0, B1, C2, D3}
is associated with materialization A0. Node {B4} is associated with materializa-
tion B1 (via the partial-def to B4). Node {R5} is associated with materialization
R0 (via the partial-def to R5). Nonessential node {R0} is associated with the same
materialization (R0) as is associated with its child node, so that the partial-def
R5 that creates the child node can modify the variable R associated with the
parent node.

Now consider the following example, which illustrates changing the destina-
tion variable of a complete-def, so that a nonessential parent node utilizes the
same variable as its child node.

Example 3.1
(1) A = G + H
(2) B = cshift(A,shift=+5,dim=1)
(3) C = cshift(A,shift=+3,dim=1)
(4) x = C(i) + 3
(5) B(i) = 50
(6) A = G - H
At end of basic block: A and B live; C, G and H dead.

The version forest for this basic block is shown in Figure 3.
The basic block can be optimized by merging materializations A1, B2, and

C3 into a single materialization stored in B’s official location, as shown below.
(Thus, the references to A, B, and C in statements (1) through (5) are all replaced
by references to B.)

(1′) B = (G + H)<+5>

(4) x = B<−2>(i) + 3
(5) B(i) = 50
(6) A = G - H

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

1158 • D. J. Rosenkrantz et al.

The complete-def A1 is transformed into a complete-def to variable B, since
this permits the version tree with root def-value A1 to be evaluated using only
one materialization. The materialization is in variable B, rather than variable
A, because def-value B5 is persistent. Def-value A6 is persistent, and so uses the
official location of A.

Note that the version forest contains four essential nodes, {B5}, {A6}, {G0},
and {H0}; and the optimized code uses four materializations. In the optimized
code, essential node {B5} utilizes variable B, and is associated with new mate-
rialization B1′

(via the partial-def to B5). Essential node {A6} is associated with
materialization A6. Nonessential node {A1, B2, C3} is associated with the same
materialization (B1′

) as is associated with its child node, so that the partial-def
B5 that creates the child node can modify the variable B utilized by the parent
node. The reference in statement (4) to def-value C3 from node {A1, B2, C3} is
replaced by a reference to variable B, which holds def-value B1′

.
To clarify the relationship between def-values and materializations, we de-

fine the following function from the def-values in a basic block to the material-
izations in the basic block.

Definition 3.4. We say that a given def-value overlays a given materializa-
tion if the def-value is obtained from the materialization via a sequence of zero
or more partial-defs to the same variable, with no intervening complete assign-
ments to that variable. An overlay set is the set of all def-values that overlay a
given materialization.

In the given basic block of Example 3.1, materialization B2 is overlayed by
def-values B2 and B5. In the optimized code, materialization B1′

is overlayed by
def-values B1′

and B5.
We make the following observations about overlay sets.

Observation 3.1. The def-values in a given overlay set have the same vari-
able name, and the version forest nodes containing these def-values form a
directed path in the version forest. The def-values in the overlay set can be
envisioned as being ordered by their position along this path.

Observation 3.2. Each overlay set contains exactly one def-value that is not
transient, namely the final def-value in the overlay set.

Observation 3.3. The number of materializations in a basic block equals
the number of overlay sets, and consequently by Observation 3.2, equals the
number of def-values in the basic block that are not transient.

THEOREM 3.1. Every essential node contains at least one def-value that is
not transient.

PROOF. Consider a given essential node v. If v is a leaf node, then every
def-value in v is not transient. If v is a nonleaf node containing a persistent
def-values, then that def-values in v is not transient. Otherwise, v is a nonleaf
node containing no persistent def-values. Since v is not a leaf node, it has at
least one child. Since v is essential, the demand point of v exceeds the maximum
origin point of its children. Since v is not persistent, the demand point of v is

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

On Minimizing Materializations of Array-Valued Temporaries • 1159

Fig. 4. (a) Version forest for Example 3.2. (b) Version forest for optimized code.

an ineligible statement. This demand point statement contains a reference to
at least one def-value in v. In the list of ineligible statements, this demand
point statement occurs after all the statements containing a partial-def that
modifies a def-value in v. Consequently, each def-value in v that is referenced
in the demand point statement of v is not transient.

The following Corollary relates the number of materializations in the code
for a basic block B to the number of essential nodes in the version forest for B.

COROLLARY 3.1. The number of materializations in a basic block is at least
the number of essential nodes in its version forest.

PROOF. From Observation 3.3 and Theorem 3.1

The following example illustrates how the freedom to move eligible state-
ments, as permitted by Assumption 8 (Restricted Rearrangement Assumption),
can be exploited to reduce the number of materializations.

Example 3.2
(1) B = cshift(A,shift=+5,dim=1)
(2) A(i) = 120
(3) x = B(j) + 3
(4) C = cshift(A,shift=+2,dim=1)
At end of basic block: C live; A and B dead.

This basic block uses three materializations: A0 (which is overlayed by def-
values A0 and A2), B1, and C4. The version forest for this basic block is shown
in Figure 4(a). Note that both nodes of the version forest are essential. The
basic block can be optimized by moving the complete-def C4, which is an eligible
statement, forward so that it occurs before statement (2), and letting the partial-
def in statement (2) modify variable C. The optimized code is shown below, where
old statement (4) is relabeled (4′) and is now the first statement in the basic
block. In addition, statements (2) and (3) are transformed into statements (2′)
and (3′), respectively, with appropriate annotations on the array variables used.

(4′) C = cshift(A,shift=+2,dim=1)
(2′) C<−2>(i) = 120
(3′) x = A<+5>(j) + 3

The version forest for the optimized code is shown in Figure 4(b). Both nodes
are essential. The optimized code contains two materializations: A0 (which is

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

1160 • D. J. Rosenkrantz et al.

overlayed only by partial-def A0) and C4′
(which is overlayed by partial-defs C4′

and C2′
). The optimization is made possible by changing the reference to B1 in

the demand point statement (3) to be a reference to its clone A0. The optimized
code can be envisioned as utilizing materialization A0 for node {A0, B1}, and
utilizing, via partial-def C2′

, new materialization C4′
for node {A2, C4}.

We now relate the version forests of a given basic block and an equivalent
basic block, where the pair of basic blocks satisfy the Materialization Problem
Assumptions given in Section 2.2.

THEOREM 3.2. Let B be a basic block, and let V be its version forest. Let B′

be an equivalent basic block, obtained from B subject to the constraints imposed
by the Materialization Problem Assumptions given in Section 2.2. Let V ′ denote
the version forest corresponding to B′. Then:

(1) The sequence of ineligible statements is identical in B and B′, with the
possible exception of the names of the array variables occurring in these
statements.

(2) There is a one-to-one correspondence between the clone sets of B and the clone
sets of B′, based on a one-to-one correspondence between the root def-values
of these clone sets. Namely, two clone set root def-values correspond if they
are the same initial-def or are def-values created in corresponding ineligible
statements.

(3) Version forests V and V ′ are isomorphic under the correspondence of version
tree nodes based on the one-to-one correspondence between clone sets.

(4) V and V ′ have the same set of persistent def-values.
(5) The origin points of corresponding nodes of V and V ′ are the same (corre-

sponding ineligible statements, or corresponding initial values).
(6) The demand points of corresponding nodes of V and V ′ are the same (just

after the basic block, corresponding ineligible statements, or (0)).
(7) V and V ′ have the same set of essential nodes, that is, a node of V is essential

iff the corresponding node of V ′ is essential.

PROOF. Because of Assumptions 2 and 8, the sequence of ineligible state-
ments is identical in B and B′, with the possible exception of the names of the
array variables occurring in these statements. The root def-value of a given
clone set is either an initial-def or a def-value created by an ineligible state-
ment. Consequently, there is a one-to-one correspondence between the nodes
(each of which corresponds to a clone set) of version forests V and V ′. Moreover,
corresponding nodes have the same origin point. Since each version forest edge
is created by an ineligible statement containing a partial-def, V and V ′ have
corresponding edges, with corresponding endpoints. Because of Assumption 7,
V and V ′ have the same set of persistent def-values. Corresponding uses of an
array variable in corresponding ineligible statements in B and B′ are uses of
def-values from corresponding clone sets. Thus, for corresponding clone sets,
the set of ineligible statements that contain uses of def-values from these clone
sets is the same. Consequently, the demand points of corresponding nodes of V
and V ′ are the same. Since V and V ′ have corresponding nodes and edges, and

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

On Minimizing Materializations of Array-Valued Temporaries • 1161

corresponding nodes have the same origin point and demand points, a node of
V is essential iff the corresponding node of V ′ is essential.

THEOREM 3.3. For the Materialization Problem Under No Ineligible State-
ment Rearrangement, the number of materializations needed to evaluate a given
basic block is at least the number of essential nodes in its version forest.

PROOF. Let B denote the given basic block, and V denote its version forest.
Let B′ denote an optimized evaluation of the basic block, where the optimization
is constrained by the assumptions given in Section 2.2. Let V ′ denote the version
forest corresponding to B′.

From Corollary 3.1, the number of materializations in B′ is at least the
number of essential nodes in V ′. From Theorem 3.2, V and V ′ have the same
number of essential nodes. Therefore, the number of materializations in B′ is
at least the number of essential nodes in V .

3.3 A Lower Bound Addressing Persistence

We now develop a stronger version of Theorem 3.3, that takes into account more
properties of a version forest.

Definition 3.5. The excess persistence of a clone set is zero if the clone set
contains at most one persistent def-value, and otherwise is one less than the
number of persistent def-values in the clone set. The excess persistence of a
version forest is the sum of the excess persistence of its clone sets.

Definition 3.6. A given version tree has a wasted root if every essential
node of the version tree is persistent, its root def-value is an initial def-value,
and the variable of the root def-value does not have a persistent def-value in
this version tree.

We now generalize Corollary 3.1, as a step toward generalizing Theorem 3.3.

THEOREM 3.4. The number of materializations in a basic block is at least the
number of essential nodes in its version forest, plus the excess persistence, plus
the number of version trees with a wasted root.

PROOF. From Observation 3.3, each essential node contains at least one def-
value that is not transient.

Consider an essential node v that contains at least one persistent def-value.
The number of persistent def-value in v is one plus the excess persistence of v.
Each of these persistent def-values is not transient, so the number of def-values
in the node that are not transient is at least one plus the excess persistence of
the node. Thus, the number of nontransient def-values in a given version tree
is at least the number of essential nodes plus the excess persistence in that
version tree.

Now consider a version tree T with a wasted root. Since T has a wasted root,
every essential node in T is persistent. Moreover, the root def-value of T is an
initial def-value, and the variable of this root def-value is different than the
variables of all the persistent def-values in T . Consequently, the overlay set
containing the initial def-value is distinct from the overlay sets containing the

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

1162 • D. J. Rosenkrantz et al.

persistent def-values in T . The final def-value in the overlay set containing the
initial def-value is not transient and is distinct from all the persistent def-values
in T . Since this holds for the root def-value of each version tree with a wasted
root, the number of def-values in the basic block that are not transient is at least
the number of essential nodes in its version forest, plus the excess persistence,
plus the number of version trees with a wasted root. From Observation 3.3, the
number of materializations in the basic block is at least this number.

We now present two additional implications of the assumptions of
Theorem 3.2.

THEOREM 3.5. Let B, V , B′, and V ′ be as described in the statement of
Theorem 3.2. Then, in addition to conclusions (1) through (7) of Theorem 3.2,
the following hold:

(8) V and V ′ have the same excess persistence.
(9) A tree T of V has a wasted root if and only if the corresponding tree T ′ of

V ′ has a wasted root.

PROOF. From Theorem 3.2 (1), V and V ′ have the same set of persistent
def-values, so they have the same excess persistence.

From Theorem 3.2 (2) and (3), a version tree T of V has an initial def-value
as its root def-value if and only if the corresponding tree T ′ of V ′ has the same
initial def-value as its root def-value. Suppose the root def-value of T is an
initial def-value. From Theorem 3.2 (7), V and V ′ have the same set of essential
nodes. From Theorem 3.2 (4), they have the same set of persistent def-values.
Consequently, T has a wasted root if and only if T ′ has a wasted root.

We now state a stronger version of Theorem 3.3.

THEOREM 3.6. For the Materialization Problem Under No Ineligible State-
ment Rearrangement, the number of materializations needed to evaluate a given
basic block is at least the number of essential nodes in its version forest, plus the
excess persistence, plus the number of version trees with a wasted root.

PROOF. Let B denote the given basic block, and V denote its version forest.
Let B′ denote an optimized evaluation of the basic block, where the optimization
is constrained by the assumptions given in Section 2.2. Let V ′ denote the version
forest corresponding to B′.

From Theorem 3.4, the number of materializations in B′ is at least the num-
ber of essential nodes in its version forest V ′, plus the excess persistence, plus
the number of version trees with a wasted root. From Theorems 3.2 and 3.5,
V and V ′ have the same number of essential nodes, the same excess persis-
tence, and the same number of version trees with a wasted root. Therefore, the
number of materializations in B′ is at least the number of essential nodes in
V , plus the excess persistence in V , plus the number of version trees in V with
a wasted root.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

On Minimizing Materializations of Array-Valued Temporaries • 1163

3.4 Algorithm: No Persistence

We next show that for a version forest with no persistent nodes, the lower bound
of Theorem 3.3 has a matching upper bound. As part of the proof, we provide an
algorithm for producing the optimized code. This algorithm is subsumed by the
algorithm in Theorem 3.9, but is presented here as a useful intermediate step
towards developing the more general algorithm, and aids in understanding the
latter algorithm.

THEOREM 3.7. A version forest with no persistent nodes can be computed
using one materialization for each essential node, and no other materializations.

PROOF. We describe an algorithm with input a basic block B and its version
forest V . It produces as output optimized code B′. The version forest V ′ for B′

will be isomorphic to V . This algorithm associates a variable name with each
version forest node. We call this variable name the utilization-variable of the
node. In the code produced as output by the algorithm, the root def-value of
the node’s clone set will be stored in the node’s utilization-variable. Moreover,
all the uses of def-values from the node will reference the node’s utilization-
variable. In the portion of the algorithm that determines the utilization-variable
of each node (Steps (1) and (2)), we envision the children of each node being
ordered from left to right in terms of increasing value of the child’s origin point.
(Consequently, the node’s rightmost child is the child with the maximum origin
point.) The algorithm consists of the following seven steps.

Step (1). Associate a unique utilization-variable with each essential node, as
follows.

(a) For each version tree whose root def-value is an initial-def, set the
utilization-variable for the first essential node on the path from the root
of the version tree to the rightmost leaf to be the variable of the initial-def.

(b) For each remaining essential node in the version forest, set the utilization-
variable for that node to be a unique new temporary variable.

Step (2). Determine the utilization-variables of nonessential nodes as follows.
Each tree in the version forest is processed in a bottom-up manner. Note that for
each version tree, the essential nodes (which, from Definition 3.3, include all the
leaf nodes) have all been assigned an associated utilization-variable in Step (1).
In the bottom-up processing of each version tree, whenever a nonessential node
is encountered, set the utilization-variable of the nonessential node to be the
same variable as the utilization-variable of its rightmost child. (By construction,
this is the child with the maximum origin point.)

Step (3). In the output code B′ for the basic block, place the ineligible state-
ments, in the same order as in the given input basic block.

Step (4). In the output code B′, insert a materialized shuffle statement for
each version forest nonroot node whose utilization-variable is different from the
utilization-variable of its parent node. This shuffle statement is inserted just
after the origin point of the parent node. Delete all other eligible statements.

Step (5). For each shuffle statement included in Step (4), set the source of the
shuffle statement to be the utilization-variable of the parent node, and set the

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

1164 • D. J. Rosenkrantz et al.

destination of the shuffle statement to be the utilization-variable of the child
node.

Step (6). (Note that in the given basic block, each assignment to a complete
array is the origin point of a unique root node in the version forest, and each
partial-def assignment is the origin point of a unique nonroot node in the version
forest.) For each complete-def and each partial-def statement, if the utilization-
variable of the corresponding version forest node is different than the left side
array variable in the statement, change the left side array variable to be the
utilization-variable, with appropriate shift annotation as needed.

Step (7). In the ineligible statements, replace each use of a def-val from the
version forest by a reference to the utilization-variable of the version forest
node containing the def-value, with appropriate shift annotation as needed.

Consider the code produced by the above algorithm. In the evaluation of the
version forest, the number of variable names used equals the number of essen-
tial nodes, and the number of materializations equals the number of variable
names used.

We note that in Step (1)(b), instead of using a new temporary variable, one
of the variable names occurring in the node’s clone set can be used, subject to
the constraint that each variable name is associated with at most one essential
node. This can lead to more natural-looking code, and was done in the examples.

We also note that in the application to stencil computations involving dis-
tributed arrays, Step (4) could also insert appropriate overlap cshift opera-
tions into the output code for def-alues that are not materialized, but for which
some shifted array elements are needed at adjacent processors.

Consider the optimized code for Example 2.1, with the version forest shown
in Figure 2. The root def-values of each of the two version trees is an initial-def:
A0 and R0, respectively. Because of initial-def A0, Step (1)(a) sets the utilization-
variable of essential node {A0, B1, C2, D3} to be the variable A, overlaying materi-
alization A0. Because of initial-def R0, Step (1)(a) sets the utilization-variable of
essential node {R5} to be the variable R, overlaying materialization R0. Step (1)(b)
applies to essential node {B4}. In the optimized code for the example, instead of
using a new temporary variable, the utilization-variable of this node was set to
be the variable B, requiring a materialization in this variable. Step (2) set the
utilization-variable of nonessential node {R0} to be R, the utilization-variable of
its rightmost child node. (Note that the root def-values of both nodes overlay
materialization R0.) Step (3) places the ineligible statements (4) and (5) into the
output code. Step (4) inserts a shuffle statement that creates materialization B1.
Note that root def-value B4 of node {B4} is obtained by a partial-def to def-value
B1 and overlays materialization B1.

In Example 2.2, the optimized code for version forest node {A1, B2} has
utilization-variable B, and root def-value B1′

. In the optimized code for Exam-
ple 3.1, nodes {A1, B2, C3} and {B5} both have utilization-variable B, and their root
def-values B1′

and B5 both overlay materialization B5. Node {A6} has utilization-
variable A, and its root def-value A6 overlays materialization A6. In the opti-
mized code for Example 3.2, node {A0, B1} has utilization-variable A, and its root

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

On Minimizing Materializations of Array-Valued Temporaries • 1165

def-value A0 overlays materialization A0. Node {A2, C4} has utilization-variable
C, and its root def-value C2′

overlays materialization C4′
.

THEOREM 3.8. For an instance of the Materialization Problem Under No In-
eligible Statement Rearrangement where the version forest of the given basic
block has no persistent nodes, the number of materializations needed is exactly
the number of essential nodes of the version forest.

PROOF. Immediate from Theorems 3.3 and 3.7.

3.5 Algorithms: Persistence

We note that it is not always possible to independently optimize each version
tree, because of possible interactions between the initial and persistent def-
values of the same variable. This interaction is captured by the concept of “per-
sistence conflict,” as defined below.

Definition 3.7. A persistence conflict in a basic block is a variable that is live
on both entry to and exit from the basic block, such that either the initial def-
value and persistent def-value for the variable occur in different version trees
and the version tree containing the variable’s initial def-value does not have a
wasted root, or the initial def-value and persistent def-value for the variable
occur in the same version tree and the chain of def-values from the initial def-
value to this persistent def-value includes a shuffle operation. A given version
tree has a conflicted root if its root def-value is an initial def-value that is part
of a persistence conflict.

Persistence conflicts may prevent all the version trees for a given basic block
from being evaluated with a minimum number of materializations, as illus-
trated by the following example.

Example 3.3.
(1) B = cshift(A,shift=+5,dim=1)
(2) A = G + H
(3) B(i) = 50
(4) x = B(j) + 3
At end of basic block: A live, B dead.

The version forest for this basic block is shown in Figure 5. The only es-
sential nodes are {B3} and {A2}. Each of the two version trees can by itself be
evaluated using only a single materialization, corresponding to def-values A0

and A2, respectively. However, there is a persistence conflict involving variable
A. Assumption 8 prevents ineligible statements (2), (3), and (4) from being re-
ordered, so in this example, three materializations are necessary.

We next generalize Theorems 3.7 and 3.8 by showing that for a version forest
with no persistence conflicts, the lower bound of Theorem 3.6 has a matching
upper bound. As part of the proof, we provide an algorithm for producing the
optimized code.

THEOREM 3.9. A version forest with no persistence conflicts can be computed
using a number of materializations equal to the number of essential nodes in

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

1166 • D. J. Rosenkrantz et al.

Fig. 5. Version forest for Example 3.3.

the version forest, plus the excess persistence, plus the number of version trees
with a wasted root.

PROOF. We describe an algorithm with input a basic block B and its version
forest V . It produces as output optimized code B′. The version forest V ′ for
B′ will be isomorphic to V . The algorithm given in the proof of Theorem 3.7
is modified as follows. The algorithm now associates two variable names (not
necessarily distinct) with each version forest node. We call these two variable
names the origin-variable and the utilization-variable of the node. In the code
produced by the algorithm, the root def-value of the node’s clone set either will
be an initial-def in the origin-variable, or will be created by an assignment to
the origin-variable. If the utilization-variable and origin-variable are distinct,
a clone of this def-value will be stored in the utilization-variable. All the uses
of def-values from the node will reference the node’s utilization-variable. The
algorithm consists of the following nine steps.

Step (1). Associate a unique utilization-variable with each essential node, as
follows: (Substeps (a) and (b) are for nonpersistent essential nodes. Substeps
(c) and (d) are for persistent essential nodes, and ensure that the utilization-
variable for such a node is the variable from one of the persistent def-values in
the node’s clone set.)

(a) For each version tree such that its root def-value is an initial-def, the vari-
able of this initial-def does not occur in any persistent def-value, and the
version tree contains at least one nonpersistent essential node, arbitrarily
select one of these nonpersistent essential nodes in the version tree. Set the
utilization-variable for the selected nonpersistent essential node to be the
variable of the initial-def.

(b) For each remaining nonpersistent essential node in the version forest, set
the utilization-variable for that node to be a unique new temporary variable.

(c) For each version tree such that its root def-value is an initial-def, and the
variable of this initial-def is the same as the variable of a persistent def-
value in the version tree, set the utilization-variable for the version tree
node containing this persistent def-value to be the variable of the initial-
def. (Note that no two persistent def-values are in the same variable, so
that for a given initial-def, there is at most one one persistent def-value in
its variable.)

(d) For each remaining persistent essential node in the version forest, arbitrar-
ily choose the variable of a persistent def-value in the node’s clone set, and
set the utilization-variable for the node to be this variable.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

On Minimizing Materializations of Array-Valued Temporaries • 1167

Step (2). Same as Step (2) in the algorithm of Theorem 3.7.

Step (3). Associate an origin-variable with each node of the version forest, as
follows.

(a) For each version tree whose root def-value is an initial-def, set the origin-
variable of the root node of the version tree to be the variable of this initial-
def. Moreover, if this variable is the utilization-variable of any essential
node in the version tree, then for all nodes along the path from the root
node to this essential node, set the origin-variable for nodes along this path
to be this variable.

(b) For each remaining node in the version forest, set the origin-variable of the
node to be the same as the utilization-variable of the node.

Step (4). In the output code B′ for the basic block, place the ineligible state-
ments, in the same order as in the given input basic block. (Same as Step (3) in
the algorithm of Theorem 3.7.)

Step (5). For each node of version forest V ′, construct the following clone set:

(a) A def-value whose variable is the origin-variable of the node.

(b) If the utilization-variable of the node is different than the origin variable,
then a def-value whose variable is the utilization-variable.

(c) If the node’s excess persistence is nonzero, then a def-value for each of the
node’s persistent def-values whose variable is not the node’s utilization-
variable.

(d) For each child of the node whose origin-variable is neither the origin-
variable nor the utilization-variable of the node, a def-value whose variable
is the origin-variable of this child node. (This def-value will be transient,
and will be modified by the partial-def statement that creates the root def-
value of the child node.)

Step (6). Include a materialized shuffle statement for each member of a clone
set whose variable is different than the origin-variable of the clone set. (These
are clone set members from Step 5(b), (d) and (d).) Place this shuffle statement
just after the origin point of the clone set. Delete all other eligible statements
for the version tree.5

Step (7). For each shuffle statement included in Step (6), set the source of
the shuffle statement to be the origin-variable of the clone set, and set the
destination of the shuffle statement to be the variable of the clone set member.

Step (8). Same as Step (6) in the algorithm of Theorem 3.7, except that the
origin-variable is used in the left side of the statement at the origin point of the
node.

Step (9). Same as Step (7) in the algorithm of Theorem 3.7.

Consider the code produced by the above algorithm. In the evaluation of
the version tree, each materialization uses a distinct variable name, so the

5However, a cshift operation involving distributed arrays is replaced by an overlap cshift oper-

ation placed just after the origin point of the parent node.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

1168 • D. J. Rosenkrantz et al.

number of materializations equals the number of variable names used for array
variables. Step (1) entails a unique variable (the utilization-variable) for each
essential node. Step (5)(c) entails additional variables, and the total number of
these additional variables equals the excess persistence of the version forest.
The only additional names for array variables in B′ are variables from initial-
defs, such that the variable is not the utilization-variable of any essential node.
Each such initial-def is the root def-value of a version tree with a wasted root.
Thus, the number of variable names used for array variables equals the number
of essential nodes in the version forest, plus the excess persistence, plus the
number of version trees with a wasted root.

In Step (1)(b), instead of using a new temporary variable, one of the variable
names occurring in the node’s clone set can be used, subject to the constraints
that the variable of a persistent def-value is not chosen, and that at the end
of Step (1), each variable name is the utilization-variable of most one essential
node.

THEOREM 3.10. For an instance of the Materialization Problem Under No
Ineligible Statement Rearrangement where the given basic block has no persis-
tence conflicts, the number of materializations needed is exactly the number of
essential nodes of the version forest, plus the excess persistence, plus the number
of version trees with a wasted root.

PROOF. Immediate from Theorems 3.6 and 3.9.

The following result addresses the case when persistence conflicts are
present in a basic block.

THEOREM 3.11. For the Materialization Problem Under No Ineligible State-
ment Rearrangement, the number of materializations required to evaluate a
basic block is at least the sum of the number of essential nodes in the version
forest, plus the excess persistence, plus the number of version trees with a wasted
root, and is at most this number plus the number of persistence conflicts.

PROOF. Each persistence conflict can be eliminated by introducing an extra
materialization for the variable involved. This extra materialization is to a
new temporary variable that is a clone of the conflicted root. References to the
conflicted root are replaced by references to this materialized clone.

4. MINIMIZING MATERIALIZATIONS UNDER UNCONSTRAINED
STATEMENT REARRANGEMENT

If arbitrary rearrangement of the statements in a basic block is permitted, then
interaction between version trees can occur even when there are no persistence
conflicts. Indeed, we show that when unconstrained rearrangements of state-
ments is permitted, the problem of determining if a given basic block can be
implemented with at most K materializations is NP-complete. Moreover, it is
NP-complete even when restricted to a basic block whose version forest has no
persistent nodes.

For an example of how the freedom to rearrange statements can be used to
eliminate materializations, consider the following basic block.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

On Minimizing Materializations of Array-Valued Temporaries • 1169

Fig. 6. Version forest for Example 4.1.

Example 4.1
(1) C 1 = cshift(B 1,shift=+1)
(2) C 2 = cshift(B 2,shift=+1)
(3) C 1(1) = B 1(1) * 5
(4) C 2(2) = B 2(2) * 5
(5) x 1 2 = C 1(k) + B 2(k)
(6) x 2 1 = C 2(k) + B 1(k)
At end of basic block: B 1, B 2, C 1, and C 2 all dead.

The version forest for this basic block is shown in Figure 6. There are two
trees in the version forest, with root def-values B 10 and B 20, respectively. Each
of the four version forest nodes is essential, so under Assumption 8 (Restricted
RearrangementAssumption), Theorem 3.3 applies, and four materializations
are necessary.

If the ineligible statements can be rearranged, the basic block can be evalu-
ated with three materializations. In particular, here are two alternate versions
of optimized code for the basic block, each with three materializations. Each
evaluation materializes the two initial def-values B 10 and B 20, and then ma-
terializes either C 11 or C 22.

(1) C 1 = cshift(B 1,shift=+1)
(3) C 1(1) = B 1(1) * 5
(5) x 1 2 = C 1(k) + B 2(k)
(4) B 2<+1>(2) = B 2(2) * 5
(6) x 2 1 = B 2<+1>(k) + B 1(k)

and

(2) C 2 = cshift(B 2,shift=+1)
(4) C 2(2) = B 2(2) * 5
(6) x 2 1 = C 2(k) + B 1(k)
(3) B 1<+1>(1) = B 1(1) * 5
(5) x 1 2 = B 1<+1>(k) + B 2(k)

The following reasoning shows that the basic block cannot be evaluated with
only two materializations. If there were only two materializations, they would
have to be the two initial def-values B 10 and B 20. Corresponding to statements
(3) and (4), the evaluation of the basic block would have partial-def statements
modifying variables B 1 and B 2. Statement (5) of the basic block uses the values
of clone sets {C 13} and {B 20, C 22}, and therefore uses the new value of variable
B 1 and the old value of variable B 2. Thus, in the evaluation of the basic block,
statement (5) must appear after the partial-def to B 1, and before the partial-def

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

1170 • D. J. Rosenkrantz et al.

to B 2. Thus, placing statement (5) in the computation requires that the partial-
def to B 1 precede the partial-def to B 2. Similarly, statement (6) uses the new
value of variable B 2 and the old value of variable B 1, and so must appear after
the partial-def to B 2, and before the partial-def to B 1. Thus, placing statement
(6) in the computation requires that the partial-def to B 2 precede the partial-
def to B 1. However, the partial-defs to B 1 and B 2 cannot each precede the
other.

We now consider the decision problem associated with minimizing the num-
ber of materializations.

Definition 4.1. The Materialization Decision Problem Under Uncon-
strained Statement Rearrangement is the problem of given a basic block and
a positive integer K , determining if the basic block can be optimized, with ar-
bitrary rearrangements of statements permitted, so that there are at most K
materializations.

THEOREM 4.1. The Materialization Decision Problem Under Unconstrained
Statement Rearrangement is NP-complete, even for basic blocks whose version
forests have no persistent nodes.

PROOF. The problem is in NP because the optimized code can be guessed
and verified in polynomial time.

The proof of NP-hardness is via a reduction from the Feedback Vertex Set
Problem. This problem is: given a directed graph G = (V , A), and positive
integer K , is there is subset V ′ ⊆ V with |V ′| ≤ K such that V ′ contains at
least one vertex from every directed cycle in G?

Given graph G, a basic block is constructed as follows: For each vertex vi in
V , there are a pair of array variables, Bi and Ci. For each arc (vi, vj), there is
a scalar variable xi, j . Let n be the number of vertices and m be the number of
arcs in G. The constructed basic block contains 2n + m statements. First, for
each vi, there is a statement of the form

Ci = cshift(Bi, shift=+1).

Next, for each vi, there is a statement of the form

Ci(i) = Bi(i) ∗ 5.

Finally, for each arc (vi, vj), there is a statement of the form

xi,j = Ci(k) + Bj (k).

The Bi and Ci arrays are all dead at the end of the basic block. (Example 4.1
gives a basic block that would be constructed given a graph G with two arcs,
(v1, v2) and (v2, v1).)

We claim that there exists a cardinality K feedback vertex set for G
if and only if the constructed basic block can be evaluated using n + K
materializations.

First, let V ′ be a feedback vertex set of cardinality K . The basic block can
be evaluated as follows. Only retain the C variables and cshift statements
corresponding to the members of V ′. Follow these statements by the partial-def

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

On Minimizing Materializations of Array-Valued Temporaries • 1171

statements corresponding to the members of V ′. Consider a topological sort
of the graph with V ′ (and adjacent arcs) deleted. Evaluate the partial-def
statements for V − V ′ in accordance with the topological sort. However, for vi

in V − V ′, the partial-def statement is changed to

B<+1>
i (i) = Bi(i) ∗ 5.

For each vertex vi, the scalar assignment statements corresponding to arcs
exiting vi are placed just after the partial-def statement for either Bi or Ci. If
vi is in V ′, these scalar assignments are unchanged, and if vi is in V − V ′, the
occurence of Ci(k) is replaced by B<+1>

i (k)
Now, suppose the basic block can be evaluated with n + K materializa-

tions. The n initial-defs are necessary materializations. Let V ′ be the set of
vertices corresponding to variables that are the source of any retained cshift
operations. Consider an arc (vi, vj), such that vi and vj are both in V − V ′.
The partial-def statements to Ci and Cj must have been changed to suitably
annotated partial-defs to Bi and Bj , respectively. Thus, the scalar assignment
statement corresponding to (vi, vj) must occur after the partial-def to Bi, and
before the partial-def to Bj . Thus, the graph for V − V ′ is acyclic.

Theorem 4.1 contrasts with the polynomial-time optimization algorithm of
Theorem 3.7 . Finally, we note that basic blocks built up via monolithic state-
ments, rather than statements over scalars, may often turn out to be short. If
so, it will often be feasible to systematically search the solution space, thereby
significantly moderating the practical effect of the NP-completeness of the op-
timization problem.

5. RELATED WORK

Since work on optimizing APL, there has been extensive research on nonmate-
rialization of array-valued subexpressions in evaluating array-valued expres-
sions. Such nonmaterialization in expressions is done in APL [Abrams 1970;
Budd 1984; Guibas and Wyatt 1978; Hassitt and Lyon 1972], Fortran 90, HPF,
ZPL [Lin and Snyder 1993], POOMA [Humphrey et al. 1997], C++ templates
[Veldhuizen 1995a, 1995b], Blitz++ [Veldhuizen 1998], the Matrix Template
Library (MTL) [Siek and Lumsdaine 1998], active libraries [Veldhuizen and
Gannon 1998], etc. In the HPF compiler described in Gupta et al. [1995], the
scalarizer for monolithic statements in-lines Fortran 90 intrinsic functions. This
enables the subsequent elimination of some array temporaries by the optimizer
for the scalarized code. Gupta et al.’s [1995] compiler also does message coalesc-
ing in optimizing the communications required for the same array with different
shift values occurring in the same monolithic statement. In addition, Mullin’s
Psi Calculus model [Mullin 1988, 1993] provides a uniform framework for elimi-
nating materializations in expressions built up using operations involving array
addressing and arbitrary shuffle-like operations, including generalized reshape,
and transpose. Indeed, Psi Calculus is applicable to more general monolithic
array expressions and statements than those occurring in Fortran 90.

In the rest of this section, we discuss related work that addresses, at least in
part, optimizations on basic blocks. In contrast to the work presented here, the

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

1172 • D. J. Rosenkrantz et al.

work discussed below generally does not directly address the problem of which
inter-statement intermediate arrays to materialize in the presence of multiple
assignment statements targeting members of the same clone set.

Hwang et al. [1995, 1998, 2001] optimize compositions of array operations,
including shuffle operations, focusing primarily on expressions. However, by
using a statement merge mechanism as described by Ju [1992], the expression
for computing an intermediate array in a basic block can be substituted into
uses of the array later in the basic block. The resulting composite expression
is then optimized. This approach enables the substitution of an intermediate
array variable by its earlier definition in the basic block, so that the resulting
composite expression can be optimized.

Codeboost [Dinesh et al. 2000] is a source-to-source rule-based optimizer
targeted on PDE solvers. The rules are centered on optimizing expressions.
However, it also includes some transformation rules that maintain information
about the relationship between array values that are created by shift operations
within a basic block. It use this information to change the shift amount in some
shift operations.

Various techniques for scalarizing code, performing dependence analysis on
either the unscalarized or the scalarized code, and using dependency informa-
tion to optimize code are described in Allen and Kennedy [2002] and Wolfe
[1996]. An important type of optimizations is loop fusion, and a number of au-
thors have considered loop fusion analysis. Operating on either unscalarized
or scalarized code, an optimizer can eliminate some unnecessary intermediate
arrays. Examples of loop fusion analysis and optimizations include the follow-
ing. Gao et al. [1992] and Lewis et al. [1998] use loop fusion and subsequent
optimization of the resulting loop nest to achieve array contraction, where each
element of an array result is computed and used immediately, without mate-
rializing the entire array at one time.6 Bacon et al. [1994] and Manjikian and
Abdelrahman [1997] consider the fusion of scalarized loop nests, with the goal
of increasing parallelism and locality. A number of authors have considered
loop fusion analysis of monolithic level statements in a basic block. Roth and
Kennedy [1996] consider dependence analysis of statements that use arrays
and array sections. Such dependency analysis enables the identification of fus-
able statements and facilitates scalarization. Roth [2000] considers combining
the analysis for scalarization and fusion. In Roth [2000], a group of statements
can be fused if they are consecutive statements in a basic block, are conformable
(involve isomorphic array sections), and can be combined into a single loop nest
without creating additional temporary arrays. Kennedy and McKinley [1993]
consider the problem of loop fusion in a basic block, providing algorithms for
certain cases, and proving that performing fusion to maximize data locality is
NP-hard. Kennedy [2001] provides an efficient heuristic that given a benefit
function for pairs of fusable loops, chooses groups of loops to fuse. Lewis et al.

6More formally, following Wolfe [1996], an array that is assigned and used in a loop with only loop

dependence relations, and is not used after the loop, can be replaced by privatized scalars. Such a

replacement is called array contraction.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

On Minimizing Materializations of Array-Valued Temporaries • 1173

[1998] consider a form of loop fusion and array contraction analysis done at
the monolithic level, focused on stencil-like computations. Roth and Kennedy
[1998] consider incompatibilities that can arise between fusing certain loop
nests and generating efficient code for distributed memory architectures. Their
article addresses loop fusion in this context.

The work cited above on loop fusion is generally applicable to statements
whose arrays are conformable and whose operations are done component-wise
in a similar way, so that the statements can be combined into a common loop
nest. The approach can be extended to situations where the loops have similar
control but may only partially overlap, for example by weighting the bene-
fits of candidate fusable loops [Kennedy 2001]. The loop fusion approach has
mainly been applied to stencil-like computations, where the statements being
fused involve conformablele or nearly conformable arrays and array sections.
Conformability is applicable to shift operations, but not to general shuffle oper-
ations, such as reshape and transpose. Thus, these techniques do not apply di-
rectly to arbitrary shuffle operations, such as reshape and transpose. The work
in this article is orthogonal to work on loop fusion (including that on monolithic-
level loop fusion), and there are potential benefits to combining both approaches
in an optimizer. Indeed, it appears that these fusion techniques would not pro-
duce the code transformations based on nonmaterialization analysis, as done
in Examples 2.1–3.3.

Static single assignment (SSA) form [Cytron et al. 1991; Knobe and Sarkar
1998] is a technique whereby each definition is assigned a unique variable
name, the resulting code is optimized, and the code is transformed back to a
form where multiple definitions can utilize the same variable name. As dis-
cussed in Cytron et al. [1991], after the SSA representation of code has been
optimized, the single assignment variables can be mapped into program vari-
ables, whereby single assignment variables with nonoverlapping lifetimes can
share the same program variable. This mapping can be modeled as a graph
coloring problem. Our problem formulation and approach focuses on clone sets
rather than on individual defs, and effectively treats references and partial-defs
as applicable to clone sets. Consequently, there is interchangeability between
the defs occurring in a given clone set, and considerable freedom as to which
members of a clone set to materialize.

As far as we know, the optimization problem in this article has only been
addressed, and only in part, in Kennedy et al. [1995], Roth [1997], and Roth
et al. [1997]. We observe that their approach first converts the code to SSA form
before determining which array-defs are to be nonmaterialized.

6. CONCLUSIONS

Minimizing materializations is potentially an important problem, with a num-
ber of aspects. The complexity of these aspects increases with the level of pro-
gram granularity over which the minimization is to be carried out. In partic-
ular in a single expression, minimizing materializations is mainly an issue
of proper array accessing. In contrast in a basic block, decisions as to possible

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

1174 • D. J. Rosenkrantz et al.

nonmaterializations interact, so minimizing materializations becomes a combi-
natorial optimization problem. The concepts of clone sets, version forests, and
essential nodes introduced here model fundamental aspects of this problem.
Under the assumptions listed in Section 2.2, each essential node of a version
forest requires a distinct materialization. This establishes a lower bound on the
number of materializations required. When there are no persistent def-values,
Theorem 3.7 provides an algorithm that produces an optimum solution with
one materialization per essential node of the version tree. Theorem 3.6 gives a
lower bound that addresses persistent def-values. Theorem 3.9 provides an al-
gorithm when there are persistent def-values, but no persistence conflicts. This
algorithm minimizes the number of materializations in this case. Theorem 3.11
provides an algorithm and upper bound for arbitrary instances.

In Section 4, we showed that relaxing the constraint on statement rear-
rangement increases the interaction between version trees, and this increases
the computational difficulty of the optimization problem. For practical reasons,
it should be worthwhile to investigate the effect of relaxing each of the other
assumptions listed in Section 2.2. Thus for example, if the Coarse Analysis As-
sumption is relaxed, it should be possible to increase the number of eligible
statements. As a second example, which may be significant in practice, when
only a relatively small number of elements of a given array have been changed
by partial-defs, it should be possible to use a differential buffer to hold the
new values of these array elements, without materializing an entire new copy
of the array. Third, the approach of this article can be extended to apply to
the eoshift operation (and more generally, operations with some deletions of
values) by relaxing the Full Mergeability Assumption. In particular, the mate-
rialized operand of an eoshift operation can be used as the source of values
for the result of the operation, provided a differential buffer is used to hold the
values deleted by the operation.

Finally, other aspects of materialization/nonmaterialization merit investi-
gation. One issue is determining the profitability of a given possible nonma-
terialization. As pointed out in Hwang et al. [1995, 2001], nonmaterialization
of array intermediate results can sometimes be unprofitable. In general, the
profitability of a possible nonmaterialization depends on both the code and
the target architecture. In addition to the possible elimination of materializa-
tions appearing in the given code, introduced materializations are potentially
very important for increasing locality of reference. The judicious introduction
of materializations of certain array-valued temporaries can sometimes signifi-
cantly improve the efficiency of memory access at various levels of the memory
hierarchy. For example, suppose there is a loop that repeatedly accesses the
elements of an array in a different order than that in which they are stored. It
may well pay to materialize a version of the array in which the array elements
have been reordered in a way consistent with the access pattern in the loop.
An appropriate shuffle operation can be used to produce a materialized tem-
porary, and the loop can then access the array elements from this temporary.7

7More generally, there may be a choice between reordering the loop statements via retiling the loop

iterations, reordering the data in the array, or some combination of both.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

On Minimizing Materializations of Array-Valued Temporaries • 1175

Detailed understanding of how and when to introduce such materializations
may well prove important both for program design and mechanized program
transformations.

REFERENCES

ABRAMS, P. S. 1970. An APL machine. Ph.D. dissertation. Stanford University, Stanford, CA.

AHO, A. V., SETHI, R., AND ULLMAN, J. D. 1986. Compilers: Principles, Techniques, and Tools.

Addison–Wesley, Reading, MA.

ALLEN, R. AND KENNEDY, K. 2002. Optimizing Compilers for Modern Architectures: A Dependence-
Based Approach. Morgan-Kaufmann Publishers, San Francisco, CA.

BACON, D. F., GRAHAM, S. L., AND SHARP, O. J. 1994. Compiler transformations for high-performance

computing. ACM Comput. Surv. 26, 4 (Dec.), 345–420.

BUDD, T. A. 1984. An APL compiler for a vector processor. ACM Trans. Prog. Lang. Syst. 6, 3

(July), 297–313.

CHAMBERLAIN, B. L., CHOI, S.-E., LEWIS, E. C., LIN, C., SNYDER, L., AND WEATHERSBY, W. D. 1996.

Factor-join: A unique approach to compiling array languages for parallel machines. In Proceedings
of the 9th International Workshop on Languages and Compilers for Parallel Computing, D. Padua,

A. Nicolau, D. Gelernter, U. Banerjee, and D. Sehr, Eds. Lecture Notes in Computer Science, vol.

1239. Springer-Verlag, New York, pp. 481–500.

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1991. Efficiently com-

puting static single assignment form and the control dependence graph. ACM Trans. Prog. Lang.
Syst. 13, 4 (Oct.), 451–490.

DINESH, T. B., HAVERAAEN, M., AND HEERING, J. 2000. An algebraic programming style for numerical

software and its optimization. Sci. Prog. 8, 4, 247–259.

GAO, G. R., OLSEN, R., SARKAR, V., AND THEKKATH, R. 1992. Collective loop fusion for array con-

traction. In Proceedings of 5th International Workshop on Languages and Compilers for Parallel
Computing (New Haven, CT, Aug.), U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, Eds.

Lecture Notes in Computer Science, vol. 757. Springer-Verlag, pp. 281–295.

GUIBAS, L. J. AND WYATT, D. K. 1978. Compilation and delayed evaluation in APL. In Conference
Record of the 5th Annual ACM SIGACT–SIGPLAN Symposium on Principles of Programming
Languages (POPL ’78) (Tucson, AZ, Jan). ACM, New York, pp. 1–8.

GUPTA, M., MIDKIFF, S., SCHONBERG, E., SESHADRI, V., SHIELDS, D., WANG, K.-Y., CHING, W.-M., AND NGO,

T. 1995. An HPF compiler for the IBM SP2. In Proceedings of Supercomputing ’95. (San Diego,

CA, Dec.). ACM, New York.

HASSITT, A. AND LYON, L. E. 1972. Efficient evaluation of array subscripts of arrays. IBM J. Res.
Devl. 16, 1 (Jan.), 45–57.

HUMPHREY, W., KARMESIN, S., BASSETTI, F., AND REYNDERS, J. 1997. Optimization of data-parallel

field expressions in the POOMA framework. In Proceedings of the 1st International Conference
on Scientific Computing in Object–Oriented Parallel Environments (ISCOPE ’97) (Marina del

Rey, CA, Dec.), Y. Ishikawa, R. R. Oldehoeft, J. Reynders, and M. Tholburn, Eds. Lecture Notes

in Computer Science, vol. 1343. Springer-Verlag, New York, pp. 185–194.

HWANG, G.-H., LEE, J. K., AND JU, D.-C. 1995. An array operation synthesis scheme to optimize

Fortran 90 programs. ACM SIGPLAN Notices, Proceedings of the 5th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming 30, 8 (Aug.), 112–122.

HWANG, G.-H., LEE, J. K., AND JU, R. D.-C. 1998. A function-composition approach to synthesize

Fortran 90 array operations. J. Paral. Dist. Comput. 54, 1 (Oct.), 1–47.

HWANG, G.-H., LEE, J. K., AND JU, R. D.-C. 2001. Array operation synthesis to optimize

HPF programs on distributed memory machines. J. Paral. Dist. Comput. 61, 4 (Apr.), 467–

500.

JU, D.-C. 1992. The optimization and parallelization of array language programs. Ph.D. disser-

tation, University of Texas at Austin, Austin.

KENNEDY, K. 2001. Fast greedy weighted fusion. Int. J. Paral. Prog. (IJPP) 29, 5 (Oct.), 463–

491.

KENNEDY, K. AND MCKINLEY, K. S. 1993. Maximizing loop parallelism and improving data locality

via loop fusion and distribution. In Proceedings of the 6th International Workshop on Languages

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

1176 • D. J. Rosenkrantz et al.

and Compilers for Parallel Computing (Portland, OR, Aug.), U. Banerjee, D. Gelernter, A. Nicolau,

and D. Padua, Eds. Lecture Notes in Computer Science, vol. 768. Springer-Verlag, New York, pp.

301–320.

KENNEDY, K., MELLOR-CRUMMEY, J., AND ROTH, G. 1995. Optimizing Fortran 90 shift operations on

distributed-memory multicomputers. In Proceedings of the 8th International Workshop on Lan-
guages and Compilers for Parallel Computing (Columbus, OH, Aug.). Lecture Notes in Computer

Science, vol. 1033. Springer-Verlag, New York, pp. 161–175.

KNOBE, K. AND SARKAR, V. 1998. Array SSA form and its use in parallelization. In Conference
Record 25th ACM SIGACT–SIGPLAN Symposium on Principles of Programming Languages
(POPL ’98) (San Diego, CA, Jan.). ACM, New York, pp. 107–120.

LEWIS, E. C., LIN, C., AND SNYDER, L. 1998. The implementation and evaluation of fusion and

contraction in array languages. In Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation (Montreal, Que., Canada, June). ACM,

New York, pp. 50–59.

LIN, C. AND SNYDER, L. 1993. ZPL: An array sublanguage. In Proceedings of the 6th International
Workshop on Languages and Compilers for Parallel Computing (Portland, OR, Aug.), U. Baner-

jee, D. Gelernter, A. Nicolau, and D. Padua, Eds. Lecture Notes in Computer Science, vol. 768.

Springer-Verlag, New York, pp. 96–114.

MANJIKIAN, N. AND ABDELRAHMAN, T. S. 1997. Fusion of loops for parallelism and locality. IEEE
Trans. Paral. Dist. Syst. 8, 2 (Feb.), 193–209.

MULLIN, L. 1993. The Psi compiler project. In Workshop on Compilers for Parallel Computers. TU

Delft, Holland.

MULLIN, L. M. R. 1988. A mathematics of arrays. Ph.D. dissertation. Syracuse University,

Syracuse, New York.

ROTH, G. 1997. Optimizing Fortran90D/HPF for distributed-memory computers. Ph.D. disserta-

tion, Dept. of Computer Science, Rice University.

ROTH, G. 2000. Advanced scalarization of array syntax. In Proceedings of the 9th International
Compiler Construction Conference (CC ’2000) (Berlin, Germany, Mar.). Lecture Notes in Com-

puter Science, vol. 2017. Springer-Verlag, New York, pp. 219–231.

ROTH, G. AND KENNEDY, K. 1996. Dependence analysis of Fortran90 array syntax. In Proceedings of
the International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA ’96) (Sunnyvale, CA, Aug.). CSREA Press, pp. 1225–1235.

ROTH, G. AND KENNEDY, K. 1998. Loop fusion in high-performance Fortran. In Proceedings of the
12th International Conference on Supercomputing (ICS ’98) (Melbourne, Australia, July). ACM,

New York, pp. 125–132.

ROTH, G., MELLOR-CRUMMEY, J., KENNEDY, K., AND BRICKNER, R. G. 1997. Compiling stencils in

high performance Fortran. In Proceedings of the 1997 ACM/IEEE Conference on Supercom-
puting (SC ’97): High Performance Networking and Computing (San Jose, CA, Nov.). ACM,

New York.

SCHWARTZ, J. T. 1975. Optimization of very high level languages—I. Value transmission and its

corollaries. Comput. Lang. 1, 2 (June), 161–194.

SIEK, J. G. AND LUMSDAINE, A. 1998. The matrix template library: A generic programming ap-

proach to high-performance numerical linear algebra. In Proceedings of the 2nd International
Symposium on Computing in Object-Oriented Parallel Environments (ISCOPE ’98) (Santa Fe,

NM, Dec.), D. Caromel, R. R. Oldehoeft, and M. Tholburn, Eds. Lecture Notes in Computer

Science, vol. 1505. Springer-Verlag, New York, pp. 59–70.

VELDHUIZEN, T. 1995a. Using C++ template metaprograms. C++ Report 7, 4 (May), 36–43.

(Reprinted in C++ Gems: Programming Pearls from the C++ Report, S. R. Lippman, Ed.

Cambridge University Press, Cambridge, UK, pp. 459–474.)

VELDHUIZEN, T. L. 1995b. Expression templates. C++ Report 7, 5 (June), 26–31. (Reprinted in

C++ Gems: Programming Pearls from the C++ Report, S. S. Lippman, Ed. Cambridge University

Press, Cambridge, UK, pp. 459–474.)

VELDHUIZEN, T. L. 1998. Arrays in Blitz++. In Proceedings of the 2nd International Symposium
on Scientific Computing in Object-Oriented Parallel Environments (ISCOPE ’98) (Santa Fe, NM.

Dec.). D. Caromel, R. R. Oldehoeft, and M. Tholburn, Eds. Lecture Notes in Computer Science,

vol. 1505. Springer-Verlag, New York, pp. 223–230.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

On Minimizing Materializations of Array-Valued Temporaries • 1177

VELDHUIZEN, T. L. AND GANNON, D. 1998. Active libraries: Rethinking the roles of compilers and

libraries. In Proceedings of the SIAM Workshop on Object Oriented Methods for Interoperable
Scientific and Engineering Computing (OO ’98) (Yorktown Heights, NY.). SIAM, Philadelphia,

PA.

WOLFE, M. 1996. High Performance Compilers for Parallel Computing. Addison-Wesley, Reading,

MA.

Received May 2004; revised July 2005; accepted October 2005

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.

